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Abstract. A multivalued projection is an idempotent linear relation with invari-

ant domain. We characterize multivalued projections that are operator ranges

(called semiclosed) and provide several formulae of them. Moreover, we study

the decomposability and continuity of multivalued projections, and describe

nilpotent relations.
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1. Introduction

Linear relations are a natural generalization of linear operators. As with operators,

the notions of idempotents and nilpotents, but now multivalued, play a central role in

their study. A linear relation acting between Hilbert spaces is any subspace of their

product, much as an operator can be characterized by its graph.

A multivalued projection, or semi-projection, � acting on a Hilbert space H

is an idempotent linear relation of H ×H (i.e., �2
= �) with invariant domain. A

multivalued projection is completely determined by its range and kernel. We refer to

[11], [12] and [24] for a detailed account on the subject.

Linear relations that are operator ranges (commonly referred to as semiclosed

linear relations) can be described as quotients of bounded operators in the sense of

linear relations [18], and this provides extra structure in describing the properties of

such relations.

An important example of a multivalued projection that is an operator range is

one having range that of a given operator and kernel its de Brange-Rovnyak com-

plement [7]. The multivalued part is then their intersection, called the “overlapping

space”; see Example 3. Another example of a semiclosed multivalued projection

appears when solving operator least squares problems with a selfadjoint or positive

(semi-definite) weight in a Hilbert space [6]. This is explained in Example 4.

http://arxiv.org/abs/2308.10816v1
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It is easy to check that a multivalued projection is semiclosed if and only if its

range and kernel are both operator ranges, where the special case for operators can

be found in [26] and [9].

Any semiclosed multivalued projection � can be written as a direct compo-

nentwise sum of an operator (identified with its graph) with domain equal to the

domain of the multivalued projection and �mul := {0} × mul�, where mul� is the

multivalued part of �. Moreover, any such multivalued projection is quasi-affine

to a multivalued projection with domain dom� and operator part a positive con-

traction. This generalizes a result by Ando for densely defined closed projections,

which states that any densely defined closed projection � acting on a Hilbert space

is quasi-affine to an orthogonal projection % [3, Theorem 2.3], meaning that there is

positive injective bounded operator, intertwining � and %. Moreover, when mul�

is closed in dom �, then � is quasi-affine to a closed multivalued projection with

operator part an orthogonal projection.

The paper is organized as follows: notation and background material are given

in Section 2. In Section 3 we start by gathering some known results about multivalued

projections. Then we characterize multivalued projections and nilpotent relations,

two examples of linear relations with ranges contained in their domains. We end the

section by generalizing two formulae for projections in terms of orthogonal projec-

tions onto their range and kernel: the formula given by Greville [17] for projectors

in finite dimensional spaces and the one given by Pták [27] for projections in Hilbert

spaces. In Section 4 we focus our attention on decomposability and continuity of

multivalued projections and study some distinguished orthogonal decompositions for

multivalued projections, characterizing those whose operator parts in their Lebesgue

decomposition are projections. Section 5 is devoted to multivalued projections that

are operator ranges. We finish the section with a formula that generalizes the one

given by Ando for densely defined closed projections in Hilbert spaces [3].

2. Preliminaries

In this paper H , K and E are complex and separable Hilbert spaces. The space

of bounded linear operators from H to K is denoted by !(H ,K) and !(H) when

H = K . Given a closed subspaceM ofH , %M is the orthogonal projection ontoM .

The set of orthogonal projections is denoted by P . The direct sum of two subspaces

M and N of H is indicated by M ∔ N , and M ⊕ N if M ⊆ N⊥. In addition, if

N ⊆ M, M ⊖ N means M ∩ N⊥. An operator range is a linear subspace of H

that is the range of some bounded operator on H [15]. The following properties of

operator ranges are proved in [23, Proposition 2.3.3 and Corollary 2.3.1].

Proposition 2.1. Let M and N be operator ranges of H such that M+N is closed.

Then the following hold:

1. M ∩N = M ∩N .

2. (M ∩N)⊥ = M⊥ + N⊥.

A linear relation from H into K is a subspace of H × K . The set of linear

relations from H into K is denoted by lr(H ,K), and lr(H) when H = K . Given
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) ∈ lr(H ,K), dom), ran) and ker) denote the domain, range and kernel of ),

respectively. The multivalued part of ) is defined by mul) := {H ∈ K : (0, H) ∈ )}.

If mul) = {0}, ) is (the graph of) an operator. The inverse of ) is the relation

)−1 := {(H, G) : (G, H) ∈ )}. Thus, dom)−1
= ran) and mul)−1

= ker).

For ), ( ∈ lr(H ,K), ) +̂ ( stands for the sum of ) and ( as subspaces. The

notations ) ∔̂( and ) ⊕̂( are self-explanatory. It is useful to note that () +̂ ()−1
=

)−1 +̂ (−1.

The sum of ) + ( is the linear relation defined by

) + ( := {(G, H + I) : (G, H) ∈ ) and (G, I) ∈ (}.

If ' ∈ lr(K, E) the product ') is the linear relation from H to E defined by

') := {(G, H) : (G, I) ∈ ) and (I, H) ∈ ' for some I ∈ K}.

It holds that ('))−1
= )−1'−1.

The following results will be used throughout the paper without mention.

Lemma 2.2 ([4, 2.02], [24, Proposition 1.21]). Let (,) ∈ lr(H ,K). Then ( = ) if

and only if ( ⊆ ), dom) ⊆ dom ( and mul) ⊆ mul (.

Lemma 2.3. Let ), ( ∈ lr(H ,K), ' ∈ lr(K, E) and � ∈ lr(E,H). Then

1. ') +̂ '( ⊆ '() +̂ () and the equality holds if ran) ⊆ dom ' or ran ( ⊆ dom '.

2. )� +̂ (� ⊆ () +̂ ()� and the equality holds if dom) ⊆ ran � or dom ( ⊆

ran �.

