

Article

pubs.acs.org/Langmuir

Water State and Carbonyl Distribution Populations in Confined Regions of Lipid Bilayers Observed by FTIR Spectroscopy

3 E. A. Disalvo* and M. A. Frias

- 4 Laboratory of Biointerfaces and Biomimetic Systems, CITSE, University of Santiago del Estero-CONICET, 4200 Santiago del Estero,
- 5 Argentina

10

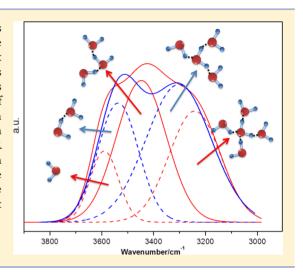
11

12

13

14

15


16

17

18

19

ABSTRACT: It has been suggested that water in confined regions presents different properties than bulk water, mainly because of the changes in water population species that may be induced by the adjacent walls of different polarities in terms of hydrogen bond formation. In this context, it would be expected that lipids in the gel and the fluid states should offer different templates for water organization. The presence of water pockets or defects in lipid bilayers has been proposed to explain the insertion of charged and polar peptides and amino acids in membranes. In this work, we provide direct evidence by means of FTIR spectroscopy that water band profiles are changed whether lipids are in the solid state, in the gel state after heating and cooling across the phase transition, or in the fluid state. The different bands found in each case were assigned to different H-bonded water populations in agreement with the exposure of carbonyl groups.

INTRODUCTION

21 The comprehension of the role of water in biological systems 22 has regained increasing interest in the last few years because it 23 has been recognized that it has a profound effect on the activity 24 of enzymes, the stability of biological structures such as DNA, 25 and the structure and function of membranes. Poecifically, it 26 is not possible to have a complete picture of protein membrane 27 interaction without considering the role of interfacial water in 28 the thermodynamic process of minimizing the free energy of 29 the interactions.

Because thermodynamics is related to order-disorder and 31 energy transitions, the formation of structures as a result of 32 hydrogen bonds between water molecules themselves and with 33 lipids and proteins is important to understanding the behavior 34 of water near the lipid surfaces. In this regard, it is known that 35 the properties of water adjacent to different wall materials 36 strongly differ from those of bulk water becauses of its 37 interaction with hydrophilic-hydrophobic groups. 4,5 Further-38 more, structural and dynamic properties of the water of 39 hydration and their influence on the dynamic behavior of 40 biomembranes, as studied by neutron scattering techniques, 41 revealed the strong interaction of the first hydration layer with 42 the membrane surface and a reduced self-diffusion of aqueous 43 solvent parallel to the membrane surface. It is concluded that 44 protein/lipid complex are strongly affected by the amount of 45 solvent interacting with the lipids and the membrane proteins. 46 In particular, the lipids and their ability to attract solvent 47 molecules play important roles in the hydration-induced 48 flexibility of biomembranes. Moreover, it has been argued 49 that H-bond networks play an essential role in recognition and binding. In short, it is now accepted that the properties of these 50 confined regions of water are due to the influence of the 51 adjacent wall of the materials. 4,5,7 52

In the case of lipid membranes, some water molecules are 53 likely to be confined between hydrocarbon chains, mainly at the 54 first carbon atoms. Water facing apolar regions would be 55 organized in a different H-bond array than that bound to polar 56 groups such as CO and PO, and also it would be different from 57 the H-bond coordination in pure water.

