
Robust Estimators for Data Reconciliation
Claudia E. Llanos,† Mabel C. Sancheź,*,† and Ricardo A. Maronna‡
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ABSTRACT: In this work, a comparative performance analysis of robust data reconciliation strategies is presented. The study
involves two procedures based on the biweight function and three estimation techniques that use the Welsh, quasi-weighted least
squares, and correntropy M-estimators. The aforementioned functions are selected for comparative purposes because their use in
the data reconciliation literature has appeared during the past decade. All procedures are properly tuned to have the same estimation
and gross error detection/identification capabilities under the ideal distribution. Different measurement models are systematically
taken into account, and results are analyzed considering both performance measures (average number of type I errors, global
performance, mean square error) and computational load. The comparative analysis indicates that a simple robust methodology can
provide a good balance between those two issues for linear and nonlinear benchmarks.

1. INTRODUCTION

The operation of today’s chemical plants is characterized by
the stringent need of introducing fast and low-cost changes to
improve their performance. The decision-making process about
possible modifications in a system requires knowing its actual
state. This is determined by the values of the process variables
contained in the model chosen to represent plant operation.
In general, this model is constituted by the mass and energy
conservation equations.
During the normal operation of a chemical process, measure-

ments such as flow rates, temperatures, pressures, compositions,
etc. are obtained. The numerical values resulting from the obser-
vations do not provide consistent information because they con-
tain some type of error that prevents the conservation equations
from being exactly satisfied. Therefore, it is a common practice to
apply data reconciliation procedures that provide adjusted
measurements values, which are consistent with the correspond-
ing balance equations.1,2

Different approaches have been proposed for the simultaneous
treatment of random errors and outliers in data reconciliation
problems. Instead of minimizing the least-squares (LS) criteria,
which is strongly biased by the presence of outliers, Tjoa and
Biegler3 initially formulated an objective function based on the
contaminated normal distribution following the maximum
likelihood principle. When the procedure converges, an obser-
vation is identified as an outlier if its contribution to the sample
probability is greater than the corresponding to the random
error. The performance of this method strongly depends on
an adequate characterization of the gross error. Furthermore, it
often leads to nonconvex and complex objective functions that
are prone to underflow problems.4

Other simultaneous approaches based on the concepts of robust
statistics have been devised since that time. Robust strategies
produce reliable estimates not only when data follow a given
distribution exactly, but also when this happens only approxi-
mately due to the presence of outliers.5,6

Different types of M-estimators, which are generalizations of
the maximum likelihood estimator, have been used as objective

functions of the data reconciliation problem instead of the
weighted LS. Albuquerque and Biegler4 employed a convex
M-estimator, the fair function (FF), which has the interesting
property of yielding global optima for nonlinear problems with
low constraints curvature. Since this estimator provides no direct
inference to detect outliers, techniques based on exploratory
statistics were used for that purpose. Next, Arora and Biegler7

applied the three-part redescending estimator (TPRE) proposed
by Hampel,8 which has superior robustness with respect to the
FF. In this case, outlier detection and identification can be per-
formed using an explicit cutoff point. The parameters of the
redescending estimator were tuned for a specific application by
minimizing the Akaike information criterion. The estimation
obtained using the FF was used as the starting point for mini-
mizing the TPRE.
A partially adaptive estimator based on the generalized

T-distribution and a fully adaptive estimator based on density
estimation were proposed by Wang and Romagnoli.9 These
methods showed improved robustness and efficiency in com-
parison to traditional approaches at the expense of increasing the
computational load.
During the past decade, the contribution by Ozyurt and Pike10

has been highlighted. The authors presented a performance
analysis of seven objective functions, which have been previously
used to solve data reconciliation problems, and three gross
error detection criteria. Both simulated and industrial processes
operating at steady state were considered. For comparison pur-
poses, the objective functions were tuned to obtain the same
relative efficiency at the ideal distribution. Promising results were
attained using the Cauchy distribution and the TPRE.
Regarding the application of robust statistics to address

dynamic data reconciliation problems, Prata et al.11 performed a
comparative analysis that involved the Welsch (W) M-estimator
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and the same objective functions studied by Ozyurt and Pike.10

