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a b s t r a c t

This paper is devoted to nonparametric analysis of functional data. We give asymptotic
results for a kNN generalized regression estimator when the observed variables take values
in any abstract space. The main novelty is our uniform consistency result (with rates).
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1. Introduction

There is a wide variety of nonparametric smoothing techniques which are constructed by means of different sorts of
local weighting. This is the case for kernel regression methods where the regression estimate is constructed, at each point
of interest x, by averaging the data falling into a neighbourhood of x. It is well-known that the key parameter for insuring
the good behaviour of the estimate (both from an asymptotic point of view and for finite sample applications) is the size of
the neighbouring window, namely the radius h of the ball defining it. On one side, there is the wish for letting this window
width depend on x (that is, h = hx), in order to construct location-adaptive smoothers. On the other hand, the choice of
hx in practice is not straightforward. One of the most popular ways of overcoming these difficulties is to consider a kNN
neighbourhood. It consists in fixing some integer k and in defining hx as a value such that the ball of centre x and radius hx
contains exactly k data elements. In this way, the resulting estimate is location-adaptive and it depends on a single discrete
parameter (that is, the integer k) instead of depending on an infinite number of continuous parameters (those are, the radius
h = hx, for all x). As a partial drawback, the mathematical treatment of kNN estimates is much more difficult because the
method is based on a random neighbourhood. In situations where data are real valued the literature is rather large and kNN
regressors are known to combine good theoretical asymptotic properties and a nice finite sample behaviour (see Collomb
(1980) or Devroye (1982), for early references, and Chapter 6 in Györfi et al. (2002), for a general discussion). Extensions to
multivariate data have also been widely studied (see for instance Bhattacharya and Mack (1990), for an early reference, and
Biau and Devroye (2010), most recent advances).

On the other hand, modern sciences are now able to collect continuous data (such as curves and images) and statisticians
are in front of new challenges. This field, known as functional data analysis (FDA), has been popularized in the last two
decades,mainly through the books by Ramsay and Silverman (2002, 2005),which are devoted tomethodological and applied
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issues respectively. While this early literature was mainly based on linear ideas, the link between nonparametric modelling
and FDA started recently to be studied with the book by Ferraty and Vieu (2006). Nonparametric functional data analysis
(NPFDA) is now taking more and more importance in the literature, and specially in the context of regression analysis
with functional covariates (see for instance Ferraty and Romain (2010)). Because the local features of a random variable
change more from one area of the space to another one when the dimension increases, kNNmethods are natural appealing
candidates for nonparametric regression in infinite dimensional settings. Until now the literature in question has been quite
underdeveloped since it is restricted to pointwise consistency results (see Burba et al. (2009) and Lian (2011)).

The main aim of our paper is to state a general consistency result on kNN regression estimates with functional variables
(see Theorem 2 in Section 3). The asymptotics are stated in terms of almost complete convergence1 which is known to imply
both almost sure convergence and convergence in probability (see for instance Bosq and Lecoutre (1987)). The main feature
of our result is uniformity, and it is discussed in Section 5 how this is of utmost importance formany further developments in
FDA. The second feature is to provide the rates of convergence which show the effects of the topological structure endowing
the functional space. It is finally worth noting that, even if our main purpose is functional regression, the paper is written
in a general form allowing other types of functional estimation problems (see Remark 1). Also, as a second interesting by-
product, we state a technical lemma showing how uniform results for local weighted sequences on fixed neighbourhood
can be adapted to similar results with random neighbourhoods. The interest of such a result is well beyond the scope of this
paper (see Section 4.1).

