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In this article, spherically symmetric thin-shell wormholes supported by a generalized Chaplygin gas

are constructed and their stability under perturbations preserving the symmetry is studied. Wormholes

with charge and with a cosmological constant are analyzed and the results are compared with those

obtained for the original Chaplygin gas, which was considered in a previous work. For some values of the

parameters, one stable configuration is also present and a new extra unstable solution is found.
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I. INTRODUCTION

Traversable Lorentzian wormholes [1] are solutions of
the equations of gravitation representing geometries which
have a throat that connects two regions of the same uni-
verse or two separate universes [1,2]. For static wormholes,
the throat is a minimal area surface satisfying a flare-out
condition [3]. In the context of the general relativity theory
of gravitation, wormholes must be threaded by exotic
matter that violates the null energy condition [1–4]. The
amount of exotic matter needed around the throat can be
made arbitrarily small by an appropriate choice of the
geometry of the wormhole [5], although it may be at the
expense of large stresses at the throat [6,7].

Thin-shell wormholes are mathematically constructed
by cutting and pasting two manifolds [2,8] to form a new
one, which is geodesically complete and it has a shell
placed in the joining surface. The exotic matter required
for their existence can be located at the shell, with normal
matter outside this surface. Stability studies of thin-shell
wormholes under perturbations preserving the original
symmetries have been carried out in several works. A
linearized stability analysis of a thin-shell wormhole
made by joining two Schwarzschild geometries was done
in Ref. [9]. The same method was applied to wormholes
constructed using branes with negative tensions [10], and
to transparent spherically symmetric thin shells and worm-
holes [11]. Later, it was extended to Reissner-Nordström
thin-shell wormholes [12], and to wormholes with a cos-
mological constant [13]. Dynamical thin-shell wormholes
were considered in Ref. [14]. The stability and energy
conditions for five-dimensional thin-shell wormholes
with spherical symmetry in Einstein-Maxwell theory
with a Gauss-Bonnet term were studied in Ref. [15], while
thin-shell wormholes in dilaton gravity were analyzed in
Refs. [6,16]. Thin-shell wormholes associated with cosmic

strings have been treated in Refs. [17]. Other recent related
articles can be found in Ref. [18].
Observational data suggest an accelerated expansion of

the Universe [19], which within general relativity implies
that the strong energy condition should be violated. Several
models for the matter leading to this scenario have been
proposed [20]. One of them is the Chaplygin gas [21], a
perfect fluid with an equation of state of the form p� ¼
�A, where A is a positive constant. The Chaplygin gas has
the property that the squared sound velocity is always
positive, even in the case of exotic matter. Although it
was introduced for phenomenological reasons, not related
with cosmology [22], this equation of state can be obtained
from string theory [23]. Models of exotic matter of interest
in cosmology have already been considered in wormhole
construction. Wormholes supported by phantom energy,
with equation of state p ¼ !�, where !<�1, have
been analyzed by several authors [24]. A generalized
Chaplygin gas, with an equation of state p�� ¼ �Awhich
has two parameters A > 0 and 0<� � 1, has been used in
Ref. [25] as the exotic matter supporting a wormhole of the
Morris-Thorne type [1]; there, the wormhole metric was
matched to an exterior vacuum metric to keep the exotic
matter within a finite region of space. Instead, in a thin-
shell wormhole the exotic matter can be restricted from the
beginning to the shell located at the joining surface, as was
previously done for the original Chaplygin gas (� ¼ 1) in
Ref. [26]. Recently, other authors [27] have also considered
wormholes with a Chaplygin gas. The purpose of the
present work is the study of spherically symmetric thin-
shell wormholes with matter in the form of a generalized
Chaplygin gas. In Sec. II, the equations that give the
possible radii of wormholes and determine their stability
for a general class of geometries are obtained. In Secs. III
and IV, the formalism is applied to Reissner-Nordström
wormholes and to wormholes with a cosmological con-
stant, respectively. Finally, in Sec. V, the conclusions of
this work are summarized. Units such that c ¼ G ¼ 1 are
adopted.*eiroa@iafe.uba.ar
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II. GENERAL EQUATIONS

