
Vol.:(0123456789)1 3

Cognitive Computation 
https://doi.org/10.1007/s12559-022-10064-w

Uncovering the Secrets of the Concept of Place in Cognitive Maps 
Aided by Artificial Intelligence

Jose A. Fernandez‑Leon1,2  · Gerardo G. Acosta2,3

Received: 15 February 2022 / Accepted: 5 October 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
Uncovering how mental representations acquire, recall, and decode spatial information about relative locations and envi-
ronmental attributes (cognitive map) involves different challenges. This work is geared towards theoretical discussions on 
the controversial issue of cognitive scalability for understanding cognitive map emergence from place and grid cells at the 
intersection between neuroscience and artificial intelligence. In our view, different place maps emerge from parallel and 
hierarchical neural structures supporting a global cognitive map. The mechanisms sustaining these maps do not only process 
sensory input but also assign the input to a location. Contentious issues are presented around these concepts and provide 
concrete suggestions for moving the field forward. We recommend approaching the described challenges guided by AI-based  
theoretical aspects of encoded place instead of based chiefly on technological aspects to study the brain. SIGNIFICANCE: A 
formal difference exists between the concepts of spatial representations between experimental neuroscientists and computer 
scientists and engineers in the so-called neural-based autonomous navigation field. From a neuroscience perspective, we 
consider the position of an organism’s body to be entirely determined by translational spatial information (e.g., visited places 
and velocities). An organism predicts where it is at a specific time using continuous or discrete spatial functions embedded 
into navigation systems. From these functions, we infer that the concept of place has emerged. However, from an engineering 
standpoint, we represent structured scaffolds of behavioral processes to determine movements from the organism’s current 
position to some other spatial locations. These scaffolds are certainly affected by the system’s designer. Therefore, the coding 
of place, in this case, is predetermined. The contrast between emergent cognitive map through inputs versus predefined spatial 
recognition between two fields creates an inconsistency. Clarifying this tension can inform us on how the brain encodes abstract  
knowledge to represent spatial positions, which hints at a universal theory of cognition.
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Introduction

There are a growing number of international funding ini-
tiatives to understand the human brain and cognition, such 
as the American BRAIN Initiative (2020)1 and the Euro-
pean Human Brain Project (2020).2 These initiatives aim a 

common goal: to know how biological cognition emerges 
from interactions between neurons and across neural circuits 
in different brain areas to produce behavior. Success in this 
endeavor will eventually allow us to provide better treat-
ments for mental disorders medically and create more intelli-
gent machines technologically. Current artificial intelligence 
and machine learning technologies, including Watson (IBM, 
20203) and Siri (Apple, 20204), are representative examples 
of cutting-edge developments that have an impact in many 
fields, such as computational intelligence [1]. Unfortunately, 
they have a limited capacity for adaptation to new experi-
ences and act reliably as human intelligence.
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One way to proceed to address that issue is to develop 
a research program combining neuroscience and Artifi-
cial Intelligence (AI) fields to build robust and sophisti-
cated algorithms for better intelligent machines (c.f., [2]). 
To combine those two fields, however, we need theories, 
models, and conceptual frameworks to be tested and refined 
to understand biological cognition. The current consensus 
in neuroscience is that there is no unique theory on how 
the brain works. Neural technology has been developed to 
address this issue such as electrophysiological neural record-
ings neurons with a high spatial resolution [3], image-based 
recordings of a relatively large number of neurons [4], and 
functional recordings on the dynamics of simultaneous mul-
tiple brain areas [5]. Other techniques focus on targeting 
specific neural features, such as optogenetic manipulation 
of ensembles of neurons [6], targeting precise cell types and 
tracing projections across neural circuits [7].

