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CONCENTRATION ESTIMATES FOR ALGEBRAIC

INTERSECTIONS

MIGUEL N. WALSH

Abstract. We present an approach over arbitrary fields to bound the
degree of intersection of families of varieties in terms of how these con-
centrate on algebraic sets of smaller codimension. This provides in par-
ticular a substantial extension of the method of degree-reduction that
enables it to deal efficiently with higher-dimensional problems and also
with high-degree varieties. We obtain sharp bounds that are new even
in the case of lines in R

n and show that besides doubly-ruled varieties,
only a certain rare family of varieties can be relevant for the study of
incidence questions.
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1. Introduction

1.1. Statement of results. The fundamental result of Szemerédi and Trot-
ter [36] gives an optimal bound for the number of incidences that can occur
between a set of points S and a set of lines T in R

2 in terms of the car-
dinality of these sets. It is clear that one cannot obtain a better estimate
over R

3, since placing all the points and lines inside some hyperplane one
can reconstruct any configuration that occurs in R

2. Nevertheless, it was
shown in a landmark paper [17] of Guth and Katz that this is essentially the
only obstruction in that a much stronger bound can be attained as long as
no hypersurface of degree at most 2 contains more than O(|T |1/2) elements
from T . This naturally raises the following question:

Question 1. To what extent is the number of incidences produced by a
family of varieties T determined by how this family concentrates on algebraic
sets of smaller co-dimension?

There has been a significant amount of effort expended in extending the
methods of Guth and Katz and related ideas to understand this question.
The picture has become better understood in K

3, with K an arbitrary field
[11, 17, 19, 25], with progress also made in R

4 [18, 34], but much less has
been achieved for general choices of Kn. While there are interesting results
that have been established in this setting, they tend to require the rather
strong assumption that the family of varieties T being studied only has
O(1) elements lying in a low degree variety of smaller co-dimension [7, 33]
or morally equivalent conditions of transversality [23, 32, 35, 42]. For com-
parison, if for instance T is a set of lines in K

n, one should expect to be able

to place ∼ |T |
m−1
n−1 elements of T in an m-dimensional plane without paying

any price in the bound.
Given a set of l-dimensional varieties T and a variety W , we shall write

TW for those elements of T lying inside of W . Perhaps the most natural way
to measure the concentration of a general family of varieties T is to consider
the quantities

Dm(T ) = max

{

deg(TW )

deg(W )
: dim(W ) = m

}

,

where the maximum goes along all m-dimensional varieties. Notice that a

typical family of l-dimensional varieties in K
n satisfies Dm(T ) ∼ deg(T )

m−l
n−l

for every l ≤ m ≤ n.
In the present article we will introduce a method that produces incidence

estimates with a best-possible dependence on the quantities Dm(T ). We
also show how to use additional information on the elements of T to restrict
the set of varieties W needed in the definition of Dm(T ) while producing
the same bounds. These results allow, for example, the optimal number
of lines to lie inside an m-dimensional plane without affecting the bounds.
In particular, they provide a quantitatively strong answer to Question 1 by
showing that a large number of incidences can always be attributed to T
having a significantly high concentration on a variety of smaller codimension.

Our approach provides an alternative way of producing partitions via
polynomials that does not require topological considerations and therefore
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works over arbitrary fields. Combining it with the usual partitioning tech-
niques, we will also provide a correspondingly stronger bound over Rn. Our
partitioning method also has the unusual feature of working equally well if
we are studying the incidences of a set of varieties with varieties of smaller
dimension that are not necessarily points. This phenomenon is actually
connected to the obstructions in extending point-incidence estimates to ar-
bitrary dimensions, as was already noted in [18], although this connection
is less explicit in the present work.

In this article we will restrict attention to incidences between sets of va-
rieties S and T with dim(S) = dim(T ) − 1. While we expect the approach
to work in arbitrary co-dimension, this assumption simplifies considerably
not only the methods but even the correct statements of the results. In
larger co-dimension, besides the need of some standard assumptions to be
placed in order to make non-trivial results possible, an optimal result must
furthermore keep track not only of the quantities Dm(T ) but also of some
generalisations of these parameters that measure concentration in the form
of degrees of intersection of specified dimension (see [7] for a similar discus-
sion).

Finally, let us remark that unlike most work in incidence geometry, we ob-
tain results that provide an optimal dependence on deg(T ) without placing
a uniform bound on the degrees of the individual elements of T . Arguably,
this makes it natural to view them as a form of quantitative intersection the-
ory. To discuss this, suppose we are trying to estimate the number P2(T ) of
intersection points of a set of irreducible curves T . Bezout’s theorem gives
us a bound of the form deg(T )2. On the other hand, this theorem essentially
gives an equality if we can place all elements of T inside of a plane and more
generally, one would intuitively expect that the elements of T can only have
an abnormally large degree of intersection with each other if they are highly
trapped inside a subvariety. We can therefore reiterate the same question
as before in this context:

Question 2. To what extent can we improve upon Bezout’s inequality by
knowing how the elements of T concentrate inside varieties of smaller co-
dimension?

Given families of varieties S and T with dim(S) ≤ dim(T ), we define the
degree of incidence between S and T as the quantity

I(S, T ) =
∑

s∈S

deg(s)| {t ∈ T : s ⊆ t} |.

This is obviously the usual number of incidences when S is a set of points.
We have the following optimal estimate in terms of the parameters Dm(T ),
which improves on the best known bounds even in the simplest case of lines.

Theorem 1.1. Let S and T be sets of irreducible varieties in K
n with

dim(T ) = dim(S) + 1. Then

I(S, T ) .n

∑

1≤m≤n−dim(S)

deg(S)1/m deg(T )1−1/mDm+dim(S)(T )
1/m.

We say S is k-free with respect to T if any subset of S of size k lies in at
most one element from T . Notice that for arbitrary sets of varieties S and
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T , with dim(T ) = dim(S) + 1, we can always take k = (maxt∈T deg(t))2 +1
by Bezout’s theorem. When K = R the polynomial partitioning techniques
of Guth and Katz (and the refinements given in [40]) can be used to exploit
the topology of Rn when studying point-incidences, strengthening the above
incidence estimate if we know k to be small.

Theorem 1.2. Let T be a family of irreducible algebraic curves in R
n.

Then, for any set of points S ⊆ R
n that is k-free with respect to T , we have

the bound

I(S, T ) .n

∑

0≤m≤n

k1−α(k,m)|S|α(k,m) deg(T )1−α(k,m)Dm(T )
k−1
k

α(k,m),

with α(k,m) = k
m(k−1)+1 for m ≥ 1 and α(k, 0) = 0.

Let us write Pr(T ) for the set of irreducible varieties of dimension dim(T )−
1 that lie on at least r elements of T . The results above imply a correspond-
ing bound for Pr(T ) when r > On(1). We have essentially the same estimate
in the remaining range.

Theorem 1.3. Let T be a family of irreducible varieties in K
n of dimension

d. Then, for every r ≥ 2, every k-free subset S ⊆ Pr(T ) satisfies

deg(S) .n
deg(T )

r



k1/2 +
∑

1≤m≤n−d

(Dm+d(T )

r

)1/m


 .

It is important to remark that the ideas of this article and most of those
cited above actually have their origin in Dvir’s solution of the Kakeya prob-
lem over finite fields [8], where he introduced the polynomial method in
this context (see [13, 37, 39]). Dvir’s result can be deduced from Theorem
1.1, which allows us to also view it as part of this broader phenomenon of
concentration estimates.

Our results are consistent with conjectures due to several authors [14, 33,
43]. Essentially, they predict that under the additional assumption that all
elements of T belong to some specific families, then one can impose some
corresponding restrictions on the kind of varieties W used in the definition
of Dm(T ) and obtain the same results. A general result in this direction is
discussed in the next part of this introduction. On the contrary, the results
we have stated thus far do not place any assumptions on the elements of T
and constitute the best-possible estimates in this setting, as can be seen via
constructions similar to those of [40, §8.3].

It may be important to remark that even in the simplest case of lines in
R
n this goes beyond what was achievable by previous methods. For exam-

ple, suppose L is a set of lines with concentration values Dm(L) coinciding

with those that would arise if we chose |L|1−m−1
n−1

−c m-planes generically,

with each of them containing |L|
m−1
n−1

+c lines that are not abnormally con-
centrated in subvarieties of these m-planes. In this case, both the current

and previous approaches provide the expected bound P2(L) . |L| n
n−1 if

c ≤ 0, which is when the values Dm(L) coincide with those of a generic set
of lines. On the other hand, if c > 0, previous methods, which are based
on standard degree-reduction, are only capable of achieving a bound of the

4



form P2(L) .n |L| n
n−1

+c n−2
n−m while Theorem 1.3 returns the expected bound

P2(L) .n |L| n
n−1

+ c
m−1 . Notice that the bounds only coincide when m = 2,

while the latter is substantially stronger as soon as m ≥ 3. The compara-
tive advantage of Theorem 1.3 increases further if we allow T to consist of
elements of large degree.

The main difference is that degree-reduction is only able to efficiently con-
struct a hypersurface containing the given set T , while the present method
allows one to find a variety of the appropriate dimension where the set T
concentrates. This is particularly important if one wishes to carry a finer
analysis of the relevant varieties, as done in Theorem 1.4 below. In fact, the
main contribution of this article can be seen as a substantial extension of the
method of degree-reduction to make it able to deal with higher-dimensional
problems and also with high-degree varieties.

Before ending this part of the introduction, it may be worthwhile to point
out that the above estimates make rigorous the idea that a family of sub-
varieties T of an ambient variety V should find it harder to intersect as the
degree of V gets larger, as was already noted in [40].

1.2. Restricted families. It is natural to ask the following further ques-
tion.

Question 3. If all the elements of T lie on a particular family of varieties,
can we obtain the same results with the definition of Dm(T ) now restricted
to varieties W of a corresponding special type?

The answers known in the literature to this question proceed by showing
that if many elements from a fixed type of varieties are incident to a point
of a variety W in which they are contained, this usually forces this point
to have some special property with respect to W that can be verified using
polynomials of controlled degree. This information can in turn be used to
restrict the set of varieties W relevant for the study of T . The methods of
this paper show that a similar phenomenon holds in general.

To formalise the idea just described we need to introduce some notation
and definitions. Some further discussion is provided after stating Theorem
1.4 below. Given an irreducible variety W ⊆ K

n, we write δ(W ) for small-
est δ for which there exist polynomials g1, . . . , gr of degree at most δ such
that W is an irreducible component of their zero set Z(g1, . . . , gr). Equiva-
lently, δ(V ) is the smallest degree needed to set-theoretically define V over a
Zariski-dense subset. We say W is entangled to another irreducible variety
W ′ if a polynomial of degree .n δ(W ) + δ(W ′) vanishes identically on W if
and only if it does on W ′. It is possible to see that a variety W ⊆ K

n can
only be entangled to On(1) other irreducible varieties W ′ and that they all
satisfy δ(W ) ∼n δ(W ′), deg(W ) ∼n deg(W ′) and dim(W ) = dim(W ′).

As previously remarked, if a point of W is incident to many subvarieties
of W of a specific kind, this usually forces this point to have some special
property with respect to W . Because of this, given some property p an
(l − 1)-dimensional irreducible variety may have with respect to a given
variety (e.g. being a singular point), we say that a family of l-dimensional
varieties T ⊆ K

n is a p-set if for every irreducible variety W with dim(T ) <
5



dim(W ) < n, there is some r = On(1) such that every element of Pr(TW )
has property p with respect to W .

Properties relevant in incidence geometry involve the behaviour on tan-
gent spaces and this makes them verifiable using polynomials built out of
any set of polynomials that can be used to define this tangent space. Since
for a generic choice of W ⊆ K

n we can find polynomials of degree at most
δ(W ) defining the tangent space on a Zariski-dense subset of W , most nat-
ural properties for incidences will be verifiable using polynomials of degree
On(δ(W )). We therefore say p is a δ-property of an irreducible variety W if
the set of (l− 1)-dimensional irreducible subvarieties of W having property
p with respect to W lie in the zero set of a polynomial of degree On(δ(W ))
that does not vanish identically on W . Varieties for which p is not a δ-
property will play a special role. We write Cp for those irreducible varieties
that are entangled to an irreducible variety for which p is not a δ-property.