We start from the spherically symmetric metric

ds2 ¼ �fðrÞdt2 þ fðrÞ�1dr2 þ hðrÞðd�2 þ sin2�d’2Þ;
(1)

where r > 0 is the radial coordinate, 0 � � � � and 0 �
’< 2� are the angular coordinates, hðrÞ is always positive
and fðrÞ is a positive function from a given radius. We take
a radius a, greater than the event horizon radius rh if the
geometry (1) has any, to avoid the presence of horizons and
singularities. We cut two identical copies of the region with
r � a:

M� ¼ fX� ¼ ðt; r; �; ’Þ=r � ag; (2)

and we paste them at the hypersurface

� � �� ¼ fX=FðrÞ ¼ r� a ¼ 0g; (3)

to create a new manifold M ¼ Mþ [M�. If h0ðaÞ> 0
(condition of flare-out), this construction creates a geodesi-
cally complete manifold representing a wormhole with two
regions connected by a throat of radius a, where the surface
of minimal area is located. On this manifold it is possible to

define a new radial coordinate l ¼ �R
r
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=fðrÞp

dr that
represents the proper radial distance to the throat, which is
situated at l ¼ 0 (the plus and minus signs correspond,
respectively, toMþ andM�). On the wormhole throat �,
which is a synchronous timelike hypersurface, we define
coordinates �i ¼ ð�; �; ’Þ, with � the proper time on the
shell. We use the Darmois-Israel formalism [28] and we let
the throat radius be a function of time að�Þ. The second
fundamental forms (or extrinsic curvature) associated with
the two sides of the shell are given by

K�
ij ¼ �n��

�
@2X�

@�i@�j þ ��
��

@X�

@�i

@X�

@�j

����������
; (4)

where n�� are the unit normals (n�n� ¼ 1) to � in M:

n�� ¼ �
��������g��

@F

@X�

@F

@X�

��������
�1=2 @F

@X� : (5)

Adopting the orthonormal basis fe�̂ ¼ e�; e�̂ ¼
a�1e�; e’̂ ¼ ða sin�Þ�1e’g, we obtain

K�̂
� �̂

¼ K�̂
’ ’̂ ¼ � h0ðaÞ

2hðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðaÞ þ _a2

q
; (6)

and

K�̂
� �̂ ¼ � f0ðaÞ þ 2 €a

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðaÞ þ _a2

p ; (7)

where a prime and the dot represent, respectively, the
derivatives with respect to r and �. With the definitions

½Kî ĵ� � Kþ
î ĵ
� K�

î ĵ
, K ¼ tr½Kî ĵ� ¼ ½Kî

î
� and introducing

the surface stress-energy tensor Sî ĵ ¼ diagð	;p�̂; p’̂Þ,
where 	 is the surface energy density and p�̂, p’̂ are the

transverse pressures, we have from the Einstein equations
on the shell (or Lanczos equations):

� ½Kî ĵ� þ Kgî ĵ ¼ 8�Sî ĵ; (8)

that

	 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðaÞ þ _a2

p
4�

h0ðaÞ
hðaÞ ; (9)

and

p ¼ p�̂ ¼ p’̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðaÞ þ _a2

p
8�

�
2 €aþ f0ðaÞ
fðaÞ þ _a2

þ h0ðaÞ
hðaÞ

�
:

(10)

The negative sign in Eq. (9) plus the flare-out condition
h0ðaÞ> 0 implies that 	< 0, indicating that the matter at
the throat is exotic. We adopt a generalized Chaplygin gas
as the exotic matter in the shell�. For this gas, the pressure
has opposite sign to the energy density, resulting in a
positive pressure. Then, the equation of state for the exotic
matter at the throat can be written in the form

p ¼ A

j	j� ; (11)

where A > 0 and 0<� � 1 are constants. When � ¼ 1
the Chaplygin gas equation of state p ¼ �A=	 is recov-
ered. Replacing Eqs. (9) and (10) in Eq. (11), we obtain the
differential equation that should be satisfied by the throat
radius of thin-shell wormholes threaded by exotic matter
with the equation of state of a generalized Chaplygin gas:

f½2 €aþ f0ðaÞ�hðaÞ þ ½fðaÞ þ _a2�h0ðaÞg½h0ðaÞ��
� 2A½4�hðaÞ��þ1½fðaÞ þ _a2�ð1��Þ=2 ¼ 0: (12)