2. The kNN functional regressor

2.1. General notations

Let {(Xi, Yi)}i=1,...,n be n random independent and identically distributed (i.i.d.) realizations of (X, Y ) and valued inF ×R.
(F , d) is a semi-metric space; F is not necessarily of finite dimension and we do not suppose the existence of some
dominating measure for the probability distribution of X. For χ ∈ F , let B(χ, ε) be the ball of centre χ and radius ε for
the topology associated with d: B(χ, ε) = {χ ′

∈ F /d(χ ′, χ) ≤ ε}.
Our purpose is to prove uniform results on a subset SF of F whose topological structure appears through the notion of

entropy. Recall that the Kolmogorov’s ε-entropy of some set S is defined byψS(ε) = log(Nε(S)), where Nε(S) is theminimal
number of open balls in F of radius ε which is necessary to cover S.

2.2. The model and the estimate

We wish to estimate a generalized regression function, defined from some known real-valued Borel link L, as

mL(χ) = E[L(Y )|X = χ ], ∀χ ∈ F . (2.1)

Remark 1. It is worth noting that this model includes the standard regression problems (when L is the function L(t) = t),
but alsomany other ones. For instance when choosing, for fixed y, the function L(t) = 1(−∞,y](t) one gets as operatormL the
conditional distribution operator Fy(χ) = P(Y ≤ y|X = χ). Similarly, the choice L(t) = 1(y,∞)(t) leads to the conditional
survival function.

The kNN kernel estimator is defined, for any functional element χ , by looking for the k nearest neighbours of χ among the
functional sample {Xi, i = 1, . . . , n}, and then by a weighted averaging of the corresponding L(Yi). This leads to

mkNN(χ) =

n
i=1

K

Hn,k(χ)

−1d(χ,Xi)

L(Yi)

n
i=1

K

Hn,k(χ)−1d(χ,Xi)

 , ∀χ ∈ F , (2.2)

where K is a kernel with support in [0,∞) and Hn,k(χ) is defined as follows:

Hn,k(χ) = min


h ∈ R+

:

n
i=1

1B(χ,h)(Xi) = k


. (2.3)

Note that Hn,k(χ) is a positive random variable which depends on (X1, . . . ,Xn).

1 Recall that a sequence (Tn)n∈N∗ of random variables is said to converge almost completely to some variable T , if and only if ∀ε > 0,


∞

n=1 P(|Tn − T | >

ε) < ∞. This is denoted by Tn → T , a.co. (or equivalently by Tn − T = oa.co.(1)). We say the sequence (Tn)n∈N∗ is Tn − T = oa.co.(un), if the sequence
u−1
n |Tn − T | converges almost completely to zero.



Author's personal copy

N.L. Kudraszow, P. Vieu / Statistics and Probability Letters 83 (2013) 1863–1870 1865

In fact this kNN estimate can be seen as an extension to random and locally adaptive neighbourhood of the traditional
kernel approach defined as

mL(χ) =

n
i=1

K

h(χ)−1d(χ,Xi)


L(Yi)

n
i=1

K

h(χ)−1d(χ,Xi)

 , ∀χ ∈ F , (2.4)

where h(χ) = hn(χ) are positive real numbers decreasing to zero as n goes to infinity. The principal interest of the kNN
method appears in the implementation. The fact that the smoothing parameter k takes its values in a discrete set makes
things more simple from the practical point of view. Burba et al. (2009) showed by means of examples that the kNN
method takes into account the local structure of the data and gives better predictions when the data are heterogeneously
concentrated.

3. Rates of uniform consistency

3.1. The hypotheses

We denote by C and C ′ some generic strictly positive real constants, changing from line to line. Assume the following
hypotheses.

(H1) (H1a) ∀ε > 0, ϕχ (ε) := P(X ∈ B(χ, ε)) > 0, with ϕχ (·) continuous on a neighbourhood of 0 and ϕχ (0) = 0.
(H1b) There exist a nonnegative function φ(.) and a positive function f (.) such that for some b >
0, supχ∈SF

ϕχ (ε)/φ(ε)− f (χ)
 = O(εb), as ε → 0.