Despite the importance of these technological develop-
ments, the taken research path seems to be biased toward 
developing new techniques rather than formulating new 
hypotheses from current knowledge on the principles gov-
erning the brain. In this respect, we can speculate that it 
remains difficult in current systems neuroscience to have 
a ubiquitous theory of cognition because most studies only 
focus on certain region to find neural correlates and deter-
minants of specific cognitive behaviors [8, 9]. Another sig-
nificant challenge is to build biologically plausible (rather 
than biologically identical) models that explain the behavior 
of interest from neuronal data. In addition, it is convenient 
to find biologically relevant principles that can be coded in 
neural models or any other computational intelligence tech-
nique. In particular, some of the current primary efforts in 
neuroscience to overcome the lack of a unifying theory for 
neural representations are in terms of how place is encoded 
in the neocortex [10]. We consider in this work the concept 
of place as an organizing principle in neural-based systems 
dealing with spatial recognition. The following section pre-
sents one example of how a specific research area in systems 
neuroscience advanced when combined with discoveries 
from the AI field using that notion of encoded space.

Scalability and Cognitive Spatial Maps

We step back in this section to look at the literature and offer 
a potential explanation of how cognitive maps integrate mul-
tiple sources of information to create the concept of place 
in neural networks. Cognitive maps refer to a neuronal rep-
resentation in a biological or an artificial organism (e.g., a 
cognitive robot), and they take role in spatial memories of an 
experienced environment by combining current senses and 
stored memories [11, 12]; see also [13] and [14] for a related 
non-spatial understanding of this concept.

This section aims to outline first that there is a significant 
difference between representation of a place in biological 
and engineered networks. We focus on how cognitive place 
maps can be scalable from brain areas to cortical columns at 
the intersection between neuroscience and artificial intelli-
gence. This scalability is discussed less in the literature. Ini-
tially, we highlight what information is needed at the highest 
level of abstraction and show the corresponding elements in 
the brain to drill down into the details. Our assumption in 
this discussion is that many of the neurons absorb informa-
tion from various sources. This assumption aims to address 
the issue of information needed for cognitive spatial maps 
and support that view from findings in neuroscience.

The discovery of hippocampal ‘place cells’ (i.e., neu-
rons that show an increased activity at specific locations in 
space; Fig. 1) by O'Keefe and Dostrovsky [11] opened dis-
cussions on how the mammalian nervous system processes 
sensorimotor information for navigation. In [15], it is dis-
cussed that place fields (i.e., spatial areas where place cells 
becoming active when an animal enters in that area) (Fig. 1) 
of place cells in CA1 region of the hippocampus emerge 
rapidly. Rapid place field formation in CA1 could mediate 
the ability of the hippocampus to rapidly represent episodes 
generating unique environmental representations, and con-
tinuously updated by exploratory experience to predict the 
near future (e.g., where to go). In parallel, place cells in CA3 
region of the Hippocampus are more stable and gradually 
form representations with robust trial-to-trial dynamics, thus 
encoding location in the present moment (e.g., where I am). 
The difference in dynamics of place cells shed light on the 
neural mechanisms involved in task orientation in unfamiliar 
environments.

O'Keefe’s work influenced research of May-Brit and 
Edvard Moser, who discovered ‘grid cells’, i.e., entorhinal 
cells that fire at regular intervals as the animal navigates an 
area [16] (Fig. 1). These cells are believed to code the ani-
mal’s position in space because grid cells respond to location 
and distance to objects [16–19]. Grid cells are thought to 
provide a multi-scale periodic representation of the space 
that functions as a metric [20], which is critical to integrate 
self-movement (path integration) [21] and to plan direct tra-
jectories to targets (vector-based navigation; Fig. 2) [22]. 
Both place and grid cell types were found during experi-
ments with rats, but the grid cells’ topology was predicted 
theoretically and recently reported experimentally. In [23], 
a toroidal topology of grid cells based on attractor dynamics 
has been described from neural recordings.