Notice that the usual properties that are relevant in incidence geometry,
like a point of a variety being singular, flecnodal, double-flecnodal, flexy,
etc., can be seen to be δ-properties of hypersurfaces in K

3, except precisely
for those hypersurfaces that turn out to be relevant for the study of the
corresponding incidence problems (e.g. doubly ruled surfaces). With this in
mind, let us write Dp

m(T ) for the expression Dm(T ), but where the maximum
is now restricted to varieties W in Cp.

We have the following result, showing that in the general situation just
described, we can indeed guarantee that it is only the rather restricted set
of varieties Cp that can be relevant for the study of the incidences of T .

Theorem 1.4. In both Theorem 1.1 and Theorem 1.2, if T is a p-set, then
we can replace Dm(T ) by Dp

m(T ).

The intention of this formulation is mostly to be indicative of what kind
of results are easy to attain using our methods. It is possible that further
progress can be achieved by mixing our arguments with certain tools with
which they are compatible, like truncated partitionings. Nevertheless, once
Theorem 1.4 is combined with corresponding concentration estimates or
classification of special surfaces, it already allows one to unify a large number
of results in the literature, including the Szemerédi-Trotter theorem [36], the
Pach-Sharir theorem [31], Dvir’s theorem [8], the joints problem [16], the
Guth-Katz theorem [17], Köllar’s bound [25], Bourgain’s conjecture over
arbitrary fields as established by Ellenberg and Hablicsek [11], the bounds
of Dvir and Gopi [9] and Hablicsek and Scherr [21], as well as the result of
Guth and Zahl on constructible families [19]. As it was mentioned before, it
should be possible to extend the results to the whole range dim(S) ≤ dim(T ),
thus also recovering a result of the author [40] subsuming further previous
work [4, 3, 6, 10, 12, 22, 28, 41].

We finish this part of the introduction with some last comments on Theo-
rem 1.4. Let us write JCn for the set of irreducible varieties W ⊆ C

n having
no choice of x ∈ W and g1, . . . , gn−dim(W ) ∈ I(W ) of degree .n δ(W ) such
that the corresponding Jacobian matrix Jac(g1, . . . , gn−dim(W ))(x) has max-
imal rank. Of course, the elements of JCn are rather rare if they exist. On
the other hand, for a property p, write C∗

p for those irreducible varieties W
6



for which a generic (l−1)-dimensional irreducible subvariety of W has prop-
erty p with respect to W . Notice that, given a set of varieties T in some
class, it is not hard to show that one can take p to be a (doubly-)flecnodal
property with respect to which T is a p-set and which forces the elements
of C∗

p to be generically doubly ruled by elements in the class of T (similarly
as it is done in [19]). Therefore, the ideal classification one could hope for a
given class of incidence problems in R

n (e.g. incidences of points and lines)
is that we only care about the concentration of T on elements of C∗

p (e.g.
[14, Conjecture 4.1]). What Theorem 1.4 essentially shows is that we only
care about the concentration of T on elements of C∗

p ∪ JCn . In particular,
for any class of problems the exceptions always lie on the fixed family JCn .

Theorem 1.4 also shows that the larger the degree of a variety W ∈
C∗
p ∪ JCn is, the larger deg(TW ) needs to be for W to be significant in the

incidence problem. It would of course be interesting to know examples of
varieties W in JCn but unfortunately the author knows none. The following
is a very simple question in this direction: does there exist an absolute
constant C depending only on n such that every non-ruled irreducible two-
dimensional variety V in C

n contains at most Cδ(V ) deg(V ) lines?

1.3. Overview of the method. We now provide an overview of the method.
For concreteness, let us first suppose we are trying to estimate the number
of 2-rich points produced by a set of lines T in K

3 in the form of Theorem
1.3. For a generic choice of T , these lines should not exhibit any abnormal
concentration inside of a surface of K3 and therefore we expect a bound of
the form deg(P2(T )) ≤ K|T |3/2 with K = O(1) in this case.

Let us assume for the moment that every set of lines behaves similarly to
a generic choice of lines and show a way to establish this estimate if that
was the case. If |T | = O(1) the bound is obvious, so let us proceed by
induction on the size of T . To do this, we would like to find a polynomial
f that allows us to partition T in an appropriate way. Since T is generic,
this is easy. Indeed, if we pick a subset T1 ⊆ T of size τ |T | for some small

τ > 0, we can find a polynomial f of degree . τ1/2|T |1/2 vanishing on
T1. If τ is sufficiently small, we see that this polynomial cannot vanish on
all of T as this would be an abnormally small polynomial vanishing on T
and thus contradict our assumption that T behaves like a generic choice of
lines. In fact, in a generic situation we can guarantee that the elements of
T1 are the only ones of T inside of Z(f), so let us assume this for the sake
of discussion. Let us now write T2 = T \ T1. We see that every element
of P2(T ) \ (P2(T1) ∪ P2(T2)) must lie inside of an element of T1, therefore
inside of Z(f), and also inside of an element of T2. But an element of T2 can

only intersect Z(f) in deg(f) . τ1/2|T |1/2 points. We therefore conclude by
induction that

P2(T ) ≤ P2(T1) + P2(T2) +O(τ1/2|T2||T |1/2)
≤ K|T1|3/2 +K|T2|3/2 +Oτ (|T |3/2)
≤ |T |3/2(Kτ3/2 +K(1− τ)3/2 +Oτ (1))

≤ K|T |3/2,

(1.1)

as long as τ ∼ 1 and K is chosen sufficiently large with respect to τ .
7



This approach is appealing because it suggests a way of using a form of
polynomial partitionings that does not require us to exploit the topology of
R and therefore is viable over arbitrary fields. Furthermore, this approach
also overcomes some obstructions that arise when trying to extend the real
partitioning techniques to arbitrary dimensions. Of course, given that the
heuristic we have given uses properties of generic sets that do not hold in
general, it is not clear at all that something like this strategy can be carried
out in practice.

Given a finite set of varieties T and a polynomial f , we shall write Tf

for those elements of T contained inside of Z(f). We will show that the
approach we have described can be turned into a rigorous scheme, allowing
us to control the degree of intersection between families of varieties by a
systematic use of the following very simple observation.

Lemma 1.5. Let K be an algebraically closed field. Let f ∈ K[x1, . . . , xn]
and let S, T be finite sets of irreducible varieties in K

n with dim(T ) =
dim(S) + 1. Then

I(S, T ) ≤ I(Sf , Tf ) + I(S \ Sf , T \ Tf ) + deg(T \ Tf ) deg(f). (1.2)

Proof. Since we clearly have I(S \ Sf , Tf ) = 0, it suffices to show that
I(Sf , T \ Tf ) ≤ deg(T \ Tf ) deg(f), which is an obvious consequence of
Bezout’s theorem (Lemma 2.1 below). �

That not every family of algebraic varieties is generic is already accounted
for in the statement of Theorem 1.1, which gives an optimal dependence
on how the family concentrates on algebraic sets of smaller co-dimension.
However, we cannot use Lemma 1.5 to establish Theorem 1.1 without some
enhanced control on the genericity of T1 or T2 via the parameters Dm(Ti).
Otherwise, evaluating the first two terms of (1.2) by induction and applying
Hölder’s inequality, we already obtain the bound for I(S, T ) we wish to
attain while we still have not dealt with the third term.

To overcome this, we will use an adequate iteration of Lemma 1.5 to
construct a finite partition of T such that, for some component Tr ⊆ T of
this partition, we can obtain a stronger incidence estimate that allows us
to absorb all the additional terms that arise from the use of Lemma 1.5.
Starting with a family of varieties T that is highly concentrated inside a
certain irreducible variety V of dimension d, we accomplish the above task
by showing that we can always use Lemma 1.5 to partition T in a controlled
manner such that an element Tr of this partition has size comparable to T
and satisfies the following dichotomy: either Tr is less-concentrated than T
in the sense that Dm(Tr) < Dm(T )/2 for an adequate value of m ≥ d, or in
fact Tr is highly concentrated on an irreducible variety W ⊆ V of dimension
d − 1. This is established by exploiting the Siegel-type lemmas proved by
the author in [40].

Even then, this will only work if at each application of Lemma 1.5 we are
using a partitioning polynomial f of adequately small degree. To this end,
our methods crucially ensure that in the setting discussed in the previous
paragraph, if D is the smallest degree of a polynomial vanishing on all
elements of T without vanishing identically on V , then the partitioning
polynomials f can always be taken to have degree .n D.

8



This preservation of the degree makes the method particularly flexible,
since it allows us to incorporate any a priori bound we might have on the de-
gree of a subvariety containing T . In particular, since the usual partitioning
techniques over R

n (and the generalisations to arbitrary varieties V ⊆ R
n

obtained in [40]) allow us to estimate all incidences occurring outside of a
subvariety of controlled degree, this information can simply be used as an
input in the above method to produce stronger bounds. This leads to The-
orem 1.2. Similarly, the subvariety arising from the implicit polynomial in
the definition of a p-set can be used to obtain Theorem 1.4. The approach
would be equally well-suited to any other way we have of bounding the rel-
ative degree, including truncated partitionings with low or medium degree
polynomials.

1.4. Organisation of the paper. The rest of this article is organised as
follows. In Section 2 we review some algebraic preliminaries as well as certain
results of [40] that we shall need. In Section 3 we introduce and discuss the
main definitions used in the proof and show how, given a set of varieties
T , we can use a polynomial of small degree to pass to a subset of T with
better concentration properties. In Section 4 we develop the main tools
needed to handle the partitioning procedure we shall use. Finally, the proof
of Theorem 1.1 is carried out in Section 5, while in Section 6 we show how
to modify the argument to establish Theorem 1.2 and Theorem 1.4.

Acknowledgements. Part of this work was carried while the author was a
Clay Research Fellow and a Fellow of Merton College at the University of
Oxford.

2. Preliminaries

In this section we review some of the notation (§2.1) and algebraic prelim-
inaries (§2.2) we shall need. In §2.3 we state some results from [40] that will
be used in the rest of the article. Finally, §2.4 contains a summary of the
relationship between some of the parameters used in the proof of Theorem
1.1.

2.1. Notation. Given parameters a1, . . . , ar we shall use the asymptotic
notations X .a1,...,ar Y or X = Oa1,...,ar(Y ) to mean that there exists some
constant C depending only on a1, . . . , ar such that X ≤ CY . We write
X ∼a1,...,ar Y if X .a1,...,ar Y .a1,...,ar X. If A = {a1, . . . , ar} is a set of
parameters, we will abbreviate X .a1,...,ar Y as X .A Y . We shall write
|S| for the cardinality of a set S.

Given a field K and polynomials f1, . . . , fr ∈ K[x1, . . . , xn] we will write

Z(f1, . . . , fr) = {x ∈ K
n : f1(x) = · · · = fr(x) = 0} ,

for the corresponding zero set. For an algebraic closed field K and an ir-
reducible algebraic variety V ⊆ K

n we write deg(V ) for the degree of its
projective closure and more generally, for an algebraic set V with irreducible
components V1, . . . , Vs we write deg(V ) =

∑s
i=1 deg(Vi). By an algebraic set

of dimension d we mean an algebraic set all of whose irreducible components
have dimension d. In particular, if we write dim(T ) = d we mean that every
irreducible component of T has dimension d.

9



Given a set of varieties T and a polynomial f , we write Tf for those
elements of T contained inside of Z(f). Similarly, if W is an algebraic set,
we write TW for those elements of T that lie inside of W .

2.2. Algebraic preliminaries. We will be using the following form of Be-
zout’s inequality [20, Theorem 7.7].

Lemma 2.1 (Bezout’s inequality). Let K be an algebraically closed field. Let
W ⊆ K

n be an irreducible variety and f1, . . . , fs ∈ K[x1, . . . , xn] polynomials.
Write Z1, . . . , Zr for the irreducible components of Z(f1, . . . , fs)∩W . Then

r
∑

i=1

deg(Zi) ≤ deg(W )

s
∏

j=1

deg(fj).

As in [40], given an irreducible variety V ⊆ K
n over an algebraically closed

field K, we will need to consider the following quantities.

Definition 2.2 (Partial degree). For an irreducible algebraic variety V ⊆
K

n and every 1 ≤ i ≤ n−dim(V ) we let δi(V ) stand for the minimal integer
δ for which we can find a finite set of polynomials g1, . . . , gt ∈ K[x1, . . . , xn]
of degree at most δ such that V ⊆ Z(g1, . . . , gt) and the highest dimension of
an irreducible component of Z(g1, . . . , gt) containing V is equal to n− i. We
sometimes abbreviate δn−dim(V )(V ) as δ(V ) and call this the partial degree
of V . By convention we also write δ0(V ) = 1 and δi(V ) = ∞ for every
i > n− dim(V ).

