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Abstract. A multivalued projection is an idempotent linear relation with invari-
ant domain. We characterize multivalued projections that are operator ranges
(called semiclosed) and provide several formulae of them. Moreover, we study
the decomposability and continuity of multivalued projections, and describe
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1. Introduction

Linear relations are a natural generalization of linear operators. As with operators,
the notions of idempotents and nilpotents, but now multivalued, play a central role in
their study. A linear relation acting between Hilbert spaces is any subspace of their
product, much as an operator can be characterized by its graph.

A multivalued projection, or semi-projection, E acting on a Hilbert space H
is an idempotent linear relation of H x H (i.e., E*> = E) with invariant domain. A
multivalued projection is completely determined by its range and kernel. We refer to
[LL1], [12] and [24] for a detailed account on the subject.

Linear relations that are operator ranges (commonly referred to as semiclosed
linear relations) can be described as quotients of bounded operators in the sense of
linear relations [[18]], and this provides extra structure in describing the properties of
such relations.

An important example of a multivalued projection that is an operator range is
one having range that of a given operator and kernel its de Brange-Rovnyak com-
plement [7]]. The multivalued part is then their intersection, called the “overlapping
space”; see Example B Another example of a semiclosed multivalued projection
appears when solving operator least squares problems with a selfadjoint or positive
(semi-definite) weight in a Hilbert space [6]. This is explained in Example 4l
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It is easy to check that a multivalued projection is semiclosed if and only if its
range and kernel are both operator ranges, where the special case for operators can
be found in [26] and [9].

Any semiclosed multivalued projection E can be written as a direct compo-
nentwise sum of an operator (identified with its graph) with domain equal to the
domain of the multivalued projection and Eyy := {0} X mul E, where mul E is the
multivalued part of E. Moreover, any such multivalued projection is quasi-affine
to a multivalued projection with domain dom E and operator part a positive con-
traction. This generalizes a result by Ando for densely defined closed projections,
which states that any densely defined closed projection E acting on a Hilbert space
is quasi-affine to an orthogonal projection P [3, Theorem 2.3], meaning that there is
positive injective bounded operator, intertwining £ and P. Moreover, when mul £
is closed in dom E, then E is quasi-affine to a closed multivalued projection with
operator part an orthogonal projection.

The paper is organized as follows: notation and background material are given
in Section2] In Section[3we start by gathering some known results about multivalued
projections. Then we characterize multivalued projections and nilpotent relations,
two examples of linear relations with ranges contained in their domains. We end the
section by generalizing two formulae for projections in terms of orthogonal projec-
tions onto their range and kernel: the formula given by Greville [17] for projectors
in finite dimensional spaces and the one given by Ptak [27] for projections in Hilbert
spaces. In Section ] we focus our attention on decomposability and continuity of
multivalued projections and study some distinguished orthogonal decompositions for
multivalued projections, characterizing those whose operator parts in their Lebesgue
decomposition are projections. Section [§]is devoted to multivalued projections that
are operator ranges. We finish the section with a formula that generalizes the one
given by Ando for densely defined closed projections in Hilbert spaces [3].

2. Preliminaries

In this paper H, K and & are complex and separable Hilbert spaces. The space
of bounded linear operators from H to K is denoted by L(H, K) and L(H) when
H = K. Given a closed subspace M of H, P 4 is the orthogonal projection onto M.
The set of orthogonal projections is denoted by . The direct sum of two subspaces
M and N of H is indicated by M + N, and M & N if M € N*. In addition, if
N € M, M e N means M N N*. An operator range is a linear subspace of H
that is the range of some bounded operator on H [[13]. The following properties of
operator ranges are proved in [23, Proposition 2.3.3 and Corollary 2.3.1].

Proposition 2.1. Let M and N be operator ranges of H such that M + N is closed.
Then the following hold:
1. MON=MnN.
2. M N)E =M+ N-.
A linear relation from H into K is a subspace of H x K. The set of linear
relations from H into K is denoted by Ir(H, K), and Ir(H) when H = K. Given
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T € Ir(H,K), domT, ranT and kerT denote the domain, range and kernel of 7',
respectively. The multivalued part of T is defined by mul 7 := {y € K : (0,y) € T}.
If mulT = {0}, T is (the graph of) an operator. The inverse of T is the relation
T~':={(y,x) : (x,y) € T}. Thus,dom7 ' =ranT and mul 7~' = kerT.

ForT,S € Ir(H,K), T + S stands for the sum of T and S as subspaces. The
notations T+S and T&S are self-explanatory. It is useful to note that (7 + §)~! =
T-'3s5°L

The sum of T + S is the linear relation defined by

T+S:={(x,y+2z):(x,y) €T and (x,z) € S}
If R € Ir(K, &) the product RT is the linear relation from H to & defined by
RT :={(x,y) : (x,z) € T and (z,y) € R for some z € K}.

It holds that (RT)~!' = T~'R~1.
The following results will be used throughout the paper without mention.

Lemma 2.2 ([4] 2.02], [24] Proposition 1.21]). Let S,T € Ir(H,K). Then S =T if
andonly if S € T,domT C dom S and mulT C mul S.