There has also been indication for two simultaneous cog-
nitive maps represented in the hippocampus which is the core 
of the Parallel Map Theory [24]. The first map can be under-
stood as a ‘bearing map’ facing direction at a relative angle 
from the current position. This map represents the environ-
ment through self-movement and gradient cues, where these 
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vector-based cues create a loose environmental representa-
tion. The second map can be seen as a ‘sketch map’, as an 
outline drawn from observation rather than from exact survey 

measurements, and only shows the environment’s main fea-
tures. In this later map, positional cues are internally rep-
resented by coding specific objects or landmarks and their 

Fig. 1  Grid and place cells 
work together to determine the 
animal’s position. Schematics 
of hippocampal place cells and 
entorhinal grid cells during 
spatial navigation of a rat in a 
squared arena. Representations 
of the positioning of the hip-
pocampal formation, including 
different hippocampal subfields 
(CA1 and CA3) and the 
entorhinal cortex. On the right 
side, the cells’ firing fields with 
color indicating the place in the 
arena where the neurons emitted 
action potentials through high 
density (red) to no spikes (blue) 
scale

Fig. 2  Schematic of vector-
based navigation using grid 
place code. Emergent rep-
resentations of place cells 
through their place fields 
provide anchoring spatial 
information for grid cells. 
Goal-directed navigation in 
novel environments can be 
based on comparing grid cell 
codes at different environmental 
positions. Entorhinal grid cells 
function to support a Euclidean 
spatial metric for goal-directed 
vectors. The direct dynamical 
relationship between place and 
grid cells during navigation 
is usually omitted in com-
putational modeling despite 
experimental evidence showing 
their anatomical connections 
and disruption effects. Every 
squared activity map represents 
the cells’ firing fields with color 
indicating the place in the arena 
where the neurons emitted 
action potentials through high 
density (yellow) to no spikes 
(blue) scale
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relative locations. Evidence showed that the sketch map had 
been found in neurobiological processes and explanations, 
but the bearing map has unclear supporting evidence [25]. 
The overall cognitive map predicted by the theory is thus 
obtained by combining these two separate maps [24].

The Parallel Map Theory also suggests that at least two 
maps could emerge in parallel by integrating different 
sources of information. However, we can also think that 
maps could form hierarchies and control structures that 
enable the ‘activation’ of certain behaviors when needed. 
This view of hierarchies is rooted on evidence suggesting 
that an integrated map is difficult to be divided into the 
bearing (directional) and sketch (positional) maps to test 
the Parallel Map Theory. By restricting a navigational task 
to one class of environmental cues (directional or posi-
tional), it is not always possible to observe the induced 
changes in an animal’s behavior or patterns of neural 
activity. A parallel map can be partially observed by spe-
cifically impairing the channel for the other map through 
brain lesions [24]. Despite many publications on the physi-
ology and function of the hippocampus (see reviews in 
[12, 26]), however, few studies have provided these types 
of tests in enough detail to test the theory. This lack of 
studies is because either the lesions are not specific (or 
the task’s environment contains both types of cues), or the 

assay of spatial learning is not precise enough to detect 
the presence and nature of residual spatial learning [24]. 
These difficulties suggest that, in addition to the existence 
of parallel maps, those maps integrate at neuronal level 
and hierarchical organization.

The view of having hierarchies that control spatial navi-
gation refers to the brain scale theory that is challenging 
when referring to scaffoldings of cognitive maps. Instead 
of guiding the navigation via parallel maps as predicted 
by the Parallel Map Theory, we see the possibility that a 
specific navigation system (Fig. 3) represents integrated 
sensory information for action selection in an intimate and 
bottom-up fashion [27]. A hierarchical organization can be 
related to grid cell models that represent different grid layers 
resembling the topographical organization in the dorsocau-
dal MEC [28]. These layers are commonly modelled through 
the orientation and phase of the grid by means of the spacing 
(minimal inter-subfields distance) and size of its subfields 
[29]. In terms of the relationship between place and grid 
cells, that link is still debated.