Thus, it is of interest to explore the water properties in terms 59 of H-bond formation in the function of the distribution of 60 membrane polar groups exposed to water. The membrane 61 surface properties have been examined via phospholipid 62 headgroup IR absorption mainly by the carbonyl and phosphate 63 band displacement due to hydration and dehydration and have 64 been correlated with the water bands reflecting the water state. 65

In the presence of lipids, a 3411 cm⁻¹ peak and the shoulder 66 at 3250 cm⁻¹ were ascribed to the O–H stretching mode of 67 water molecules in an effective H-bonded structure (network 68 water) whereas the weak high-frequency shoulder near 3600 69 cm⁻¹ was assigned to water in a structure of distorted 70 (weakened) hydrogen bonds, named multimer water, to 71 describe the monomer of water molecules without H-bond 72 formation. Hence, water forms transient microdomains of two 73 possible states: low density network water of high connectivity 74 and higher density multimer water of lower connectivity. 8-11 75

Received: November 5, 2012 Revised: December 22, 2012

76 According to these authors, thermotropic and lyotropic 77 measurements are interpreted in terms of the significantly 78 larger fraction of multimer water adsorbed by the liquid-79 crystalline phase in comparison to the gel state. Thus, lipid 80 melting would give rise to the transfer of water from the 81 network state to the multimeric state in considerable 82 amounts, Low-connectivity domains would prevail in the 83 fluid phase, and those of high connectivity would prevail in the 84 gel state.

Changes in water stretching bands are relatively small, 66 indicating a flexible HB network as proposed for bulk liquid. In 78 cationic lipids, a broad central peak at 3411 cm⁻¹ has been 78 reported to be coincident with that found in phospholipids in 78 the gel state. 79

The frequency band corresponding to the phosphate groups in phosphatidylcholines does not vary when lipids go through the gel—liquid phase transition. This indicates that the shydration shell around the phosphates is altered neither by the phase change nor by the temperature. In contrast, it has been recognized that water may penetrate the lipid bilayer to a plane located in the region of the carbonyl groups. Under this condition, the carbonyl band has been shown to vary with scurvature, osmotic stress, and lipid phase state. Apparently, these groups are sensitive to small changes in the bilayer interfaces in relation to their exposure to water. In this regard, we have shown previously that the intensity and band centers are displaced if the lipids are either in a planar gel or in a corrugated phase, that is, in spontaneous or induced to curvatures.

To determine the correlation of the potential H-bond group 106 formation with the possible changes in the adjacent water 107 structure, we have correlated the shift of bound and unbound 108 carbonyl populations at the gel—fluid transition temperature 109 with the evolution of the water band distribution in saturated 110 lipids.

This analysis may give a more complete picture of the H 112 bond networks at the interphase in relation to the membrane 113 surface topology.

14 METHODOLOGY

Materials. 1,2-Dimyristoylphosphatidylcholine (DMPC) was obtained from Avanti Polar Lipids Inc. (Alabaster, AL), and its purity was checked by thin layer chromatography using a chloroform/methanol/water mixture. A single spot was found; therefore, it was used without further purification (>99% pure).

FTIR Spectroscopic Measurements of Water Bands. Samples for infrared spectroscopy were prepared by hydrating 3–5 mg of the dry lipid with the addition of $50-70~\mu$ L of H_2O at pH 7.4 followed by vigorous vortex mixing at temperatures well above the gel/liquid-crystalline phase transition of the lipid. After hydration, lipid dispersions were stabilized at 18 °C and squeezed between the windows of a sample cell equipped with a spacer of appropriate thickness (CaF₂ windows). Once the sample was mounted in the instrument holder, its temperature was controlled by an external, computer-controlled circulating water bath. Spectra were registered before and after full lipid hydration and at temperatures below and above the lipid phase transition (i.e., 18 and 25 °C, respectively).

For the monitoring of the carbonyl group bands, a similar process was followed by replacing water with D_2O .

The spectra were recorded with an FTIR Nicolet TM 380 spectrophotometer provided with a DTGS detector and a KBr

beam splitter. A total of 320 scans were recorded for hydrated 138 samples with 2 cm⁻¹ resolution. A number of different samples 139 (no less than three) were processed to obtain a standard 140 deviation below the resolution of the equipment.