Proof. 1. The proof of the inclusion is trivial. Assume that ran) ⊆ dom ' and let

(G, H) ∈ '() +̂ (). Thus, there exist I = I1 + I2 ∈ K and G1, G2 ∈ H such that

G = G1 + G2, (G1, I1) ∈ ) , (G2, I2) ∈ ( and (I, H) ∈ '. Since ran) ⊆ dom ', there

exists F ∈ E such that (I1, F) ∈ ' then (G1, F) ∈ '). Also, (I2, H − F) ∈ ' and

so (G2, H − F) ∈ '(. Therefore, (G, H) = (G1, F) + (G2, H − F) ∈ ') +̂ '( and the

equality holds.

2. Take inverses and use 1. �

Given a subspace M of H , �M := {(D, D) : D ∈ M} and 0M := M × {0}.

When M = H we write � and 0 instead. The following identities can be easily

proved

))−1) = ) and )−1) = �dom) +̂({0} × ker)) = �dom) +̂(ker) × {0}), (2.1)

where we use that ker) ⊆ dom) for the last equality.

Set

) (M) := {H : (G, H) ∈ ) for some G ∈ M},

and for any G ∈ dom), )G := ) ({G}).

The closure ) of ) is the closure of ) in H × K endowed with the product

topology. Thus, the relation ) is closed when ) = ).

The adjoint of ) ∈ lr(H ,K) is the linear relation from K to H defined by

)∗ := {(G, H) ∈ K ×H : 〈 6, G 〉 = 〈 5 , H 〉 for all ( 5 , 6) ∈ )}.

The adjoint of ) is a closed linear relation, )
∗
= )∗ and )∗∗ := ()∗)∗ = ). It holds

that mul)∗
= (dom))⊥ and ker)∗

= (ran))⊥. Therefore, if ) is closed both ker)

and mul) are closed subspaces.
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2.1. Decompositions of linear relations

Next we outline some basics about decompositions of linear relations from the work

on the subject by Hassi et al., see [18, 19, 20].

Given ) ∈ lr(H ,K), a subspace )̃ of ) is called an operator part of ) if )̃

is an operator with dom )̃ = dom) and )̃ ⊆ ). In this case, ) = )̃ +̂ )mul, where

)mul := {0} × mul) . The relation

)0 := ) ∩ (dom) × dom)∗)

is a (closable) operator from dom) to dom)∗ contained in ) but, in general,

dom)0 ( dom) . We say that ) is decomposable if dom)0 = dom) , i.e., if )0

is an operator part of ) [19]. In other words, ) is decomposable if ) admits the

componentwise sum decomposition

) = )0 ⊕̂ )mul. (2.2)

On the other hand, a linear relation) is said to have a distinguished orthogonal

range decomposition if ) = )1 + )2 with )1 an operator, dom)1 = dom)2 = dom)

and ran)1⊥ ran)2. By [20, Corollary 3.6], ) = )1 +)2 is a distinguished orthogonal

range decomposition of ) if and only if there exists & ∈ P such that mul) ⊆ ker&,

and in this case, )1 = &) and )2 = (� −&)).

Among the distinguished orthogonal range decompositions, there are two with

some extremal properties [20]. Consider % := %
dom)∗ and define the regular part

)reg and the singular part )sing of ) by

)reg := %) and )sing := (� − %)).

The terminology refers to the notions of regular and singular linear relations.

) ∈ !(H ,K) is said to be regular (or closable) if ) is an operator; singular if

) is the (Cartesian) product of closed subspaces in H and K . Clearly, ) has the

distinguished orthogonal range decomposition

) = )reg + )sing. (2.3)

This is the Lebesgue decomposition of ). The regular and singular parts verify that

)reg is an operator and )sing = dom) ×mul) [20, Theorem 4.1]. If & := %mul)⊥ and

)< := &), then

) = )< + (� −&)) (2.4)

is also a distinguished orthogonal range decomposition of ) , known as the weak

Lebesgue decomposition of ).

Despite the different nature of the decompositions (2.2) and (2.3) (or (2.4)),

the operator terms may be the same as the following theorem shows.

Theorem 2.4 ([19, Theorems 3.10 and 3.18]). Let ) ∈ lr(H ,K). The following are

equivalent:

i) ) is decomposable;

ii) ran)sing ⊆ mul) ;

iii) )0 = )reg;

iv) )0 = )<.

If any of these conditions hold then mul) = mul).
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Definition. ) ∈ lr(H ,K) is continuous if for any neighbourhood +, )−1 (+) is a

neighbourhood in dom).

Proposition 2.5 ([12, Prop. 3.1]). A relation ) ∈ lr(H ,K) is continuous if and only

if )< is bounded.

By Theorem 2.4, a decomposable linear relation ) is continuous if and only if

)0 is bounded.

Proposition 2.6 ([12, Theorem 3.2]). Let ) ∈ lr(H ,K) be closed. Then ) is con-

tinuous if and only if dom) is closed.

Proposition 2.7 ([19, Proposition 3.5]). Let ) ∈ lr(H ,K). Then )reg is a bounded

operator if and only if dom)∗ is closed.

3. Multivalued projections and nilpotents

Following [26], we now present two types of linear relations with domains containing

their ranges: the multivalued projections and the multivalued nilpotents.

Definition. Let � ∈ lr(H) such that ran � ⊆ dom�. We say that � is a multivalued

projection if � is idempotent, that is �2
= � ; and a multivalued nilpotent if

�2
= dom� × mul�. (3.1)

Notice that � is a multivalued nilpotent relation if and only if

�2
= 0dom � +̂ ({0} × mul�).

If � is a multivalued projection (respectively a multivalued nilpotent) with mul� =

{0}, then � is a projection (respectively a nilpotent).

There are idempotent linear relations which are not multivalued projections.

For example, if � is a projection then, by [5, Corollary 4.15], �−1 is an idempotent

relation such that ran�−1
= dom� = ran � ∔ker � and dom �−1

= ran �. Therefore

if ker � ≠ {0}, �−1 is not a multivalued projection.

Also, there are relations satisfying (3.1) whose domains do not contain their

ranges. For instance, let M ≠ {0} be a subspace and set � = {0} × M so that �

satisfies (3.1) but ran � = M * {0} = dom �.

Multivalued projections were introduced by Cross and Wilcox in [12] and later

studied by Labrousse in [24]. Multivalued projections preserve many properties of

projections, for instance, they are fully described by their ranges and kernels. In the

sequel, Mp(H) denotes the set of multivalued projections on H and MP(H) stands

for the subset of Mp(H) of closed multivalued projections.

