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On the basis of dynamical principles we derive the Logistic Equation (LE), widely employed
(among multiple applications) in the simulation of population growth, and demonstrate that scale-
invariance and a mean-value constraint are sufficient and necessary conditions for obtaining it. We
also generalize the LE to multi-component systems and show that the above dynamical mechanisms
underlie large number of scale-free processes. Examples are presented regarding city-populations,
diffusion in complex networks, and popularity of technological products, all of them obeying the
multi-component logistic equation in an either stochastic or deterministic way. So as to assess
the predictability-power of our present formalism, we advance a prediction, regarding the next 60
months, for the number of users of the three main web browsers (Explorer, Firefox and Chrome)
popularly referred as “Browser Wars”.

I. INTRODUCTION

It is well-known that the logistic equation (LE) (some-
times called the Verhulst model or logistic growth curve)
is a phenomenological model of population growth first
published by Pierre Verhulst in the 1840’s. The model
is continuous in time, but a modification of the perti-
nent equation to a discrete quadratic recurrence equation
known as the logistic map is also widely used. The con-
tinuous version of the logistic model for the evolution of
the population x(t) is described by the differential equa-
tion

ẋ(t) = kx(t)

(
1− x(t)

N

)
, (1)

where k is the Malthusian parameter (rate of maximum
population growth) and N is the so-called carrying ca-
pacity (i.e., the maximum sustainable population). The
LE has as a solution

x(t) =
N

1 + (N/x(0)− 1)e−kt
, (2)

i.e., the sigmoid function. The discrete version of the LE
is the celebrated logistic map. A typical application of
the logistic equation refers to a 1838-model of population
growth, originally due to Verhulst, in which the rate of
reproduction is proportional to both the existing popu-
lation and the amount of available resources, all else be-
ing equal. The Verhulst equation was published after he
had read Thomas Malthus’ An Essay on the Principle of
Population. Verhulst derived his logistic equation to de-
scribe the self-limiting growth of a biological population.
Today, proper referencing to the logistic equation’s var-
iegated applications to multiple fields of endeavor would
require pages and pages of citations. Of this immense
body we just mention, as a tiny sample,1–7.
Some ad-hoc LE-deductions have been previously pub-
lished in a case-by-case basis. One such demonstration
is that provided by A. D. Zimm for companies or firms8,

that grow according to their commercial successfulness
with a classic linear Marshallian price-volume relation-
ship. Other analytical derivations are also found with
some ad-hoc assumptions6,9. Out present goal is to de-
scribe an universal and generic dynamical mechanism
that leads in natural fashion to the logistic equation. The
above cited derivations do not have a dynamical charac-
ter, as ours does. Our procedure is based on

• scale symmetry and

• a mean-value constraint.

We will show that these are necessary an sufficient con-
ditions for a LE-derivation. The two items above are
empirically known to be related to the LE6,8,9 but they
are used here for the first time as its pure mathematical
basis.

II. DERIVATION FROM DYNAMICAL
PRINCIPLES

Consider an n−components system, each of them char-
acterized by a population xi. Let us further assume that
a multiplicative, time-evolution of population takes place
via free proportional growth, i.e.,

ẋi(t) = ki(t)xi(t),

where ki is the growth-ratio per unit-time for the i-th
component. Scale-symmetry is here apparent so that
it proves convenient to transform coordinates to ui =
log(xi) as in Refs. 12,13. Thereby one is led to the linear
equation

u̇i(t) = ki(t),

where the scale-invariance of x is now a translational in-
variance in u. We assume that the total population is
finite, namely

n∑
i=1

xi(t) =

n∑
i=1

eui(t) = N,
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and that also n remains constant, so that 〈x〉 = N/n. For
each arbitrarily small time-interval ∆t, the u−population
grows freely via

u′i(t+ ∆t) = u(t) + ∆tki(t),

but conservation of the mean value 〈eu〉 demands a global
“self-correction” process that should respect the original
symmetry of the system (translational for u). Accord-
ingly,

ui(t+ ∆t) = u′i(t+ ∆t) +A,

where A is a value that guarantees fulfillment of∑n
i=1 e

ui(t+∆t) = N . This is achieved if

A = − ln

 1

N

n∑
j=1

eu
′
j(t+∆t)