The full hydration of the lipids was monitored by the 142 saturation of the peak of the $\nu_{\rm asym}({\rm PO_2}^-)$ band, which shows an 143 absorption at 1240 cm⁻¹ in the solid state and shifts to 1230 144 cm⁻¹ when saturated with water 145

In the spectral regions of interest, the observed absorption 146 bands are usually the result of the summation of broad 147 overlapping components. In such cases, Fourier deconvolution 148 was used to determine the frequencies of the component bands 149 accurately (band narrowing factors: 1.6–2.2), followed by curve 150 fitting to obtain band widths and intensities. Each band was 151 simulated by a Gaussian–Lorentzian function for which best-fit 152 estimates of band shape were achieved with an ~70% Gaussian 153 contribution.

FTIR spectroscopy is especially suitable for identifying H 155 bonds between interfacial water molecules and phospholipid 156 headgroups. Generally speaking, the formation of an H-bonded 157 complex between two atoms A and B, A–H···B, leads to a 158 weakening of the A–H bond and therefor a downshift of the 159 frequency of the A–H stretching vibration by a few tens of 160 cm⁻¹. The width in frequency of the $\nu_{1, 3}({\rm OH})$ band reflects the 161 distribution in strength of the H bonds between the 162 phospholipid and interfacial water molecules.

The OH stretching band of water is centered at around 164 3380–3405 cm⁻¹ and shifts to higher frequencies when solutes 165 promote nonlinear hydrogen bonding and to lower frequencies 166 when stronger H bonding is promoted by the increase in the 167 number of linear H bonds. 168

Thus, IR measurements provide a semiquantitative picture of 169 the water arrangement around solutes dissolved in it. 170

■ RESULTS AND DISCUSSION

The FTIR spectra for pure water show a broad band in the 172 $3330-3400~\text{cm}^{-1}$ region and a lower band at around $1700~\text{cm}^{-1}$ 173 (Figure 1, blue line). This last band overlaps with that 174 f1 corresponding to the stretching frequency of the carbonyl 175

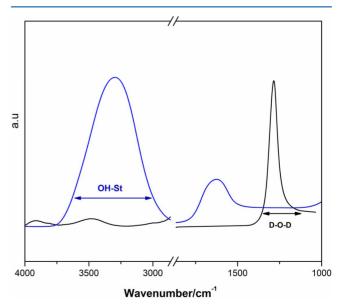
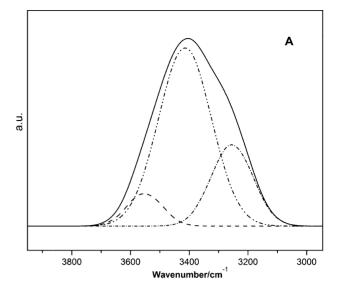


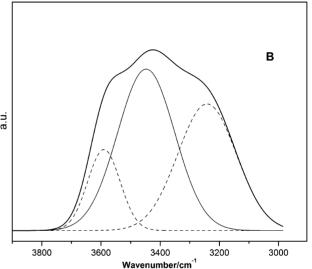
Figure 1. Pure water (blue line) and deuterated water spectra (black line).

176 groups in phospholipids. To inspect the behavior of carbonyl 177 groups of lipids in different states, they must be dispersed in 178 deuterated water. In this case, the water band at 1700 cm⁻¹ is 179 displaced to lower frequencies and the region of carbonyl 180 groups can be analyzed without interference (Figure 1, black 181 line).

The comparison and analysis of the bands at 3330-3400 183 cm⁻¹ in water and that at 1740 cm⁻¹ for lipids in D_2O allows 184 the correlation of the behavior of water bands in comparison to 185 the carbonyl group populations in different hydration states.

In Figure 2A, the broad band centered at 3411 cm⁻¹ indicates a wide distribution of H bonds in the presence of solid lipids lss (i.e., lipids without swelling as described in Materials and Methods for the preparation of liposomes), similar to that preported when NaCl is dissolved in it. This is interpreted as a log consequence of the fact that before the process of swelling the lipid lattice distorts the H-bond network, promoting fewer bound water molecules. Under this condition, the PO stretching band is around 1240 cm⁻¹, denoting that lipids have not been hydrated.