Lemma 2.3. LetT,S € Ir(H,K), R € Ir(K,E) and F € Ir(E, H). Then
1. RT+RS C R(T +S) and the equality holds ifranT C dom Rorran S C dom R.
2. TF % SF C (T * S)F and the equality holds if domT C ran F or domS C
ran F.

Proof. 1. The proof of the inclusion is trivial. Assume that ran7 € dom R and let
(x,y) € R(T %+ §). Thus, there exist z = z; +z2 € K and x1,x, € H such that
x =x1+x2, (x1,21) €T, (x2,22) € Sand (z,y) € R. Since ranT C dom R, there
exists w € & such that (z;,w) € R then (x;,w) € RT. Also, (z2,y —w) € R and
so (x3,¥y —w) € RS. Therefore, (x,y) = (x1,w) + (x2,y —w) € RT + RS and the
equality holds.

2. Take inverses and use 1. O

Given a subspace M of H, Ip := {(u,u) : u € M} and 05 := M x {0}.
When M = H we write [ and 0 instead. The following identities can be easily
proved

TT'T =T and T™'T = Igomr +({0} x kerT) = Igom +(ker T x {0}),  (2.1)

where we use that ker 7 € dom T for the last equality.
Set
T(M) :={y: (x,y) €T for some x € M},
and for any x € dom7, Tx := T({x}).
The closure T of T is the closure of 7 in H x K endowed with the product
topology. Thus, the relation T is closed when T =T.
The adjoint of T € Ir(H, K) is the linear relation from K to H defined by

T :={(x,y) e KXH :{g,x)y=(f,y) forall (f,g) €T}.

The adjoint of T is a closed linear relation, T =T*and T := (T*)* =T. It holds
that mul 7* = (domT)* and kerT* = (ranT)>. Therefore, if T is closed both ker T
and mul T are closed subspaces.
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2.1. Decompositions of linear relations

Next we outline some basics about decompositions of linear relations from the work
on the subject by Hassi et al., see [18}[19}20].

Given T € Ir(H,K), a subspace T of T is called an operator part of T if T
is an operator with dom7 = domT and 7 C T. In this case, T = T 4 Tpu1, where
Tinut := {0} x mul 7. The relation

To :=T N (domT x domT™)

is a (closable) operator from domT to domT* contained in T but, in general,
domT7y C dom7. We say that T is decomposable if domTy = domT, i.e., if Ty
is an operator part of 7 [19]]. In other words, T is decomposable if T admits the
componentwise sum decomposition

T =Ty & Tru. (2.2)

On the other hand, a linear relation T is said to have a distinguished orthogonal
range decomposition if T = Ty + T, with T} an operator, dom 7} = dom7, = domT
and ran 7} L ran 7». By [20} Corollary 3.6], T = T} + T is a distinguished orthogonal
range decomposition of 7 if and only if there exists Q € P such that mul7 C ker Q,
and in this case, 7} = QT and T, = (1 — Q)T.

Among the distinguished orthogonal range decompositions, there are two with
some extremal properties [20]. Consider P := Py and define the regular part
Tieg and the singular part Tgng of T by

Tieg := PT and Tpng := (I - P)T.

The terminology refers to the notions of regular and singular linear relations.
T € L(H,%K) is said to be regular (or closable) if T is an operator; singular if
T is the (Cartesian) product of closed subspaces in H and %K. Clearly, T has the
distinguished orthogonal range decomposition

T = Treg + Tsing- (2.3)

This is the Lebesgue decomposition of T. The regular and singular parts verify that
Teg is an operator and Kng =domT x mul7 [20, Theorem 4.1]. If Q := Py 7+ and
T := QOT, then
T=T,+(-0)T (2.4)

is also a distinguished orthogonal range decomposition of 7', known as the weak
Lebesgue decomposition of T.

Despite the different nature of the decompositions (2.2) and 2.3) (or @.4)),
the operator terms may be the same as the following theorem shows.

Theorem 2.4 ([19, Theorems 3.10 and 3.18]). Let T € Ir(H,K). The following are
equivalent:
i) T is decomposable;
ii) ranT,, € mulT;
i) To = Treg;
iv) Ty =Ty
If any of these conditions hold then mulT = mulT.
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Definition. T € Ir(H,K) is continuous if for any neighbourhood V, T=1(V) is a
neighbourhood in dom7T.

Proposition 2.5 ([12] Prop. 3.1]). A relation T € Ir(H, K) is continuous if and only
if T, is bounded.

By Theorem[2.4] a decomposable linear relation T is continuous if and only if
Ty is bounded.

Proposition 2.6 ([12, Theorem 3.2]). Let T € Ir(H,K) be closed. Then T is con-
tinuous if and only if domT is closed.

Proposition 2.7 ([19, Proposition 3.5]). Let T € Ir(H,K). Then Treg is a bounded
operator if and only if dom T* is closed.

3. Multivalued projections and nilpotents

Following [26], we now present two types of linear relations with domains containing
their ranges: the multivalued projections and the multivalued nilpotents.

Definition. Let E € Ir(H) such thatran E C dom E. We say that E is a multivalued
projection if E is idempotent, that is E> = E; and a multivalued nilpotent if

E?> =domE x mulE. 3.1
Notice that E is a multivalued nilpotent relation if and only if
E? = 0gome + ({0} X mul E).