It is immediate to verify that these quantities satisfy the following simple
relation.

Lemma 2.3. For every variety V we have δi(V ) ≥ δi−1(V ) for every i.

If V is not irreducible we will use the following variant of the above
definition.

Definition 2.4. For an algebraic set V ⊆ K
n having all its irreducible

components of the same dimension we write δ(V ) for the smallest integer
δ for which we can find polynomials g1, . . . , gt of degree at most δ such
that every irreducible component of V is also an irreducible component of
Z(g1, . . . , gt).

Given an irreducible algebraic variety V ⊆ K
n of dimension d and any

1 ≤ i ≤ n− d, write

∆i(V ) = max

{

deg(V )

δi+1(V ) · · · δn−d(V )
, 1

}

.

Notice that we have

∆i+1(V ) ≤ δi+1(V )∆i(V ), (2.1)

with equality holding whenever ∆i(V ) > 1. In fact, we have the following
estimate.

Lemma 2.5. For any irreducible variety V ⊆ K
n of dimension d and any

1 ≤ i ≤ n− d, it is

∆i(V ) ∼n

i
∏

j=1

δj(V ).

10



Proof. This is a consequence of [40, Theorem 5.5]. �

2.3. Estimates on relative degrees. We will now state some results from
[40] that will be needed during our proofs. We refer to that article for further
discussion of these estimates.

For an irreducible algebraic variety V ⊆ K
n, we say a non-negative integer

i is admissible with respect to V if δi+1(V ) > 2iδi(V ). We will consider
intervals of the form

Rl
s,τ (V ) = [τδs(V )n−(s+l)∆s(V ), τδs+1(V )n−(s+l)∆s(V )],

with τ > 0 a real number, integers 0 ≤ l < n− s and V ⊆ K
n an irreducible

algebraic variety.
The following observation follows immediately from the definition of ∆i

and the fact that given a positive integer s, if t is the smallest admissible
integer with s ≤ t, then δs(V ) &n δt(V ).

Lemma 2.6. Let V ⊆ K
n be an irreducible algebraic variety of dimension

d. For any integer l < d and 0 < ε < 1, we can find ε .n τ1, . . . , τn−d ≤ ε
such that R≥0 is covered by the sets Rl

s,τs(V ) with s admissible.

Given algebraic sets T and V of dimension l and d respectively, the fol-
lowing result [40, Theorem 4.6] gives an optimal bound for the degree of a
polynomial vanishing on T without vanishing identically on V . Its proof is
based on estimates on ideals originating in [5].

Theorem 2.7. Let K be an algebraically closed field. Let 0 ≤ l < d ≤ n
be integers and τl > 0 a sufficiently small constant with respect to n. Let T
be a finite set of l-dimensional irreducible algebraic varieties in K

n and V
a d-dimensional irreducible algebraic variety in K

n. Let 0 ≤ s ≤ n − d be
an admissible integer with respect to V with deg(T ) ∈ Rl

s,τl
(V ). Then, there

exists some polynomial P ∈ K[x1, . . . , xn] of degree at most

.n,τl

(

deg(T )

∆s(V )

) 1
n−(s+l)

, (2.2)

vanishing at all elements of T without vanishing identically on V .

We will use the following simple observation.

Lemma 2.8. Let K be an algebraically closed field. Let V1, . . . , Vr be subsets
of Kn and let S ⊆ ⋂r

i=1 Vi. Let f1, . . . , fr be polynomials such that they all
vanish on S but each fi does not vanish identicaly on Vi. Then, there is
some K-linear combination f = c1f1 + . . .+ crfr such that f vanishes on S
but does not vanish identically on any Vi.

The results we have stated so far imply the following estimate, which is
phrased in a way that is particularly suitable to be applied throughout the
paper.

Lemma 2.9. Let K be an algebraically closed field. Let 0 ≤ l < m ≤ n be
integers and let 0 < ǫ < 1 and A ≥ 1 be some given parameters. Let r =
On(1) and let W = W1∪ . . .∪Wr be an algebraic set in K

n with each Wi an
irreducible variety of dimension m with δq(Wi) ∼n δq(Wj) for every choice
of 1 ≤ i ≤ j ≤ r, 1 ≤ q ≤ n − m. Let X be an algebraic set of dimension

11



l with deg(X) ≤ ǫ deg(W )(Aδ(W ))m−l. Then we can find a polynomial of

degree ≤ Cǫ1/(n−l)Aδ(W ) that vanishes on X without vanishing on any Wi,
1 ≤ i ≤ r, where C .n 1 is an absolute constant independent of ǫ and A.

Proof. Since δq(Wi) ∼n δq(Wj) for every 1 ≤ i ≤ j ≤ r and 1 ≤ q ≤ n−m,
we know by Theorem 2.7 (and Lemma 2.6) that there exists somem ≤ s ≤ n
such that for every Wi, 1 ≤ i ≤ r, we can find a polynomial fi vanishing on
X without vanishing on Wi satisfying

deg(fi) .n

(

deg(X)

∆n−s(Wi)

)1/(s−l)

.

The result then follows from Lemma 2.8, our bound on deg(X) and the fact
that by Lemma 2.3 and Lemma 2.5 it is

∆n−s(Wi)δ(W )s−m &n deg(W ).

�

The estimate above gives a good bound for the smallest degree of a poly-
nomial vanishing on X without vanishing on a given algebraic set W . The
precise value of the smallest such degree can of course be smaller than this
upper bound in certain situations and will play an important role throughout
the paper. This motivates the following definition.

Definition 2.10 (Relative degree). Given algebraic sets X,W of dimension
l and m respectively, with l < m, we define the relative degree degR(X,W )
of X with respect to W to be the smallest degree of a polynomial vanishing
on X without vanishing on any irreducible component of W .

So, for example, if X and W are algebraic sets satisfying the hypothesis
of the statement of Lemma 2.9, we have

degR(X,W ) .n ǫ1/(n−l)Aδ(W ).

Let us finish this subsection recalling two other results from [40] that
will be needed later. Given an irreducible algebraic variety V ⊆ C

n and
an integer M , we write iV (M) for the smallest admissible i such that
Mn−i∆i(V ) ∈ R0

i,c(V ), where c &n 1 is a sufficiently small constant. Clearly,
we have

δiV (M)(V ) .n M .n δiV (M)+1(V ). (2.3)

If V is an irreducible complex variety, we write V (R) for its real points.
We have the following result [40, Theorem 3.1].

Theorem 2.11 (Polynomial partitioning for varieties). Let V ⊆ C
n be an

irreducible algebraic variety of dimension d and S a finite set of points inside
of V (R). Then, given any integer M ≥ 1, we can find some polynomial
g ∈ R[x1, . . . , xn]\I(V ) of degree On(M) such that each connected component
of Rn \ Z(P ) contains

.n
|S|

Mn−iV (M)∆iV (M)(V )

elements of S.
12



Finally, we have the following estimate [40, Theorem 1.5] in the spirit of
results of Milnor-Thom [29, 30, 38] and Barone-Basu [1, 2].

Theorem 2.12. Let V ⊆ C
n be an irreducible algebraic variety of dimen-

sion d and P ∈ R[x1, . . . , xn]. Then V (R) intersects .n deg(V ) deg(P )d

connected components of Rn \ Z(P ).

We remark that both Theorem 2.11 and Theorem 2.12 were originally
conjectured in [3].

2.4. Relation between the parameters. To facilitate the reading, we
now briefly summarise the relationships between some of the parameters
involved in the proof of Theorem 1.1. When working over K

n with a set T
of varieties of dimension l, for every l ≤ k < n and 0 ≤ i ≤ 8, we will let

b
(k)
i ∼n 1 be appropriately chosen constants. We will write B(n) = {n} and
more generally

B(h) =
{

b
(k)
i : 0 ≤ i ≤ 8 , h ≤ k < n

}

∪ {n} ,
for every l ≤ h < n. These parameters will be obtained recursively, with

the constants b
(h)
i , 0 ≤ i ≤ 8, depending solely on B(h+1), so in particular

they will satisfy b
(h)
i ∼B(h+1) 1 ∼n 1. The parameter b

(h)
0 in particular will

be chosen to be sufficiently small with respect to the other parameters in
B(h).

We will also consider parameters a
(h)
k+1 for every choice of l ≤ h ≤ k < n.

They will be such that a
(h)
k+1 < a

(h′)
k′+1 if and only if (k, h) > (k′, h′) under

lexicographical order. They will be chosen to be sufficiently small with

respect to each other under this ordering and furthermore, a
(l)
l+1 will be

sufficiently small with respect to B(l).
Writing K for the implicit constant in Theorem 1.1, we have that K will

be chosen sufficiently large with respect to all the parameters above.

3. Levels of reduction

This section is organised as follows. In §3.1 we introduce several defi-
nitions that will play an important role during the rest of the article and
discuss their motivation. In §3.2 we show how given a finite family T of
algebraic varieties, upon discarding some elements from T lying inside a
polynomial of small degree we can obtain a subset with significantly better
concentration properties than T . Finally, §3.3 contains some brief observa-
tions on certain relative degrees we shall need.

3.1. Reductions and good partitions. Let us being this section formal-
ising the kind of polynomial partitions we are interested in, following the
strategy outlined in §1.3.
Definition 3.1 (Good partitions). Let T be a set of l-dimensional varieties
in K

n and let W be an m-dimensional algebraic set with T ⊆ W . We say T
admits a τ -good partition over W if there exists a polynomial f of degree
at most degR(T,W ) such that

τ deg(T ) < deg(Tf ) < deg(T ).
13



We now introduce another definition that will play an important role in
the proof of Theorem 1.1. This definition is given in terms of parameters
that will be obtained recursively during the rest of the arguments and will
satisfy the relationships discussed in §2.4. Since it is a rather technical
definition, after stating it we provide an informal description of the concept
we are trying to capture.

Definition 3.2 (Reductions). Let T be a set of l-dimensional varieties in
K

n. By convention, we say every such T reduces to level n and we write

W
(n)
1 = K

n. In general, given l ≤ h < n, we say T reduces to level h if there
exists a sequence of polynomials P1, . . . , Pn−h such that for every h ≤ k < n
we have that

Z(P1, . . . , Pn−k) = W
(k)
1 ∪ . . . ∪W (k)

rk
∪ Y (k) := W (k) ∪ Y (k),

whereW
(k)
i , 1 ≤ i ≤ rk, are irreducible varieties of dimension k withW (k) :=

W
(k)
1 ∪ . . .∪W

(k)
rk , T ⊆ W (k), W (k) ⊆ W (k+1), T

W
(k)
i

6= ∅ for every 1 ≤ i ≤ rk

and Y (k) is an algebraic set that does not contain any element from T .
Furthermore, we ask that W (k) is such that every k-dimensional algebraic
set W containing T satisfies

deg(W ) ≥ b
(h)
0 deg(W (k)). (3.1)

and that there is no a
(h)
k+1-good partition of T over W (k+1). Finally, we

require that for every choice of 1 ≤ i, i′ ≤ rk, 1 ≤ j ≤ rk+1, h ≤ k < n, we
have the estimates

rk ≤ b
(h)
1 ,

deg(W
(k)
i ) ≥ b

(h)
2 deg(W

(k+1)
j ) deg(Pn−k),

deg(Pn−k) ≥ b
(h)
3 deg(Pn−k−1),

b
(h)
4 deg(Pn−k) ≤ δ(W

(k)
i ) ≤ b

(h)
5 deg(Pn−k),

deg(W
(k)
i ) ≤ b

(h)
6 deg(W

(k)
i′ ),

deg(T ) ≥ b
(h)
7 deg(W

(k)
i ) deg(Pn−k)

k−l.

(3.2)

Essentially, we are saying T reduces to level h if it is contained inside
an irreducible variety W (h) of dimension h. Since, given l < h, every finite
family of l-dimensional varieties T is contained in an h-dimensional variety
W (h) of sufficiently high-degree, we need to ensure for this definition to be
relevant that the degree of W (h) is small compared with T , which is why we
impose the last condition in (3.2).

The reason why instead of actually asking W (h) to be irreducible we need
to allow it to be the union of (a bounded number of) irreducible varieties
is more technical. Our methods are solely based on dimension counting
arguments and degree considerations, yet there may exist varieties that are
essentially undistinguishable from this point of view. This can be seen to be
related to the simple fact that not every variety is a complete intersection.
Nevertheless, the fact itself that they are undistinguishable guarantees that
they essentially behave like a single irreducible variety and therefore they

14



do not significantly affect our methods. In particular, there can only be a
uniformly bounded number of them for each choice of one of its members.