In contrast, when lipids are swollen by heating to above the phase transition and then cooled to 18 °C (gel state), two shoulders, one at 3242.3 cm⁻¹ and another at 3589.3 cm⁻¹, can be seen in the deconvoluted spectra in addition to a central band at 3450.3 cm⁻¹ (Figure 2B). This change follows the evolution of water in the process of full hydration of lipids, a classical method employed to prepare multilamellar liposomes. In this process of hydration, the PO band shifts and saturates at 4 1230 cm⁻¹ (Table 1), as reported. 14


The lateral water bands at lower and higher frequencies denote the presence of bound and unbound water populations, respectively, when lipids are swollen in water and maintained in the gel state at 18 °C. Urea, a well-known water disrupting agent, shifts the water band to lower frequencies at 5 M, denoting strong hydrogen bond formation.

The central band at 3450.3 cm⁻¹ can probably be assigned to the band observed in pure water that has been shifted to higher frequencies by the lipids as a result of the higher exposure and concomitant hydration of the phosphate groups. The shift to higher frequencies when lipids are swollen and then maintained in the gel state accounts for the water species influenced by the exposed phosphates, not the phosphate band stretching that appears at 1230 cm⁻¹ (Table 1). This central band was reported for lipids in the gel state and for cationic lipids.

The central band observed at 3450.3 cm⁻¹ for lipids in the gel state disappears above the phase-transition temperature, and the lateral ones are now more intense and centered at 3298.2 cm⁻¹ and 3554.6 cm⁻¹ (Figure 2C).

The comparison of water bands in the gel (18 °C) with those in the fluid (25 °C) state denotes that, in the first case, swollen lipids absorb some of the water molecules. In the fluid state, the central peak, ascribed to phosphate hydration in the gel state, is not observed. The peak at 3298.2 cm⁻¹ in the fluid state is congruent with the strengthening of H bonds between water molecules. This is consistent with the reinforcement of H bonds between water molecules in the presence of nonpolar residues such as the CH₂ groups exposed to water. This is compatible with the formation of water clustering in between the lipid acyl chains when the bilayer is in the liquid-crystalline state. The peak at 3554.6 cm⁻¹ can be assigned to less H-bonded water molecules because of its comparatively higher peak frequency and is compatible with the low connectivity states reported elsewhere.

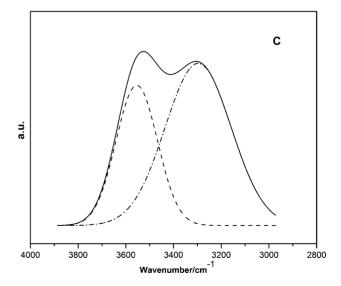
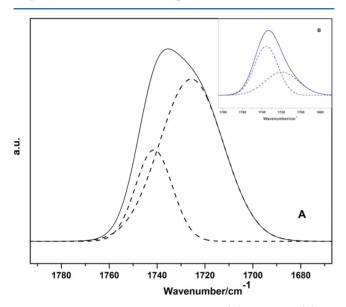


Figure 2. (A) Water band in the presence of solid DMPC before swelling. (B) Water bands in the presence of DMPC after heating and cooling and then after cooling to the gel state (18 $^{\circ}$ C). (C) Water bands in the presence of DMPC in the fluid state (25 $^{\circ}$ C). Solid lines correspond to spectra obtained experimentally. Dashed and dotted lines are deconvolutions showing the band components.