The Lorentzian andW distributions provided the best reconciled
values for the analyzed case studies. Later on, the W function was
used to adjust the measurements and estimate the parameters
of an industrial polypropylene reactor12 using a moving window
approach.
The strengths of monotone and redescending M-estimators

were combined by Sańchez and Maronna13 who presented two
strategies based on the Huber (H, monotone) and biweight (BW,
redescending) M-estimators. Computing was executed using the
regression approach proposed byMaronna and Arcas.14 Simulated
measurements for the steam metering network (SMN) bench-
mark15 were reconciled taking into account different observations
models. Results were compared with those provided by the TPRE.
The relative efficiency and the average number of type I errors
(AVTI) at the ideal distribution were set at the same values for
all the strategies. A slightly superior behavior of the proposed
methodologies with respect to TPRE was achieved with lower
computational time demand.
The quasi-weighted least square (QWLS) M-estimator was

formulated by Zhang et al.16 for data reconciliation. The Akaike
information criterion was used to tune the estimator parameter
for each specific application, and the cutoff point was set by
selecting the probability of committing type I errors at the ideal
distribution. Estimator performance was compared with respect
to the behavior of the FF and TRPE for the SMN benchmark,
and authors pointed out that the QWLS estimator was more
effective than the other ones.
Later on, Chen et al.17 proposed to use correntropy (CO) as

an optimality criterion in estimation problems. The effective-
ness of the CO estimator was tuned by minimizing the Akaike
information criterion. The cutoff point was also determined
by selecting the probability of committing a type I error at the
ideal distribution. A performance comparison study was per-
formed for the SMN benchmark, and it was concluded that
CO function outperformed the QWLS estimator for that case
study.
Recently, dynamic data reconciliation problems were

addressed using the FF, the TPRE,18 and the CO function19

taking into account sensor drifts and biases.
In this work, the robust strategies that have appeared in

the data reconciliation literature during the past decade are
reviewed, and the results of a comparative performance analysis
accomplished for two benchmarks are presented. Different
measurement models are systematically taken into account, and
results are provided in terms of the performance measures
usually evaluated for this type of studies: AVTI and Global
Performance (OP), proposed by Narasimhan and Mah,20 and
the mean square error (MSE). Under the ideal distribution,
the estimation and outlier detection/identification capabilities
of all the strategies are the same. This is guaranteed by an adequate
parameter tuning.
The paper is structured as follows. In Section 2, the robust

strategies selected for this study are briefly reviewed. The pro-
cedure devoted to evaluate the performance of the techniques
is described in Section 3. The results of the comparative analysis
are presented in Section 4, and a Conclusions section closes the
article.

2. ROBUST ESTIMATORS FOR DATA RECONCILIATION
Let the state of a plant operating under steady-state conditions
be described by the vectors x = (x1,..., xn) and u = (u1,..., um)
of measured and unmeasured process variables, respectively,

which satisfy a system of independent nonlinear balance
equations:

=f x u( , ) 0 (1)

In the absence of systematic errors, consider the following
measurement model

= +y x eij i ij (2)

where yij represents the measurement of the ith variable at the jth
time period, and eij stands for the unobservable independent
random error, which has zeromean and known standard deviation
σi. Call yj = (y1j,...., ynj) the vector of observations at time interval j.
AnM-estimator of the state of the system at time t is defined as

the solution ̂ ̂x u( , ), satisfying eq 1, of
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stands for the standardized residual, and ρ is the estimator’s loss
function. It is an increasing function of |r|, and the case ρ(r) = r2

corresponds to the LS estimator. The process is assumed to be
observed for a data horizon of size N, that is, at time t, the
estimator is based on observation vectors yt−N+1,..., yt. Eq 3 can be
solved for a single observation, but the combined use of temporal
and spatial redundancy provides better estimates.
The W, BW, QWLS, and CO functions have appeared as loss

functions to solve the robust data reconciliation problemduring the
past decade. Those are displayed in Figure 1 for a relative efficiency
of 95% at the standardized normal distribution. Let the derivative of
ρ be ψ = ρ′ and the weight functionW, which is useful to express a
location M-estimate as a weighted mean,6 be defined as follows:
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Both ψ and W functions are represented in Figures 2 and 3,
respectively.
Next, robust data reconciliation strategies based on the above-

mentioned loss functions are briefly reviewed. First, the simple
(SiM) and sophisticated (SoM) methods, which make use of the
BW M-estimator, are presented. Then, the W, QWLS, and CO
M-estimators are introduced.