 = −∆t

N

n∑
j=1

kj(t)e
uj(t),

where a Taylor-expansion to first order is justified since
∆t is arbitrarily small. One is then led to

ui(t+ ∆t) = ui(t) + ∆t

ki(t)− 1

N

n∑
j=1

kj(t)e
uj(t)

 .
In the continuum-limit one finds

u̇i(t) = ki(t)−
1

N

n∑
j=1

kj(t)e
uj(t),

that written in x−parlance leads to what we call the
multi-component logistic equation (MCLE)

ẋi(t) = xi(t)

ki(t)− 1

N

n∑
j=1

kj(t)xj(t)

 . (3)

A matrix version of this equation is presented in the Ap-
pendix, together with with some applicability perspec-
tives. It is easy to check that the MCLE retains the orig-
inal scale-symmetry of x, and also exhibits translational
symmetry in k. The latter allows for some arbitrariness
in the definition of the ki rates in the fashion k′i = ki−k0.
The same results obtain for primed or unprimed k’s. If
the ki are constant, or exhibit just a slow dependence on
t (quasi-statics), the solution to the MCLE is

xi(t) =
Nxi(0)ekit∑n
j=1 xj(0)ekjt

, (4)

where xi(0) are the initial conditions of the evolutive-
process. The logistic equation is directly derived from
the MCLE Eq. (3) in a straightforward fashion. We
recover Eq. (1) by i) considering a bi-component system
(n = 2), ii) defining x(t) ≡ x1(t), k ≡ k1 − k2, and iii)
taking into account that x2(t) = N − x1(t). Similarly,
the sigmoid function Eq. (2) is recovered from Eq. (4)
with the same assumptions. The second component acts
here as a population-reservoir and the first component
becomes the only evolutive degree of freedom.

III. POSSIBLE PHYSICAL REGIMES

According to the nature of the growth-ratios ki, varie-
gated kinds of processes can be described by the MCLE.

1. Constant values or deterministic time-dependencies
lead to mechanical systems exhibiting deterministic
evolution while

2. adding noise to the pertinent mean values gives rise
to stochastic systems, with interesting behaviors
and applications.

Without aiming to be exhaustive, we consider here three
different tableaus for MCLE-applicability, according to
the amount of ‘noise’ in the system: totally stochastic
(or thermodynamic regime), an intermediate level of ran-
domness (involving diffusive processes), and totally de-
terministic dynamics.

A. Thermodynamic regime

Consider a multi-component case with dozens or hun-
dreds of elements, and a very high level of noise. Assume
that each ki describes the derivative of a Wiener process.
We write ki(t) = ki+σiξ(t), where ki is the time-average
of ki, σi the standard deviation measured in a certain
interval ∆t, and ξ(t) an independent normal-distributed
random number. Defining 〈σ2〉 =

∑n
i=1 σ

2
i /n, one asserts

that we thermalize the system if i) |σi − σj |2/〈σ2〉 � 1

and ii) |ki − kj |2/(〈σ2〉∆t) � 1, ∀i, j, i.e., if all ele-
ments exhibit similar deviations and the differences be-
tween mean values are much smaller than the noise. If
n is large enough (as stated above, in the hundreds),
dynamical equilibrium is encountered after some finite
time, meaning that the system is well-described by the
MaxEnt approach. The MaxEnt solution for scale-free
systems describes an equilibrium density pX(x) that fol-
lows the general form12

pX(x)dx = exp

[
−
∑
a

fa(x)