Table 1. Carbonyl and Phosphate Bands for DMPC in the Gel and Fluid States^a

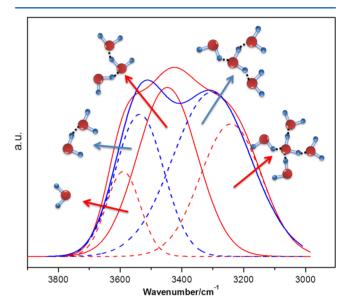
	DMPC gel state (18 °C)	DMPC fluid state (25 °C)
$\tilde{\nu}_{\rm p}/{\rm cm}^{-1}$ st C=O unbounded	1742.0 (0.2)	1735.6 (0.3)
$\tilde{\nu}_{\rm p}/{\rm cm}^{-1}$ st C=O bounded	1725.9 (0.2)	1719.8 (0.3)
$\tilde{\nu}_{\rm p}/{\rm cm}^{-1}$ st antisym ${\rm PO}_2^-$	1229.5 (0.2)	1230.0 (0.2)
$\tilde{\nu}_{\mathbf{p}}/\mathrm{cm}^{-1}$ st sym PO_{2}^{-1}	1086.3 (0.2)	1087.4 (0.2)

^aStandard deviations are reported in parentheses.

Water deeply penetrates the headgroup region, interacting with phosphate and carbonyl groups, in a region that is 5-10 Å 241 from the headgroup surface. However, only carbonyl groups 242 appear to be affected at the phase transition (Table 1).

In the spectra of lipids in D_2O , an unbound CO band is to lower 44 found at 1742 cm⁻¹ in the gel state and shifts to lower 45 frequencies in the fluid state (Figure 3 and Table 1). The same

Figure 3. Carbonyl group bands of DMPC in (A) the gel and (B) the liquid-crystalline state.


246 is observed for the bound CO population (Table 1). The
247 splitting of the CO band could be attributed to two populations
248 of carbonyl groups exposed to a more and a less polar
249 environment, for example, as a result of different distances from
250 the phosphate group. This means that both CO populations
251 form stronger hydrogen bonds, most probably with water,
252 when the lipids are in the fluid state because the relative
253 population of bound to unbound CO groups is much higher in
254 the gel than in the fluid state. That is, parallel to the increase in
255 the exposure of both populations to water, the distribution of
256 bound (hydrated) to unbound (less hydrated) carbonyl groups
257 is not even and differs according to the lipid-phase state. This is
258 an interesting point indicating that the changes at the phase
259 transition, sensed by following the CO distribution, correspond
260 to water penetration.

The shift to lower frequencies in both populations is in 262 correlation with the disappearance of the central band at 3450.3 cm⁻¹ at the expense of the bands at 3298.2 and 3554.6 cm⁻¹ 264 denoting a rearrangement of the water structure. A possibility is 265 that the shift to lower frequencies of the 3589.3 cm⁻¹ peak 266 observed in the gel state would be due to a strengthening of

water structure in an icelike network induced by the exposed 267 carbonyl groups.

In conclusion, both carbonyl populations form stronger H 269 bonds affecting the water populations, meaning that CO and 270 water conformations are linked. When CO molecules are less 271 exposed, water bands are centered at 3242.3 and 3589.3, and 272 when CO molecules are more exposed, those bands are 273 centered at 3298.2 and 3554.6 cm⁻¹.

How is water at interfaces different from that in the bulk? 275 Different water species have been postulated to be present in 276 pure water. The presence of lipids can promote some of these 277 species, as a detriment to others depending on the lipid phase 278 state. Thus, the total number of water bands found under the 279 different conditions of the lipids in contact with it can be 280 summarized in five water populations (Figure 4). Assuming that 281 f4

Figure 4. Hypothetical distribution of water species and the corresponding water bands in the gel (red curve) and the liquid-crystalline (blue line) states as derived from deconvolution. From left to right: monomers (0H bonds), dimers (1H bond), trimers (2H bonds), tetramers (3H bonds), and pentamers (4H bonds).