Proposition 3.1 ([12, 24]). � ∈ Mp(H) if and only if � = �ran� +̂ (ker � × {0}).

From now on M,N are subspaces of H . In view of the above proposition

write

%M,N := �M +̂ (N × {0}).

Thus, %M,N denotes the multivalued projection with range M and kernel N .

It is easy to check that dom %M,N = M+N and mul%M,N = M∩N . When %M,N

is a projection, we write %M//N , and %M if N = M⊥.
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Example 1. Given ) ∈ lr(H) we can express (2.1) in terms of multivalued projec-

tions since

)−1) = %dom),ker) and ))−1
= %ran),mul) .

Moreover )−1 is the unique solution of the system of equations

-) = %dom),ker) , ) - = %ran),mul) , -)- = -. (3.2)

In fact, by (2.1), )−1 is a solution. Suppose that - ∈ lr(H) is also a solution.

Then -) = )−1) = (-))−1 and )- = ))−1. Hence, )-) = ))−1) = ). Taking

inverses,

)−1
= ()-))−1

= (-))−1)−1
= -))−1

= -)- = -.

Proposition 3.2. Let ) ∈ lr(H). Then

1. ) is a multivalued projection if and only if �ran) ⊆ ).

2. ) is a multivalued nilpotent if and only if ran) ⊆ ker).

Proof. 1. If) is a multivalued projection, by Proposition 3.1, �ran) ⊆ ). Conversely,

if �ran) ⊆ ) then ran) ⊆ dom) and �ran)) ⊆ )2, or ) ⊆ )2. On the other hand,

taking inverses, �ran) ⊆ )−1. Then )2
= )�ran)) ⊆ ))−1) = )

2. Suppose that )2
= dom) × mul) and ran) ⊆ dom). Given G ∈ ran) ,

there exist H, I ∈ H such that (H, G), (G, I) ∈ ) or (H, I) ∈ )2. In this case, I ∈ mul)

or (0, I) ∈ ) . Then (G, 0) ∈ ) or G ∈ ker). Conversely, if ran) ⊆ ker) then

ran) ⊆ dom), and ) = %ker)). On the other hand, it always holds that )%ker) =

(ker) ⊕ ker)⊥) × mul). Then

)2
= )%ker)) = ((ker) ⊕ ker)⊥) × mul))) = dom) × mul),

because ran) ⊆ ker). �

Proposition 3.3. If ) ∈ lr(H) is a multivalued projection (a multivalued nilpotent)

then )∗ and ) are multivalued projections (multivalued nilpotents, respectively).

Proof. The result was proved for multivalued projections in [12, 24]; see (3.3) below.

Let ) be a multivalued nilpotent. Since ) = ()∗)∗ we only need to show the

result for )∗. By Proposition 3.2, ran) ⊆ ker) and then (ker))⊥ ⊆ (ran))⊥ =

ker)∗. On the other hand, ker) ⊆ ker) implies that ran)∗
= (ker) )⊥ ⊆ (ker))⊥.

Therefore ran)∗ ⊆ ker)∗, and by Proposition 3.2 once again, )∗ is a multivalued

nilpotent. �

For multivalued projections, the formulae

%∗
M,N = %N⊥,M⊥ and %M,N = %

M,N
, (3.3)

hold [12, 24]. Then %M,N ∈ MP(H) if and only if M and N are closed.

In [17, Theorem 2], Greville proved that if M and N are (finite dimensional)

complementary subspaces then

%M//N = (%N⊥%M)†. (3.4)

The same formula holds for closed subspaces in a Hilbert space H such that

M ∔ N = H [10].
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On the other hand, if ) is a closed operator, its Moore-Penrose inverse can be

given in terms of (the linear relation) )−1 [25, 1] as

)† := %ker)⊥)−1%ker)∗⊥ . (3.5)

If M and N are closed subspaces such that M ∔ N = H , the formula (3.5)

applied to ) = %N⊥%M gives

(%N⊥%M)† = %M (%N⊥%M)−1%N⊥

because (ker(%N⊥%M))⊥ = M and (ker(%M%N⊥))⊥ = N⊥. Then, if %M//N is a

densely defined closed projection, by (3.4),

%M//N = %M (%N⊥%M)−1%N⊥ .

A similar result holds for multivalued projections if an extra hypothesis is required.

Proposition 3.4. Let M,N be subspaces of H such that M ⊆ N ⊕ N⊥. Then

%M,N = %M ((� − %N)%M)−1 (� − %N).

Proof. By (2.1) and the fact that �M�N⊕N⊥ = �M we get that%M ((�−%N)%M)−1(�−

%N) =%M%M
−1 (�−%N)

−1 (�−%N)= �M (�N⊕N⊥ +̂ ({0}×N)) = �M (�N⊕N⊥ +̂ (N×

{0})) = �M +̂ (N × {0}) = %M,N . �

As a corollary, we obtain another formula for closed multivalued projections

that generalizes the one given by Pták [27] for bounded projections. If M and N are

closed subspaces such that M ∔ N = H then (� − %N%M) is invertible and

%M//N = (� − %N%M)−1%N⊥ ,

see also [17, Theorem 3.3].

Corollary 3.5 (cf. [27, Proposition 1.2]). Let %M,N ∈ MP(H). Then

%M,N = (� − %N%M)−1%N⊥ |M+N .

Proof. By Proposition 3.4 and (2.1),

(� − %N%M)%M,N = (� − %N%M)%M (%N⊥%M)−1%N⊥

= %N⊥%M (%N⊥%M)−1%N⊥ = �%N⊥ (M)%N⊥ = %N⊥ |M+N .

Then, multiplying both sides of the equality (� − %N%M)%M,N = %N⊥ |M+N by

(� − %N%M)−1 we get that

(� +̂ ({0} × ker(� − %N%M)))%M,N = (� − %N%M)−1%N⊥ |M+N .

But ker(� −%N%M) = M∩N . In fact, if G ∈ ker(� −%N%M) then G = %N%MG, so

that ‖%MG‖2
= 〈 %MG, %M%N%MG 〉 = ‖%N%MG‖2

= ‖G‖2. Hence G ∈ M ∩ N .