The reader might as well think of all the W
(h)
i as a single irreducible variety

W (h) on a first reading.
We also require that there is no good partition of T over W (k+1) for any

h ≤ k < n. Morally, this means that once we are studying T as a subset of
W (k+1), the relevance of W (k) for the study of T is unavoidable since we will
have no way of carrying the argument given in §1.3 without passing to this
subvariety. A related conclusion will be established rigorously in Lemma 3.7
below.

The remaining conditions are imposed to guarantee that each W (k) is
essentially a minimal choice among k-dimensional irreducible varieties (con-

dition (3.1)) and that the polynomials Pi we are using to define W (h) satisfy
similar minimality conditions with respect to this variety.

If T satisfies the definition of reduction at level h with slightly better pa-
rameters, then one can see that any large subset of T will also reduce to level
h. Clearly, this robustness is lost if we iterate this procedure indefinitely.
However, we will only need to pass to a large subset once during the proof
and this motivates the following definition.

Definition 3.3 (Strong reduction). Let T be a set of l-dimensional varieties
in K

n. By convention, we say every such T reduces strongly to level n and

we write W
(n)
1 = K

n. Given l ≤ h < n, we say T reduces strongly to
level h if Definition 3.2 holds with the stronger requirements that for every
h ≤ k < n, in the notation of that definition,

deg(W ) ≥ b
(h)
8 deg(W (k)), (3.3)

for every k-dimensional algebraic set W containing T , that there is no

a
(h)
k+1/2-good partition of T over W (k+1) and that

deg(T ) ≥ 2b
(h)
7 deg(W

(k)
i ) deg(Pn−k)

k−l.

Notice we have the following estimate, which we shall use later to apply
Lemma 2.9.

Lemma 3.4. Let the notation be as in Definition 3.2. Then δq(W
(k)
i ) ∼B(h)

deg(Pq) for every 1 ≤ i ≤ rk and 1 ≤ q ≤ n− k.

Proof. It is clear by definition and (3.2) that δq(W
(k)
i ) .B(h) deg(Pq). As-

sume for contradiction there is some q with δq(W
(k)
i ) ≤ ǫ deg(Pq) for some

sufficiently small ǫ &B(h) 1. By definition of the quantities δj(W
(k)
i ) it follows

from Lemma 2.8 and Bezout’s theorem that

deg(W
(k)
i ) ≤

n−k
∏

j=1

δj(W
(k)
i ) .B(h) ǫ

n−k
∏

j=1

deg(Pj).

If ǫ is sufficiently small with respect to B(h) this contradicts that, by (3.2)

and Bezout’s theorem, it is deg(W
(k)
i ) ∼B(h)

∏n−k
j=1 deg(Pj). �

The procedure described in §1.3 suggests we will be using induction on the
level of reduction, with a stronger bound the smallest the level of reduction
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of T is. Indeed, we will actually prove the following equivalent form of
Theorem 1.1.

Theorem 3.5. Let K be an algebraically closed field. Given 1 ≤ l ≤ n,
there exist Kl,1 < Kl,2 < . . . < Kl,n−dim(S) .n 1 such that if T is a set
of l-dimensional irreducible varieties in K

n that reduces strongly to level h,
with l ≤ h ≤ n, then for every set of varieties S with dim(S) + 1 = dim(T ),
we have

I(S, T ) ≤
∑

1≤m≤n−dim(S)

K
(h)
l,m deg(S)1/m deg(T )1−1/mDm+dim(S)(T )

1/m,

with K
(h)
l,m = Kl,h−dim(S) if m ≥ h− dim(S) and K

(h)
l,m = Kl,m otherwise.

The case l = n of this result is trivial. Notice that by definition every
finite family T reduces strongly to some level. Also, if T reduces to level l,
this necessarily means that it has On(1) elements and therefore the number
of incidences is clearly bounded by On(deg(S)). We may therefore proceed
by induction both on the size of T and on its level. Precisely, we pick a set
T that reduces strongly to level h > l and assume the result holds for all
proper subsets of T and that we already know the result holds if T reduces
strongly to level h− 1.

Remark. For |T | = On(1) we could alternatively have observed that if S is
k-free with respect to T then by Bezout’s inequality

I(S, T ) ≤ deg(S)+On

(

min

{

k,max
t∈T

deg(t)2
})

≤ deg(S)+On(k
1/2 deg(T )),

and use this instead of the bound On(deg(S)). An easy inspection of the ar-
guments below shows that that this would then lead to a version of Theorem
3.5, and therefore Theorem 1.1, that replaces the first term of the bound
with this expression. This, in turn, can be used to deduce Theorem 1.3.

3.2. Diminishing the concentration. From now on we fix a choice of T
reducing strongly to level h. We will use the notations of Definition 3.2 and
Definition 3.3 to refer to the corresponding objects associated to our fixed
choice of T and also abbreviate Dk(T ) as Dk. We will simply say T admits
a good partition at level k+1 to mean that it admits a good partition over
W (k+1).

Our goal in this section is to prune T via a polynomial f of adequate
degree in such a way that T \ Tf is a large subset of T for which we have a
good amount of control on the genericity of its subsets.

We begin with the following simple observation.

Lemma 3.6. For every h ≤ k < n, we have

deg(W (k))

deg(W (k+1))
.B(h) degR(T,W

(k+1)).

Proof. This follows from (3.1), the definition of degR(T,W
(k+1)) and Be-

zout’s theorem. �
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To achieve our goal, we will need to study the quantities

D
(A,B)
k (T ) = max

{

deg(TW )

deg(W )
: dim(W ) = k, A < deg(W ) < B

}

,

for certain choices of real numbers 0 < A < B and where the maximum goes
along all k-dimensional algebraic sets whose degree lies in the range (A,B).

For every h ≤ k ≤ n, we will consider the parameters

R
(k)
1 = ε1 deg(W

(k))

R
(k)
2 = ε2 deg(W

(k))
(3.4)

for some ε1, ε2 ∼B(h) 1 to be specified with ε2 > 2ε1 and study in particular

the corresponding quantity D
(R

(k)
1 ,R

(k)
2 )

k (T ).
The following lemma shows that a k-dimensional variety of degree much

smaller than deg(W (k)) cannot contain too many elements from T .

Lemma 3.7. Let h ≤ k < n. If W is a k-dimensional algebraic set with

deg(W ) < R
(k)
2 and ε2 > 0 is chosen sufficiently small with respect to B(h),

then deg(TW ) < a
(h)
k+1 deg(T ).

Proof. By Bezout’s theorem, we have that

deg(W ) < ε2 deg(W
(k))

≤ ε2 deg(W
(k+1)) deg(Pn−k).

(3.5)

It then follows from Lemma 2.9 and the fact that

deg(Pn−k) &B(h) deg(Pn−k−1) &B(h) δ(W
(k+1)
i ),

for every 1 ≤ i ≤ rk+1, that we can find a polynomial f with

deg(f) .B(h) ε
1/n
2 deg(Pn−k) .B(h) ε

1/n
2

deg(W (k))

deg(W (k+1))
, (3.6)

vanishing onW and such that Z(f)∩W (k+1) is k-dimensional and has degree
at most

.B(h) ε
1/n
2 deg(W (k)).

Notice that in (3.6) we are using one of the estimates from (3.2). If we

choose ε2 > 0 sufficiently small with respect to B(h) we deduce from (3.1)
that f cannot vanish at all of T . But notice also that by (3.6) and Lemma

3.6 the degree of f can be made strictly less than degR(T,W
(k+1)), again

provided ε2 > 0 is chosen sufficiently small with respect to B(h). The bound
on TW then follows from the fact that T reduces to level h and therefore

does not admit an a
(h)
k+1-good partition at level k + 1. �

We can now formalise the idea motivating the definition of strong reduc-
tions.

Lemma 3.8. If T reduces strongly to level h then every subset T̃ ⊆ T with
deg(T̃ ) ≥ deg(T )/2 reduces to level h with respect to the same polynomials

Pn−k and varieties W (k) that T reduces strongly to level h.
17



Proof. The only non-trivial statement is (3.1) and this follows from Lemma

3.7, provided b
(h)
0 is chosen sufficiently small with respect to the other pa-

rameters in B(h). �

We have the following consequence.

Lemma 3.9. Let T̃ ⊆ T with deg(T̃ ) ≥ deg(T )/2. For every h ≤ k < n,
we have

deg(W (k))

deg(W (k+1))
.B(h) degR(T̃ ,W

(k+1)).

Proof. By Lemma 3.8 we can use the same reasoning as in Lemma 3.6. �

Lemma 3.7 easily implies the following bound on D(R
(k)
1 ,R

(k)
2 )

k (T ).

Lemma 3.10. If ε1 > 2a
(h)
h+1 and ε2 is as in the statement of Lemma 3.7,

then D(R
(k)
1 ,R

(k)
2 )

k (T ) < Dk/2 for every h ≤ k ≤ n.

Proof. Suppose the result fails. Then we can find some W of dimension k

with R
(k)
1 < deg(W ) < R

(k)
2 such that deg(TW )

deg(W ) ≥ Dk/2. In particular, we

have that

deg(TW ) ≥ 1

2
deg(T )

deg(W )

deg(W (k))

>
ε1
2
deg(T )

> a
(h)
h+1 deg(T ).

(3.7)

Since a
(h)
h+1 ≥ a

(h)
k+1, this contradicts Lemma 3.7. �

Given a large subset T̃ of T , we want to be able to find a polynomial f of
adequate degree such that T̃ \ T̃f is a large subset of T that is significantly
less-concentrated in varieties of small degree. This will be done in the most
straightforward way, by simply removing all subsets T̃ ′ of T̃ that lie inside
varieties that have abnormally small degree with respect to deg(T̃ ′). In this
sense, this part of the method is quite similar to the pruning mechanisms
employed in [15, 18]. As we mentioned, in our case we also need to ensure
that all these elements we are removing lie inside of Z(f) for some f of
adequate degree. This will be accomplished using the arguments and lemmas
that we have established so far in this section.

Lemma 3.11. Let T̃ ⊆ T with deg(T̃ ) ≥ deg(T )/2. If ε2 > 0 is suffi-

ciently small with respect to B(h), there exists a polynomial f with deg(f) <

degR(T̃ ,W
(h+1)) such that deg(T̃f ) <

∑n−1
k=h a

(h)
k+1 deg(T ) and D(1,R

(k)
2 )

k (T̃ \
T̃f ) < Dk/2 for every h ≤ k ≤ n.

Proof. The result is trivial if h = n, so we may assume h < n. Let T̃ (h−1) :=
T̃ . We will recursively construct subsets T̃ (h) ⊇ · · · ⊇ T̃ (n−1) of T̃ in the

following way. Given h ≤ k < n, if D(1,R
(k)
2 )

k (T̃ (k−1)) < Dk/2 we simply take

T̃ (k) := T̃ (k−1). Otherwise, we shall recursively construct a finite family of al-

gebraic sets Z
(k)
1 , . . . , Z

(k)
r as follows. We let Z

(k)
1 be an irreducible algebraic
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set of dimension k with deg(Z
(k)
1 ) ≤ R

(k)
2 and deg(T̃

Z
(k)
1

) ≥ Dk

2 deg(Z
(k)
1 ),

which we are assuming exists. Recursively, suppose we have constructed sets

Z
(k)
1 , . . . , Z

(k)
j . If D(1,R

(k)
2 )

k (T̃ (k−1) \⋃j
i=1 T̃Z

(k)
i

) < Dk/2 we halt the process.

Otherwise, we let Z
(k)
j+1 be an irreducible algebraic set with deg(Z

(k)
j+1) ≤ R

(k)
2

and such that the total degree of the elements of T̃ (k−1)\⋃j
i=1 T̃Z

(k)
i

contained

in Z
(k)
j+1 is at least Dk

2 deg(Z
(k)
j+1).

Let ε1 be as in the statement of Lemma 3.10 and assume also that it is
chosen sufficiently small with respect to B(h) and ε2. By Lemma 3.10 it

must be deg(Z
(k)
j ) ≤ R

(k)
1 for every 1 ≤ j ≤ r. Write Z(k) = Z

(k)
1 ∪ . . .∪Z

(k)
r

and assume deg(Z(k)) > R
(k)
1 . Then, there exists some r′ with

deg(Z
(k)
1 ∪ . . . ∪ Z

(k)
r′−1) ≤ R

(k)
1 < deg(Z

(k)
1 ∪ . . . ∪ Z

(k)
r′ ) ≤ 2R

(k)
1 < R

(k)
2 .