the values of frequency are given by the strength of the H ²⁸² bonds between them and that this is given by its coordination, ²⁸³ those populations are four H-bonded (3242. cm⁻¹), 3H bonded ²⁸⁴ (3298 cm⁻¹), 2H bonded (3450.3 cm⁻¹), 1H bonded (3554.6 ²⁸⁵ cm⁻¹), and 0H bonded (3589.3 cm⁻¹). In terms of water ²⁸⁶ species, they correspond to pentamers (a tetrahedrally ²⁸⁷ coordinated centered molecule), tetramers, trimers, dimers, ²⁸⁸ and monomers, respectively. In the gel state, the ⁴H/²H/⁰H ²⁸⁹ populations predominate, and in the fluid state , only the ³H ²⁹⁰ and ¹H populations are present.

The amount of water sequestered by lipids varies according 292 to the methods employed in its determination. It has been 293 reported that the gel phase of DMPC has 12 to 13 water 294 molecules. 21,22 Likewise, the fluid state is correlated with 18–20 295 water molecules of with 27 water molecules/lipid. 22 23 296

However, the structural and dynamic properties of the water 297 of hydration and their effects on the dynamic behavior of 298 biomembranes have been ascribed to the first hydration layer 299 that involves at most one to two water layers from the lipid 300 surface.

A high core of hydration given by 14 water molecules was derived from reverse micelle studies, ²⁵2 and 6 of them are condensed on each phosphate, which is not altered by the phase transition (Table 1).

The 4H, 2H, and 0H populations, associated with the three bands in the gel state, correspond to the organization of water molecules in the outer shell of the condensed groups, which is consistent with the six water molecules in the hydration shell of the phosphates. In the fluid state, the carbonyl groups would bind an additional four molecules as proton acceptors, and another two molecules can interact with the CO double bond, accounting for the total of 8, which amounts to the 14 water molecules reported for micelles. This point is further discussed below.

Carbonyls are proton acceptors. Thus, when these are exposed to water a tetrahedrically coordinated water molecule are can give a proton to an exposed carbonyl free electron pair, thus displacing the 4H population to a 3H population, which would explain the frequency shift from 3242.3 to 3298.2 cm⁻¹.

The gel-fluid transition implies that there is also a transition to the 2H and 0H populations to the 1H population. This appears as a dismutation, $2H \rightarrow 1H$ and $0H \rightarrow 1H$ (i.e., deprotonation is concomitant with protonation), suggesting that the 1H population is more stable than the other two in the presence of exposed CO molecules. This may account for the donation of a proton to the CO double bond in which sterically only one proton can be accommodated. This interaction would be rather weak in comparison to a neat CO-HO interaction.

The difference in the frequency of the transition from 4H to 331 3H is 56 cm⁻¹ (blue shift), and that for the 2H to 1H transition 332 is 104.3 cm⁻¹ (blue shift). This suggests that when a pentamer 333 (i.e., a tetrahydrically coordinated molecule) breaks an H bond 334 in the water structure the energy involved is lower than that 335 corresponding to the breaking of an H bond in a trimer. It 336 might be possible that in the first case the H bond broken with 337 water is rebuilt with the exposed carbonyl and thus the 338 frequency shift is lower than expected. The high shift in 339 frequency from trimer to dimer would account for the breaking 340 of H bonds without the possibility of reforming.

However, the transition from 0H (monomer) to 1H (dimer) 342 is 34.7 cm⁻¹ (red shift). A red shift was ascribed to the water 343 dangling of OH bonds in the hydration shells around dissolved 344 nonpolar hydrocarbons observed in aqueous solutions of 345 alcohols and found at air—water interfaces. Thus, it is 346 reasonable that the presence of fluid lipids promotes a water 347 structure similar to that found in hydrophobic interphases.