2.1. Simple and Sophisticated Methods. These are
nonadaptive techniques that combine the strength of monotone
and redescending M-estimators.13 The SiM involves the following
two steps.

2.1.1. Step 1. A location M-estimate from the BW family is
computed for the ith measurement (i = 1:n) at time t, yĩt, which is
the solution of

∑ ρ
σ
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The estimator yĩt is based on the time horizon values {yij, j =
t − N + 1,...,t}. In this way, a robust and simple initial estimator,
namely the median of {yt−N+1,...., yt}, is available for each mea-
surement. Since for the estimation of xi the use of redundancy
from observations other than i is limited,14 full advantage of the
redundancy supplied by the repeated observations yij in the time
horizon is taken. The location estimator uses this “self-redundancy”
to detect and down-weight outliers.
2.1.2. Step 2. An M-estimator of the process state at time t is

defined as the solution ̂ ̂x u( , ), satisfying eq 1, of

∑ ρ
σ

̃ −
=
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where ρH corresponds to the Huber family
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These two steps work together as follows. The first one helps
to down-weight the effect of outliers that may bias the estimation

Figure 2. Influence functions.

Figure 1. Loss functions.
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when a monotone M-estimator is used. Furthermore, the solu-
tion of eq 8 is easier than the corresponding to eq 3 for a
redescending M-estimator because monotone estimators have
a unique solution. Thus, the values used to start the iterative
process may influence the number of iterations but not the final
outcome. The sequential solution of eqs 6 and 8 do not coincide
exactly with that of eq 3, but the difference is negligible for
practical purposes.
The SoM incorporates an extra step to the SiM as follows.
2.1.3. Step 3. In this case, all the measurements in the time

horizon are used for the estimation problem. Used as initial point
the solution of eq 8, the estimator ̂ ̂x u( , ), that satisfies eq 1, is the
solution of

∑ ∑ ρ
σ
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whose solution is the final estimate.
Step 3 is a refinement stage of the solution attained in Step 2.

Given that the BW function is a bounded redescending esti-
mator, which have different local optima, the initial point of the
optimization problem must be robust to ensure the convergence
to a good solution.
2.2. Welsch M-Estimator. The W M-estimator was intro-

duced by Dennis and Welsch21 as a soft redescending estimator,
less sensitive to outliers than the monotone ones. Its loss
function is represented by eq 11, and its influence function
asymptotically approaches zero for large values of r, as can be
seen from Figure 2:
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The function has been only applied to reconcile the mea-
surements of dynamic processes11,12 for time varying moving
windows. Regarding the initialization of the estimation problems,

measurement values are used as the initial guesses of the
independent input variables, and the starting points for model
parameters are problem dependent.

2.3. Quasi-Weighted Least Square M-Estimator. The
loss function of this M-estimator16 is defined as follows:

ρ =
+ | |

r
c r2QWLS

2

QWLS (12)

The addition of the term cQWLS|r| to the denominator of the
LS function reduces the effect of large errors, where cQWLS is an
adaptive tuning constant. This function is a monotone estimator,
and ψQWLS → 1/cQWLS when r → ∞.
The QWLS estimator was used to address linear steady state

data reconciliation problems, but no discussion was provided
about the effect of the optimization problem initialization on the
computation load.

2.4. Correntropy M-Estimator. The CO M-estimator17 is
defined by eq 13. The Gaussian kernel function depends on its
kernel width cCO. It was proposed to adjust the value of cCO for
the process under analysis to scale-up outliers. The influence
function of CO tends quickly to zero for |r| > cCO:

ρ =
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2
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(13)

Also, steady state data reconciliation problems were solved
using this estimator as objective function. It was proposed to
formulate the unconstrained optimization problem at first2 and
solve it using an iterative rewheiting procedure. The solution
provided by the LS estimator was used as the starting point of the
optimization problem.

3. PERFORMANCE ANALYSIS

In this work, the capabilities of the selected strategies to estimate
variables and identify outliers are analyzed for two benchmarks.

Figure 3. Weight functions.
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The procedure performances are examined for three different
measurement models:

(1) Model with no outliers. It is assumed that the standardized
residuals have the same distribution F, represented by the
standard normal distribution F ∼N(0,1) in this case.