]
dx

x
,

where fa(x) is the a-th constraint of the system. For a
constraint in the normalization (n is invariant) we have
f〈1〉(x) = µ, and for one in the mean value we write
f〈x〉(x) = λx, where µ and λ are constants, univocally
determined by the fulfillment of each constraint. The
density-distribution obeys in this case the relation13

pX(x)dx =
1

Γ(0, λx0)

e−λx

x
dx; x0 ≤ x <∞,

where Γ is the incomplete gamma function and x0 is the
smallest allowed population for the elements (that can be
1). The rank-distribution is then written as

x =
1

λ
Γ−1 [0,Γ(0, λx0)r/n] , (5)
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where r is the (continuous) rank from 0 to n, and Γ−1(z)
denotes the inverse function of Γ : Γ(Γ−1(z)) = z. The
value of λ is obtained from the mean value

e−λx0

λΓ(0, λx0)
=
N

n
. (6)

In order to test the above relationships we have carried
out a calculation that simulates human population dy-
namics. We also compare the result with empirical data
regarding city and place-populations, using as example
data from Ohio State (United States)14. We consider
n = 1000 random walkers that mimic the population of
cities, and set the total population to N = 6000000. We
fix the minimum allowed size at the Dunbar’s number13
x0 = 150 people (empirically known to be the usual size
of small human communities, and related to the maxi-
mum of social relationships/links that a human can com-
fortably handle). We make the walkers to stochastically
obey the MCLE Eq. (3) so as to simulate migration pat-
ters between cities, with a constant total population. We
evolve the walkers in small intervals ∆t = 0.03 and gener-
ate gaussian-distributed random numbers at each interval
for each ki, using σi = 1 for all i. Due to the translational
symmetry in k, we can set ki = 0 for all i. To respect
the minimum size, a walker’ ‘move’ is not accepted if it
leads to a value lower than the Dunbar’s one. We start
all walkers at xi = N/n. After some iterations we get the
equilibrium distribution of Fig. 1, which perfectly fits the
MaxEnt prediction (λ = 0.00533 humans−1). The avail-
able empirical data covers years 2010, 2000 and 1990 with
n = 1204, 1015, and 928 cities and places, respectively.
We discard places with populations of under 150 people
(67, 48 and 39 centers respectively). We also discard very
large cities (their potential economic correlation with the
rest of the country compromises the hypothesis of iso-
lated systems). Excluding the four largest cities, the to-
tal population is N = 6318170, 6019960, and 5477830,
respectively. We have checked the proportional growth
condition comparing log(xi) vs. |ẋi/xi|2 (or equivalently,
ui vs. |u̇i|2). No correlation between these two observ-
ables is expected for scale-invariance. We have found
a correlation coefficient of 0.0018, as shown in Fig. 1,
thus confirming the proportional growth hypothesis (the
same correlation coefficient in the precedent simulation is
0.0027). According to Eq. (6), the predicted values of λ
are 0.00585, 0.00507, and 0.00513, respectively. A direct
fit of the data to the form Eq. (5) yields λ = 0.00636(2),
0.00502(3), and 0.00522(3), respectively, close enough to
the former values so as to confirm the MaxEnt prediction.

B. Intermediate regime

Let us pass now to consideration of an intermediate
stochastic regime in the bi-component case. One party
acts as a population-reservoir while the other obeys Eq.
(1). Defining the new variable

y(t) = − log(N/x(t)− 1), (7)
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Figure 1: Top panel: behavior of random walkers obeying
the stochastic MCLE (blue dots) compared with the associ-
ated MaxEnt prediction (black line). Inset: walkers’ squared-
relative-growth |u̇i|2 vs. logarithmic size u. There is no cor-
relation in view of the linear regression (red line). Bottom
panel: Rank-distributions for Ohio (red: year 2010; green:
year 2000; blue: year 1990) and rank-distribution of random
walkers obeying the stochastic MCLE (yellow) compared with
the corresponding MaxEnt predictions (black lines). Inset:
same as upper panel with the empirical data. In view of the
regression line, no correlation is detected.

the LE linearizes itself for ẏ(t) = k. The rate k is here
again the derivative of a Wiener process k(t) = k + σξ,
but we now include a drift obeying |k|2 > σ2∆t. Working
with an ensemble of independent walkers following this
equation is equivalent to handling Brownian motion in
y-space. Consequently, the usual diffusion equation for
the density of walkers for pY (y, t) ensues15