(H2) mL is a bounded Lipschitz operator of order b on SF , that is, there exists b > 0 such that ∀χ1, χ2 ∈ SF , |mL(χ1) −

mL(χ2)| ≤ Cdb(χ1, χ2).
(H3) ∀l ≥ 2, E(|L(Y )|l|X = χ) < δl(χ) < C with δl(·) continuous on SF .
(H4) The kernel function K has to be

(H4a) a nonnegative, bounded, non increasing function with support [0, 1] and Lipschitz on [0, 1),
(H4b) if K(1) = 0, it must also be such that −∞ < C < K ′(t) < C ′ < 0.

(H5) The function φ is such that
(H5a) φ(0) = 0 and limε→0 φ(ε) = 0,
(H5b) ∃C > 0, ∃η0 > 0,∀0 < η < η0, φ

′(η) < C ,
(H5c) φ is regularly varying at 0 with nonnegative index, that is, there exists a function ζ0(u) = uα , with α ≥ 0, such

that for all u ∈ [0, 1],

lim
ε→0

φ(uε)
φ(ε)

:= lim
ε→0

ζε(u) = ζ0(u).

(H6) Kolmogorov’s ε-entropy of SF satisfies
∞
n=1

exp

(1 − ω)ψSF


log n
n


< ∞ for some ω > 1.

Remark 2. In the case of K(1) = 0, under assumptions (H1), (H4), (H5a) and (H5b) it is easily seen that ∃C > 0, ∃η0 > 0,
∀0 < η < η0,

 η
0 φ(u)du > Cηφ(η).

3.2. Main result

We start by reminding the uniform asymptotic properties ofmL defined in (2.4). Theorem 1 was proved by Ferraty et al.
(2010) in the special case when h(χ) = h for all χ ∈ SF , but their proof can be followed line by line under (3.1). This general
condition (3.1) will be a crucial preliminary tool for us.

Theorem 1. Suppose that assumptions (H1)–(H6) hold, and that the bandwidths h(χ) satisfy, for n large enough,

0 < C1h ≤ inf
χ∈SF

h(χ) ≤ sup
χ∈SF

h(χ) ≤ C2h < ∞, (3.1)

where h = hn is a sequence (independent of χ ) such that h → 0 and (log n)2/nφ(h) < ψSF (log n/n) < nφ(h)/ log n, for n
large enough. Then we have

sup
χ∈SF

|mL(χ)− mL(χ)| = O(hb)+ Oa.co.

ψSF

 log n
n


nφ(h)

 .
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We can now state our main result, whose proof will be presented in Section 4.

Theorem 2. Under assumptions (H1)–(H6), suppose that k = kn is a sequence of positive real numbers such that k/n → 0 and
(log n)2/k < ψSF (log n/n) < k/ log n, for n large enough, then we have

sup
χ∈SF

|mkNN(χ)− mL(χ)| = Oa.co.

φ−1

k
n

b

+


ψSF

 log n
n


k

 .
3.3. Comments on the results

On the hypotheses. First of all note that condition (H4) includes two types of kernels which are traditionally used in practice:
box and continuous kernels. Conditions (H2) and (H3) are very common in the nonparametric literature (and also in the
multivariate one) and they are used here to prove Theorem 1 (see Ferraty et al. (2010) for details).

Assumption (H1b) is known as the ‘‘concentration property’’ in infinite dimensional spaces. Formany examples, the small
ball probability ϕχ (ε) can be approximated, around zero, as a product of two independent functions f (χ) and φ(ε) (see for
instanceMayer-Wolf and Zeitouni (1993) for the diffusion process, Bogachev (1999) for a Gaussianmeasure and Li and Shao
(2001) for a general Gaussian process). The most frequent result available in the literature is of the form ϕχ (ε) ∼ f (χ)φ(ε)
where φ(ε) = εγ exp(−C/εp) with γ ≥ 0 and p ≥ 0. It corresponds to the Ornstein–Uhlenbeck and general diffusion
processes (for such processes, p = 2 and γ = 0) and the fractal processes (for such processes, γ > 0 and p = 0). This class
of processes also satisfy condition (H5). Note that these notions are strongly linked with the measure of proximity d which
is considered, and all the examples discussed just before are concerned with d being standard norms (like Hölder norm or
supremum norm for instance).