Therefore ker(� − %N%M) ⊆ M ∩ N ⊆ ker(� − %N%M) and (� +̂ ({0} × (M ∩

N)))%M,N = (� − %N%M)−1%N⊥ |M+N or %M,N = (� − %N%M)−1%N⊥ |M+N . �

4. Decompositions of multivalued projections

Next, we study decomposable and continuous multivalued projections and some of

their distinguished orthogonal decompositions.
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4.1. Decomposable and continuous multivalued projections

For � := %M,N, consider % = %
dom�∗ = %

M⊥+N⊥ and �0 = � ∩ (M + N ×

M⊥ + N⊥).

Lemma 4.1. The operator (%M,N)0 is a projection. More precisely,

(%M,N)0 = %
M∩M⊥+N⊥//N

.

Proof. By definition, �0 = � ∩ (M +N × M⊥ + N⊥) = {(< + =, <) : < ∈

M ∩M⊥ + N⊥, = ∈ N} = %
M∩M⊥+N⊥//N

. �

Proposition 4.2. The following conditions are equivalent:

i) %M,N is decomposable;

ii) M + N = M ∩M⊥ + N⊥ ∔ N ;

iii) %
M∩N

(M) = M ∩N ,

iv) M = M ∩M⊥ + N⊥ ⊕ M ∩N .

If any of the above conditions holds M ∩N = M ∩N and

%M,N = %M∩(M∩# )⊥//N ⊕̂ ({0} ×M ∩N).

Proof. 8) ⇔ 88) By definition, %M,N is decomposable if and only if M + N =

dom� = dom�0 = M ∩M⊥ + N⊥ ∔ N .

8) ⇔ 888) Theorem 2.4 establishes that %M,N is decomposable if and only if

ran �sing ⊆ mul�. But ran �sing = ran(� − %)� = %
M∩N

(M).

888) ⇔ 8E) is straightforward.

If any of the above conditions holds then � = �0 ⊕̂ �mul and, by Theorem 2.4,

M ∩N = M ∩N . Then �0 = %M∩(M∩# )⊥//N . �

Corollary 4.3. If M,N are closed subspaces of H then

%M,N = %M⊖(M∩N)//N ⊕̂ ({0} ×M ∩N).

Proof. If M and N are closed then %M,N is closed and therefore decomposable

[19, Corollary 3.15]. �

The fact that %M,N is decomposable does not imply that %N,M is decompos-

able as the next example shows.

Example 2. Consider M,N proper subspaces of H such that M ( N and M

is dense. For example take � ∈ !(H) positive (semi-definite) such that � is not

invertible and set M := ran � and N := ran �1/2. Then %M,N is decomposable but

%N,M is not decomposable. In fact, it is clear thatM∩N = H so that %
M∩N

(M) =

M = M∩N . Then, by Proposition 4.2, %M,N is decomposable. On the other hand,

M ∩N ( N = %
M∩N

(N) then %N,M is not decomposable by Proposition 4.2.

Proposition 4.4. The following conditions are equivalent:

i) M ∩N = M ∩N ;

ii) %M,N is decomposable and M ∩N is closed;

iii) %N,M is decomposable and M ∩N is closed;
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Proof. 8) ⇔ 88) : If 8) holds then M∩N is closed and %
M∩N

(M) = %M∩N (M) =

M ∩N . By Proposition 4.2, %M,N is decomposable. See also [19, Corollary 3.14].

Conversely, suppose that 88) holds. Then, by Theorem 2.4, mul%
M,N

= mul%M,N ,

or M ∩N = M ∩N = M ∩N . �

Corollary 4.5. Suppose that %M,N is decomposable. If M is closed, then %N,M is

decomposable.

Proof. Suppose that %M,N is decomposable. Then, by Proposition 4.2, M ∩N =

M ∩ N . Since M is closed, from 8E) of Proposition 4.2, M ∩ N is closed. Then

M ∩N = M ∩N and, by Proposition 4.4, %N,M is decomposable. �

In [12, Corollary 3.7], it is shown that %M,N is continuous if and only if

M⊥ + N⊥
= (M ∩N)⊥.

Corollary 4.6. Suppose that M,N are operator ranges of H such that M+N and

M ∩N are closed. Then %M,N is decomposable and continuous.

Proof. SinceM+N is closed, by Proposition 2.1,M∩N = M ∩N = M∩N .Then,

by Proposition 4.4, %M,N is decomposable. Also, by Proposition 2.1, (M ∩N)⊥ =

M⊥ + N⊥ so that %M,N is continuous. �

The condition “M⊥ + N⊥ closed” does not imply the continuity of %M,N

[12, Example 3.10]. However, if %M,N is decomposable, this conditions is indeed

sufficient.

Proposition 4.7. Suppose that %M,N is decomposable. Then %M,N is continuous if

and only if M⊥ + N⊥ is closed.

Proof. %M,N is continuous if and only if (%M,N)< is bounded. But (%M,N)< =

(%M,N)reg, by Theorem 2.4; because %M,N is decomposable. By Proposition 2.7,

(%M,N)reg is bounded if and only if dom %∗
M,N

= M⊥ + N⊥ is closed. �

Proposition 4.8. Suppose that that M ∩N is closed. Then the following are equiv-

alent:

i) %M,N is continuous;

ii) %M,N is decomposable with bounded operator part;

iii) M ∩N = M ∩N and M⊥ + N⊥ is closed.

Proof. 8) ⇔ 88): follows from [19, Corollary 3.22].

88) ⇔ 888): if 88) holds then, by Proposition 4.2, M ∩N = M ∩N = M ∩N ,

and from Proposition 4.7 we get that M⊥ +N⊥ is closed. The converse follows from

Proposition 4.4 and Proposition 4.7. �

Remark 1. For M and N closed subspaces of H , Friedrichs [16] defined the cosine

of the angle between M and N as

2(M,N) := sup {|〈 G, H 〉|: G ∈ M ⊖ (M ∩N),H ∈ N ⊖ (M ∩N), ‖G‖ ,‖H‖ ≤ 1} .