(2) Model with occasional outliers, represented by a heavy-
tailed symmetric F. It is chosen as a contaminated normal
distribution: F ∼(1 − ε)N(0,1) + εN(0,K2), where ε
denotes the contamination rate. That is, with probability ε, a
normal error is multiplied by a constant K. The parameter ε
is set at 0.1 in this study.

(3) Model of failure. Most of the observations follow case 1,
but a random proportion ε does not obey that model at all.
Among the several possible scenarios of failure, the error is
represented as a fixed value Rσi.

In cases 1 and 2, the estimators have no bias, and therefore the
MSE reflects only the variability. It is desirable to have estimators
that have a high efficiency in both cases 1 and 2. Recall that the
efficiency of a given estimator at a given distribution F is the ratio
between the variances of the maximum likelihood estimator
corresponding to F and of the given estimator. In case 3, theMSE
reflects both the variance and a bias, which must be controlled.
To compare the estimation capabilities of different techniques,

the efficiencies of the M-estimators are fixed at 95.5% at the
ideal distribution by properly tuning their parameters. Ozyurt
and Pike10 dealt with this issue in the same way. For QWLS and
CO estimators, the tuning is performed using the jackknife pro-
cedure.22 Table 1 presents the parameter values for each loss
function.

Adaptive estimators intend to minimize the estimator’s vari-
ance in cases 1 and 2. They use information from the sample
to optimize the estimator’s parameters, such as the constant c in
eqs 12 and 13. There exist different ways to deal with this topic,
that is, minimizing an estimate of the estimator’s variance, maxi-
mizing the generalized T likelihood function evaluated at the
initial estimates of the process states, using an iterative procedure
based on the Akaike information criterion, etc. However, an
adaptive estimator is not necessarily better than a properly tuned
M-estimator. The following issues support this statement:13

(1) Extensive simulations in robust statistics6 have shown that
adaptive estimators, despite their greater computational
complexity, do not outperform good estimators with
cleverly chosen fixed parameters.

(2) The biweight estimator tuned to have efficiency 0.95 for
normal F (which means taking cBW = 4.68), for example,
has an efficiency of 0.70 when F is the Cauchy distribution
(i.e., distribution T with one degree of freedom), which is
an extreme case of heavy-tailedeness.

(3) It must be recalled that the true value of the “optimal”
parameter, such as c, is unknown for adaptive estimators.
Only an estimate of it is available that has a certain bias and
variance, which in turn are propagated to the reconcilia-
tion estimator. Therefore, this approach is reliable only
with very large sample sizes. Recall that the MSE of an
estimator can be decomposed as MSE = bias2 + variance.

Typically, the variance decreases as 1/(sample size), while
the contamination bias in case 3 does not. Therefore, for
large sample sizes where adaptive estimators make sense,
efficiency is not as important as bias.

Ten-thousand simulation trials are performed for each case
study, and the length of the data horizon is fixed at H = 10. The
measures of performance used in this analysis are MSE, AVTI,
and OP, which are estimated as follows:

∑ ∑
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where Ns is the number of simulation trials.
Furthermore, the cutoff point of each technique, that is, the

value beyond which the measurements are considered as outliers,
is adjusted by trial and error in such a way that the AVTI is
approximately 0.05 when no outliers are present, and measure-
ments are generated using a normal distribution (case study 1).
This practice comes from the earliest works in data reconciliation23

and guarantees that all procedures have the same behavior when
there are no outliers.
Regarding the starting point of the optimization problem,

Chen et al.17 reported that the CO estimator was initialized using
the solution of the LS technique, but any reference was provided
by Zhang et al.16 with respect to this issue for the QWLS esti-
mator. Given that CO and QWLS estimates have been recently
compared for the SMN benchmark by Chen et al.,17 the ini-
tialization used by the last authors is assumed for both pro-
cedures in this work. Furthermore, the same starting point is
used for the W estimator because no mention appears in the
literature about the initialization of the steady state estimation
problem.
The procedures were executed using a Processor Intel Core

(TM) i7 CPU 930 @ 2.80 GHz, 8GB RAM, using the Successive
Quadratic Programming code of MatLab Release 7.12 (R2011a).