In contrast to Parallel Map Theory, or a hierarchical 
organization, theoretical studies usually assumed that error 
reduction for path integration (Fig. 2) occurs intrinsically in 
grid cell networks without a possible role of place cells. In 
other words, grid cells would have intrinsic features that do 

Fig. 3  The brain’s navigation 
system based on place and grid 
cell integration. Specialized 
place cells in the hippocampus 
encode specific locations, while 
entorhinal grid cells provide a 
long-range coordinate system to 
determine position. The map-
ping of one location represented 
by a place cell occurs when the 
animal is situated at the current 
position. A grid cell that fires 
at that location also fires at the 
other positions in a hexago-
nal array. The mapping path 
involves the animal’s movement 
in which the activity of several 
grid cells records the locations 
the animal visited through the 
overlapping hexagonal coordi-
nate system (based on [88])
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not need external (or even hierarchical) information from 
place cells, where grid cells alone represent a reference (a 
metric) frame of the environment. However, experimentally, 
the inactivation of one region affects the dynamics of the 
other, such as an extinguished grid pattern after hippocam-
pus silencing [30] or a decreased place field stability after 
MEC inactivation [31]. Regarding brain connectivity, studies 
also reported that a significant portion of excitatory afferent 
projections of MEC originates in grid cells and project to 
place cells [32–34]. Large feedback projections from place 
cells to the deep layers of MEC were similarly reported [35] 
and these works suggest that certain hierarchical relation-
ships are necessary to explain place coding [36, 37] (Fig. 3). 
It seems then that parallel and hierarchical organizations of 
neural structures sustain cognitive maps.

We can think that is possible to decompose the naviga-
tion into sub-behaviors through a hierarchy of layers, and 
then combine with mechanisms that integrate in neural 
networks as observed in grid cells. In this view, each layer 
implements certain behavioral competence, and higher lev-
els can subsume lower levels to create a viable behavior. 
For example, because an organism must be able to ‘avoid 
objects’ to ‘reach a goal’ effectively, the hierarchical con-
trol navigation architecture creates a system in which the 
higher layers utilize the lower-level competencies. The 

layers, which all receive sensory information, work in 
parallel and generate outputs, where these outputs can be 
actuators’ commands or signals that suppress or inhibit 
other layers. A possible decomposition of a navigation 
strategy under the view of layered cognitive maps can be 
found in Fig. 4. The figure shows how the components 
might interact to implement path integration and vector 
navigation using simulated grid cells and location coded 
by place cells [38]. Under this view, cognitive maps could 
emerge guided by scalability principles for spatial loca-
tion based on different behavioral modules. Each module 
evolves sequentially or in parallel, specialized in perform-
ing a specific task (e.g., some having different populations 
of place cells or grid cell layers [28]). The ‘layered evolu-
tion’ paradigm [39] can be also considered and verified 
through simulations based on the subsumption architecture 
[40], widely influential in autonomous robotics and real-
time AI.

Place Coding at Systemic Level

Using computational AI models, we can test and discuss 
whether map hierarchies could be helpful in our under-
standing of cognitive maps on every scale, ranging from 

Fig. 4  A possible decomposition of a navigation strategy under the 
view of layered cognitive maps representation. The figure shows how 
the components interact to implement path integration and vector navi-
gation (Fig. 2). The architecture is based on path integration provided 

by simulated grid cells and location coded by place cells. Bold dashed 
lines represent alternative ways to understand the connections (adapted 
based on [38])
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simple to more abstract maps. We saw that the concept 
of place can emerge as integrated into parallel and hier-
archical neural structures based on place and grid cells. 
However, we briefly discussed that overall cognitive maps 
emerge mostly following AI-based learning rules in engi-
neered systems which seems in opposition to the mecha-
nisms in the brain. The integrated view of grid cells’ cod-
ing place seems guided by intrinsic activity and proposes 
a reference frame of the environment. In this respect, grid 
cell-based navigation provide means of navigation with-
out external cues (e.g., in the absence of visual cues) but 
sensing of the organism’s velocity internally [28]. Place 
cells instead provide a means of navigation through exter-
nal cues where there are landmarks and other locations to 
provide spatial information. These coding strategies seem 
to complement each other in how to code the place and 
they are useful for situations where one strategy is more 
convenient than the other; e.g., navigation in cluttered 
environments [41], and generalization of place learning 
[42, 43]). The hierarchical, engineering-based approach 
seems only tangential to these issues but has other benefits 
when understanding how place is encoded.