However, we know by construction that the total degree of elements of T̃ in

Z
(k)
∗ = Z

(k)
1 ∪ . . .∪Z

(k)
r′ is at least Dk deg(Z

(k)
∗ )/2 and this would contradict

Lemma 3.10. Therefore, we conclude that it must be deg(Z(k)) ≤ R
(k)
1 .

The same argument as in Lemma 3.7 now gives us a polynomial fk of

degree at most .B(h) ε
1/n
1 deg(Pn−k) that vanishes on Z(k) without van-

ishing on any component of W (k+1). In particular, we have that A(k) =
Z(fk)∩W (k+1) satisfies the hypothesis of Lemma 3.7, provided ε1 was cho-

sen sufficiently small with respect to ε2 and B(h), and therefore deg(T̃A(k)) <

a
(h)
k+1 deg(T ).

We let T̃ (k) := T̃ (k−1) \ T̃A(k) . Once we have constructed T̃ (h), . . . , T̃ (n−1)

in this way, we let T̃1 = T̃ (n−1) and write T̃0 = T̃ \ T̃1. It is clear from con-

struction that deg(T̃0) <
∑n−1

k=h a
(h)
k+1 deg(T ). Furthermore, the polynomial

f =
∏n

k=h fk satisfies T̃f = T̃0 and

deg(f) .B(h) ε
1/n
1

n
∑

k=h

deg(Pn−k)

.B(h) ε
1/n
1 deg(Pn−h)

< degR(T̃ ,W
(h+1)),

(3.8)

upon choosing ε1 > 0 sufficiently small with respect to B(h), where we are
using (3.2) and Lemma 3.9. The remaining claim on T̃1 = T̃ \ T̃f is also
clear by construction. �

An immediate consequence of the last lemma is that small subsets of T̃ \T̃f

are significantly less concentrated than T .

Corollary 3.12. Let the notation be as in Lemma 3.11 and let T ′ be a
subset of T̃ \ T̃f with deg(T ′) < ε2

2 deg(T ). Then Dk(T
′) < Dk/2 for every

h ≤ k ≤ n.

Proof. Since T ′ is a subset of T̃ \ T̃f and D(1,R
(k)
2 )

k (T̃ \ T̃f ) < Dk/2 for every
h ≤ k ≤ n by Lemma 3.11, we only need to check what happens with those
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k-dimensional algebraic sets W with deg(W ) ≥ R
(k)
2 = ε2 deg(W

(k)). But
then we have

deg(T ′
W )

deg(W )
≤ deg(T ′)

deg(W )
<

ε2
2

deg(T )

deg(W )
≤ 1

2

deg(T )

deg(W (k))
≤ Dk/2,

as desired. �

3.3. Ordering of the relative degrees. We have the following analogue
of Lemma 3.7 for (h− 1)-dimensional varieties.

Lemma 3.13. Let Y be an (h− 1)-dimensional set containing a
(h)
h+1 deg(T )

elements of T . Then deg(Y ) &B(h) deg(W (h)) deg(Pn−h).

Proof. Assume deg(Y ) ≤ ǫ deg(W (h)) deg(Pn−h) for some small ǫ > 0. It
follows from Bezout’s theorem that

deg(Y ) ≤ ǫ deg(W (h+1)) deg(Pn−h)
2,

and we can therefore apply Lemma 2.9, (3.2) and Lemma 3.6 to find a
polynomial f of degree

.n ǫ1/n deg(Pn−h) .B(h) ǫ1/n
deg(W (h))

deg(W (h+1))
.B(h) ǫ1/n degR(T,W

(h+1)),

vanishing on Y without vanishing identically on any component of W (h+1).
If ǫ > 0 is sufficiently small with respect to B(h) it follows from the definition
of degR(T,W

(h+1)) that f cannot vanish on all of T . We conclude that f

produces an a
(h)
h+1-good partition of T at level h + 1, which contradicts the

fact that T reduces to level h. �

This last lemma allows us to establish the correct ordering for all the
relative degrees we shall need in the proof.

Corollary 3.14. For every subset T̃ ⊆ T with deg(T̃ ) ≥ deg(T )/2 and
every h ≤ k < n, we have

degR(T̃ ,W
(k+1)) .B(h) degR(T̃ ,W

(k)).

Proof. Let h ≤ k < n. From Definition 3.2 it is clear that Pn−k vanishes on T̃
without vanishing on any irreducible component of W (k+1), so in particular
degR(T̃ ,W

(k+1)) ≤ deg(Pn−k). On the other hand, it follows from (3.2) and
Lemma 3.9 that

degR(T̃ ,W
(k+1)) &B(h)

deg(W (k))

deg(W (k+1))
&B(h) deg(Pn−k).

Therefore degR(T̃ ,W
(k+1)) ∼B(h) deg(Pn−k). The result now follows from

(3.2) in the range h < k < n and from Lemma 3.13 and Bezout’s theorem
when k = h. �

Notice that this shows that the bound on the degree of the polynomial
obtained in Lemma 3.11 is consistent with the discussion in §1.3.
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4. Relative partitions

Throughout this section we will fix a choice of T reducing strongly to
some level l < h ≤ n and use the notations of Definition 3.2 and Definition
3.3 to refer to the corresponding objects associated with T . In particular,
we shall say we have a good partition at level k+1 to mean we have a good
partition over W (k+1).

To prove Theorem 1.1 we will need to obtain partitions of subsets L of T
that are good with respect to a fixed subset T̃ of T . After setting up this
context in §4.1, we will show in §4.2 that such a partition can always be
guaranteed if we can cover L with a few small (h− 1)-dimensional varieties.
We will then use this in §4.3 to show that a set not admitting a good partition
reduces strongly to level h−1 after possibly eliminating some elements lying
in the zero set of a polynomial of low degree. Finally, in §4.4 we show how
to construct an adequate partition satisfying a weak form of the dichotomy
discussed in §1.3.
4.1. Working over a subset. From now on, we fix some T̃ ⊆ T with
deg(T̃ ) ≥ deg(T )/2, so in particular T̃ satisfies the conclusions of Lemma

3.8. Given any subset L ⊆ T̃ , we shall write ZL for an (h − 1)-dimensional
algebraic set containing L of the smallest possible degree. We will build
partitions of L that provide convenient partitions for T̃ . Because of this,
will find the following definition useful.

Definition 4.1. Given h ≤ k ≤ n, we say L admits a τ -good partition at
level k with respect to T̃ if there exists a polynomial f of degree at most
degR(T̃ ,W

(k)) such that

τ deg(L) < deg(Lf ) < deg(L).

We emphasise that the difference is that in this definition we require a
bound for deg(f) of the form degR(T̃ ,W

(k)) instead of depending on the
relative degree of L itself.

Notice that if deg(L) ≥ a
(h)
h+1 deg(T ) we have the lower bound for deg(ZL)

given by Lemma 3.13. On the other hand, the following lemma is clear from
Definition 2.10 and Bezout’s theorem.

Lemma 4.2. For any subset L ⊆ T̃ , we have

deg(ZL)

deg(W (h))
≤ degR(T̃ ,W

(h)).

4.2. Obtaining a good partition. Let L be a subset of T̃ whose degree
is not too small with respect to deg(T̃ ). We are going to prove that we can

find a good partition of L at level h with respect to T̃ as long as we can cover
a large part of it with a few small (h − 1)-dimensional varieties. This will
later be used to obtain some structure on L when we know such a partition
fails to exist.

Lemma 4.3. Let L ⊆ T̃ be a subset of T̃ with deg(L) ≥ a
(h)
h+1 deg(T ). Let

U1, . . . , Us be (h − 1)-dimensional irreducible algebraic varieties and write
U =

⋃

i Ui. Suppose deg(U) ≤ C deg(ZL), deg(LU ) ≥ ε3 deg(L) for some
absolute constants C, ε3 > 0 and that deg(Ui) ≤ ε4 deg(ZL) for every 1 ≤
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i ≤ s and for some absolute constant 0 < ε4 < C that is sufficiently small
with respect to B(h). Then L admits an ε3ε4C

−1-good partition at level h
with respect to T̃ .

Proof. Let U ′
1 be the irreducible component of U that maximises the ex-

pression
deg(LU′

1
)

deg(U ′

1)
and write L(1) = LU ′

1
. Recursively, if we have constructed

U ′
1, . . . , U

′
r and L(1), . . . , L(r), we let U ′

r+1 be component of U that maximises
the expression

deg((L \⋃r
i=1 L

(i))U ′

r+1
)

deg(U ′
r+1)

,

among all remaining components of U different from U ′
1, . . . , U

′
r. We then

write L(r+1) for those elements of L inside of U ′
r+1 that do not lie in U ′

j for

any j < r+1 (so L(r+1) = (L\⋃r
i=1 L

(i))U ′

r+1
). After reordering the original

U1, . . . , Us if necessary, to alleviate notation we may simply assume Ui = U ′
i

for every 1 ≤ i ≤ s. Notice however that this new order guarantees that
∑

i≤j deg(L
(i))

deg(L)
≥ ε3

∑

i≤j deg(Ui)

deg(U)
,

for every 1 ≤ j ≤ s.
Observe now that either deg(U) ≤ ε4 deg(ZL) or there is a minimal t

such that the sum of the degrees of U1, . . . , Ut exceeds ε4 deg(ZL). This
last option in turn means on the one hand that the sum of the degrees of
U1, . . . , Ut is at most 2ε4 deg(ZL), but it also means by our ordering that

∑

1≤i≤t

deg(L(i)) ≥ ε3ε4
C

deg(L). (4.1)

So in either case we end up with a collection U1, . . . , Ut with their degrees
summing to at most 2ε4 deg(ZL) and satisfying (4.1). Write U∗ = U1 ∪
. . . ∪ Ut. It follows from Lemma 2.9 and Lemma 3.13 that we can find a
polynomial f with

deg(f) .B(h) ε
1/n
4

deg(ZL)

deg(W (h))
, (4.2)

vanishing on U∗ and cutting W
(h)
i properly, for every 1 ≤ i ≤ rh. Choos-

ing ε4 > 0 sufficiently small with respect to B(h) we conclude, from the
minimality of ZL and Bezout’s theorem, that Z(f) cannot contain all of L.

Furthermore, again choosing ε4 > 0 sufficiently small with respect to B(h),
we see from Lemma 4.2 that we can additionally guarantee that deg(f)

is bounded by degR(T̃ ,W
(h)). Thus, f provides the desired ε3ε4C

−1-good

partition of L at level h with respect to T̃ . �

4.3. Decreasing the level. We will now show that if L is a large subset of
T̃ that does not admit a good partition then, after removing some elements
from L lying in the zero set of some small polynomial f , we can obtain a
large subset of L that reduces strongly to level h− 1.

Proposition 4.4. Given any ε3 &B(h) 1 there exists some τ &
B(h),a

(h−1)
h

1

such that the following holds. Let L be a subset of T̃ with deg(L) &B(h)
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deg(T ). If L does not admit a τ -good partition at level h with respect to

T̃ , then we can find a (possibly trivial) partition L = L1 ∪ L2 such that
deg(L2) ≥ (1 − ε3) deg(L), L2 reduces strongly to level h − 1 and L1 = Lf

for some polynomial f of degree .B(h) degR(T̃ ,W
(h)).

Proof. Let Pn−h+1 be a polynomial of the smallest possible degree vanishing
on L without vanishing on any component of W (h) and let

Z(P1, . . . , Pn−h+1) = Z1 ∪ . . . ∪ Zs,

be the irreducible decomposition of Z(P1, . . . , Pn−h+1). Notice that every
irreducible component Zj of Z(P1, . . . , Pn−h+1) that has dimension at least
h must be contained inside an irreducible component of Z(P1, . . . , Pn−h)

that is not of the form W
(h)
i for some 1 ≤ i ≤ rh. Therefore, such a

choice of Zj cannot contain elements from L, implying that all elements of
L are contained inside the (h − 1)-dimensional irreducible components of
Z(P1, . . . , Pn−h+1).