By [13, Theorem 13], M + N is closed if and only if 2(M,N) < 1, and by [13,

Lemma 11], M +N is closed if and only if M⊥ + N⊥ is closed.
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Therefore, if %M,N is closed, i.e., if M and N are closed, then, by Propo-

sition 2.6, %M,N is continuous if and only if M + N is closed, or equivalently

2(M,N) < 1. Now, if we replace the condition of %M,N being closed by the less

restrictive condition of %M,N being decomposable then, by Proposition 4.7, %M,N

is continuous if and only if 2(M,N) < 1.

4.2. Distinguished orthogonal range decompositions of multivalued projections

When a multivalued projection � is decomposable, �< = �reg = �0 and then,

by Lemma 4.1, �< and �reg are projections. More generally, we are interested in

characterizing the multivalued projections whose operator parts in their Lebesgue

decompositions are projections.

Lemma 4.9. For a given � ∈ P, �%M,N is a projection if and only ifM∩N ⊆ ker �,

M +N = � (M) +M ∩ ker � + N and � (M) ⊆ M + N ∩ ker �. In this case,

�%M,N = %� (M)//N+M∩ker � .

Proof. Set � := �%M,N . It is easy to check that dom� = M +N , ran � = � (M),

ker � = N +M ∩ ker � and mul� = � (M ∩N).

Suppose that � is a projection. Then mul� = {0}, or M ∩N ⊆ ker �. Also,

dom� = ran � + ker � so that M + N = � (M) ∔ (M ∩ ker � + N). Finally, if

G ∈ � (M),write G = <+=with< ∈ M and = ∈ N .Then G = �G = �%M,N (<+=) =

�<. So that < + = = �< and = = −(� − �)< ∈ ker �, or G ∈ M +N ∩ ker �.

Conversely, since M ∩N ⊆ ker �, � is an operator. Let us see that ran � ∩

ker � = {0}. Let < ∈ M and suppose that �< = = + D, = ∈ N and D ∈ M ∩ ker �.

Then = = �< − D ∈ � (M) + M ∩ ker � ⊆ M + N ∩ ker �. Then = = <′ + E,

<′ ∈ M and E ∈ N ∩ ker �. So that <′
= = − E ∈ M ∩ N ⊆ ker �. Hence

�< = <′ + E + D ∈ ker � and �< = 0. Then we can consider %� (M)//N+M∩ker � . By

assumption, dom � = M+N = � (M) +M∩ ker � +N = dom%� (M)//N+M∩ker � .

Finally, take G ∈ � (M) and write G = < + = with < ∈ M and = ∈ N ∩ ker �. Then

G = �G = �< = �%M,N (< + =) = �%M,NG because (G, <) = (< + =, <) ∈ %M,N

and (<, �<) ∈ �. Therefore %� (M)//N+M∩ker� ⊆ � and equality follows. �

Recall that for ) := %M,N , )reg = %) and )< = &) where % = %
M⊥+N⊥ and

& = % (M∩N)⊥ .

Corollary 4.10. The following statements hold:

1. (%M,N)reg is a projection if and only if M +N = %(M) +M ∩ N + N and

%(M) ⊆ M +N ∩M.

2. (%M,N)< is a projection if and only if M +N = &(M) +M ∩M ∩N + N

and &(M) ⊆ M +N ∩M ∩N .

Proof. It holds that M∩N ⊆ ker % = M∩N and M∩N ⊆ ker& = M ∩N then

the results in 1 and 2 follow from Lemma 4.9. �
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5. Semiclosed multivalued projections

The definitions of semiclosed subspace and semiclosed operator were formally

introduced by Kaufman [21], though these notions were considered by other authors

before.

Definition. A subspace S of H is semiclosed if there exists an inner product 〈 ·, · 〉
′

such that (S, 〈 ·, · 〉
′

) is a Hilbert space which is continuously imbedded in H , i.e.,

there exists 1 > 0 such that 〈 G, G 〉 ≤ 1 〈 G, G 〉′ for every G ∈ S.

A subspace S is semiclosed if and only if S is an operator range: in fact, if

) ∈ !(H) define

〈 D, E 〉) :=
〈

)†D,)†E
〉

for D, E ∈ ran()),

where )† denotes the (possibly unbounded) Moore-Penrose inverse of ) [25], and

let ‖ · ‖) be the induced norm. Then (ran), 〈 ·, · 〉) ) is a Hilbert space and

‖D‖ = ‖))†D‖ ≤ ‖) ‖‖)†D‖ = ‖) ‖‖D‖) , for D ∈ ran()). (5.1)

Therefore, ran) is semiclosed. We write

M()) := (ran), 〈 ·, · 〉) )

to denote the space ran) equipped with the Hilbert space structure 〈 ·, · 〉) .

Conversely, if S is a semiclosed subspace of H , then there is a unique positive

(semi-definite) operator) ∈ !(H) such that (S, 〈 ·, · 〉) ) = M()), see [2, Corollary

3.3] and [15, Theorem 1.1]. In what follows, we use the terms operator range and

semiclosed interchangeable.

Theorem 5.1 ([2, Corollary 3.8]). For )1, )2 ∈ !(H), let ) := ()1)1
∗ + )2)2

∗)1/2.

Then ‖D1 + D2‖
2
)
≤ ‖D1‖

2
)1

+ ‖D2‖
2
)2
, for D1 ∈ ran)1 and D2 ∈ ran)2, and for any

D ∈ ran), there are unique D1 ∈ ran)1 and D2 ∈ ran)2 such that D = D1 + D2 and

‖D1 + D2‖
2
) = ‖D1‖

2
)1
+ ‖D2‖

2
)2
.

The Hilbert space M()) plays a significant role in many areas, in particular in

the de Branges complementation theory, see [2, 7].

Example 3. If ) is a contraction, the inclusion map ] : M()) → H is contractive,

since ‖]G‖ ≤ ‖G‖) for every G ∈ ran). Then, we say thatS := M()) is contractively

included in H . In this case, the de Branges-Rovnyak complement of S is defined by

S′ := M((� − ))∗)1/2).

In fact, S +S′
= ran(())∗ + (� − ))∗))1/2) = H and the overlapping space S ∩S′

measures the extent to which this complementary space fails to be a true orthogonal

complement, see [7, Proposition 3.4].