Assumption (H6) acts on Kolmogorov’s ε-entropy of SF . There are special cases of functional spaces F and subsets SF

whereψSF (log(n)/n) ≫ log(n). Some examples are the closed ball in a Sobolev space, the unit ball of the Cameron–Martin
space and a compact subset in a Hilbert space with a projection semi-metric (see Kolmogorov and Tikhomirov (1959), van
der Vaart and van Zanten (2007)and Ferraty et al. (2010), respectively, for further details). In all these cases it is easy to see
that (H6) is verified as soon as β > 2.
On the rates of convergence. First of all it is worth noting that, by taking k of order nφ(h), the kNN estimate reaches the same
rate of convergence as the kernel estimate does (see Theorem 1). More importantly, to attest the quality of these rates, it
suffices to look at the case F = Rq to see that they are exactly matching the rate (log n/n)b/(2b+q) which is optimal for
q-dimensional functions (see Stone (1982)). Note also that, for the exponential-type processes described before the rate of
convergence may look quite slow for unfamiliar people (of order (log n)−α for some α > 0) but this is true only when using
as ‘‘d’’ a standard norm; other kinds of d can be used to improve strongly these rates, as discussed in Ferraty and Vieu (2006,
Lemma 13.6).

4. Proofs

4.1. A general lemma

This section presents a result that will allow us to derive asymptotic results for kNN estimators directly from similar
results on kernel regression. Because this lemma is of possible interest formany other purposes (see discussion in Section 5),
this section is self-contained and specific notations are introduced. Let (Ai, Bi)i=1,...,n be n randompairs valued in (Ω×R,A×

B(R))where (Ω,A) is a general measurable space. Let SΩ be a fixed subset ofΩ and we note that G : R× (SΩ ×Ω) → R+

a function such that, ∀χ ∈ SΩ ,G(·, (χ, ·)) is measurable and ∀t, t ′ ∈ R:

(L0) : t ≤ t ′ H⇒ G(t, z) ≤ G(t ′, z) ∀z ∈ SΩ ×Ω.

Let (Dn(χ))n∈N be a sequence of random real variables (r.r.v.) and c : SΩ → R be a nonrandom function such that
supχ∈SΩ |c(χ)| < ∞. Also, for all χ in SΩ and n ∈ N\{0} we define

cn,χ (t) =

n
i=1

BiG (t, (χ,Ai))

n
i=1

G (t, (χ,Ai))

.

Lemma 3. Let (un)n∈N be a decreasing positive sequence such that limn→∞ un = 0. If, for all increasing sequence βn ∈ (0, 1)
with βn − 1 = O(un), there exist two sequences of r.r.v. (D−

n (βn, χ))n∈N and (D+
n (βn, χ))n∈N such that

(L1) ∀n ∈ N,∀χ ∈ SΩ ,D−
n (βn, χ) ≤ D+

n (βn, χ),
(L2) 1

{D−
n (βn,χ)≤Dn(χ)≤D+

n (βn,χ), ∀χ∈SΩ }
−→ 1, a.co.
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(L3) supχ∈SΩ

n
i=1 G


D−
n (βn,χ),(χ,Ai)


n

i=1 G

D+
n (βn,χ),(χ,Ai)

 − βn

 = Oa.co.(un),

(L4) supχ∈SΩ |cn,χ (D−
n (βn, χ))− c(χ)| = Oa.co.(un),

(L5) supχ∈SΩ |cn,χ (D+
n (βn, χ))− c(χ)| = Oa.co.(un).