4. RESULTS
Next, simulation results are reported and analyzed in detail for
each benchmark.

4.1. Steam Metering Network. The SMN, presented by
Serth and Heenan,15 involves 28 streams that interconnect 11
units. The flow rates of all streams are measured. Random errors
are generated considering that the standard deviations of the
observations are 2.5% of their true values. Tables 2 and 3 display

the cutoff points of the methodologies and the performance
measures for case study 1, respectively.
Regarding case study 2, Table 4 includes the performance

measures for different K values, but only the AVTI and MSE
records are displayed in Figure 4 because the OPs are similar for
all techniques. In Table 5, the averages of the execution times for
10 000 simulations are reported.

Table 1. Loss FunctionsTuning Parameters (Relative
Efficiency = 0.95)

cCO cQWLS cW cBW

2.05 0.89 2.98 4.68

Table 2. Cutoff PointsSMN

SiM SoM CO QWLS W

3.84 3.8416 3.8165 3.753 3.811
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From Figure 4, it can be seen that

(a) The performances of the strategies SiM, SoM, W, and CO
are similar for K ∈ [2, 10], but SiM and SoM outperform
CO and W for K > 10.

(b) The behaviors of CO and W are comparable for K > 10
even though there is evidence of a slight superiority of W
with respect to CO.

(c) The AVTI and MSE values obtained for the QWLS
increase withK and are poorer than those provided by SiM
and SoM, except for K = 2. In contrast, QWLS behaves
better than W and CO for large contaminations.

(d) The performance values of SiM and SoM are only slightly
affected by K.

The analysis of Table 4 indicates that SoM provides a little
better OP and MSE values with respect to SiM. The price for the
improved performance of SoM is an increase in its computing
time as a result of its extra step (Table 5).
The previous results point out that SiM works well for variable

estimation and outlier detection for the whole range of K values
and has the lowest computational requirements.
Next, the results for case study 3 are presented. Table 6

contains the performance measures for different R values. Also,
the AVTI and MSE records are illustrated in Figure 5, and the
average execution times are reported in Table 7.
If measurements do not obey the normal contaminated

distribution, it can be seen from Figure 5 that

(a) The AVTI andMSE values for the QWLS increase with K.
(b) The performance indices for CO and W are comparable

for all R values.

Table 3. Results for Case Study 1SMN

AVTI MSE × 102

SiM SoM CO QWLS W SiM SoM CO QWLS W

0.0499 0.0499 0.05 0.0499 0.0499 6.384 6.387 6.4129 6.4109 6.3796

Table 4. Results for Case Study 2SMN

K 2 5 10 14 15 18 20

AVTI SiM 0.052 0.053 0.049 0.051 0.048 0.049 0.046
SoM 0.053 0.052 0.049 0.050 0.048 0.048 0.046
CO 0.050 0.051 0.050 0.063 0.068 0.102 0.126
QWLS 0.048 0.054 0.055 0.058 0.060 0.056 0.061
W 0.050 0.051 0.050 0.060 0.065 0.097 0.117

OP SiM 0.055 0.438 0.698 0.779 0.791 0.817 0.825
SoM 0.055 0.438 0.698 0.779 0.791 0.817 0.825
CO 0.055 0.438 0.698 0.778 0.791 0.816 0.824
QWLS 0.055 0.437 0.697 0.778 0.791 0.816 0.824
W 0.055 0.438 0.698 0.778 0.791 0.816 0.824

MSE × 102 SiM 7.531 7.921 7.643 7.518 7.473 7.445 7.411
SoM 7.509 7.871 7.606 7.485 7.446 7.416 7.393
CO 7.489 7.922 7.699 8.197 8.555 12.547 20.678
QWLS 7.510 9.223 10.322 10.697 10.822 10.925 10.997
W 7.458 7.917 7.684 8.097 8.426 12.425 17.808

Figure 4. AVTI and MSE for case study 2SMN.

Table 5. Average Execution Times (s) for Case Study
2SMN

SiM SoM CO QWLS W

147.8 374.0 302.2 274.0 227.8
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(c) AVTI records for SiM and SoM are greater than the
corresponding ones to W and CO for R ∈ [1,...,4]. For

R≥ 5, SiM and SoM tend to the behavior ofW and CO for
the AVTIs.

(d) The MSE achieved using SoM is lower than the one
attained byW andCO for R = 1, 4−8, and it is a little better
than the MSE obtained using SiM.