If E is a multivalued projection (respectively a multivalued nilpotent) with mul £ =
{0}, then E is a projection (respectively a nilpotent).

There are idempotent linear relations which are not multivalued projections.
For example, if E is a projection then, by [5, Corollary 4.15], E~! is an idempotent
relation such that ran E~! = dom E = ran E + ker E and dom E~! = ran E. Therefore
if ker E # {0}, E~! is not a multivalued projection.

Also, there are relations satisfying (3.1)) whose domains do not contain their
ranges. For instance, let M # {0} be a subspace and set E = {0} X M so that E
satisfies 3.I) butran E = M ¢ {0} = domE.

Multivalued projections were introduced by Cross and Wilcox in [12]] and later
studied by Labrousse in [24]]. Multivalued projections preserve many properties of
projections, for instance, they are fully described by their ranges and kernels. In the
sequel, Mp(H) denotes the set of multivalued projections on H and MP(H) stands
for the subset of Mp(H) of closed multivalued projections.

Proposition 3.1 ([12,24]). E € Mp(H) ifand only if E = Ian g + (ker E X {0}).

From now on M, N are subspaces of H. In view of the above proposition
write
PM,N =1y F (NX {0})
Thus, P s, denotes the multivalued projection with range M and kernel N.
Itis easy to check that dom P o oy = M+ N and mul Py = MNN. When P n
is a projection, we write P r/n, and Py if N = M*.
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Example 1. Given T € Ir(H) we can express (2.1) in terms of multivalued projec-
tions since
T_lT = Pdom T kerT and TT_l = Pran T,mulT-
Moreover 7! is the unique solution of the system of equations
XT = PdomT,kerT’ TX = PranT,mulT’ XTX =X. (32)

In fact, by @), T~' is a solution. Suppose that X € Ir() is also a solution.
Then XT =T7'T = (XT) ' and TX = TT~!. Hence, TXT = TT~'T = T. Taking
inverses,

T-'=(rx7)"' = (XT)"'77' = XTT™!' = XTX = X.

Proposition 3.2. Let T € Ir(H). Then

1. T is a multivalued projection if and only if Lyqn C T.
2. T is a multivalued nilpotent if and only ifranT C kerT.

Proof. 1.1f T is a multivalued projection, by Proposition3.1} I;.n7 € T. Conversely,
if Iyny € T thenranT C domT and Iyyn7T C T2, or T C T2. On the other hand,
taking inverses, Iaqny € T~ Then T? = Tlyy7T CTT™'T =T

2. Suppose that 7> = domT X mul7 and ran7 C dom7. Given x € ranT7,
there exist y, z € H such that (v, x), (x,z) € T or (y, z) € T?. In this case, z € mul T
or (0,z) € T. Then (x,0) € T or x € kerT. Conversely, if ranT C kerT then
ranT € domT7, and T = PyerrT. On the other hand, it always holds that 7 Pye; 7 =
(kerT ® ker T+) x mul T. Then

T? = TPier7T = ((ker T @ ker T*) x mul 7)T = dom 7T x mul 7,
becauseran7 C kerT. O

Proposition 3.3. If T € It(H) is a multivalued projection (a multivalued nilpotent)
then T* and T are multivalued projections (multivalued nilpotents, respectively).

Proof. The result was proved for multivalued projections in [12}24]; see (3.3) below.

Let T be a multivalued nilpotent. Since T = (T*)* we only need to show the
result for 7*. By Proposition 3.2l ran7T C kerT and then (kerT)* C (ranT)* =
ker T*. On the other hand, ker T C ker T implies that tan 7" = (ker7)* C (ker T)*.
Therefore ranT* C ker T, and by Proposition once again, 7" is a multivalued
nilpotent. O

For multivalued projections, the formulae
Pj\/l,N = PNJ.’MJ. and PM,N = Pmyﬁ, (33)

hold [[12| 24]. Then P s o € MP(H) if and only if M and N are closed.

In [17, Theorem 2], Greville proved that if M and N are (finite dimensional)
complementary subspaces then
Priyn = (PP )t (3.4)

The same formula holds for closed subspaces in a Hilbert space 9H such that

M+ N =H [10].
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On the other hand, if T is a closed operator, its Moore-Penrose inverse can be
given in terms of (the linear relation) 7! [23, [1]] as

T" = Piorr: T Pyerpes. (3.5)
If M and N are closed subspaces such that M + N = H, the formula (3.3)
applied to T = P P pq gives
(Prn+Pa)" = PA(PrsPa) ™ Pae
because (ker(ParPp())" = M and (ker(PpPyr))* = N*. Then, if Py p is a
densely defined closed projection, by (3.4),
PM//N = PM(PNLPM)_IPNL.
A similar result holds for multivalued projections if an extra hypothesis is required.

Proposition 3.4. Let M, N be subspaces of H such that M C N & N*. Then
Py =Pm((I=Pa)Pp) ' (I = Py).