Then

sup
χ∈SΩ

|cn,χ (Dn(χ))− c(χ)| = Oa.co.(un). (4.1)

Proof. For technical reasons, we assume in this proof that the random variables Bi are nonnegative. The result for any real-
valued Bi can be deduced by taking Bi = B+

i − B−

i where B+

i = max(Bi, 0) and B−

i = −min(Bi, 0). Let

c−

n,χ (βn) =

n
i=1

BiG

D−
n (βn, χ), (χ,Ai)


n

i=1
G

D+
n (βn, χ), (χ,Ai)

 ,

c+

n,χ (βn) =

n
i=1

BiG

D+
n (βn, χ), (χ,Ai)


n

i=1
G

D−
n (βn, χ), (χ,Ai)

 .
For all sequence βn ∈ (0, 1)with βn − 1 = O(un), (L3) and (L4) give

sup
χ∈SΩ

|c−

n,χ (βn)− c(χ)| ≤ sup
χ∈SΩ

|c−

n,χ (βn)− βnc(χ)| + |c(χ)| |βn − 1|

= Oa.co.(un) (4.2)

while (L3) and (L5) give similarly

sup
χ∈SΩ

|c+

n,χ (βn)− c(χ)| = Oa.co.(un). (4.3)

For all ε > 0, we note Tn(ε) = {supχ∈SΩ |cn,χ (Dn(χ))− c(χ)| ≤ εun} and for all sequence βn ∈ (0, 1)with βn − 1 = O(un)

S−

n (ε, βn) =


sup
χ∈SΩ

|c−

n,χ (βn)− c(χ)| ≤ εun


,

S+

n (ε, βn) =


sup
χ∈SΩ

|c+

n,χ (βn)− c(χ)| ≤ εun


,

Sn(βn) = {c−

n,χ (βn) ≤ cn,χ (Dn(χ)) ≤ c+

n,χ (βn),∀χ ∈ SΩ}.

Then for all βn ∈ (0, 1)with βn − 1 = O(un),

∀ε > 0, S−

n (ε, βn) ∩ S+

n (ε, βn) ∩ Sn(βn) ⊂ Tn(ε). (4.4)

Let Gn(βn) = {D−
n (βn, χ) ≤ Dn(χ) ≤ D+

n (βn, χ),∀χ ∈ SΩ}, then (L0) implies that Gn(βn) ⊂ Sn(βn) and, from (4.4), we
have

∀ε > 0, Tn(ε)c ⊂ S−

n (βn)
c
∪ S+

n (βn)
c
∪ Gn(βn)

c

and hence,

P

sup
χ∈SΩ

cn,χ (Dn(χ))− c(χ)
 > εun


≤ P


sup
χ∈SΩ

c−

n,χ (βn,ε)− c(χ)
 > εun


+ P


sup
χ∈SΩ

c+

n,χ (βn,ε)− c(χ)
 > εun


+ P


1

{D−
n (βn,χ)≤Dn≤D+

n (βn,χ),∀χ∈SΩ }
= 0


.

This completes the proof since (L2), (4.2) and (4.3) imply that for some ε0 > 0

∞
n=1

P

sup
χ∈SΩ

cn,χ (Dn(χ))− c(χ)
 > ε0un


< ∞. � (4.5)
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Remark 3. We wish to present two results, similar to Lemma 3, and that could be interesting for further purposes.

(i) Under the same conditions, the result stated in Lemma 3 holds by changing all the almost complete convergence into
convergence in probability.

(ii) Under the same conditions, the result stated in Lemma 3 holds by changing all the Oa.co. into oa.co..

The proof of (i) is the same as the one of Lemma 3, changing (4.5) into the fact that the sequence involved in (4.5) tends to
zero. The proof of (ii) is similar.