In particular, for static wormholes, the surface energy
density and pressure are given by

	0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
fða0Þ

p
4�

h0ða0Þ
hða0Þ ; (13)

and

p0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
fða0Þ

p
8�

�
f0ða0Þ
fða0Þ þ

h0ða0Þ
hða0Þ

�
: (14)

From Eq. (12), the static solutions, if they exist, have a
throat radius a0 that should fulfill the equation

½f0ða0Þhða0Þ þ fða0Þh0ða0Þ�½h0ða0Þ��
� 2A½4�hða0Þ��þ1½fða0Þ�ð1��Þ=2 ¼ 0; (15)

with the condition a0 > rh if the original metric has an
event horizon. The existence of static solutions depends on
the explicit form of the function f. The method developed
in Ref. [26] to study the stability of the static solutions
under perturbations preserving the symmetry in the case of
the Chaplygin gas is rather cumbersome to be extended to
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the generalized Chaplygin gas. Here we follow the stan-
dard ‘‘potential’’ approach [both methods were shown
equivalent for the metric given by Eq. (1) in the case of a
linearized equation of state [16]]. From Eqs. (9) and (10), it
is easy to check the energy conservation equation:

d

d�
ð	AÞ þ p

dA
d�

¼ f½h0ðaÞ�2 � 2hðaÞh00ðaÞg

� _a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fðaÞ þ _a2

p
2hðaÞ ; (16)

where A ¼ 4�hðaÞ is the area of the wormhole throat. In
Eq. (16), the first term on the left-hand side represents the
internal energy change of the throat and the second the
work done by the internal forces of the throat, while the
right-hand side represents a flux. If ½h0ðaÞ�2 �
2hðaÞh00ðaÞ ¼ 0, the flux term is zero and Eq. (16) takes
the form of a simple conservation equation. This occurs
when hðaÞ ¼ CðaþDÞ2 (C> 0 and D constants) or
hðaÞ ¼ C (this case is unphysical, since there is no throat)
[16]. It is straightforward to see that Eq. (16) can be written
in the form

hðaÞ _	þ h0ðaÞ _að	þ pÞ ¼ �f½h0ðaÞ�2 � 2hðaÞh00ðaÞg
� _a	

2h0ðaÞ ; (17)

which, using that 	0 ¼ _	= _a, gives

hðaÞ	0 þ h0ðaÞð	þ pÞ þ f½h0ðaÞ�2 � 2hðaÞh00ðaÞg
� 	

2h0ðaÞ ¼ 0: (18)

The pressure p is a function of 	 given by the equation of
state; thus Eq. (18) is a first order differential that can be
recast in the form 	0ðaÞ ¼ F ða; 	ðaÞÞ, for which a unique
solution with a given initial condition always exists, pro-
vided that F has continuous partial derivatives. Then,
Eq. (18) can be formally integrated to obtain 	ðaÞ, so
replacing 	ðaÞ in Eq. (9) and regrouping terms, the dy-
namics of the wormhole throat is completely determined
by a single equation:

_a 2 ¼ �VðaÞ; (19)

with

VðaÞ ¼ fðaÞ � 16�2

�
hðaÞ
h0ðaÞ	ðaÞ

�
2
: (20)

A Taylor expansion to second order of the potential VðaÞ
around the static solution yields

VðaÞ ¼ Vða0Þ þ V 0ða0Þða� a0Þ þ V 00ða0Þ
2

ða� a0Þ2

þOða� a0Þ3: (21)

From Eq. (20) the first derivative of VðaÞ is

V0ðaÞ ¼ f0ðaÞ � 32�2	ðaÞ hðaÞ
h0ðaÞ

��
1� hðaÞh00ðaÞ

½h0ðaÞ�2
�
	ðaÞ

þ hðaÞ
h0ðaÞ	

0ðaÞ
�
; (22)

which using Eq. (18) takes the form

V 0ðaÞ ¼ f0ðaÞ þ 16�2	ðaÞ hðaÞ
h0ðaÞ ½	ðaÞ þ 2pðaÞ�: (23)