Proof. By 2.1) and the fact that I 5/ e n = I o we getthat P a((I=P )P p) = (1-
PA) =P P~ (I=Pn) " (I=P )= Im(Inen: + ({0}XN)) = Iyn(Inens + (N
{0}) =Im + (N x{0}) = Ppm,n- 0

As a corollary, we obtain another formula for closed multivalued projections
that generalizes the one given by Ptdk [27] for bounded projections. If M and N are
closed subspaces such that M + N = H then (I — P nP pq) is invertible and

Ppyn = (I = PyPp) ™ Pus,
see also [17, Theorem 3.3].
Corollary 3.5 (cf. [27, Proposition 1.2]). Let Py 5 € MP(H). Then
Py =T =PNP )" Pril pan-
Proof. By Proposition[3.4and @2.1),
(I = PNPAOPpMN = (T = PNPAOPm(PNP ) ™ P
= PNrPa(PnePa) " Pre = Ip, ()P = Paelpan-

Then, multiplying both sides of the equality (I — PANPaA)Pm.n = Parlmen by
(I — PNPpg)~! we get that

(I + ({0} x ker(I = PNPAO)Pmn = (I = PNPA) ™ Pive | ptan-
Butker(/ — PyPpar) = MNN. Infact, if x € ker(I — Py P pq) then x = PP p1x, SO
that ||P px||> = ( Ppx, PP NP px ) = [|PaP px]l? = ||x]|>. Hence x € M N N.
Therefore ker( — PnyPp) € M NN C ker(I — PyPp) and (I + ({0} x (M N
NP p == PNPA) T Prilpan of Py = (I = PNPA) T Prilpan- O

4. Decompositions of multivalued projections

Next, we study decomposable and continuous multivalued projections and some of
their distinguished orthogonal decompositions.
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4.1. Decomposable and continuous multivalued projections

For E := P n, consider P = Pgop. = Pypr and Eg = EN(M+N X
ML+ NL).

Lemma 4.1. The operator (P p n)o is a projection. More precisely,

(Pm.n)o = Py mimmm e

Proof. By definition, Eg = EN(M+N X M++NLt) = {(m+n,m) : m €
MNMLEt+NLtne N} = PMOW//N'
Proposition 4.2. The following conditions are equivalent:
i) P n is decomposable;

i) MAN=MnNMLt+NL+N;

iii) PriowM)=MnNN,

) M=MnM++Nte MnN.
If any of the above conditions holds MO\ N = M NN and

PN = Prinmoan):yn & ({0} x MO N).

Proof. i) & ii) By definition, P s is decomposable if and only if M + N =
domE =domEy= MNM++ N+t + N.

i) & iii) Theorem [2.4] establishes that P ¢ n is decomposable if and only if
ran Eip, € mul E. But ran Egjpe = ran(/ — P)E = PWON(M)'

iii) © iv) is straightforward.

If any of the above conditions holds then E = Eg & E 1 and, by Theorem[2.4]
MﬂszﬂN.ThenEo:PMQ(MQN)L//N. O

Corollary 4.3. If M, N are closed subspaces of H then
Prpin =P aomonyyn © {0} x M N).

Proof. It M and N are closed then Py is closed and therefore decomposable
[19, Corollary 3.15]. O

The fact that P »( p is decomposable does not imply that P ¢ is decompos-
able as the next example shows.

Example 2. Consider M, N proper subspaces of H such that M ¢ N and M
is dense. For example take A € L(H) positive (semi-definite) such that A is not
invertible and set M :=ran A and N :=ran A'/2, Then Py x is decomposable but
P n.m is not decomposable. In fact, it is clear that MNN = H so that PimM) =
M = M N N. Then, by Proposition[d.2] P, n is decomposable. On the other hand,
MNON CN =Py (N) then Py, is not decomposable by Proposition 4.2

Proposition 4.4. The following conditions are equivalent:
i) MON=MnN;
ii) P, n is decomposable and M N N is closed;
iit) P m is decomposable and M N N is closed;
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Proof. i) & ii) : If i) holds then M N N is closed and Pz (M) = Pynny(M) =
M N N. By Proposition[d.2] P, x is decomposable. See also [19, Corollary 3.14].
Conversely, suppose that ii) holds. Then, by Theorem 2.4l mul P7; ; = mul Py n,

o MNN=MnN=MnN. O

Corollary 4.5. Suppose that P pq n is decomposable. If M is closed, then Py py is
decomposable.

Proof. Suppose that P 5 a is decomposable. Then, by Proposition @2l M NN =
M N N. Since M is closed, from iv) of Proposition 4.2 M N N is closed. Then
MnNN = Mn N and, by Proposition[d.4] P is decomposable. a

In [12, Corollary 3.7], it is shown that P s is continuous if and only if
M+ Nt =(Mn N)L

Corollary 4.6. Suppose that M, N are operator ranges of H such that M + N and
M NN are closed. Then Py p is decomposable and continuous.

Proof. Since M+AN is closed, by Proposition2.11 MAN = M AN = MNN. Then,
by Proposition[d.4l P, x is decomposable. Also, by Proposition 2.1l (M N N)* =
ML+ N+ so that Py, p is continuous. m]

The condition “M™* + N'* closed” does not imply the continuity of P x
[12, Example 3.10]. However, if P a is decomposable, this conditions is indeed
sufficient.