4.2. Proof of Theorem 2

The main idea of the proof is to use Lemma 3, with SΩ = SF ,Ai = Xi, Bi = Yi, G(t, (χ,A)) = K(t−1d(χ,A)), Dn(χ) =

Hn,k(χ), cn,χ (Hn,k(χ)) = mkNN(χ) and c(χ) = mL(χ). We begin by recalling that the estimate

m1(χ, h) =
1

nEK

h−1d(χ,X1)

 n
i=1

K

h−1d(χ,Xi)


, ∀χ ∈ F , (4.6)

satisfies under the conditions of Theorem 1 (see Ferraty et al. (2010))

sup
χ∈SF

|m1(χ, h)− 1| = Oa.co.

ψSF

 log n
n


nφ(h)

 . (4.7)

Let βn ∈ (0, 1) be an increasing sequence such that βn − 1 = O(un), with

un = φ−1(k/n)b +

ψSF (log n/n) /k.

We choose D−
n (βn, χ) and D+

n (βn, χ) such that ϕχ (D−
n (βn, χ)) = (

√
βnk)/n, and ϕχ (D+

n (βn, χ)) = k/(n
√
βn). Let us use

the notation

h−(χ) = D−

n (βn, χ), h+(χ) = D+

n (βn, χ) and h = φ−1(k/n).

(a) Checking (L4) and (L5). Note that the local bandwidth h−(χ) satisfies together with the fixed bandwidth h the conditions
of Theorem 1. So (using the definition of un for the last equality),

sup
χ∈SF

|cn,χ (D−

n (βn, χ))− c(χ)| = Oa.co.


φ−1


k
n

b

+


ψSF (log n/n)

k


= Oa.co.(un).

Then, (L4) is checked. Applying the same reasoning to the case h+(χ)we obtain

sup
χ∈SF

|cn,χ (D+

n (βn, χ))− c(χ)| = Oa.co.(un),

and (L5) is also checked.
(b) Checking (L2). Let χ1, χ2, . . . , χNε(SF ) be an ε-net, with ε = log n/n. For all η > 0 we can write

P
1{D−

n (βn,χ)≤Dn(χ)≤D+
n (βn,χ),∀χ∈SF }

− 1
 > η


= P


inf
χ∈SF

(Dn(χ)− D−

n (βn, χ)) < 0


+ P

sup
χ∈SF

(Dn(χ)− D+

n (βn, χ)) > 0


≤ P


min
1≤j≤Nε(SF )

(Hn,k(χj)− D−

n (βn, χj)) < 2ε


+ P


max
1≤j≤Nε(SF )

(Hn,k(χj)− D+

n (βn, χj)) > −2ε


≤ Nε(SF ) max
1≤j≤Nε(SF )

P


n

i=1

1B(χj,h−(χj)+2ε)(Xi) ≥ k


+ Nε(SF ) max

1≤j≤Nε(SF )
P


n

i=1

1B(χj,h+(χj)−2ε)(Xi) < k


.

Then, using standard Chernoff inequalities (see, e.g., Lemma 4.3 of Burba et al. (2009)) in the right hand side of the above
inequality we obtain

P
1{D−

n (βn)≤Dn(χ)≤D+
n (βn),∀χ∈SF }

− 1
 > η


≤ Nε(SF )


e− log[C n

k φ(h
−

+2ε) exp(1−βn)]
−k

+Nε(SF )

e
βn
2 (1−C n

k φ(h
+

−2ε))
2−k

.
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Since ψSF (ε) = log(Nε(SF )) and ψSF (
log n
n )/k → 0 one has for some n0

P
1{D−

n (βn)≤Dn≤D+
n (βn),∀χ∈SF }

− 1
 > η


≤ e(1−ω).ψSF (log n/n), ∀n > n0.

Finally, using (H6), (L2) is checked.
(c) Checking (L3). In order to prove (L3) we denote f ∗(χ, h(χ)) = EK


h−1(χ)d(χ,X1)


for all χ ∈ SF and we define

(omitting the argument χ )

F1 =
f ∗

χ,D−

n (βn, χ)


f ∗

χ,D+

n (βn, χ)
 , F2 =

m1

χ, h−

n (χ)


m1

χ, h+

n (χ)
 − 1, F3 =

f ∗

χ, h+

n (χ)


f ∗

χ, h−

n (χ)
βn − 1.