By (3.2) and Lemma 3.13 we know that

deg(ZL) &B(h) deg(W
(h)
i )δ(W

(h)
i ),

for every 1 ≤ i ≤ rh and therefore, by Lemma 2.9, we can find some poly-

nomial of degree .B(h)
deg(ZL)

deg(W (h))
vanishing on ZL (and therefore on all of

L) without vanishing on any component of W (h). By the minimality of
deg(Pn−h+1), this means that

deg(Pn−h+1) .B(h)

deg(ZL)

deg(W (h))
. (4.3)

In particular, since deg(W (h)) &B(h) deg(Z(P1, . . . , Pn−h)) by Definition 3.2,
we see from Bezout’s theorem that

deg(Z(P1, . . . , Pn−h+1)) .B(h) deg(ZL). (4.4)

We may assume the Zi are ordered in increasing order of dimension and
then on decreasing order of degrees. Let ǫ1 &B(h) 1 be a parameter to

be specified soon. We write Z(1) = Z1 ∪ . . . ∪ Zt for the union of those
irreducible components of dimension h−1 with deg(Zi) > ǫ1 deg(ZL), Z

(2) =
Zt+1∪. . .∪Zr for the union of those irreducible components of Z of dimension
h − 1 and degree at most ǫ1 deg(ZL) and Z(3) = Zr+1 ∪ . . . ∪ Zs for the

remaining ones. In particular, by a previous observation we know that Z(3)

does not contain any element from L.
Notice that we may group the components of Z(2) into at most . ǫ−1

1 al-

gebraic sets Z
(2)
1 , . . . , Z

(2)
m of degree at most ǫ1 deg(ZL). For each such Z

(2)
i

we can use Lemma 2.9 to find a polynomial Qi of degree .B(h) ǫ
1/n
1

deg(ZL)

deg(W (h))

vanishing on Z
(2)
i without vanishing on any component of W (h). In par-

ticular, upon choosing ǫ1 sufficiently small with respect to B(h), we can
guarantee that

deg(Z(Qi) ∩W (h)) ≤ deg(Qi) deg(W
(h)) ≤ ε4 deg(ZL),

for some ε4 ∼B(h) 1 that is sufficiently small with respect to B(h) as required
in the statement of Lemma 4.3. We conclude that the polynomial Q =
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∏

1≤i≤mQi has degree

.B(h) ǫ−1
1 ε4

deg(ZL)

deg(W (h))
, (4.5)

and all irreducible components of U = Z(Q) ∩ W (h) have dimension h − 1
and degree at most ε4 deg(ZL). Furthermore, we see from Bezout’s theorem
that deg(U) ≤ C deg(ZL) for some C .B(h) 1. Given that we also have the
estimate ε4 &B(h) 1, upon choosing τ sufficiently small with respect to ε3
and B(h) and since we are assuming L does not admit a τ -good partition at
level h with respect to T̃ , it follows from Lemma 4.3 that U can contain at
most ε3 deg(L) elements of L.

We write L1 for those elements of L inside of U and L2 = L \ L1, so
in particular no element from L2 lies in Z(2) or Z(3). Since by Lemma 4.2
the expression (4.5) is .B(h) degR(T̃ ,W

(h)), the result will follow as long
as we can show that L2 reduces strongly to level h − 1. We will show
this is the case with W (h−1) being the algebraic set obtained from Z(1)

upon discarding those irreducible components that contain no element from
L2. Notice that this guarantees that W (h−1) ⊆ W (h), since we already
know that W (h−1) ⊆ Z(P1, . . . , Pn−h) and no irreducible component of the

latter algebraic set, other than the irreducible components of W (h), contain
elements from L. Furthermore, we have also ensured that no irreducible
component of Z(P1, . . . , Pn−h+1), other than those of W (h−1), contain any
element from L2.

Consider now ZL2 and assume deg(ZL2) < ǫ2 deg(ZL). If ǫ2 > 0 is suffi-

ciently small with respect to B(h), we can use Lemma 2.9, Lemma 3.13 and
Lemma 4.2 to find a polynomial f of degree at most

.B(h) ǫ
1/n
2

deg(ZL)

deg(W (h))
< degR(T̃ ,W

(h)),

that vanishes on ZL2 (and therefore on L2) and with Z(f) ∩ W (h) having
dimension h− 1 and degree strictly less than deg(ZL) by Bezout’s theorem.
Given that deg(L2) ≥ (1−ε3) deg(L), this would mean that this polynomial

gives a τ -good partition of L at level h with respect to T̃ , which we are
assuming it is not possible. We have thus shown that

deg(ZL2) &B(h) deg(ZL)

&B(h) Z(P1, . . . , Pn−h+1)

&B(h) deg(W (h−1)),

(4.6)

by (4.4), giving us the estimate (3.3) for W (h−1). Notice that this estimate
for W (k), h ≤ k < n, is a consequence of Lemma 3.7.

Suppose L2 admits an a
(h−1)
h /2-good partition at level h. This means we

can find a polynomial f of degree at most degR(L2,W
(h)) ≤ degR(T̃ ,W

(h)),

not vanishing on L2 ⊆ L and with Z(f) containing at least a
(h−1)
h deg(L2)/2 ≥

τ deg(L) elements from L2, provided τ was chosen sufficiently small with re-

spect to a
(h−1)
h . This gives a τ -good partition of L at level h with respect

to T̃ , which we are assuming is not possible.
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Similarly, for every h ≤ k < n, we know L2 does not admit an a
(h−1)
k+1 /2-

good partition at level k+1 from the fact that T̃ does not admit an a
(h)
k+1-good

partition at level k+1. Indeed, suppose f is a polynomial giving an a
(h−1)
k+1 /2-

good partition of L2 at level k+1, for some h ≤ k < n. This means that f is
a polynomial of degree at most degR(L2,W

(k+1)) ≤ degR(T̃ ,W
(k+1)), that

does not vanish at all elements of L2 ⊆ T̃ and such that Z(f) contains at

least a
(h−1)
k+1 deg(L2)/2 &B(h) a

(h−1)
k+1 deg(T ) elements from L2. This contra-

dicts the fact that T̃ does not admit an a
(h)
k+1-good partition at level k + 1,

provided a
(h)
k+1 was chosen sufficiently small with respect to a

(h−1)
k+1 and B(h).

Recall that we have defined the irreducible componentsW
(h−1)
1 , . . . ,W

(h−1)
rh−1

of W (h−1) to be those irreducible components of Z(1) = Z1 ∪ . . . ∪ Zt that
contain elements from L2. Since by definition of Z(1) we have that deg(Zi) ≥
ǫ1 deg(ZL) for every 1 ≤ i ≤ t, and we know that deg(Z(1)) .B(h) deg(ZL)
by (4.4), we see that

rh−1 ≤ t .B(h) ǫ−1
1 .B(h) 1.

Similarly, we deduce that

deg(W
(h−1)
i ) .B(h) deg(W

(h−1)
j ),

for every 1 ≤ i, j ≤ rh−1.
From Bezout’s theorem we see that deg(Pn−h+1) &B(h) deg(Pn−h), since

otherwise we would be contradicting Lemma 3.13. It then follows by con-
struction that we also have δ(Zi) .B(h) deg(Pn−h+1) for every 1 ≤ i ≤ t.
On the other hand, we know by definition that for every 1 ≤ i ≤ t we can
find some polynomial fi of degree at most δ(Zi) that vanishes on Zi without
vanishing on any of the components of W (h) containing Zi, so by Bezout’s
theorem it must be deg(Zi) ≤ δ(Zi) deg(W

(h)). Hence,

δ(Zi) &B(h)

deg(ZL)

deg(W (h))
&B(h) deg(Pn−h+1),

where we are using (4.3). We have thus shown that

δ(W
(h−1)
i ) ∼B(h) deg(Pn−h+1),

for every 1 ≤ i ≤ rh−1.
It only remains to show that

deg(L2) &B(h) deg(Zi)δ(Zi)
h−1−l, (4.7)

for every 1 ≤ i ≤ t, since the corresponding estimates with respect to
W (k), h ≤ k < n, follow immediately from the fact that deg(L2) &B(h)

deg(L) &B(h) deg(T ). Similarly, it will suffice to show that (4.7) holds for L
in place of L2. Suppose then that deg(L) ≤ ǫ3 deg(Zi)δ(Zi)

h−1−l for some

small ǫ3 > 0 to be specified. Since deg(Zi) ≤ deg(W (h)) deg(Pn−h+1), this
means that

deg(L) .B(h) ǫ3 deg(W
(h)) deg(Pn−h+1)

h−l.

If ǫ3 > 0 is chosen sufficiently small with respect to B(h) this would imply
by Lemma 2.9 that we can find a polynomial of degree strictly less than
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deg(Pn−h+1) vanishing on L without vanishing on any irreducible component

of W (h), contradicting our choice of Pn−h+1. The result follows. �

4.4. Relative partitioning lemma. The next lemma shows how we can
iterate Lemma 1.5 to obtain a partition of any subset L ⊆ T̃ , with a con-
trolled error term for the incidences with respect to a fixed set of varieties
S′ and such that one element of this partition satisfies a weak form of the
dichotomy discussed in §1.3. In the next section, we will show how to com-
bine this with the tools we have developed in the rest of this article to give
a proof of Theorem 3.5.

Lemma 4.5. Let ε2, τ > 0. Let L ⊆ T̃ ⊆ T and let S′ be a finite set
of varieties of dimension dim(T ) − 1. Then, there exist partitions S′ =
S1 ∪ . . . ∪ Sr, L = L1 ∪ . . . ∪ Lr, such that

I(S′, L) ≤
r
∑

i=1

I(Si, Li) +Oε2(deg(L) degR(T̃ ,W
(h))), (4.8)

Furthermore, deg(Lr) &ε2,τ deg(L) and either deg(Lr) < ε2
2 deg(T ) or Lr

does not a admit a τ -good partition at level h with respect to T̃ .

Proof. We are going to proceed recursively, building partitions S′ = S1∪. . .∪
Ss, L = L1∪ . . .∪Ls and then partitioning both Ss and Ls into two new sets
that, using a convenient abuse of notation, we rename as Ss and Ss+1 and
Ls and Ls+1 respectively. So we start with S1 = S′, L1 = L and notice that
if L1 does not admit a τ -good partition at level h with respect to T̃ or has
degree less than ε2

2 deg(T ) we are done. Hence, we may recursively assume
that we have constructed partitions S′ = S1 ∪ . . . ∪ Ss, L = L1 ∪ . . . ∪ Ls,
such that

I(S′, L) ≤
s
∑

i=1

I(Si, Li) +

(

log2
deg(L)

deg(Ls)

)

deg(L) degR(T̃ ,W
(h))

+

s−1
∑

i=1

deg(Li) degR(T̃ ,W
(h)),

(4.9)

with Ls having degree at least ε2
2 deg(T ) and admitting a τ -good partition

at level h with respect to T̃ . We rename S̃ = Ss, L̃ = Ls and let fs be a
polynomial giving a τ -good partition of L̃ at level h with respect to T̃ .

Assume first that both elements of this partition, L̃fs and L̃ \ L̃fs , have

degree at least ε2
2 deg(T ). If deg(L̃fs) > deg(L̃)/2, we let Ls = L̃fs , Ss = S̃fs

and let Ls+1, Ss+1 be their complements in L̃, S̃ respectively. By Lemma
1.5, we have that

I(S̃, L̃) ≤ I(Ss, Ls) + I(Ss+1, Ls+1) + deg(Ls+1) degR(T̃ ,W
(h)). (4.10)

We insert this in (4.9) to obtain the corresponding bound in this case, notic-
ing that

log2
deg(L)

deg(L̃)
+ 1 ≤ log2

deg(L)

deg(Ls+1)
,

since deg(Ls+1) ≤ deg(L̃)/2.
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On the other hand, if deg(L̃fs) ≤ deg(L̃)/2, we let Ls+1 = L̃fs , Ss+1 = S̃fs

and let Ls, Ss be their complements in L̃, S̃ respectively. In this case, we
have by Lemma 1.5 that

I(S̃, L̃) ≤ I(Ss, Ls) + I(Ss+1, Ls+1) + deg(Ls) degR(T̃ ,W
(h)), (4.11)

and we may insert this in (4.9) as we did before.
In either case, if Ls+1 does not admit a τ -good partition at level h with

respect to T̃ , then the result is proven since

log2
deg(L)

deg(Ls+1)
.ε2 1,

while otherwise we have completed the recursive step. Notice that since
deg(Ls+1) decreases at each step while remaining bounded from below by
ε2
2 deg(T ) this situation can only occur finitely many times.
It remains to show what happens when at least one element of the par-

tition of L̃ has degree less than ε2
2 deg(T ). In this case, we write Ls+1 =

L̃fs , Ss+1 = S̃fs and let Ls, Ss be their complements in L̃, S̃ respectively. If
only Ls has degree less than ε2

2 deg(T ), then we insert the bound (4.11) in
(4.9), which gives a satisfactory bound when we add the last term of both
expressions. If Ls+1 does not admit a τ -good partition at level h with re-
spect to T̃ we obtain the claim of the lemma we are trying to prove and
otherwise we have completed the recursive step. It is clear this situation
can also only occur finitely many times.