∂tpY (y, t) = −k∂ypY (y, t) +D∂2
ypY (y, t),

whereD is the diffusion-coefficient, related to σk via σk =√
2D/∆t, and ∆t stands for the time-interval used in

the random-walk numerical simulation. The diffusion-
equation’s kernel is a Gaussian

pY (y, t)dy =
1√

4πDt
e−

(y−y0−kt)2

4Dt dy,

with y0 a reference-value. If at t = 0 all walkers are
located in x-space at x0 = N/(1 + e−y0), they will later
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evolve via

pX(x, t)dx =
1√

4πDtx(1− x/N)
e−

(log(N/x−1)−y0+kt)2

4Dt dx,

(8)
since pX(x, t)dx = pY (y, t)dy.
We have verified this prediction with a diffusion process
taking place inside a scale-free ideal network (SFIN)16, a
random network with a degree-distribution following the
scale-free ideal gas one p(c) ∼ c−1, where c ≤ cM . We
have generated a SFIN of N = 20000 nodes with a max-
imum degree of cM = 100-connections and carried out a
multitude of cluster-growth processes16,17. Diffusion in
networks generally starts i) by using a randomly chosen
node as a seed, ii) with its first neighbors being added
to the cluster in the first iteration, iii) and the neighbors
of those “first" neighbors, afterwards (and so on). The
process ends when all nodes of the network belong to the
cluster. The size of the cluster at each iteration depends
on the particular node selected as seed, via its position
inside the network. We depict in Fig. 2 the result of a
large number of these processes, indicating the size of the
cluster at each iteration. All of them start with x = 1
and end up with x = N , but processes exhibit deviations
at intermediate steps. The associated median clearly fol-
lows a logistic evolution, as shown in Fig. 2. Changing
to the variable y of Eq. (7) we find a straight line with
slope k = 3.09. The deviations can be described by y-
random walkers with σ = 0.7 (∆t = 1). The statistics
of the processes can be nicely described with Eq. (8) via
x0 = 1, D = 0.245, and with the above value of k, as
illustrated by the comparison depicted in Fig. 2.
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Figure 2: Diffusion inside a scale-free ideal network (dots)
compared with the analytical one provided by Eq. (8), derived
from the logistic equation.

C. Deterministic regime

We study now the deterministic evolution of a multi-
component system with few elements and very low level

of (or without) noise. Assume that the growth-ratios ki
are now constants or represent a quasi-static evolution
in time. Assume further that we have data about the
temporal population-evolution but do not known the ex-
plicit values (or the tendency) of the ki rates. These can
be easily obtained from the solution of MCLE Eq. (3)
taking advantage of its property of translational symme-
try in k. By arbitrarily setting k1 = 0, all the remaining
values are obtained from the population data thanks to
the functions

hi(t) = log

[
xi(0)

xi(t)

x1(t)

x1(0)

]
. (9)

If the growth-ratios are constants, hi(t) = kit, the entire
evolution-path can be predicted (for any arbitrary time).
If our functions hi(t) exhibit small time-fluctuations we
can parameterize them, via a fitting procedure, to any
given analytical form. The desired solution is obtained
by substituting the arguments in the exponentials of Eq.
(3) by these functions kit → hi(t). We have tested this
last statement using data regarding web-browsers’ statis-
tics so as to study the past and future of the (popularly
called) Browser Wars18. We considered the n = 3 system
composed of Microsoft Explorer (E), Mozilla Firefox (F),
and Google Chrome (C). Our analysis of the popular-
ity of each uses data from w3schools19 and statcounter20
(depicted in Fig. 3).
We take N = 100% and choose the origin t = 0 at March
2012 (as this communication was being written). Setting
kE = 0 we have applied Eq. (9) to the data, finding a
small dependence on time in both kF and kC . We show
in Fig. 3 that the functions hi(t) can be nicely fitted to
a simple exponential form h(t) = ae−btt+ c (that can be
regarded as a pure exponential time-dependence of k plus
a correction on the initial value x(0) via ec). Note that
the small fluctuations of the data become more apparent
as we approach the reference point at t = 0. However,
our accuracy remains sufficiently high for our purposes.
We obtain