We have the following decomposition:
n

i=1
K

(D−

n (βn, χ))
−1d(χ,Xi)


n

i=1
K

(D+

n (βnχ))−1d(χ,Xi)
 − βn

 ≤ |F1| |F2| + |F1| |F3|.

Because of (H4a), one has directly that

sup
χ∈SF

|F1| < C . (4.8)

Moreover, one can write (using (4.7) for the last equality):

sup
χ∈SF

|F2| ≤

sup
χ∈SF

|m1

χ, h−

n (χ)

− 1| + sup

χ∈SF
|m1


χ, h+

n (χ)

− 1|

inf
χ∈SF

|m1

χ, h+

n (χ)

|

,

= Oa.co.


ψSF (log n/n)

k


. (4.9)

On the other hand, following the proof of Lemma 1 in Ezzahrioui and Ould-Saïd (2008) and using (H1b) it is easily seen
that for some τ > 0

f ∗(χ, h(χ)) = φ(h(χ))τ f (χ)+ O(φ(h(χ))h(χ)b), ∀χ ∈ SF ,

= τϕχ (h(χ))+ O(φ(h)hb), ∀χ ∈ SF . (4.10)

Because ϕχ (D−
n (βn, χ))/ϕχ (D+

n (βn, χ)) = βn one gets

sup
χ∈SF

|F3| = O(φ(h)hb) = O


βnφ

−1

k
n

b

. (4.11)

So, (L3) is checked because βn → 1 and because (4.8), (4.9) and (4.11) imply that

sup
χ∈SF


n

i=1
K

(D−

n (βn, χ))
−1d(χ,Xi)


n

i=1
K

(D+

n (βn, χ))−1d(χ,Xi)
 − βn

 = Oa.co.(un).

Note that (L0) is obviously satisfied because of (H4a), and that (L1) is also trivially satisfied by construction of D−
n (βn, χ) and

D+
n (βn, χ). So, one can apply Lemma 3, and (4.1) is exactly the result of Theorem 2. �

5. Potential extensions

An important direct consequence of our result is the following corollary.

Corollary 4. Under the conditions of Theorem 2, and if Z is a F -valued random variable such that P(Z ∈ SF ) = 1, then we
have

|mkNN(Z)− mL(Z)| = Oa.co.


φ−1


k
n

b

+


ψSF (log n/n)

k


.
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In a wide range of situations, one has to develop two-stage estimation procedures. Each time that the first step of the
procedure involves a functional regression estimate, one needs to use at the second stage some result like Corollary 4
(Z being for instance one of the previous variables Xi of the sample) in order to calibrate the first procedure. An example
of this situation are models with both linear and nonparametric components. For those, (at least to our knowledge) the
literature on kNN techniques is still empty, while the traditional kernel approach has been widely successful (see Aneiros
Perez and Vieu (2006), Shin (2009) and Zhang andWang (2012) for functional partial linear modelling, Ait-Sidi et al. (2008)
for single functional index modelling or Ferraty et al. (2012) for functional projection pursuit regression). Corollary 4 could
also be useful for data-driven smoothing parameter selection: once again this has been explored for traditional kernels (see
Benheni et al. (2007)) but remains an open question for kNN estimates.

Since for the theoretical study of nonparametric estimates based on kernels, random ratios must be dealt with (for a
deeper discussion of random ratios see Doukhan and Lang (2009)), Lemma 3 could be useful when one has to deal with
random bandwidths and the desired result with fix bandwidth is known. This lemma is a generalization of a result obtained
in Collomb (1980) that would allow us to obtain the rates of convergence in functional settings.

So, our conjecture is that this paper will not only be a contribution to kNN regression, but also a useful tool for developing
other applications in functional data analysis.
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