It is noteworthy that the 50 cm⁻¹ frequency shift similar to 349 the 60 to 70 cm⁻¹ difference between free OH and 1H-bonded 350 OH groups in low-temperature benzene—water clusters $^{27}_{28}$ was 351 ascribed to the formation of π -H bonds in liquid water. 352 According to these results, the double bond of carbonyl groups 353 might admit water molecules in addition to those bound to the 354 free electron pairs on the oxygen. These molecules would 355 complete the 14 water molecules as described above. $^{26}_{26}$

Distributions of the different kinds of hydrogen-bonded molecules seem to be similar to those in the bulk liquid, seem to be similar to those in the bulk liquid, seem the relative populations of the molecules with different numbers of hydrogen bonds vary through the interface according to the carbonyl exposure. However, this means that the confinement effect is weakly dependent on the details of the interactions with the lipid surface.

It can be concluded that when carbonyl groups are exposed at least part of the water is organized in different H-bonding

coordination water species that may confer different surface 365 free energies to the membrane.

367

368

369

370

371

372

AUTHOR INFORMATION

Corresponding Author

*E-mail: eadisal@yahoo.com.ar.

Notes

The authors declare no competing financial interest.

REFERENCES

- (1) Bhattacharyya, K. Nature of biological water: a femtosecond 373 study. Chem. Commun. 2008, 2848–2857.
- (2) Bonn, M.; Campen, R. K. Optical methods for the study of 375 dynamics in biological membrane models. *Surf. Sci.* **2009**, *603*, 1945–377
- (3) MacCallum, J. L.; Bennett, W. F.; Tieleman, D. P. Distribution of 378 amino acids in a lipid bilayer from computer simulations. *Biophys. J.* 379 **2008**, *94*, 3393–3404.
- (4) Giovambattista, N.; Rossky, P. J.; Debenedetti, P. G. Effect of 381 pressure on the phase behavior and structure of water confined 382 between nanoscale hydrophobic and hydrophilic plates. *Phys. Rev. E* 383 **2006**, 73, 041604.
- (5) Schulz, E. P.; Alarcon, L. M.; Appignanesi, G. A. Behavior of 385 water in contact with model hydrophobic cavities and tunnels and 386 carbon nanotubes. *Eur. Phys. J. E* **2011**, *34*, 114–120.
- (6) Sovago, M.; Vartiainen, V.; Bonn, M. Observation of buried water 388 molecules in phospholipid membranes by surface sum-frequency 389 generation spectroscopy. *J. Chem. Phys.* **2009**, *131*, 161107–161111. 390
- (7) Lam, P.; Wynne, K. J.; Wnek, G. E. Surface-tension-confined 391 microfluidics. *Langmuir* **2002**, *18*, 948–951.
- (8) Binder, H. The molecular architecture of lipid membranes new 393 insights from hydration-tuning infrared linear dichroism spectroscopy. 394 *Appl. Spectrosc. Rev.* **2003**, 38, 15–69. 395
- (9) Binder, H. Water near lipid membranes as seen by infrared 396 spectroscopy. Eur. Biophys. J. 2007, 36, 265–279.
- (10) Binder, H.; Gutberlet, T.; Anikin, A.; Klose, G. Hydration of the 398 dienic lipid dioctadecadienoylphosphatidylcholine in the lamellar 399 phase–an infrared linear dichroism and x-ray study on headgroup 400 orientation, water ordering, and bilayer dimensions. *Biophys. J.* **1998**, 401 74, 1908–1923.
- (11) Binder, H.; Schmiedel, H. Infrared dichroism investigations on 403 the acyl chain ordering in lamellar structures. I. Order parameter 404 formalism and its application to polycrystalline stearic acid. *Vib.* 405 *Spectrosc.* **1999**, *21*, 51–73.
- (12) Faure, C.; Bonakdar, L.; Dufourc, E. Determination of DMPC 407 hydration in the L_{α} and $L_{\beta'}$ phases by ²H solid state NMR of D₂O. *J.* 408 FEBS Lett. **1997**, 405, 263–266.
- (14) (13) Goñi, F. M.; Arrondo, J. L. R. A study of phospholipid 410 phosphate groups in model membranes by Fourier transform infrared 411 spectroscopy. Faraday Discuss. Chem. Soc. 1986, 81, 117–126. 412
- (15) (14) Simon, S. A.; McIntosh, T. J. Depth of water penetration into 413 lipid bilayers. *Methods Enzymol.* 1986, 127, 511–521.
- (16) (15) Bhide, S. Y.; Berkowitz, M. L. Structure and dynamics of water 415 at the interface with phospholipid bilayers. *J. Chem. Phys.* **2005**, 123, 416 224702 1.16.
- (17) (16) Frías, M. A.; Disalvo, E. A. Configuration of carbonyl groups at 418 the lipid interphases of different topological arrangements of lipid 419 dispersions. *Langmuir* 2009, 25, 8187–8191.
- (18) (17) Sharp, K. A.; Vanderkooi, J. N. Water in the half shell: structure 421 of water, focusing on angular structure and salvation. *Acc. Chem. Res.* 422 **2010**, 43, 231–239.
- (19) (18) Liu, D. F.; Ma, G.; Levering, L. M.; Allen, H. C. Vibrational 424 spectroscopy of aqueous sodium halide solutions and air—liquid 425 interfaces: observation of increased interfacial depth. *J. Phys. Chem. B* 426 **2004**, 108, 2252–2260.
- (13) (19) Woiterski, L.; Britt, D. W.; Käs, J. A.; Selle, C. Oriented confined 428 water induced by cationic lipids. *Langmuir* **2012**, 28, 4712–4722. 429