From the analysis of the OP values reported in Table 6, it can
be concluded that the performance of all techniques is similar,
except for R = 4. In this case, the methodologies based on the
BW function present higher OP values. Regarding the average
computational times, Table 7 shows that the computational
requirements of SoM are the highest, and those of SiM are the
lowest.
Figure 5 shows that the AVTI and MSE of all redescending M

estimators change with the increment of R in a similar way for
case study 3. Taking into account the performance measures,
there is no evidence of a clear superiority among the analyzed
methodologies. It can be noticed that the SiM technique provides
a good balance between the estimation and outlier detection/
identification capabilities of the procedure and its computational
time requirement.
The following comments arise from the analysis of the

previous results:

(a) Even though the strategies based on QWLS, CO, and W
functions have the same initialization (LS), the behavior
of QWLS technique is different from the others two
methods because QWLS function is a monotone M
estimator.

(b) Both the W and CO functions are redescending M esti-
mators formulated in terms of residual exponential func-
tions. Therefore, they behave in a similar way.

(c) The BW function rejects outliers if the residuals are greater
than 4.68; thus, the performance measures of SiM and
SoM do not change significantly for R > 5.

4.2. Nonlinear Example. The second benchmark is
extracted from the work by Pai and Fisher,24 and it is symbolized
as P&F. It involves six nonlinear equality constraints, which
are defined in terms of five redundant measured and three
observable unmeasured variables. Random errors are generated

Table 6. Results for Case Study 3SMN

R 1 2 3 4 5 6 7 8 9 10

AVTI SiM 0.049 0.069 0.091 0.092 0.057 0.048 0.048 0.048 0.048 0.048
SoM 0.049 0.069 0.088 0.083 0.056 0.048 0.048 0.048 0.048 0.048
CO 0.049 0.067 0.080 0.073 0.056 0.048 0.047 0.047 0.047 0.047
QWLS 0.047 0.061 0.072 0.082 0.090 0.097 0.101 0.106 0.109 0.111
W 0.049 0.067 0.080 0.074 0.057 0.048 0.047 0.047 0.047 0.047

OP SiM 0.000 0.000 0.002 0.584 0.998 1.000 1.000 1.000 1.000 1.000
SoM 0.000 0.000 0.002 0.607 0.998 1.000 1.000 1.000 1.000 1.000
Chen 0.000 0.000 0.001 0.541 0.996 1.000 1.000 1.000 1.000 1.000
QWLS 0.000 0.000 0.000 0.384 0.971 0.999 1.000 1.000 1.000 1.000
W 0.000 0.000 0.001 0.528 0.995 1.000 1.000 1.000 1.000 1.000

MSE × 102 SiM 7.681 12.539 15.092 11.601 7.545 7.167 7.166 7.166 7.166 7.166
SoM 7.738 12.522 14.491 10.863 7.437 7.153 7.153 7.153 7.153 7.153
CO 7.850 12.478 13.969 11.176 8.495 7.527 7.273 7.201 7.184 7.181
QWLS 8.150 11.784 14.363 16.081 17.234 18.028 18.590 19.000 19.305 19.539
W 7.782 12.406 14.160 11.545 8.677 7.565 7.261 7.172 7.149 7.144

Figure 5. AVTI and MSE for case study 3SMN.

Table 7. Average Execution Times for Case Study 3SMN

SiM SoM CO QWLS W

132.3 356.8 314.2 274.3 231.0

Table 8. Cutoff PointsP&F

SiM SoM CO QWLS W

3.312 3.315 3.308 3.278 3.3028
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considering the standard deviations suggested in that work.
The same type of analysis provided for the linear example is
presented for the nonlinear one.

Tables 8 and 9 display the cutoff points of the method-
ologies and the performance measures for case study 1,
respectively.
With respect to case study 2, Table 10 shows the performance

measures for different K values, but only the AVTI and MSE
records are displayed in Figure 6 because the OPs are similar for
all techniques. Table 11 is composed of the average of execution
times for 10 000 simulations.
From Figure 6, it can be observed that

(a) The performance measures of SiM and SoM are only
slightly affected by K.

(b) SiM, SoM, CO, and W present the same behavior for K ∈
[2,10], but the AVTI andMSE of CO andW increase forK
> 10 and K > 14, respectively.

(c) In general, the QWLS function shows the poorest
behavior regarding the MSE.