The second derivative of the potential is

V00ðaÞ ¼ f00ðaÞ

þ 16�2

��
hðaÞ
h0ðaÞ	

0ðaÞ þ
�
1� hðaÞh00ðaÞ

½h0ðaÞ�2
�
	ðaÞ

�

� ½	ðaÞ þ 2pðaÞ� þ hðaÞ
h0ðaÞ	ðaÞ½	

0ðaÞ þ 2p0ðaÞ�
�
:

(24)

From Eq. (11) we have that p0ðaÞ ¼
A�j	ðaÞj���1	0ðaÞ ¼ �pðaÞ	0ðaÞ=j	ðaÞj, then 	0ðaÞ þ
2p0ðaÞ ¼ 	0ðaÞ½1þ 2�pðaÞ=j	ðaÞj�, and using Eq. (18)
again, we obtain

V00ðaÞ ¼ f00ðaÞ � 8�2

�
½	ðaÞ þ 2pðaÞ�2 þ 2	ðaÞ

�
��

3

2
� hðaÞh00ðaÞ

½h0ðaÞ�2
�
	ðaÞ þ pðaÞ

�

�
�
1þ 2

�pðaÞ
j	ðaÞj

��
: (25)

Using Eqs. (13) and (14), it is not difficult to see that
Vða0Þ ¼ V 0ða0Þ ¼ 0, so the potential is

VðaÞ ¼ 1
2V

00ða0Þða� a0Þ2 þO½ða� a0Þ3�; (26)

with

V00ða0Þ ¼ f00ða0Þ þ ð�� 1Þ½f0ða0Þ�2
2fða0Þ

þ
�ð1� �Þh0ða0Þ

2hða0Þ þ �h00ða0Þ
h0ða0Þ

�
f0ða0Þ

þ ð�þ 1Þ
�
h00ða0Þ
hða0Þ �

�
h0ða0Þ
hða0Þ

�
2
�
fða0Þ: (27)

The wormhole is stable under radial perturbations if and
only if V 00ða0Þ> 0.

III. REISSNER-NORDSTRÖM WORMHOLES

The Reissner-Norsdtröm geometry, which represents a
spherically symmetric charged object, have metric func-
tions

fðrÞ ¼ 1� 2M

r
þQ2

r2
; hðrÞ ¼ r2; (28)

whereM is the mass andQ is the charge. For 0< jQj<M
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this geometry has two horizons with radii

r� ¼ M�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 �Q2

q
; (29)

where the minus sign corresponds to the inner one and the
plus sign to the outer event horizon. When jQj ¼ M, the
two horizons merge into one; if jQj>M, no horizons are
present and there is a naked singularity in rs ¼ 0. IfQ ¼ 0,
the Schwarzschild geometry is obtained, which has a hori-
zon with radius rh ¼ 2M. The thin-shell wormholes con-
structed from the Reissner-Norsdtröm metric consist of a
charged surface of exotic matter (the throat) with an elec-
tric field in vacuum outside it. When jQj � M the throat
radius a0 should be taken greater than rh ¼ rþ so that the
manifold M has no horizons. If jQj>M, the condition
a0 > 0 removes the naked singularity. By replacing
Eq. (28) in Eqs. (13) and (14), the energy density and
pressure at the throat are obtained:

	0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 2Ma0 þQ2

q

2�a20
; (30)

and

p0 ¼ a0 �M

4�a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a20 � 2Ma0 þQ2

q : (31)

The throat radius should satisfy the equation

a0 �M� 2Að2�Þ�þ1a2�þ1
0 ða20 � 2Ma0 þQ2Þð1��Þ=2 ¼ 0:

(32)

If � ¼ 1 the equation is cubic and it can be solved analyti-
cally (see Ref. [26]) to obtain a0, while for other values of
� it should be solved numerically. For the stability analysis
of the solutions, we obtain from Eqs. (27) and (28) the
second derivative of the potential, which is

V00ða0Þ ¼ 2f�ð1þ �Þa30 þMð3þ 4�Þa20 � ½2Q2�þ 3M2ð1þ �Þ�a0 þMQ2ð1þ 2�Þg
a30ða20 � 2Ma0 þQ2Þ : (33)