21) 430 (20) Mahoney, M. W.; Jorgensen, W. L. A five-site model for liquid 431 water and the reproduction of the density anomaly by rigid, 432 nonpolarizable potential functions. J. Chem. Phys. 2000, 112, 8910—433 8950.

- (22) 434 (21)—Nagle, J. F.; Tristram-Nagle, S. Structure of lipid bilayers. 435 Biochim. Biophys. Acta 2000, 1469, 159–195.
- (23) 436 (22)-Kučerka, N.; Liu, Y.; Chu, N.; Petrache, H. I.; Tristram-Nagle, 437 S.; Nagle, J. F. Structure of fully hydrated fluid phase DMPC and 438 DLPC lipid bilayers using X-ray scattering from oriented multilamellar 439 arrays and from unilamellar vesicles. *Biophys. J.* 2005, 88, 2626–2637.
- (24) 440 (23) Gruenbaum; Skinner, J. L. Vibrational spectroscopy of water in 441 hydrated lipid multi-bilayers. I. Infrared spectra and ultrafast pump-442 probe observables. J. Chem. Phys. 2011, 135, 07510.
- (25) 443 (24) Israelachvili, J. N.; Wennerström, H. Role of hydration and 444 water structure in biological and colloidal interactions. *Nature* 1996, 445 376, 219–225.
- (26) 446 (25) Lairion, F.; Filler, R.; Disalvo, E. A. Reversed micelles as model 447 systems to study interfacial properties of lipid bilayers. *Colloids Surf., B* 448 **2002**, 25, 369–371.
- (27) 449 (26) Perera, P. N.; Fega, K. R.; Lawrence, C.; Sundstroma, E. J.;
 450 Tomlinson-Phillips, J.; Ben-Amotz, D. Observation of water dangling
 451 OH bonds around dissolved nonpolar groups. *Proc. Nat. Acad. Sci.*452 U.S.A. 2009, 106, 12230–12234.
- (28) 453 (27) Gruenloh, C J; Carney, J. R.; Arrington, C. A.; Zwier, T. S.; 454 Fredericks, S. Y.; Jordan, K. D. Infrared spectrum of a molecular ice 455 cube: the S₄ and D_{2D} water octamers in benzene-(water). Science 1997, 456 276, 1678–1681.