Following an engineering bio-inspired approach, emer-
gent cognitive maps could be evaluated over different 
scenarios in a given environment, ranging from a detailed 
simulation model to a real-world experiment. Using these 
simulations, we can restrict the task environment to some 
external cues or patterns (from sensor signals), affect-
ing an agent or a simulated animal’s behavior or impair-
ing specific maps, not the others. This approach presents 
advantages compared to a biological experiment to test the 
Parallel Map Theory. Furthermore, the AI-based computa-
tional approach could be the first step to obtaining a layered 
map theory focused on explaining biological-like cognition 
for the emergent complex behaviors in spatial navigation 
or visual navigation [44]. We hypothesize that by hav-
ing access to all components and variables of a cognitive 
map, in coupling with the environment, we could observe 
that these maps form part of a brain-like scale perspec-
tive in terms of creation of complex behaviors from simple 
ones. This approach is beneficial because the parallel and 
hierarchical organization of complex behaviors such as 
navigation and learning to move toward a goal remains an 
unsolved issue for biologically inspired robotics [39, 41].

Aiming to synthetize such cognitive map from an engi-
neering perspective, the robot should take advantage of a 
computer simulation model of the entorhinal grid cells for 
a discretization map considering the spatial dimensions of 
the scenario. We should also include into this bioinspired 
computer model a neural network representing the hip-
pocampus place cells to allow the robot to self-locate in the 
previously discretized map from grid cells. The granularity 
of the grid would also give idea of which cues or patterns 

are necessary to consider. If the trajectory planner must 
outcome a path in a big city, it is useless to consider little 
stones aside the roads as references. Instead, it should con-
sider buildings, squares and so forth to turn into a corner or 
keep a straight direction. If the scenario now is a sleeping 
room, the grid cells-based map should be adjusted to detail 
in smaller objects, even when the robot maintains the same 
size. The coexistence of these two maps resembles also 
hierarchical levels of control. Even with the same sensors 
and actuators, supervisory controllers would tune low-level 
controllers to reach the targets without major inconven-
iences. We can think of a lower layer with sets of control 
loops regulating positioning and errors to targets consider-
ing as input certain cues and other upper layer scaling the 
robot mission scenario. Also, the control must be com-
pleted considering the world model and hence adjusting the 
gains of the lower layer control loops from the perceived 
granularity of the map, in a typical supervisory control 
architecture. The interaction of both systems, one living in 
the grid cells and the other in the place cells, would assure 
a stable behavior for the whole cognitive map.

The feasibility of having such a stable sophisticated 
cognitive maps obtained from the coordination of simple 
behavioral modules allows several engineering applications. 
For instance, mobile robot navigation in unknown environ-
ments needs online replanning of trajectories and tasks to 
face unforeseen situations [45]. It is vital in these systems 
to have a mechanism to self-adapt and organize tasks by 
activating selectively different components of a cognitive 
map. Under the idea of scalability of cognitive maps, the 
place cells can be activated for a topological strategy, while 
grid cell modules (e.g., layers [29, 46]) support metric vec-
tor navigation providing the direction toward a goal. In this, 
the selection of the most appropriate strategy under certain 
navigation conditions can be supported by integrating a grid 
cell-based vector navigation mechanism with local obstacle 
avoidance mediated by place cells forming a topological 
graph of the environment.

Although this work does not present a formal theoretical 
demonstration of systemic stability and phenotypic (online) 
adaptation, our previous work with neuro controllers [39] 
represents a step in this direction. That work denotes a suc-
cessful case study of mission fulfillment in the presence of 
obstacles and while targets and topologies change. We can 
distinguish having a layered behavioral control: (a) there 
is an emphasis on iterative development and its relation-
ship to biological-like strategies; (b) emphasis on identi-
fying the connections between limited, task-specific per-
ception directly to the expressed actions that require it; (c) 
the emphasis on distributive and parallel control, thereby 
integrating the perception, control, and action systems in 
a manner like animals. However, the main disadvantage is 
the difficulty of designing versatile action selection through 
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a highly distributed system of inhibition and suppression 
understood as biologically friendly [27]. It would be very 
interesting to implement this trajectory planning and naviga-
tion system based on the grid cells plus place cells cognitive 
map, perhaps with the Numenta technology of Thousand 
Brains [10], to experimentally test how the grid cells map 
interacts with the place cells and vice versa, at least in a 
synthetic way over an autonomous robot. In any case, further 
investigations should be made to determine if the effects of 
using layered coordination can be widespread as a new engi-
neering paradigm for scaling up within cognitive robotics.