Q

M
0

0.00 0.01 0.02 0.03 0.04
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

AM 1

a0

M

Q

M
0.7

0.00 0.01 0.02 0.03 0.04
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

AM 1

a0

M

Q

M
0.9999

0.00 0.01 0.02 0.03 0.04
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

AM 1

a0

M

Q

M
1.1

0.00 0.01 0.02 0.03 0.04
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

AM 1

a0

M

FIG. 1. Reissner-Nordström wormholes supported by a generalized Chaplygin gas with � ¼ 0:2: the solid curves represent the static
solutions with throat radius a0 which are stable under radial perturbations for given parameters A, M, and Q, and the dotted curves
represent those unstable under radial perturbations. The gray zones are unphysical, corresponding to a throat radius smaller than the
horizon radius of the original manifold.
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The solutions of Eq. (32) correspond to stable wormholes if
replaced in Eq. (33) they satisfy V 00ða0Þ> 0. The calcula-
tions were done with standard software and the results for
representative values of the parameters are shown in
Figs. 1–3. When 0<�< 1 we can summarize the results
of Figs. 1 and 2 as follows:

(1) When 0 � jQj< 1 and jQj is not very close to 1, for
any value of AM�þ1 there is always one unstable
solution. The throat radius a0=M decreases with
AM�þ1 and tends to the horizon radius rh=M of
the original manifold for large values of AM�þ1.

(2) If jQj< 1 and jQj is very close to 1, for small values
of AM�þ1 there is one unstable solution. For inter-
mediate values of AM�þ1 there are three solutions:
the larger and the smaller ones are unstable and the
middle one is stable. For large values of AM�þ1

there is one unstable solution, which is very close
to the horizon of the original manifold.

(3) When jQj> 1, for small values of AM�þ1 there are
two solutions: the larger one is unstable and the
smaller one is stable, while for large values of
AM�þ1 there are no solutions.

The case � ¼ 1 corresponds to the Chaplygin gas
studied in detail in a previous work [26]. For comparison,
the results are shown in Fig. 3. We see that
(1) When 0 � jQj< 1 and jQj is not very close to 1, for

small values of AM�þ1 there is always one unstable
solution. The throat radius a0=M decreases with
AM�þ1 and it cuts to the horizon radius rh=M of
the original manifold for a finite value of AM�þ1, so
there are no solutions for large values of AM�þ1.

(2) If jQj< 1 and jQj is very close to 1, for small values
of AM�þ1 there is one unstable solution. For inter-
mediate values of AM�þ1 there are two solutions:
the larger one is unstable and the smaller one is
stable. For large values of AM�þ1 there are no
solutions.

(3) When jQj> 1, for small values of AM�þ1 there are
two solutions: the larger one is unstable and the
smaller one is stable, while for large values of
AM�þ1 there are no solutions.

We see that the main difference between the cases 0<
�< 1 and � ¼ 1 is that in the former case there is an extra
unstable solution for some values of the parameters.
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FIG. 2. Reissner-Nordström wormholes supported by a generalized Chaplygin gas with � ¼ 0:6: the solid curves represent the static
solutions with throat radius a0 which are stable under radial perturbations for given parameters A, M, and Q, and the dotted curves
represent those unstable under radial perturbations. The gray zones are unphysical, corresponding to a throat radius smaller than the
horizon radius of the original manifold.
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IV. WORMHOLES WITH A COSMOLOGICAL
CONSTANT

The vacuum solution of the Einstein equations with a
cosmological constant has metric functions

fðrÞ ¼ 1� 2M

r
��

3
r2; hðrÞ ¼ r2; (34)

whereM is the mass and� is the cosmological constant. If
�M2 > 1=9 the function fðrÞ is always negative, so we
take �M2 � 1=9. When 0<�M2 � 1=9, i.e., the
Schwarzschild–de Sitter case, the geometry has two hori-
zons, which are placed at

rdSh ¼ �1þ i
ffiffiffi
3

p � ð1þ i
ffiffiffi
3

p Þð�3
ffiffiffiffi
�

p
Mþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 9�M2

p Þ2=3
2

ffiffiffiffi
�

p ð�3
ffiffiffiffi
�

p
Mþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 9�M2

p Þ1=3 ;