Proposition 4.7. Suppose that P pq_p is decomposable. Then P pq s is continuous if
and only if M+ + N* is closed.

Proof. P p n is continuous if and only if (P aq n)m is bounded. But (P o n)m =
(P pm,N)reg> by Theorem [2.4 because P oy, is decomposable. By Proposition 2.7]
(P M.N)reg is bounded if and only if dom P, , = M+ + N* is closed. O

Proposition 4.8. Suppose that that M N N is closed. Then the following are equiv-
alent:

i) P N IS continuous;
ii) P, n is decomposable with bounded operator part;
i) MAON=MnN and M* + N+ is closed.
Proof. i) & ii): follows from [19] Corollary 3.22].
ii) & iii): if ii) holds then, by Proposition[4.2] MAN=MaN=MnN,
and from Proposition[d.7]we get that M+ + N+ is closed. The converse follows from
Proposition4.4] and Proposition a

Remark 1. For M and N closed subspaces of H, Friedrichs [16] defined the cosine
of the angle between M and N as
c(M,N) =sup{|{x,y):xeMe (MnN),ye Ne (MnN),|x|,lyll <1}.

By [13, Theorem 13], M + N is closed if and only if ¢(M, N) < 1, and by [13|
Lemma 11], M + N is closed if and only if M+ + N+ is closed.
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Therefore, if P n is closed, i.e., if M and N are closed, then, by Propo-
sition P p w18 continuous if and only if M + N is closed, or equivalently
c(M,N) < 1. Now, if we replace the condition of P 5 x being closed by the less
restrictive condition of P 5, o being decomposable then, by Proposition 4.7l P ¢

is continuous if and only if ¢(M, N) < 1.

4.2. Distinguished orthogonal range decompositions of multivalued projections

When a multivalued projection E is decomposable, E,, = Eg = E¢ and then,
by Lemma .1l E,, and E\, are projections. More generally, we are interested in
characterizing the multivalued projections whose operator parts in their Lebesgue
decompositions are projections.

Lemma4.9. Foragiven F € P, FP p pisaprojectionifand only if MNN C ker F,
M+N=FM)+ MnkerF+ N and F(M) C M+ N NnkerF. In this case,

FPp N = PF(M))IN+ Mnker F-

Proof. Set E := FP p n. It is easy to check that domE = M + N, ranE = F(M)),
kerE =N+ MnkerFand mulE = FIMNN).

Suppose that E is a projection. Then mul E = {0}, or M N N C ker F. Also,
domE = ranE + ker E so that M+ N = F(M) + (M nker F + N). Finally, if
x € F(M), writex = m+nwithm € Mandn € N.Thenx = Ex = FP yq y(m+n) =
Fm.Sothatm+n=Fmandn=—-(I-F)m ekerF,orx e M+ NNkerF.

Conversely, since M NN C ker F, E is an operator. Let us see that ran E N
ker E = {0}. Let m € M and suppose that Fm =n+u,n € N andu € M NkerF.
Thenn = Fm—-u € FIM)+ MnkerF C M+ N nNnkerF. Thenn = m’ +v,
m € Mandv e NNnkerF. Sothat m" =n—-v € M NN C kerF. Hence
Fm =m’'+v+u € ker F and Fm = 0. Then we can consider P (1) N+ Morker F- BY
assumption, dom E = M+ N = F(M)+ Mnker F+ N = dom Pg(pm) N+ Moiker F-
Finally, take x € F(M) and write x = m + n withm € M andn € N Nnker F. Then
x=Fx=Fm=FPpy n(m+n)=FPp nxbecause (x,m) = (m+n,m) € Py n
and (m, Fm) € F. Therefore Pr(p)/ n+mnker F © E and equality follows. |

Recall that for T' := Py n, Treg = PT and T, = QT where P = Pyxr and
0 =P mon:-

Corollary 4.10. The following statements hold:

1. (P M, N)reg Is a projection if and only if M+ N = P(M) + M NN + N and
P(M) C M+NNM.

2. (P N)m is a projection if and only if M+ N = QM)+ MNMNN+ N
and QM) C M+ NN MnNN.

Proof. Ttholds that MNN CkerP = MNN and MNN CkerQ = M N N then
the results in 1 and 2 follow from Lemmal4.9 O
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5. Semiclosed multivalued projections

The definitions of semiclosed subspace and semiclosed operator were formally
introduced by Kaufman [21]], though these notions were considered by other authors
before.

’

Definition. A subspace S of H is semiclosed if there exists an inner product -, - )
such that (S, (-,-) ) is a Hilbert space which is continuously imbedded in H, i.e.,
there exists b > 0 such that (x,x ) < b {(x,x ) forevery x € S.

A subspace S is semiclosed if and only if S is an operator range: in fact, if
T € L(H) define

(u,v )y = <TTu, Ty > for u,v € ran(T),

where 77 denotes the (possibly unbounded) Moore-Penrose inverse of T [23], and
let || - ||7 be the induced norm. Then (ranT, (-, - )7) is a Hilbert space and

lull = ITT ull < ITINT ull = IT|lllull7, for u € ran(T). (5.1)
Therefore, ran 7T is semiclosed. We write
M(T) := (ranT, (-, - )7)

to denote the space ranT equipped with the Hilbert space structure (-, - ) .