Place Coding at Cortical Level

It has been hypothesized that cortical columns (Fig. 5) not 
only capture a sensation (e.g., orientation selectivity) but 
also “the relative location of that sensation” in space, refer-
ring to a theory proposing that knowing is inseparable from 

doing [47]. This theory rests on internally generated models 
of cognitive maps referring to a location where the local and 
anatomical network of cortical columns embodies inputs 
selectivity. These columns represent a group of neurons in 
the brain’s cortex that have nearly identical receptive fields 
and are organized hierarchically across six cortical layers 
(laminar structure) and subdivisions [48]. The receptive field 
or sensory space, like in place cells’ place fields, indicates 
a delimited medium where some physiological stimuli can 
evoke a sensory neuronal response in specific organisms [49].

The Thousand Brains Theory [10] proposed that the con-
cept of place is also embedded into the cortical columns in a 
similar way that grid cells are defined. We believe that there 
is one missing piece in understanding how grid-like place 
coding emerges in the cortex. No clear indication of physi-
ological findings of how place cell-like activities emerge 
within cortical columns. This understanding is crucial if the 
theory wants to be based on the concept of grid cell-like 

Fig. 5  The canonical cortical column and its connections represent 
the basic building block for a reference frame in the Thousand Brains 
Theory of Intelligence [50]. A  Representation of cortical columns 
based on nonhuman primate cortex (∼200 μm in size and six layers). 
Layers 2/3 provide outputs to near cortical columns (green arrows) 
and other cortical areas (blue arrow from layer 2/3). Layer 4 receives 
inputs from for example visual areas. Layers 5/6 provide outputs 
to subcortical targets represented as blue arrows, e.g., LGN: lateral 
geniculate nucleus; SC: superior colliculus). All six layers share infor-

mation via interlaminar connections (yellow arrows). Figure based on 
[89] and interpretations on grid cell-like processing based on [50]. B   
Schematics of the perspective introduced by the Thousand Brains The-
ory of Intelligence based on cortical columns. Columns seem to create 
reference frames for every object based on similar processes observed 
for grid cells like a map. Yellow arrows represent local horizontal con-
nections between columns. Red arrows represent inputs to specific 
cortical layers. Figure based on (50)
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activities we previously showed. Let us touch on this issue 
in more detail as follows.

From [17], we can summarize entorhinal grid cells as 
representing a reference frame for environments. These cells 
represent the location of the organism’s body and move-
ments and are needed for mapping environments. The pro-
posed hypothesis is that grid-cell-like processing exists in 
every cortical column to create reference frames for objects, 
represent the location of columns’ input in that reference 
frame, and are used for learning the structure of objects and 
moving limbs [10, 50]. This idea is also rooted in the intrin-
sic connectivity between the cortical layers. Based on the 
mouse brain [51], it was reported that layer 5 (L5) projec-
tion neurons account for intracortical outputs (e.g., motor 
outputs). L2/3, L4, and L6 neurons contact a subset of the L5 
cortical targets. Most patterns are consistent with hierarchi-
cal position between cortical areas (feedforward, feedback). 
L2/3 and L4 neurons are primarily associated with feed-
forward projection patterns and L6 with feedback. L5 has 
feedforward and feedback projection patterns (see also [10, 
50] for an account of other cortical column projections as 
a complete sensory-motor modeling system). Based on that 
evidence, there is no clear understanding of how to conceive 
grid cell-like activities in cortical columns or how these col-
umns encode place as place cells do. The possible argument 
in favor of the theory is that the embedded mechanism that 
uses the cortical column for coding place is not the same 
as those for grid and place cells, as discussed in this work.