hF (t) = 0.0074(5) exp[−0.021(1)t]t− 0.008(14) and
hC(t) = 0.0579(24) exp[−0.0097(10)t]t+ 0.104(26),

for w3schools, and

hF (t) = 0.0022(5) exp[−0.043(6)t]t+ 0.026(13) and
hC(t) = 0.055(2) exp[−0.015(1)t]t+ 0.015(27),

for statcounter, that are compared in the top panels of
Fig. 3 to empirical data. Our predictions for the popular-
ity evolution are evaluated using Eq. (4) and substituting
kEt, kF t, and kCt by the above described extrapolations
of hE , hF , and hC . A proper correction is finally added in
the later case to improve the fitting by using N ′ = 1.03N .
We depict in Fig 3 our monthly prediction for the next
5 years regarding browsers’ usage. In the two reported
instances, Google Chrome grows till coming ahead in the
competition, saturating effects being noticeable at 80%
and 60%, respectively. Thus, according to our predic-
tion, Google Chrome will win the competition but it will
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not acquire such a dominant position as the MS Explorer
attained in the past.
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Figure 3: Left panels: data from w3schools. Right panels:
data from statcounter. Top panels: increment rate of M Fire-
fox (red squares) and G Chrome (yellow triangles) defined as
(h(t)−c)/t relative to MS Explorer (see text), compared with
the analytical fit (solid lines). Bottom panels: relative users
of MS Explorer (blue circles), M Firefox (red squares) and
G Chrome (yellow triangles), compared with our prediction
(lines).

IV. CONCLUSIONS

We have been able here to demonstrated that scale-
invariance and a mean-value constraint are sufficient and
necessary conditions for obtaining the LE from first dy-
namical principles. Then, the LE was generalized to
multi-component systems. This allowed us to show that
these dynamical mechanisms underlie interesting scale-
free processes, which was illustrated with reference to
city-populations phenomena, diffusion in complex net-
works, and popularity of Net Browsers.

Appendix A: Generalization of the multi-component
logistic equation to a matrix equation

We generalize here the formalism discussed above. If
we define a new set of variable χi =

√
xi/N , the

total-population’s constraint can be recast in the fashion∑n
i=1 χ

2
i = 1. This condition becomes formally equiv-

alent to the conservation of the modulus of a vector
χ = {χi}ni=1 in a n-dimensional space. We can also gen-
eralize the definition of the growth-ratios ki, promoting
them to a matrix Kij = kiδij , and write the MCLE as a
matrix equation. Using bra-ket notation χ = |χ〉 one has

∂t|χ〉 =
1

2

{
K − 〈χ|K|χ〉

〈χ|χ〉

}
|χ〉.

This equation is formally identical to that used in quan-
tum physics to find the ground state wave-function of a
Hamiltonian (here, K). We are speaking of the Imagi-
nary Time Method (ITM) widely used in the literature21.
The mean-value term is also used to guarantee the con-
servation of the normalization of |χ〉 during the process.
All our examples can be regarded as particular applica-
tions of this formalism, calling attention to the “func-
tional" definition of our effective ‘Hamiltonians’ K. In
our examples K has a diagonal form, which only indi-
cates that we were working in the eigenbasis of the dy-
namics defined by K. A generalized definition can in-
clude off-diagonal terms as well, indicative of some kind
of interaction between populations. Density functional
theories (DFT) also use the above equation for many-
body quantum systems22. A phenomenological Hamilto-
nian is defined by means of a parametric functional form,
than can also be a functional of the own state-vector χ.
The associated parameters are chosen so as to reproduce
well-known empirical facts regarding the system of inter-
est. We expect that the bridge we have here built up
between the MCLE and the DFT can open new vistas
with respect to the possibility of studying scale-free sys-
tems. Such approach would take advantage of the huge
experience accumulated regarding DFT methods.
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