We conclude that after finitely many steps of the recursive process, either
the result is proven or we must reach a first instance where deg(Ls+1) <
ε2
2 deg(T ). But then, we may insert (4.11) in (4.9) as before and the result
follows, since

deg(Ls+1) > τ deg(L̃) ≥ τ
ε2
2
deg(T ),

by the definition of a τ -good partition and our lower bound on L̃. �

5. Proof of Theorem 3.5

We now turn to the proof of Theorem 3.5 and therefore of Theorem 1.1.
As we discussed in §3.1, we may assume dim(T ) < n, since the result is
trivial otherwise. We have also seen the result is clear if |T | = On(1) or T
reduces strongly to level l, so we may assume T reduces strongly to some
level l < h ≤ n and that the result holds for any proper subset of T and if
T reduces strongly to some level h′ < h.

We will use the notations of Definition 3.2 and Definition 3.3 to refer to
the corresponding objects associated with T . We may abbreviate Dk(T ) as
Dk and we shall also say that T admits a τ -good partition at level k to mean
that it admits a τ -good partition over W (k).

By Lemma 2.5, Lemma 2.7, Lemma 2.8 and Lemma 3.4 we know there
exists a polynomial P of degree

.B(h)

(

deg(S)

∆n−s(W
(h)
1 )

) 1
s−dim(S)

,
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for some h ≤ s ≤ n, vanishing on S without vanishing on W
(h)
i for any

1 ≤ i ≤ rh. We will use this polynomial to bound the relative degree
degR(T̃ ,W

(h)), for an adequate subset T̃ of T .
Let us assume first that deg(TP ) < deg(T )/2 and notice that

I(S, T ) ≤ I(S, T \ TP ) + I(S, TP ). (5.1)

Since TP is then a proper subset of T , we know by induction that

I(S, TP ) ≤
n−dim(S)
∑

m=1

Kl,m deg(S)1/m deg(TP )
1−1/mDm+dim(S)(TP )

1/m

≤Kl,1 deg(S) +

n−dim(S)
∑

m=2

Kl,m√
2

deg(S)1/m deg(T )1−1/mDm+dim(S)(T )
1/m.

(5.2)
On the other hand, by Bezout’s theorem, we see that

I(S, T \ TP ) ≤ deg(T \ TP ) deg(P )

.B(h) deg(T \ TP )

(

deg(S)

∆n−s(W
(h)
1 )

) 1
s−dim(S)

.B(h) deg(T )

(

deg(S)

deg(T )

) 1
s−dim(S)

Ds(T )
1

s−dim(S) .

(5.3)

Here we are using the fact that by Lemma 2.5, Definition 3.2 and Lemma
3.4 it is

∆n−s(W
(h)
1 ) ∼B(h)

n−s
∏

i=1

δi(W
(h)
1 ) ∼B(h)

n−s
∏

i=1

deg(Pi) ∼B(h) deg(W (s)). (5.4)

The result then follows in this case upon summing (5.3) to (5.2) and choosing
the constants Kl,m to satisfy

Kl,m√
2

+OB(h)(1) ≤ Kl,h−dim(S) ≤ Kl,m,

for every h− dim(S) ≤ m ≤ n− dim(S).
We may therefore assume from now on that deg(TP ) ≥ deg(T )/2 and

write T̃ = TP . In particular, we see that T̃ reduces to level h by Lemma
3.8. Let f be the polynomial given in Lemma 3.11 with respect to T̃ . We
have by Lemma 1.5 and Lemma 3.14 that

I(S, T̃ ) ≤ I(S \ Sf , T̃ \ T̃f ) + I(Sf , T̃f ) + deg(T̃ ) degR(T̃ ,W
(h)).

We write T0 = (T̃ )f , S0 = Sf and apply Lemma 4.5 with L = T̃ \ T0,
S′ = S\S0, ε2 &B(h) 1 as in Corollary 3.12 and τ > 0 of the form provided in
Proposition 4.4 with respect to some small ε3 ∼ 1. This produces partitions
T̃ = T0 ∪ T1 ∪ . . . ∪ Tr and S = S0 ∪ S1 ∪ . . . ∪ Sr with

I(S, T̃ ) ≤
r
∑

i=0

I(Si, Ti) +OB(h)

(

deg(T̃ ) degR(T̃ ,W
(h))
)

,
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and with deg(Tr) &
B(h),a

(h−1)
h

deg(T ). If Tr does not admit a τ -good par-

tition at level h with respect to T̃ we can obtain from Proposition 4.4 a
polynomial f∗ of degree .B(h) degR(T̃ ,W

(h)) with

I(Sr, Tr) ≤ I(Sr \ (Sr)f∗ , Tr \ (Tr)f∗) + I((Sr)f∗ , (Tr)f∗)

+OB(h)

(

deg(Tr) degR(T̃ ,W
(h))
)

,

(5.5)
by Lemma 1.5, and such that Tr \ (Tr)f∗ reduces strongly to level h − 1

while having size &
B(h),a

(h−1)
h

deg(T̃ ). We write v = r + 1 in this case and

v = r if Tr does admit a τ -good partition at level h with respect to T̃ with
τ as above. In the former case, we then relabel (Tr)f∗ as Tr, write Tr+1 for
Tr \ (Tr)f∗ and we similarly define Sr and Sr+1.

We have therefore partitioned S and T̃ into v + 1 pieces with

I(S, T̃ ) ≤
v
∑

i=0

I(Si, Ti) +OB(h)

(

deg(T̃ ) degR(T̃ ,W
(h))
)

, (5.6)

with deg(Tv) &B(h),a
(h−1)
h

deg(T ) and such either deg(Tv) <
ε2
2 deg(T ) or Tv

reduces strongly to level h− 1. Applying induction for each 0 ≤ i ≤ v − 1,
we conclude that

I(S, T̃ ) ≤
v−1
∑

i=0

∑

1≤m≤n−dim(S)

Kl,m deg(Si)
1/m deg(Ti)

1−1/mDm+dim(S)(Ti)
1/m

+ I(Sv, Tv) +OB(h)

(

deg(T̃ ) degR(T̃ ,W
(h))
)

.

(5.7)
Assume deg(Sv) ≤ η deg(S) for some sufficiently small η &

B(h),a
(h−1)
h

1. This

necessarily means that the partition of T we have constructed is nontrivial
and in particular deg(Tv) < deg(T ). We can therefore apply induction to
conclude that

I(Sv, Tv) ≤
∑

1≤m≤n−dim(S)

Kl,m deg(Sv)
1/m deg(Tv)

1−1/mDm+dim(S)(Tv)
1/m

≤ η
1

n−dim(S)

∑

1≤m≤n−dim(S)

Kl,m deg(S)1/m deg(T )1−1/mDm+dim(S)(T )
1/m.

(5.8)
On the other hand, since deg(Tv) &B(h),a

(h−1)
h

deg(T ), we see from Hölder’s

inequality that we can find some ǫ1 &B(h),a
(h−1)
h

1 such that (5.7) is bounded

by

(1− ǫ1)
∑

2≤m≤n−dim(S)

Kl,m deg(S)1/m deg(T )1−1/mDm+dim(S)(T )
1/m

+Kl,1 deg(S \ Sv) + I(Sv, Tv) +OB(h)

(

deg(T̃ ) degR(T̃ ,W
(h))
)

.

(5.9)
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We now use the fact that

degR(T̃ ,W
(h)) ≤ deg(P ) .B(h)

(

deg(S)

∆n−s(W
(h)
1 )

) 1
s−dim(S)

,

.B(h)

(

deg(S)

deg(T )
Ds(T )

) 1
s−dim(S)

.

(5.10)

where the last bound follows the same argument we used when dealing with
the case deg(TP ) < deg(T )/2. We now insert (5.8) and (5.10) in (5.9) and

add the resulting bound for I(S, T̃ ) to the bound (5.3) for I(S, T \ T̃ ). The
result then follows in this case upon choosing η sufficiently small with respect

to ǫ1 so that η
1

n−dim(S) < ǫ1/2, say, and the constants Kl,m so that

Kl,m(1− ǫ1/2) +OB(h)(1) ≤ Kl,h−dim(S) ≤ Kl,m,

for every h− dim(S) ≤ m ≤ n− dim(S).
We may therefore assume from now on that deg(Sv) &B(h),a

(h−1)
h

deg(S).

Using again induction for each 0 ≤ i ≤ v − 1, Hölder’s inequality, the
estimates (5.6) and (5.10) and the bound (5.3) for I(S, T \ T̃ ), we see that
I(S, T ) is bounded by

∑

1≤m≤n−dim(S)

Kl,m deg(S \ Sv)
1/m deg(T \ Tv)

1−1/mDm+dim(S)(T )
1/m

+ I(Sv, Tv) +OB(h)

(

deg(T )

(

deg(S)

deg(T )
Ds(T )

) 1
s−dim(S)

)

.

(5.11)
If Tv reduces strongly to level h− 1 we have by induction

I(Sv, Tv) ≤
∑

1≤m≤n−dim(S)

K
(h−1)
l,m deg(Sv)

1/m deg(Tv)
1−1/mDm+dim(S)(T )

1/m.

(5.12)
Since deg(S) .

B(h),a
(h−1)
h

deg(Sv) and deg(T ) .
B(h),a

(h−1)
h

deg(Tv), the result

follows in this case upon inserting (5.12) in (5.11) and choosing the constants
Kl,m to satisfy

Kl,h−1−dim(S) +O
B(h),a

(h−1)
h

(1) < Kl,h−dim(S).

We may therefore assume that deg(Tv) < ε2
2 deg(T ) in which case we can

apply Corollary 3.12 to deduce that Dk(Tv) < Dk/2 for every h ≤ k ≤ n. As
a consequence, applying induction to estimate I(Sv, Tv) in (5.11) and using
again that deg(S) .

B(h),a
(h−1)
h

deg(Sv) and deg(T ) .
B(h),a

(h−1)
h

deg(Tv), the

result also follows in this case upon choosing the constants Kl,m to satisfy

Kl,m

21/m
+O

B(h),a
(h−1)
h

(1) < Kl,h−dim(S) ≤ Kl,m,

for every h− dim(S) ≤ m ≤ n− dim(S).
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6. Alternative bounds on the relative degree

In this section we show how to establish Theorem 1.2 and Theorem 1.4.
This is accomplished by means of slight modifications of the proof of Theo-
rem 1.1 based on alternative ways of bounding the relative degrees.

6.1. Proof of Theorem 1.2. We now proceed to the proof of Theorem 1.2.
We will use the following standard lemma, a proof of which can be found in
[40] (see also [26]).

Lemma 6.1. If S is k-free with respect to T , then

I(S, T ) ≤ 2|S||T |1−1/k + (k − 1)|T |.
As with Theorem 1.1, we shall deduce Theorem 1.2 from the following

equivalent statement.

Theorem 6.2. For every integer n ≥ 1 there exist constants K0 < K1 <
. . . < Kn .n 1 such that the following holds. Let T be a family of irreducible
algebraic curves in R

n that reduces strongly to level h. Then, for any set of
points S ⊆ R

n that is k-free with respect to T , we have the bound

I(S, T ) ≤
∑

0≤m≤n

K(h)
m k1−α(k,m)|S|α(k,m) deg(T )1−α(k,m)Dm(T )

k−1
k

α(k,m),

with α(k,m) as in Theorem 1.2 and where K
(h)
m = Kh if m ≥ h and K

(h)
m =

Km otherwise.

Proof. Given integers k, s ≥ 1, we shall write

α(k, s) =
k

s(k − 1) + 1
, β(k, s) =

s(k − 1)

s(k − 1) + 1
, γ(k, s) =

k − 1

s(k − 1) + 1
.

Notice that 1− α(k, s) = β(k, s) − γ(k, s).
As in the proof of Theorem 3.5 we may assume that T reduces strongly

to some level 1 < h ≤ n and that the result holds both for proper subsets
of T and if T reduces strongly to level h − 1. We shall use the notations
in Definition 3.2 and Definition 3.3 to refer to the corresponding objects
associated with T .