In this case, %S,S′ defines a multivalued projection with dom %S,S′ = S+S′
=

H , and mul%S,S′ = S ∩ S′. Moreover, %S,S′ is a contraction, in the sense that

‖%S,S′ ‖ ≤ 1. In fact, since � = ()1)1
∗ +)2)2

∗)1/2 for)1 := ) and)2 := (� −))∗)1/2,

by Theorem 5.1, given any G ∈ H , there are unique 5 ∈ S and 6 ∈ S′ such that

G = 5 + 6 and

‖G‖2
= ‖ 5 ‖2

)1
+ ‖6‖2

)2
.
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If & := % (S∩S′ )⊥ then (G,& 5 ) ∈ &%S,S′ . Hence

‖(&%S,S′ )G‖2
= ‖& 5 ‖2 ≤ ‖ 5 ‖2 ≤ ‖ 5 ‖2

)1
≤ ‖ 5 ‖2

)1
+ ‖6‖2

)2
= ‖G‖2.

So that ‖%S,S′ ‖ = ‖&%S,S′ ‖ ≤ 1.

In [18] operator range linear relations are considered. See also [21, 22].

Definition. A linear relation ) ∈ lr(E,K) is an operator range (or a semiclosed

relation) if it is a semiclosed subspace of E × K, that is, ) = ranΦ for some

Φ ∈ !(H , E × K) where H is a Hilbert space.

Given � ∈ !(E,H) and � ∈ !(K,H), consider the row operator

[

� �
]

∈ !(E × K,H),
[

� �
]

[

ℎ

:

]

= �ℎ + �: for ℎ ∈ E, : ∈ K;

and for a pair of operators � ∈ !(H , E) and � ∈ !(H ,K), consider the column

operator
[

�

�

]

∈ !(H , E × K),

[

�

�

]

G =

[

�G

�G

]

for G ∈ H .

Set

Γ :=
(

[

� �
] [

� �
]∗
)1/2

= (��∗ + ��∗)1/2. (5.2)

So Γ ∈ !(H) and ran Γ = ran
[

� �
]

= ran � + ran �. By Douglas’ Lemma [14],

there exist (unique) contractions �� ∈ !(E,H) and �� ∈ !(K,H) such that

� = Γ�� and � = Γ��, (5.3)

and ran��, ran�� ⊆ ran Γ. Moreover, the identity
[

� �
]

= Γ
[

�� ��

]

(5.4)

is the (left) polar decomposition of
[

� �
]

, where the row operator
[

�� ��

]

is

the (unique) partial isometry with

ran
[

�� ��

]

= ran Γ and ker
[

�� ��

]

= ker
[

� �
]

, (5.5)

[18, Lemma 4.2]. In particular,

%ran Γ = ���
∗
� + ���

∗
�, (5.6)

and

Γ = ��∗
� + ��∗

� . (5.7)

Following the notation used in [18] write

!(�, �) := ran

[

�

�

]

= {(�G, �G) : G ∈ H}.

Thus, !(�, �) is a semiclosed relation. Since

!(�, �) = ��−1, (5.8)

in the sense of the product of linear relations, !(�, �) is a quotient. In fact, any

semiclosed linear relation is a quotient as (5.8), that is, if ) ∈ lr(E,K) is semiclosed

then there exist � ∈ !(H , E) and � ∈ !(H ,K) such that ) = !(�, �) [8,

Theorem 1.10.1]. It is straightforward that dom !(�, �) = ran�, ran !(�, �) =
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ran �, ker !(�, �) = � (ker �) and mul !(�, �) = � (ker�). Hence, if ) is an

operator range relation then ran), dom), ker) and mul) are semiclosed subspaces,

[18, Corollary 2.9].

A projection � is an operator range operator if and only if ran� and ker � are

operator ranges, [9, Proposition 3.2]. More generally,

Proposition 5.2. � ∈ Mp(H) is an operator range relation if and only if ran � and

ker � are semiclosed subspaces.

Proof. Let � ∈ Mp(H) and suppose that ran � = ran � and ker � = ran �, for

�, � ∈ !(H). Then � = !
( [

� �
]

,
[

� 0
] )

, i.e., � is an operator range relation.

The converse follows from the discussion above. �

Example 4. Given , ∈ !(H) positive (semi-definite) consider the semi-inner

product 〈 G, H 〉, := 〈,G, H 〉 for G, H ∈ H and the semi-norm ‖G‖, := 〈 G, G 〉
1/2

,
=

‖,1/2G‖, G ∈ H . Given a subspace S ⊆ H , the ,-orthogonal companion of S is

the (closed) subspace S⊥, := {G ∈ H : 〈 G, B 〉, = 0 for every B ∈ S}.

Let � ∈ !(H) and consider the multivalued projection

%,,ran � := %ran �, ran �⊥, .

Notice that %,,ran � is semiclosed since both the range and the kernel are semiclosed

subspaces. This multivalued projection plays a fundamental role in the study of some

approximation problems, see [6]. For instance, given 1 ∈ H a vector G0 ∈ H is a

,-least squares solution (,-LSS) of �G = 1 if

| |�G0 − 1 | |, = min
H∈ran �

| |H − 1 | |, . (5.9)

In [6, Propositions 5.1 and 5.3], it is proven that there is a solution of (5.9) if and

only if 1 ∈ dom %,,ran �, and �−1%,,ran �1 is the set of ,-LSS of �G = 1.

Proposition 5.3. Given �, � ∈ !(H), consider M = ran � and N = ran � and

��, �� and Γ as in (5.3) and (5.2). Then

%M,N = Γ���
∗
�Γ

−1
∔̂ ({0} × (M ∩N)), (5.10)

where Γ�
�
�∗
�
Γ
−1 is an operator part of %M,N .

Proof. From (5.7) we get that

%M,NΓ = %M,N (��∗
� + ��∗

�) = ��∗
� ∔̂ ({0} × (M ∩N)). (5.11)

In fact, (G, H) ∈ %M,NΓ if and only if (ΓG, H) = (��∗
�
G + ��∗

�
G, H) ∈ %M,N

if and only if H = ��∗
�
G + F for some F ∈ M ∩ N , if and only if (G, H) ∈

��∗
�
∔̂ ({0}× (M∩N)). Then %M,N = %M,NΓΓ

−1
= ��∗

�
Γ
−1+̂({0}× (M∩N)).