Thus, we should ask whether neocortical-based principles 
will be essential for AI, because sensory-motor learning and 
inference in AI and robotics should not be separate. The 
Thousand Brains Theory proposes some guiding principles 
in the brain regarding a hierarchy of cortical regions [52]. 
These regions encode memory sequences of spatiotemporal 
patterns to understand how that hierarchy works and predic-
tions. At the same time, some few other neurons are highly 
active between and within regions. Each layer of cells in a 
region is a memory sequence based on sparse distributed 
representations, columns representing feedforward data. 
Overall, these observations suggest that not only parallel but 
also hierarchical groups of neurons organize physiologically 
in the cortex. Uncovering how these groups encode space 
and enable certain aspects of the emergence of cognitive 
maps could be crucial. This observation is essential if we 
want to understand how the brain understands the world and 
what it means to be intelligent (see also [10]).

Contentious Issues

We discuss next some contentious issues and concrete sug-
gestions for merging neuroscience and AI through the lay-
ered maps view of place coding.

Cognitive Map Scalability and Other Theories

One central goal in theoretical neuroscience is to predict 
the response properties of sensory and non-sensory neurons 
from the first principles. Some examples of ‘grand’ theo-
ries in neural coding include sparse coding [53, 54], and 
information maximization principles [55, 56], among others. 
We think that the discussions of these theories on how they 
address the scalability issue of the acquired information can 
be linked to explanations on cognitive maps emergence.

Let us briefly discuss this view for each of these theories. 
Efficient coding posits that sensory neurons (note first that 
place and grid cells are not such neurons) encode maximal 
information about their inputs. Many variants of efficient 
coding such as redundancy reduction, different formulations 
of predictive coding for continuous on-line learning, robust 
coding, among others, differ in their regimes of applicability 
and the relevance of signals to be encoded given constraints 
[57]. It is unclear then how these types of efficient coding 
relate to or what is expected when diverse coding features 
are combined to form a more complex representation at 
non-sensory representations such as place and grid cells. 
Seeing cognitive maps as scalable might shed some light 
on understanding the process of information maximization, 
from initial to full exploration of a new environment. This 
explanation seems possible from neural processes observed 
in the hippocampus and entorhinal cortex, and could indicate 
how that information is maximized across time associated 
with episodic memories; i.e., encoded experiences that con-
tain information on where and when it happened [58].

In addition, it has recently been suggested that sparse 
coding may be one of the underlying organizing principles 
for the brain’s navigational system [36] and that ‘emergent 
elasticity’ in the neural code for space is crucial [59]. Sparse 
representations seem to relate to robust systems in that they 
reduce the complexity of the represented information. Other 
works have reported specific properties of place cells such 
as remapping (i.e., change in the place field characteristics) 
when an animal experiences a new environment or the same 
environment in a new context [60, 61]. By considering strat-
egies that are biologically plausible on how the coding of 
place evolves when more information is acquired, we believe 
that the introduced approach has the potential to explain how 
the integration of multiple maps is made in the brain.

Replay and Scalability

The role of forward and backward replay of hippocampal 
sequences has been argued to solve AI’s significant credit 
assignment problem (CAP), which refers to determining 
the actions that lead to a particular outcome [62]. Different 
works from neuroscience showed that there is a differen-
tiation in terms of conveyed information in sensory signals 
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coming to place cells and the information replayed after 
sensing, while the decision to determine the actions seems 
to form part of a different system. Examples of this under-
standing can be found based on actor-critic models and grid 
cell emergence [63], and object avoidance in undesirable 
situations (i.e., the agent gets stuck) where place cells replay 
events to set closer subgoals for vector navigation [41]. Fur-
thermore, other examples can be considered on when sens-
ing specific landmarks and the activation of different types 
of space-coding neurons is possible [44, 64], where many 
are partly controlled by environmental visual landmarks [65, 
66]. It is then important to discuss a little bit more how 
visual inputs triggers the replay of information.