Let us consider first a single component W
(h)
1 of W (h). For every h ≤ s ≤

n we shall consider the parameters

Mn−s =

(

|S|k

kk deg(T )(
∏n−s

i=0 δi(W
(h)
1 ))k−1

)
1

s(k−1)+1

.

Assume h ≤ s < n is such that Mn−s .n δn−s(W
(h)
1 ). It follows that

Mn−s−1 = M
s(k−1)+1

s(k−1)+1+(k−1)

n−s δn−s(W
(h)
1 )

k−1
s(k−1)+1+(k−1) .n δn−s(W

(h)
1 ). (6.1)

We now notice that ifM0 .n δ0(W
(h)
1 ) = 1, it follows that |S| .n k deg(T )1/k

and therefore we deduce from Lemma 6.1 that

I(S, T ) .n k deg(T ).
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We may therefore assume from now on that this is not the case. Combining
this with the observation (6.1), we see that there must be a largest choice
of h ≤ s ≤ n with

δn−s(W
(h)
1 ) .n Mn−s .n δn−s+1(W

(h)
1 ), (6.2)

This allows us to apply Theorem 2.11 to find a polynomial P1 of degree

.n Mn−s, not vanishing identically on W
(h)
1 and such that each connected

component of Rn \ Z(P1) contains at most

.n
|S|

M s
n−s

∏n−s
i=0 δi(W

(h)
1 )

,

elements from S
W

(h)
1

. Here we are using Lemma 2.5.

Let us write Ω1, . . . ,Ωr for the connected components of Rn \Z(P1), S
(i)

for the elements of S
W

(h)
1

inside of Ωi and T (i) for those elements of T

intersecting Ωi. Notice that by Theorem 2.12 each t ∈ T belongs to T (i) for
.n deg(t) deg(P1) values of 1 ≤ i ≤ r. Using Lemma 6.1, we can therefore
bound I(S

W
(h)
1

\ SP1 , T ) by

.

r
∑

i=1

|S(i)||T (i)|1−1/k + k|T (i)|

.n

(

|S|
M s

n−s

∏n−s
i=0 δi(W

(h)
1 )

)1−1/k

|S|1/k(deg(T )Mn−s)
1−1/k + k deg(T )Mn−s

.n k1−α(k,s)|S|α(k,s) deg(T )β(k,s)
(

n−s
∏

i=0

δi(W
(h)
1 )

)−γ(k,s)

.n k1−α(k,s)|S|α(k,s) deg(T )1−α(k,s)Ds(T )
k−1
k

α(k,s),
(6.3)

where we are using (5.4).

We may repeat the above argument for each other component W
(h)
i of

W (h), 2 ≤ i ≤ rh, obtaining rh = OB(h)(1) bounds of the form (6.3) and cor-
responding polynomials Pi with deg(Pi) .B(h) Mn−s, for the same choice of
s as above (by Lemma 3.4). We therefore see that, writing Z =

⋃rh
i=1 Z(Pi)∩

W
(h)
i , the result will follow from an adequate bound on I(SZ , T ).
Let h ≤ g ≤ n be such that

ηn−gδn−g(W
(h)
1 ) ≤ Mn−s < ηn−g+1δn−g+1(W

(h)
1 ), (6.4)

where the constants η0, . . . , ηn−h+1 &B(h) 1 are chosen so that ηi+1 is suffi-

ciently small with respect to ηi and B(h). Notice that since δn−h+1(W
(h)
1 ) =

∞, such a choice always exists. Using the notation of Definition 3.2, for

each 1 ≤ i ≤ rh, we let W
(g)
ji

be an irreducible component of W (g) contain-

ing W
(h)
i . Notice also that by Lemma 3.4 and (6.4) we have

δ(W (g)) ∼B(h) deg(Pn−g) ∼B(h) δn−g(W
(h)
1 ) .B(h),ηn−g

Mn−s. (6.5)
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We now observe that Z(g) =
⋃rh

i=1 Z(Pi) ∩ W
(g)
ji

is a (g − 1)-dimensional

algebraic set of degree .B(h) Mn−s deg(W
(g)) containing Z. By Lemma

2.9 and (6.5), we can then find a polynomial P of degree .B(h),ηn−g
Mn−s,

vanishing on Z(g), and therefore on Z, without vanishing identically on

any irreducible component of W (g). But if P vanishes on W
(h)
i , for some

1 ≤ i ≤ rh, this implies by Lemma 3.4 that

δn−g+1(W
(h)
1 ) ∼B(h) δn−g+1(W

(h)
i ) .B(h),ηn−g

Mn−s,

which contradicts (6.4) if ηn−g+1 was chosen sufficiently small with respect

to B(h) and ηn−g. We conclude that P vanishes on Z(g), and therefore on

SZ , without vanishing identically on any irreducible component of W (h).
From here the proof proceeds by exactly the same argument as in the

proof of Theorem 3.5, using that in our current case the bound (5.10) can
now be replaced by

degR(TP ,W
(h)) ≤ deg(P ) .B(h) Mn−s

.B(h)

( |S|
deg(T )

)α(k,s)

Ds(T )
k−1
k

α(k,s),
(6.6)

where we are using once again (5.4). Notice that writing T̃ = TP , the terms

(6.3) and OB(h)

(

deg(T̃ ) degR(T̃ ,W
(h))
)

will then be absorbed in the same

way the corresponding terms where absorbed during the proof of Theorem
3.5. We remark that the only slight difference in the proof is that in the
current case, when evaluating inductively the expressions I(Si, Ti) that arise
in the argument, we will have an additional term of the form K0k deg(Ti).
Nevertheless, these terms will clearly add up to at most K0k deg(T ) by the
disjointness of the sets Ti constructed during the proof. �

6.2. Proof of Theorem 1.4. To prove Theorem 1.4 we will use the fact
that if T reduces to level h and p is a δ-property with respect to an irreducible
component of W (h), then we can essentially use the implicit polynomial in
this definition to bound the relative degree of T with respect to W (h). Since
the argument is almost the same as in the previous results, we will only
explain the differences in the proof.

As with the previous theorems, we establish the variants given by Theo-
rem 3.5 or Theorem 6.2 with the quantities Dm(T ) replaced by Dp

m(T ), but
with the additional difference that, when l < h < n, we now also allow an
extra term of the form OB(l),h(deg(T ) degR(T,W

(h+1))) in the bound. Since
every T reduces strongly to level n, this clearly implies Theorem 1.4.

The case l = h is trivial as before. Let us assume l < h ≤ n, that
T reduces strongly to level h and that the result has been established for
proper subsets of T and if T reduces strongly to level h− 1.

Write W
(h)
1 , . . . ,W

(h)
q for those components of W (h) that are not in Cp

and W
(h)
q+1, . . . ,W

(h)
rh for the remaining ones. Let us also write W ∗ = W

(h)
q+1∪

. . . ∪W
(h)
rh .

We assume first that deg(TW ∗) &B(h) deg(T ). Notice that if deg(S) .n

deg(W (h))δ(W (h))h−dim(S) we can use Lemma 2.9 to find a polynomial P of
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degree

.n δ(W (h)) .B(h) degR(T,W
(h+1)),

vanishing on S without vanishing identically on any irreducible component
of W (h). Otherwise, we know by Lemma 2.9 that we can find a polynomial P
vanishing on S without vanishing identically on any irreducible component
of W (h) with P having degree

.B(h)

(

deg(S)

deg(W (h))

) 1
h−dim(S)

.B(h)

(

deg(S)

deg(T )

deg(TW ∗)

deg(W ∗)

) 1
h−dim(S)

,

.B(h)

(

deg(S)

deg(T )
Dp

h(T )

) 1
h−dim(S)

.

(6.7)

To establish the analogue of Theorem 3.5 we can then proceed as in the
proof of that result to reduce the problem to the estimation of I(S, T̃ ),
where T̃ = TP satisfies deg(T̃ ) ≥ deg(T )/2 and

degR(T̃ ,W
(h)) ≤ deg(P ). (6.8)

Because of the bounds we have placed on deg(P ) we can proceed exactly
as in the proof of Theorem 3.5 to obtain a satisfactory estimate. Notice
that the only difference is that if we have to deal with a component Tr of
the partition that reduces strongly to level h − 1, this will give rise to an
additional term of the form OB(l),h−1(deg(Tr) degR(Tr,W

(h))) if h ≥ l + 2.
However, this term is not problematic since this expression is bounded by

.B(l),h deg(T ) deg(P ),

where we are using (6.8). Our bounds on deg(P ) make this an acceptable
term and this completes the analysis in this case.

We may therefore assume from now on that deg(TW ∗) ≤ ǫ deg(T ) for some
small ǫ &B(h) 1. Let r be as in the definition of a p-set. Upon discarding
a set S′ ⊆ S contributing OB(h)(deg(S′)) incidences, we may assume that
all incidences involve an element of Pr(TW

(h)
i

) for some 1 ≤ i ≤ rh. By the

definition of being a δ-property, Lemma 3.4, Bezout’s theorem and Lemma
2.9, we see that there exists some polynomial f of degree On(δ(W

(h))) ∼B(h)

degR(T,W
(h+1)) vanishing on

⋃q
j=1Pr(TW

(h)
j

) without vanishing identically

on W
(h)
i for any 1 ≤ i ≤ rh.

Consider the set of elements Si,j of S \ Sf that lie in W
(h)
i ∩ W

(h)
j for

some pair 1 ≤ i ≤ q < j ≤ rh. By definition of an entangled pair, we see
there exists some polynomial of degree .n δ(W (h)) vanishing on Si,j without
vanishing identically on one of these two varieties. In particular, this gives
us an algebraic set of dimension h − 1 and degree .n δ(W (h)) deg(W (h))
containing Si,j. Applying Lemma 2.9 we can then conclude that there exists

some polynomial g of degree .B(h) δ(W (h)) vanishing on all sets Si,j of the
form above without vanishing identically on any irreducible component of
W (h).

Notice that, by construction, an element of S \ Sfg can only be incident
to an element of TW ∗. Since

deg(f) + deg(g) .B(h) δ(W (h)) .B(h) degR(T,W
(h+1)), (6.9)
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we have by Lemma 1.5 the estimate

I(S, T ) ≤ I(Sfg, Tfg)+I(S\Sfg, TW ∗\Tfg)+OB(h)(deg(T ) degR(T,W
(h+1))).

We evaluate the second term by induction. Writing P = fg, thanks to
our upper bound on deg(TW ∗) we can proceed as in the proof of Theorem

3.5 to reduce the problem to the estimation of I(SP , T̃ ) with T̃ = TP and

deg(T̃ ) ≥ deg(T )/2. Because deg(P ) is bounded by (6.9), we can use the
same argument as in the proof of that result to obtain a satisfactory bound.

For the analogue of Theorem 6.2 we may again start by discarding a subset
S′ ⊆ S to reduce to the case S =

⋃rh
i=1Pr(TW

(h)
i

). As in the proof of Theorem

6.2, we may now find some h ≤ s ≤ n such that Mn−s satisfies (6.2). It is

easy to ensure that in this situation we have δn−s(W
(h)
1 ) < ηδn−s+1(W

(h)
1 )

for some η &B(h) 1 that is sufficiently small with respect to B(h), similarly
as it was done in (6.4).

We now separate the components of W (s) according to whether they be-
long to Cp, as we did for W (h) in the proof of the analogue of Theorem
3.5. In particular, we write W ∗ for the union of those components that
belong to Cp. If deg(TW ∗) .B(h) deg(T ) we can proceed exactly as we
did before in this case to obtain a satisfactory bound, using the fact that
degR(T,W

(s+1)) .B(h) degR(T,W
(h+1)) by Lemma 3.14 and that a poly-

nomial of degree .B(h) δ(W (s)) that does not vanish identically on any

irreducible component of W (s) will necessarily not vanish identically on any
irreducible component of W (h). The latter observation follows from the fact
that

.B(h) δ(W (s)) .B(h) δn−s(W
(h)
i ) < δn−s+1(W

(h)
i ), (6.10)

for every 1 ≤ i ≤ rh, by Lemma 3.4 and our choice of η.
We may therefore assume that deg(TW ∗) &B(h) deg(T ). But then the

result follows by the same argument as in the proof of Theorem 6.2, noticing
that by (5.4) we now have the inequality

|S|
∏n−s

i=0 δi(W
(h)
1 )

.B(h)

|S|
deg(T )

deg(TW ∗)

deg(W ∗)
.B(h)

|S|
deg(T )

Dp
s(T ),

allowing us to get a bound in terms of Dp
m(T ) instead of Dm(T ). This gives

the desired result.
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