(35)

rdSc ¼ 1þ ð�3
ffiffiffiffi
�

p
Mþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 9�M2

p Þ2=3ffiffiffiffi
�

p ð�3
ffiffiffiffi
�

p
Mþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 9�M2

p Þ1=3 : (36)

The event horizon radius rdSh is a continuous and increasing

function of �, with rdSh ! 2M when � ! 0þ, and rdSh ¼

3M when �M2 ¼ 1=9. The cosmological horizon radius
rdSc is a continuous and decreasing function of �, with
rdSc ! þ1 when � ! 0þ, and rdSc ¼ 3M when �M2 ¼
1=9. If � ¼ 0, the Schwarzschild geometry with horizon
radius rSh ¼ 2M is obtained. When �< 0, i.e., the

Schwarzschild–anti–de Sitter case, the event horizon is
placed at

rAdSh ¼ 1� ð�3
ffiffiffiffiffiffiffij�jp

Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9j�jM2

p Þ2=3ffiffiffiffiffiffiffij�jp ð�3
ffiffiffiffiffiffiffij�jp

Mþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 9j�jM2

p Þ1=3
: (37)

The horizon radius rAdSh is a continuous and increasing

function of �, with values in the interval 0< rh < 2M,
with rAdSh ¼ 0 when � ! �1 and rAdSh ! 2M when � !
0�. Thin-shell wormholes constructed from Eq. (34) have a
throat of exotic matter and vacuum with a cosmological
constant outside it. If 0<�M2 < 1=9 the wormhole throat
radius should be taken in the range rdSh < a0 < rdSc , and if

�M2 ¼ 1=9 the construction of the wormhole is not pos-
sible, because rdSh ¼ rdSc ¼ 3M. If �< 0 the wormhole

throat radius a0 should be greater than rAdSh . Using

Eqs. (13) and (14), we obtain that the energy density and
the pressure at the throat are given by
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FIG. 3. Reissner-Nordström wormholes supported by a Chaplygin gas (� ¼ 1Þ: the solid curves represent the static solutions with
throat radius a0 which are stable under radial perturbations for given parameters A, M, and Q, and the dotted curves represent those
unstable under radial perturbations. The gray zones are unphysical, corresponding to a throat radius smaller than the horizon radius of
the original manifold.
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	0 ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��a30 þ 3a0 � 6M

q

2�a0
ffiffiffiffiffiffiffiffi
3a0

p ; (38)

and

p0 ¼ �2�a30 þ 3a0 � 3M

4�a0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3a0ð��a30 þ 3a0 � 6MÞ

q : (39)

From Eq. (15), the throat radius a0 should satisfy the
equation

� 2�

3
a30 þ a0 �M� 2Að2�Þ�þ1a3ð�þ1Þ=2

0

�
�
��

3
a30 þ a0 � 2M

�ð1��Þ=2 ¼ 0: (40)

When � ¼ 1 this equation is cubic in a0 and it can be
solved analytically [26], while for other values of � it
should be solved numerically. By replacing Eq. (34) in
Eq. (27), we obtain

V 00ða0Þ ¼ 2½�2��a40 þ 3Mð�1þ 2�Þ�a30 þ 3ð1þ �Þa20 � 3Mð3þ 4�Þa0 þ 9M2ð1þ �Þ�
a30ð�a30 � 3a0 þ 6MÞ : (41)

The solutions of Eq. (40) correspond to stable wormholes if
V 00ða0Þ> 0. The calculations were done with standard
software and the results for representative values of the
parameters are shown in Figs. 4–6. When 0<�< 1 we
can summarize the results of Figs. 4 and 5 as follows:

(1) If �> 0, for any value of AM�þ1 there is always
one unstable solution. The throat radius a0=M de-
creases with AM�þ1 and tends to the horizon radius
rdSh =M of the original manifold for large values of

AM�þ1. Except for the presence of the cosmological
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FIG. 4. Wormholes with a cosmological constant, supported by a generalized Chaplygin gas with � ¼ 0:2: the solid curves represent
the static solutions with throat radius a0 which are stable under radial perturbations for given parameters A, M, and �, and the dotted
curves represent those unstable under radial perturbations. The gray zones are unphysical, corresponding to a throat radius smaller than
the horizon radius or (if �> 0) larger than the cosmological horizon radius of the original manifold.
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horizon, the results are very similar to the ones
obtained for the Schwarzschild wormholes (� ¼
0), which were studied in the previous section (un-
charged case).