Recently, a neuronal type in the medial entorhinal cor-
tex has been reported signaling the animal’s distance and 
direction to discrete objects in the environment, the so-called 
object-vector (OV) cells [67]. It has been argued that this 
cell type is part of a vast network of neurons coding spatial 
features, including allocentric tuned neurons situated in the 
hippocampal-parahippocampal regions (i.e., place cells [11], 
boundary vector cells [44, 68, 69] landmark-controlled cells 
[61, 70, 71], and egocentric tunned neurons coordinating the 
relative position to the animal’s body [72–75]. Interestingly, 
the OV cells responded to landmark objects with various fea-
tures. Still, the firing of these neurons increased gradually as 
the object’s contrast increased [64]. Additionally, other cell 
types signaling the dynamics of the animal’s movement were 
previously discovered, such as coding the animal’s position 
[18, 76], head direction [77, 78], speed [79], and c.f. [80]) 
and proximity to borders [81]. In the rodent hippocampus, 
the firing of place cells has been discussed as having visual 
modulation [66] and conveying distance information [82]. 
Most of these significant discoveries in the neural naviga-
tion system have been reported considering the visualization 
of specific objects, and some were based on computational 
modeling [83, 84]. Less work has been done on extracting 
landmark information from real-world scenes during move-
ments [64], which leaves the question of how visual infor-
mation is maintained by place cells as highly dynamic along 
with animal’s movements yet sensitive to landmark position 
[65].

Neural Activities and Scalability

A contentious issue is how many place and grid cell activi-
ties, and their properties are necessary to be included in a 
model within the layered cognitive map approach. Place 
cells have several properties such as phase precession, direc-
tionality, remapping, etc. Other properties can involve sen-
sory input because the information received by place cells 
is a compilation, a functional derivative of different stimuli 
such as visuospatial, olfactory, vestibular, and movement 
inputs [85]. Another property is plasticity in general and 

spike-timing-dependent plasticity [86] in particular. It is 
unclear however the necessity of including how many of 
these properties in the layered approach, or whether AI-
based learning rules. In this respect, our experiments with 
layered evolution of complex behaviors indicated that plas-
tic neurocontrollers do not necessarily convey better perfor-
mance during spatial navigation [39]. Based on hierarchical 
generative models for learning high-level representations 
from visual invariances [87], place field emergence can be 
studied using neural plasticity. Therefore, there is no indi-
cation on whether plasticity is compulsory required in each 
case study.

Overall, using artificial and computational intelligence 
models, it is possible to show that the synergetic proper-
ties of neurons can help our understanding of the principles 
behind spatial coding, which could clarify how the concept 
of place emerges in the brain. Models with these features 
must be seen as a computational tool to explore the most 
spartan possible conditions for obtaining a feature of inter-
est, in our case the emergence of place coding in neural 
networks. In this way, models of spatial cognition in AI 
could allow us to refute or defend our working hypotheses 
by demonstrating an existence proof for spatial cognition 
given conditions we have supposed are necessary. In this 
way, there is an attempt to introduce as few assumptions as 
possible about the nature of spatial cognitive integration at 
the neural network level.

Conclusions

Previous sections in this opinion paper examined the 
importance of theory-driven research to understand place 
coding by means of hippocampal place-like and entorhinal 
grid-like cells. We showed that the elusive principles gov-
erning cognitive maps had not been fully revealed yet. It 
is highly desirable to develop a holistic approach to cogni-
tive map coding and its spatial information processing, in 
which AI modeling could be beneficial for this endeavor. 
This work briefly discussed that experimental and theoret-
ical evidence had proposed either integrated or distributed 
strategies for cognitive maps definition. We discussed that 
not only parallel maps could emerge, but also hierarchical 
scaffolds of these maps must be considered.

The discovery of neural principles that guide these 
hierarchies and maps around the concept of place cod-
ing could be used to develop theories for cognitive maps 
emergence. Rather than proposing a shift in the approach 
taken in neuroscience research, we recommend approach-
ing the described challenges in an integrative manner 
guided by theoretical aspects of encoded place rather than 
focusing on new technologies to record brain activity. This 
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cross-disciplinary strategy may be nurtured from different 
standpoints and offer significant discoveries in overlap-
ping research areas.
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