Finally, mul(Γ�
�
�∗
�
Γ
−1) = Γ�

�
�∗
�
(ker Γ) = {0} and then the sum is direct. �

As a corollary, we get the following formula, similar to the one in [3, Theorem

2.2] and [9, Proposition 3.3] for operators.

Corollary 5.4. Given �, � ∈ !(H), consider M = ran � and N = ran �. Then

%M,N = (Γ−1��∗)∗Γ−1
∔̂ ({0} ×M ∩N),

where Γ is as in (5.2).
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Proof. By Proposition 5.3,

%M,N = Γ���
∗
� |ran ΓΓ

−1
∔̂ ({0} ×M ∩N),

where we use that Γ�
�
�∗
�
Γ
−1

= ��∗
�
|ran ΓΓ

−1 because ��∗
�
|ran ΓΓ

−1 ⊆ ��∗
�
Γ
−1,

dom(��∗
�
|ran ΓΓ

−1) = dom(��∗
�
Γ
−1) = M+N and mul(��∗

�
Γ
−1) = ��∗

�
(ker Γ) =

{0}. But Γ�
�
�∗
�
|ran Γ = (Γ−1��∗)∗. In fact, from ��∗

= Γ�
�
�∗
�
Γ we get that

Γ
−1��∗

= (� +̂ ({0} × ker Γ))�
�
�∗
�
Γ. Then (Γ−1��∗)∗ = (�

�
�∗
�
Γ ∔̂ ({0} ×

ker Γ))∗ = Γ�
�
�∗
�
∩ (ran Γ ×H) = Γ�

�
�∗
�
|ran Γ . �

In [3, Theorem 2.3], Ando proved that if %M//N is a densely defined closed

projection and Γ := (%M + %N)
1/2 then the operator %0 := Γ

−1%M//NΓ is well

defined and it is an orthogonal projection. A bounded operator which is injective

with dense range is called a quasi-affinity. An operator) is quasi-affine to � if there

is a quasi-affinity - such that )- = -�. In these terms, %M//N is quasi-affine to %0,

or

%M//NΓ = Γ%0.

Analogous results can be obtained for semiclosed multivalued projections.

Lemma 5.5. Let Γ ∈ lr(H) such that ran Γ = M +N and mul Γ ⊆ N . Then

Γ
−1%M,NΓ = %Γ−1 (M) ,Γ−1 (N) .

Proof. If � := Γ
−1%M,NΓ then, by (2.1), we get that

�2
= Γ

−1%M,N (�ran Γ+̂({0} × mul Γ))%M,NΓ = �,

dom� = dom Γ and ran � = Γ
−1(M) ⊆ dom Γ. Then, � ∈ Mp(H). Finally,

� − � = %ker �,ran � implies that ker � = ran(� − �) = Γ
−1(N). �

The multivalued projection %M,N is quasi-affine to a multivalued projection

with domain H , having a positive semidefinite contraction as an operator part, in

the sense that there exists a positive bounded operator Γ with ran Γ = M +N such

that Γ intertwines %M,N and this multivalued projection.

Corollary 5.6. Given M and N operator ranges. Then

%M,N- = - (� ∔̂ ({0} × S)),

where -,� ∈ !(M + N) are positive, - is a quasi-affinity, � is a contraction and

S is an operator range.

Proof. From (5.11), Γ−1(%M,NΓ) = (�+̂({0} × ker Γ))�
�
�∗
�
+̂ ({0} × Γ

−1(M ∩

N)) = �
�
�∗
�
+̂ (ker�∗

�
× ker Γ) +̂ ({0} × Γ

−1(M ∩ N)) = �
�
�∗
�
∔̂ ({0} ×

Γ
−1(M ∩N)). Take - := Γ |

M+N
, � := ���

∗
�
|
M+N

and S := ran�� ∩ ran��. �

Lemma 5.7. Given �, � ∈ !(H), consider M = ran � and N = ran �. Then

Γ
−1(M ∩N) is closed if and only if

M +N = Γ(ker�∗
�) ∔ Γ(ker�∗

�) ∔M ∩N ,

where ��, �� and Γ are as in (5.3) and (5.2). In this case,

M = Γ(ker�∗
�) ∔M ∩N and N = Γ(ker�∗

�) ∔M ∩N . (5.12)
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Proof. By (5.5), ker Γ = ker�∗
�
∩ ker�∗

�
, and Γ

−1(M ∩ N) = ran�� ∩ ran�� ⊕

ker�∗
�
∩ ker�∗

�
. Then

Γ
−1(M ∩N) is closed if and only if ran�� ∩ ran�� is closed. (5.13)

Suppose that Γ−1(M ∩N) is closed. Then, from (5.13) and Proposition 2.1 it

follows that ran�� ∩ ran�� = ran�� ∩ ran�� = ran�� ∩ ran�� . Also, by (5.5) ,

ker�∗
�
+ ker�∗

�
is closed. Then

H = (ker�∗
� + ker�∗

�) ⊕ ran�� ∩ ran��.

Applying Γ to both sides of the last equality it follows that

M +N = Γ(ker�∗
�) ∔ Γ(ker�∗

�) ∔M ∩N , (5.14)

where the sums are direct. Indeed, if ΓG = ΓH for some G ∈ ker�∗
�

and H ∈

ker�∗
�

, then G − H ∈ ker Γ = ker�∗
�
∩ ker�∗

�
so that G, H ∈ ker�∗

�
∩ ker�∗

�
or

ΓG = ΓH = 0. On the other hand, if ΓG = ΓI for some G ∈ ker�∗
�
+ ker�∗

�
and

I ∈ ran�� ∩ ran�� ⊆ ran Γ then G − I ∈ ker Γ. Thus, G = I + B for some B ∈ ker Γ,

and so I = G − B ∈ ran Γ ∩ ker Γ = {0} and ΓG = ΓI = 0.

Conversely, if M +N = Γ(ker�∗
�
) ∔ Γ(ker�∗

�
) ∔M ∩N , applying Γ

−1 to

both sides of this equation, we get that H = (ker�∗
�
+ ker�∗

�
) ⊕ ran�� ∩ ran��.