(2) When �< 0 and j�jM2 is not large, for any value
of AM�þ1 there is one unstable solution. The throat
radius a0=M decreases with AM�þ1 and tends to the
horizon radius rAdSh =M of the original manifold for

large values of AM�þ1.
(3) If �< 0 and j�jM2 is large, for small values of

AM�þ1 there is one unstable solution. For inter-
mediate values of AM�þ1 there are three solutions:
the larger and the smaller ones are unstable and the
middle one stable. For large values of AM�þ1 there
is one unstable solution, which is very close to the
horizon rAdSh =M of the original manifold.

The case � ¼ 1 corresponds to the Chaplygin gas
wormholes previously studied in Ref. [26]. The results
are shown in Fig. 6 for comparison. We have that

(1) When �> 0, for small values of AM�þ1 there is
always one unstable solution. The throat radius
a0=M decreases with AM�þ1 and it cuts to the

horizon radius rdSh =M of the original manifold for

a finite value of AM�þ1, so there are no solutions for
large values of AM�þ1. Again, except for the pres-
ence of the cosmological horizon, the results are
very similar to the ones obtained for the
Schwarzschild wormholes (� ¼ 0), which were an-
alyzed in the previous section (uncharged case).

(2) If �< 0 and j�jM2 is not large, for small values of
AM�þ1 there is always one unstable solution. The
throat radius a0=M decreases with AM�þ1 and it
cuts to the horizon radius rAdSh =M of the original

manifold for a finite value of AM�þ1, so there are no
solutions for large values of AM�þ1.

(3) When �< 0 and j�jM2 is large, for small values of
AM�þ1 there is one unstable solution. For interme-
diate values of AM�þ1 there are two solutions: the
larger one is unstable and the smaller one is stable.
For large values of AM�þ1 there are no solutions.

We can see that the main difference between the cases
0<�< 1 and � ¼ 1 is that in the former case there are
values of the parameters for which exist one unstable
additional solution for anti–de Sitter wormholes.
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FIG. 5. Wormholes with a cosmological constant, supported by a generalized Chaplygin gas with � ¼ 0:9: the solid curves represent
the static solutions with throat radius a0 which are stable under radial perturbations for given parameters A, M, and �, and the dotted
curves represent those unstable under radial perturbations. The gray zones are unphysical, corresponding to a throat radius smaller than
the horizon radius or (if �> 0) larger than the cosmological horizon radius of the original manifold.
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V. CONCLUSIONS

In this paper, spherically symmetric thin-shell worm-
holes supported by a generalized Chaplygin gas were
theoretically constructed by using the usual cut and paste
procedure for a general class of metrics. Such kind of fluid
has received great attention in cosmology in the last few
years, because it provides a possible explanation for the
accelerated expansion of the Universe, and it has also been
considered in previous wormhole studies. For a general
class of metrics, the equation that determines the possible
radii of the throat for static wormholes was obtained and
the stability of the static configurations under radial per-
turbations was analyzed using the standard potential
method. The energy density and the pressure at the throat
were obtained as functions of the throat radius. Examples
of wormholes made from Reissner-Nordström and

Schwarzschild with a cosmological constant metrics were
analyzed in detail and the results were compared with those
obtained in a previous work [26] for the original Chaplygin
gas. It was found that for properly chosen values of the
parameters, stable solutions are also possible when the gas
exponent � is smaller than 1. The main difference when
0<�< 1 is the presence of an extra unstable solution
which appears for some values of the parameters in both
charged and anti–de Sitter wormholes. In the charged case
it happens when the charge jQj is slightly smaller than the
massM, while in the anti–de Sitter case for large values of
j�jM2.
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