Conversely, if S is a semiclosed subspace of H, then there is a unique positive
(semi-definite) operator T € L(H) such that (S, (-, - )r) = M(T), see [2} Corollary
3.3] and [15) Theorem 1.1]. In what follows, we use the terms operator range and
semiclosed interchangeable.

Theorem 5.1 ([2, Corollary 3.8]). For Ty, T € L(H), let T := (T\T1* + T-T»*)'/2.
Then ||u; + u2||% < ||u1||%] + ||u2||22,f0r uy € ranT| and uy € ranT,, and for any
u € ranT, there are unique uy € ranT and uy € ranT, such that u = uy + u and

2 2 2
llur + uallz = lluillg, + lluzllz, -

The Hilbert space M(T) plays a significant role in many areas, in particular in
the de Branges complementation theory, see [2}[7]].

Example 3. If T is a contraction, the inclusion map ¢ : M(T) — H is contractive,
since ||ex|| < ||x||7 forevery x € ranT. Then, we say that S := M(T) is contractively
included in H. In this case, the de Branges-Rovnyak complement of S is defined by

S = M((I-TTH'?).

In fact, S + S’ = ran((TT* + (I — TT*))'/?) = H and the overlapping space SN S’
measures the extent to which this complementary space fails to be a true orthogonal
complement, see [7, Proposition 3.4].

In this case, Ps s’ defines a multivalued projection withdom Ps s = S+8’ =
H, and mulPg s = S NS’. Moreover, Ps s is a contraction, in the sense that
IPs.s |l < 1.Infact, since I = (| Ty* +ToT>*)/? for Ty := Tand T := (I-TT*)'/?,
by Theorem [5.1] given any x € H, there are unique f € S and g € S’ such that
x=f+gand

Ikell? = L7117, + lg17,.
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If Q := P(sns)- then (x,Qf) € QPs s . Hence

1(QPs.s)xII> = IQfII* < IIfII* < IIJ’II%1 < IIJ’II%1 + IIgII%2 = |l
Sothat [|Ps s |l = [|QPs,s |l < 1.

In [18]] operator range linear relations are considered. See also [21}22].

Definition. A linear relation 7 € 1r(&E,K) is an operator range (or a semiclosed
relation) if it is a semiclosed subspace of & X K, that is, T = ran® for some
@ e L(H, E x K) where H is a Hilbert space.

Given A € L(E,H) and B € L(K, H), consider the row operator

[A Bl e L(ExXK,H), [A B

Z] =Ah+Bkforhe &k e K,

and for a pair of operators C € L(H,&) and D € L(H,K), consider the column
operator

g] e L(H,& x %), g] x = [gfc] for x € H.
Set "
r=([a Bl[a B]')" =(aa"+BB)'", (5.2)

Sol'e L(H) andranT =ran [A B| = ran A + ran B. By Douglas’ Lemma [14],
there exist (unique) contractions C4 € L(E,H) and Cp € L(K, H) such that

A=TC4 and B=TICg, (5.3)
and ran C4,ran Cp C ranI". Moreover, the identity
[A B]|=T[Ca Cs] (5.4)

is the (left) polar decomposition of [A B] , where the row operator [C a C B] is
the (unique) partial isometry with

ran[Co Cp|=Tanl and ker [Ca Cgp|=ker[A B], (5.5)
[L8, Lemma 4.2]. In particular,
Piar = C,C), + CChp, (5.6)
and
I'=AC}, + BC}. (5.7)

Following the notation used in [18]] write

L(C,D) :=ran

g] = {(Cx.Dx) : x € H}.

Thus, L(C, D) is a semiclosed relation. Since
L(C,D)=DC7!, (5.8)

in the sense of the product of linear relations, L(C, D) is a quotient. In fact, any
semiclosed linear relation is a quotient as (3.8)), that is, if T € Ir(&, K) is semiclosed
then there exist C € L(H,E) and D € L(H,K) such that T = L(C,D) [8|
Theorem 1.10.1]. It is straightforward that dom L(C, D) = ranC, ran L(C,D) =
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ran D, ker L(C,D) = C(ker D) and mul L(C, D) = D(ker C). Hence, if T is an
operator range relation then ran 7', dom 7', ker 7 and mul T are semiclosed subspaces,
[[18, Corollary 2.9].

A projection E is an operator range operator if and only if ran E' and ker E are
operator ranges, [9, Proposition 3.2]. More generally,

Proposition 5.2. E € Mp(H) is an operator range relation if and only if ran E and
ker E are semiclosed subspaces.