Thus ran�� ∩ ran�� is closed, or equivalently Γ
−1(M ∩N) is closed.

In this case (5.14) implies that

M = Γ(ker�∗
�) ∔M ∩N .

Indeed, the inclusion ⊇ always holds, since Γ(ker�∗
�
) = ��∗

�
(ker�∗

�
) ⊆ M .

To see the reverse inclusion take G ∈ M and write G = G1+G2+G3 with G1 ∈ Γ(ker�∗
�
),

G2 ∈ Γ(ker�∗
�
) and G3 ∈ M ∩ N . On the one hand, G2 ∈ N and, on the other

hand, G2 = G − G1 − G3 ∈ M . Then G2 ∈ M ∩ N ∩ Γ(ker�∗
�
) = {0} so that

G = G1+G3 ∈ Γ(ker�∗
�
)∔M∩N . In a similar fashion,N = Γ(ker�∗

�
)∔M∩N . �

Corollary 5.8. Given �, � ∈ !(H), consider M = ran � and N = ran � such that

M ∩N is closed in M +N . Then

%M,N = %Γ (ker�∗
�
)//N ∔̂ ({0} × (M ∩N)).

Proof. IfM∩N is closed inM+N then Γ
−1(M∩N) = Γ

−1(M ∩N) is closed. By

Lemma 5.7 and (5.14), %Γ (ker�∗
�
)//N is well defined. Set � := %Γ (ker�∗

�
)//N ∔̂ ({0} ×

(M ∩ N)), then mul� = M ∩ N = mul%M,N and, by Lemma 5.7, dom � =

M +N = dom %M,N . Clearly, � ⊆ %M,N because Γ(ker�∗
�
) ⊆ M, and the result

follows. �

Theorem 5.9. Let � ∈ Mp(H) with ran � = ran � and ker � = ran � for some

�, � ∈ !(H). Suppose that Γ−1(mul�) is closed where Γ is as in (5.2). Then

Γ
−1�Γ ∈ MP(H) with (Γ−1�Γ)0 ∈ P .

Conversely, if � ∈ lr(H) and there exists Γ ∈ !(H) positive (semi-definite)

with ran Γ = dom� such that Γ−1�Γ ∈ MP(H) with (Γ−1�Γ)0 ∈ P then � is a

semiclosed multivalued projection.
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Proof. Write M = ran � and N = ran �, and suppose that Γ−1(M ∩N) is closed,

or equivalently, by (5.13), ran�� ∩ ran�� is closed. It follows from (5.12) that

Γ
−1(M) = ker�∗

� ⊕ ran�� ∩ ran��, (5.15)

so that Γ−1(M) is closed. On the other hand, M = ran Γ�� and then

Γ
−1(M) = ran�� ⊕ ker�∗

� ∩ ker�∗
�, (5.16)

so ran�� is closed. The analogous to (5.15) and (5.16) hold for Γ
−1(N) so that

ran�� is closed and

Γ
−1(N) = ran�� ⊕ ker�∗

� ∩ ker�∗
�. (5.17)

Then, by Lemma 5.5,

Γ
−1%M,NΓ = %Γ−1 (M) ,Γ−1 (N) = %ker�∗

�
∔̂({0} × Γ

−1(M ∩N)).

To see the last equality, notice that the last two relations have the same domain,

H , and the same multivalued part, Γ−1(M ∩ N); since ker�∗
�

⊆ Γ
−1(M) and

ran�� ⊆ Γ
−1(N) then %ker�∗

�
⊆ %Γ−1 (M) ,Γ−1 (N) .

Finally, write S := Γ
−1(M ∩ N) and %0 = %ker�∗

�
⊖(ker�∗

�
∩ker�∗

�
) . We claim

that

%ker�∗
�
∔̂({0} × S) = %0 ⊕̂ ({0} × S).

Again, both relations have the same domain and multivalued part. Also, �ran %0
⊆

�ker�∗
�
⊆ %ker�∗

�
and ker %0 × {0} = (ran�� × {0})∔̂((ker�∗

�
∩ ker�∗

�
) × {0}) ⊆

%ker�∗
�
∔̂({0} × S). Then the inclusion ⊇ holds, and the identity follows.

Conversely, assume that there exist Γ ∈ !(H) positive (semi-definite) with

ran Γ = dom� such that Γ−1�Γ ∈ MP(H) with %0 := (Γ−1�Γ)0 ∈ P . By hy-

pothesis, S := mul Γ−1�Γ ⊆ ker %0. Then Γ
−1�Γ = �ran %0

+̂ (ker %0 × S) =

%ran %0⊕S,ker %0
. From domΓ

−1�Γ = H , it follows that ran � ⊆ ranΓ = dom�.

Also, ker Γ ⊆ S. In fact, ker Γ = mul Γ−1 ⊆ mul Γ−1�Γ = mul(%0 +̂ ({0}×S)) = S.

Then

� = �ran Γ��ran Γ = ΓΓ
−1�ΓΓ−1

= Γ%ran %0⊕S,ker %0
Γ
−1

= %Γ (ran %0⊕S) ,Γ (ker %0 ) , (5.18)

where we apply Lemma 5.5 to Γ̃ := Γ
−1, as ran Γ−1

= H = dom%ran %0⊕S,ker %0
and

mul Γ−1
= ker Γ ⊆ ker %0. Therefore, � ∈ Mp(H). Furthermore, � is an operator

range because ran � and ker � are operator ranges. �

Corollary 5.10. Let M and N be operator ranges such that M ∩ N is closed in

M +N . Then

%M,N- = - (%0 ⊕̂ ({0} × S)),

where -, %0 ∈ !(M + N) are positive, - is a quasi-affinity, %0 is a projection and

S is a closed subspace.
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Instituto Argentino de Matemática “Alberto P. Calderón”

CONICET

Saavedra 15, Piso 3

(1083) Buenos Aires, Argentina

Facultad de Ingenierı́a, Universidad de Buenos Aires

Paseo Colón 850

(1063) Buenos Aires, Argentina

e-mail: lauraarias@conicet.gov.ar

Maximiliano Contino
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