(d) The OP values are similar for all the analyzed techniques.

In contrast to the linear case, the use of the LS estimate as
initialization of the robust estimation problem, as was suggested
by Chen et al.,17 increases the computational time in comparison
to SOM’s requirements (see Table 11).
Next, the results for case study 3 are presented. Table 12

contains the performance measures for different R values. Also,
the AVTI and MSE records are illustrated in Figure 7, and the
average execution times are reported in Table 13.
For case study 3, the results of the nonlinear example provide

the same conclusions obtained for the linear benchmark. Taking
into account the values of the performance measures, no clear
superiority of one technique over another one can be verified for
the studied range of R values. Regarding the computational time,
the requirements of the SiM procedure are the lowest.
Furthermore, the execution time of the strategies that use the

Table 9. Results for Case Study 1P&F

AVTI MSE × 102

SiM SoM CO QWLS W SiM SoM CO QWLS W

0.05 0.05 0.05 0.05 0.05 4.223 4.218 4.235 4.229 4.212

Table 10. Results for Case Study 2P&F

K 2 5 10 14 15 18 20

AVTI SiM 0.036 0.035 0.034 0.039 0.034 0.034 0.036
SoM 0.037 0.035 0.038 0.034 0.032 0.036 0.036
CO 0.035 0.037 0.037 0.066 0.081 0.184 0.120
QWLS 0.035 0.039 0.041 0.058 0.060 0.087 0.132
W 0.037 0.035 0.035 0.043 0.051 0.081 0.127

OP SiM 0.068 0.310 0.419 0.452 0.453 0.462 0.468
SoM 0.071 0.311 0.418 0.448 0.453 0.468 0.470
CO 0.071 0.307 0.415 0.452 0.454 0.469 0.472
QWLS 0.071 0.306 0.416 0.445 0.456 0.462 0.477
W 0.070 0.309 0.416 0.450 0.455 0.469 0.471

MSE × 102 SiM 4.837 5.010 4.676 4.679 4.674 4.577 4.588
SoM 4.771 4.877 4.722 4.613 4.565 4.537 4.540
CO 4.774 4.969 4.818 6.335 7.018 12.541 10.697
QWLS 4.905 5.743 6.123 7.252 7.377 8.940 11.400
W 4.827 4.886 4.810 4.943 5.525 7.0134 9.491

Figure 6. AVTI and MSE for case study 2P&F.

Table 11. Average Execution Times (s) for Case Study
2P&F

SiM SoM CO QWLS W

221.3 372.1 896.2 808.3 809.9
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LS estimate as initial point is greater than the time consumed by
SoM.

5. CONCLUSIONS
In this work, a performance comparison of five strategies for
solving the robust data reconciliation problem is presented.
Those techniques make use of the M estimators that have
appeared in the data reconciliation literature during the past
decade. All strategies are tuned to have the same performance
when outliers are not present. The behaviors of the method-
ologies are analyzed for two measurement error models.
Results show that monotone and redescending M estimators

behave differently even though the same initialization of the
optimization problem is used. In this sense, the AVTI and MSE
for QWLS increment in general for increasing values of
contamination, in contrast CO and W, are more robust.
Whenmeasurement errors come from a contaminated normal,

SiM and SoM are more robust than W and COM-estimators for
all the tested values of contamination. If those errors do not obey
the aforementioned distribution, the performance measures of
redescending M estimators change with contamination in a like
manner, and no clear superiority of one technique over the other
ones can be established.
In general, the lowest MSE is achieved using SoM, and SiM

consumes the lowest computational time. Taking into account
the trade-off between performance measures and computational
work, SiM procedure appears as an efficient alternative for
solving the type of problems under analysis. It provides good
estimates for the reconciled measurements, and its computa-
tional load is the lowest thanks to the benefits of the robust
initialization of the reconciliation problem performed running
the Step 1 of the procedure.
The simultaneous treatment of outliers and gross errors, like

biases, requires a different strategy, and it will be the subject of
future works.
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W 0.033 0.038 0.043 0.051 0.045 0.040 0.034 0.033 0.034 0.035
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Figure 7. AVTI and MSE for case study 3P&F.

Table 13. Average Execution Times (s) for Case Study
3P&F

SiM SoM CO QWLS W

230.6 384.3 770.1 621.3 615.1
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