Proof. Let E € Mp(H) and suppose that ran E = ran A and ker E = ran B, for
A,Be L(H).ThenE =L([A B]|,[A 0]).ie., E is an operator range relation.
The converse follows from the discussion above. O

Example 4. Given W € L(H) positive (semi-definite) consider the semi-inner
product {x,y )y = (Wx,y) forx,y € H and the semi-norm ||x||w := (x,x);‘/,2 =
lW'/2x]||, x € H. Given a subspace S C H, the W-orthogonal companion of S is
the (closed) subspace SV := {x € H : {x, s )y = 0 forevery s € S}.
Let A € L(H) and consider the multivalued projection
PW,ranA = PranA, ran AW -

Notice that P ran 4 is semiclosed since both the range and the kernel are semiclosed
subspaces. This multivalued projection plays a fundamental role in the study of some
approximation problems, see [6]. For instance, given b € H a vector xp € H is a
W-least squares solution (W-LSS) of Ax = b if

[[Axo = bllw = min ||y = blw. (5.9
yeran A

In [6, Propositions 5.1 and 5.3], it is proven that there is a solution of (5.9) if and
only if b € dom Py ran 4, and A~ Py an ab is the set of W-LSS of Ax = b.

Proposition 5.3. Given A,B € L(H), consider M = ran A and N = ran B and
Ca,Cp andT as in (3.3) and (3.2). Then

Ppyn=TC,CiT7 4 ({0} x M N N)), (5.10)
where I“CAC;F‘1 is an operator part of Py .
Proof. From (3.]) we get that
P T = PAoN(AC; + BCy) = AC, + ({0} x (M N N)). (5.11)

In fact, (x,y) € Py aT if and only if (I'x,y) = (ACjx + BCpx,y) € Ppn
if and only if y = AC)x +w for some w € M N N, if and only if (x,y) €
ACH F ({0} X (MNN)). Then P pg = P ATT™! = ACKTI1H({0} X (MNN)).
Finally, mul(FCACZF‘l) =I'C,C}(kerI") = {0} and then the sum is direct. O

As a corollary, we get the following formula, similar to the one in [3, Theorem
2.2] and [9, Proposition 3.3] for operators.

Corollary 5.4. Given A,B € L(H), consider M =ran A and N = ran B. Then
Py =T TAA) T 3 ({0} x MO N),
where T is as in (3.2).
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Proof. By Proposition[3.3]
Ppun=TC,CilamrT ™' + ({0} x M N N),

where we use that I“CAC;F_l = AC;|mrF_l because AC;|mrF_l c ACZF“,
dOm(ACZlﬁFF_l) = dom(ACZI“_l) = M+Nandmu1(AC2F‘l) = AC; (kerT') =
{0}. But I'C,C, lmmr = (I"'AA*)*. In fact, from AA* = rc,c,r we get that
I'AA* = (I % ({0} x kerI"))C,C4T. Then (I'"'AA)* = (C,CiT" + ({0} x
kerl"))*=T'C,C, N (tanl' x H) =T'C,C, |zmr- O

In [3} Theorem 2.3], Ando proved that if P/ is a densely defined closed
projection and T" := (P + Px)'/? then the operator Py := T7'PpyaT is well
defined and it is an orthogonal projection. A bounded operator which is injective
with dense range is called a quasi-affinity. An operator T is quasi-affine to C if there
is a quasi-affinity X such that 7X = XC. In these terms, P »(; » is quasi-affine to Py,
or

PpynT = TPy,
Analogous results can be obtained for semiclosed multivalued projections.
Lemma 5.5. Let T € Ir(H) such that tanT’ = M + N and mulT" C N. Then
F_IPM’NF = PF‘I(M),F‘I (N)
Proof. If E := 1P (AT then, by (21)), we get that
E? =T7'P N (Lanr#({0} x mul D) Pp T = E,

domE = domT and ranE = I'"!(M) C domT. Then, E € Mp(‘H). Finally,
I — E = PyerE ran E implies thatker E = ran(/ — E) = r-Y(N). m]

The multivalued projection P n is quasi-affine to a multivalued projection
with domain H, having a positive semidefinite contraction as an operator part, in
the sense that there exists a positive bounded operator I with ranI" = M + A such
that I intertwines P 5 and this multivalued projection.

Corollary 5.6. Given M and N operator ranges. Then
PunX = X(C+ ({0} x9)),

where X,C € L(M + N) are positive, X is a quasi-affinity, C is a contraction and
S is an operator range.

Proof. From GI0), T~ (Pp aT) = (I+({0} X kerI))C,Ci+ ({0} x T I(M N
N)) = C,C # (kerC x kerT) # ({0} x T"{M 0 N)) = C,C5 & ({0} x
I ' (MNN)). Take X := [l C := CaCllypyand S :=ranC4 NranCp. O

Lemma 5.7. Given A,B € L(H), consider M = ranA and N = ranB. Then
T-' (M N N) is closed if and only if

M+ N =T(kerCy) +T'(kerC) + MNN,
where Ca, Cp and T are as in (3.3) and (3.2). In this case,
M=T(kerCg) + MNNand N =T(kerC}) + MNN. (5.12)
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Proof. By (5.3), kerI" = ker C;; Nker C, and I'"'(M N N) = ranC4 NranCp &
ker C, Nker Cp. Then

' (M N N) is closed if and only ifran C4 N ran Cp is closed. (5.13)

Suppose that "' (M N N) is closed. Then, from (5.13) and Proposition 2.1t
follows that tTan C4 NTan Cp = ran C4 Nran Cg = ran C4 Nran Cp. Also, by (3.3) ,
ker C, +ker C, is closed. Then

H = (ker C; +ker Cp) @ ran C4 Nran Cp.
Applying I" to both sides of the last equality it follows that
M+ N =T(kerCg) +T'(kerC,) + MNN, (5.14)

where the sums are direct. Indeed, if ['x = 'y for some x € kerC and y €
ker Cy, then x — y € kerI" = ker CZ N ker Cy, so that x,y € ker ng N ker Cy or
I'x = 'y = 0. On the other hand, if I'x = I'z for some x € ker C;; + ker CE and
z€ranCyq NranCpg CranI thenx — z € kerI'. Thus, x = z + s for some s € ker T,
andsoz=x—-seranl' NkerI'={0} andTx =T'z=0.

Conversely, if M+ N = I'(ker Cy) + I'(ker C,) + M N N, applying I'!to
both sides of this equation, we get that H = (ker Cp +ker Cj;) @®ranCy NranCp.
Thus ran C4 Nran Cp is closed, or equivalently "' (M N N) is closed.

In this case (3.14) implies that

M =T(kerCy) + MNN.

Indeed, the inclusion 2 always holds, since I'(ker Cy) = AC}, (ker Cy) € M.
To see the reverse inclusion take x € M and write x = x| +x2+x3 withx; € I'(ker Cy),
x € I'(kerC}) and x3 € M N N. On the one hand, x € N and, on the other
hand, xp = x —x; —x3 € M. Thenx, € MN NN I“(kerC;) = {0} so that
x =x1+x3 € ['(ker Cy) + MNN. In asimilar fashion, N = I'(ker C},) + MNN. O

Corollary 5.8. Given A, B € L(H), consider M =ran A and N = ran B such that
M0 Nis closed in M + N. Then

Pmn = Pr(kerc;)///vjr {0} x M N N)).

Proof. If MNN is closed in M+N then "' (MNN) = "' (M N N) is closed. By
Lemmal[5.7]and (3.14), Prercy)/ n is well defined. Set E := Pr(kercg)///vi ({0} x
(M N N)), then mulE = M NN = mulPyn and, by Lemma [5.7] domE =
M+ N =dom Py . Clearly, E C Py, n because I'(ker C) C M, and the result
follows. O

Theorem 5.9. Let E € Mp(H) with ranE = ran A and ker E = ran B for some
A,B € L(H). Suppose that T-'(mulE) is closed where T is as in (5.2). Then
I''ET € MP(H) with (T'ET)y € P.

Conversely, if E € Ir(H) and there exists I' € L(H) positive (semi-definite)
with ranT" = dom E such that T-'ET € MP(H) with (T 'ET)y € P then E is a
semiclosed multivalued projection.
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Proof. Write M =ran A and N = ran B, and suppose that I'"'(M N N) is closed,
or equivalently, by (3.13)), ran C4 N ran Cp is closed. It follows from (5.12) that

I"'(M) =kerCy @ranCs Nran Cg, (5.15)
so that ' (M) is closed. On the other hand, M = ranT"C4 and then
I'"'(M) =ran C4 @ ker C; Nker Cj, (5.16)

so ran Cy is closed. The analogous to (5.13) and (5.16) hold for I'"'(A) so that
ran Cp is closed and

rY(N) =ranCpg ® ker C}; Nker Cy. (5.17)
Then, by Lemmal[3.3]
T P AT = Proi -1 (v) = Prercy +({03 XTI MO N)).

To see the last equality, notice that the last two relations have the same domain,
H, and the same multivalued part, I'"'(M N N); since ker Cp C (M) and
ranCpg C F_I(N) then Pkeng c PF*‘(M),F*](N)'
Finally, write S := T"'(M N N) and Py = Pier Cjyo(ker C;,nker ) - We claim
that
Piercy, ({0} X S) = Po & ({0} X S).

Again, both relations have the same domain and multivalued part. Also, I p,
Ierc;, C Prercy, and ker Pg x {0} = (ran Cp X {0} + ((ker C, Nker Cp) x {0})
Piercy, +({0} x 8). Then the inclusion 2 holds, and the identity follows.

Conversely, assume that there exist I' € L(H) positive (semi-definite) with
ran[" = domE such that T"'ET € MP(‘H) with Py := (I'"'ET")y € P. By hy-
pothesis, S := mulT""'ET" C ker Py. Then T'ET = Iyyp, + (kerPg x S) =
Pran Py S.ker Py- From dom~'ET = H, it follows that ranE C ranT" = domE.
Also,kerT" C S.Infact,kerI' = mulT~! € mul T'ET = mul(Py 4 ({0}x8S)) = S.
Then

N N

E

LanrELanr = FF_IEFF_I = IﬁPran Py®S ker POF_1
= Pr(ran Py®S),I (ker Py)» (5.18)
where we apply Lemma[5.3to I :=T'"!, asran['~! = H = dom Pyay pyo.s ker P, and

mulT~! = ker" C ker Py. Therefore, E € Mp(H). Furthermore, E is an operator
range because ran E and ker E are operator ranges. O

Corollary 5.10. Let M and N be operator ranges such that M 0\ N is closed in
M+ N. Then

PpnX =X(Po& ({0} x8)),

where X, Py € LM + N) are positive, X is a quasi-affinity, Py is a projection and
S is a closed subspace.
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