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Abstract
In this paper we study 2-forms which are solutions of the Killing–Yano equation

Q1

on Lie groups endowed with a left invariant metric having various curvature
properties. We prove a general result for 2-step nilpotent Lie groups and as a
corollary we obtain a nondegenerate solution of the Killing–Yano equation on
the Iwasawa manifold with its half-flat metric.

PACS number: Q2

1. Introduction

Killing–Yano tensors are natural generalizations of ordinary Killing vectors. They were first
introduced by Yano [25] and have been intensively studied by physicists since the work
of Penrose–Walker [22]. Killing–Yano tensors give rise to quadratic first integrals of the
geodesic equation and allow us to define operators which commute or anti-commute with the
Dirac operator on the manifold [7]. Both the wave and the Dirac operators are fundamental
in the study of black holes in four and higher dimensions, and the presence of these true
symmetries makes the separation of variables and their explicit resolution [10–12, 16, 20]
more plausible. Also Killing–Yano and conformal Killing–Yano tensors have been applied
to define symmetries of field equations (see [3, 4]). Semmelmann was one of the first
to study in a systematic way conformal Killing–Yano tensors [23] obtaining many global
results (see also [19, 5]). Other physical applications of Killing–Yano tensors may be found
in [2, 9, 12, 15] and references therein.

A skew symmetric (0, l +1) tensor ω on a Riemannian manifold (M, g) is called Killing–
Yano if it satisfies the Killing–Yano equation

∇ω(X;Y, Z1, . . . , Zl ) + ∇ω(Y ; X, Z1, . . . , Zl ) = 0, (1)

where ∇ is the Lévi-Cività connection (see [25]) and X,Y, Z1, Z2, . . . , Zl are arbitrary vector
fields on M. When ω is a one-form then the associated vector field is a Killing vector field.

In [21], Papadopoulos studied the Killing–Yano equation for the fundamental forms
defining a G-structure for G = SO(n), SU (n),U (n), Sp(n) × Sp(1), Sp(n), G2 and Spin(7).
He proves that if the fundamental form satisfies equation (1) then, in most cases, it is parallel
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with respect to the Lévi-Cività connection. On the other hand, he shows that the forms
defining nearly Kähler, nearly parallel (weak) G2 and balanced SU (n) manifolds are solutions
of equation (1). Also it was shown in [23] that there are Killing–Yano tensors on nearly Kähler
manifolds and on manifolds with a weak G2-structure.

The case of a compact simply connected symmetric space M has been considered in [5]
were it is shown that M carries a non-parallel Killing p-form, p � 2, if and only if it is
isometric to a Riemannian product Sk × N, where Sk is a round sphere and k > p.

The goal of this paper is to study left invariant 2-forms satisfying the Killing–Yano
equation on Lie groups endowed with a left invariant metric.

In section 2, after recalling some basic identities, we observe that if (M, g, T ) is a
Riemannian manifold with a skew-adjoint endomorphism T of T M, the associated 2-form
ω(X,Y ) = g(T X,Y ) satisfies the Killing–Yano equation if and only if ∇T (X; X ) = 0. In other
words, 2-forms ω on a Riemannian manifold satisfying (1) give rise to manifolds (M, g, T )

which generalize nearly Kähler manifolds. We analyze in proposition 2.4 the Killing–Yano
equation in the invariant setting in order to construct Killing–Yano 2-forms ω on Lie groups
(G, g) where g is a left invariant metric.

In section 3, we give a characterization of the skew symmetric endomorphisms of
2-step nilpotent metric Lie algebras which give rise to left invariant 2-forms satisfying (1)
on the corresponding simply connected Lie groups. As a main corollary, it turns out that the
Iwasawa manifold with the standard half-flat metric carries a nondegenerate Killing–Yano
2-form, induced from a unique (up to constant multiple) left invariant 2-form on the complex
Heisenberg Lie group. We recall that nilpotent Lie groups have, for every left invariant metric,
directions of positive Ricci curvature and directions of negative Ricci curvature (see [18]).

In section 4, we characterize the Killing–Yano tensors on a Lie group with a flat metric
(theorem 4.1). For compact semisimple Lie groups with a bi-invariant metric, it turns out that
the Killing–Yano equation has no non-trivial left invariant solutions (lemma 4.6). Finally, we
prove that for any left invariant metric on SU (2), there are no non-trivial solutions of the
Killing–Yano equation (theorem 4.7). We note that SU (2) is the only simply connected Lie
group with left invariant metrics of positive sectional curvature [24].

2. Killing–Yano (0, 2) tensors

Given a torsion-free connection ∇ on a manifold M and a 2-form ω on M, the exterior derivative
dω of ω can be computed in terms of ∇ω as follows:

dω(X,Y, Z) = ∇ω(X;Y, Z) + ∇ω(Y ; Z, X ) + ∇ω(Z; X,Y ) (2)

for all vector fields X,Y, Z on M. This identity is useful in proving the following fact.

Lemma 2.1. Let (M, g) be a Riemannian manifold, ∇ the Lévi-Cività connection and ω a
2-form on M. The following conditions are equivalent:

(i) ∇ω(X;Y, Z) + ∇ω(Y ; X, Z) = 0;
(ii) ∇ω(X;Y, Z) + ∇ω(Z;Y, X ) = 0;

(iii) dω(X,Y, Z) = 3∇ω(X;Y, Z).

Proof. The proof is straightforward. One has to observe that the equivalence between (i) and
(ii) follows since ∇ω(X;Y, Z) = −∇ω(X; Z,Y ) and the equivalence between (i) and (iii) is a
consequence of (2). �

In what follows, a 2-form ω on a Riemannian manifold (M, g) satisfying any of the above
conditions will be called a Killing–Yano 2-form [25]. In this case, the skew-adjoint section T
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of End T M, characterized by g(T X,Y ) = ω(X,Y ), will also be called a Killing–Yano tensor.
Since ∇ω(X;Y, Z) = g(∇T (X;Y ), Z), it follows that T will be a Killing–Yano tensor if and
only if

∇T (X;Y ) + ∇T (Y ; X ) = 0. (3)

As a consequence, one has

Theorem 2.2. Let (M, g, T ) be a Riemannian manifold with a skew-adjoint endomorphism T of
T M. The associated 2-form ω(X,Y ) = g(T X,Y ) is Killing–Yano if and only if ∇T (X; X ) = 0.

A particular case is that of an almost Hermitian manifold (M, g, J), that is, a manifold
M with a Riemannian metric g and a compatible almost complex structure J : T M → T M.
In this case, ω(X,Y ) = g(JX,Y ) is known as the Kähler form. We recall that the almost
Hermitian manifold (M, g, J) is nearly Kähler if ∇J(X; X ) = 0. Nearly Kähler manifolds
were introduced by Gray [13] and much studied since then.

As a consequence of the above theorem, the following corollary, proved in [23, 21], holds.

Corollary 2.3. Let M be a 2n-dimensional manifold with an almost Hermitian structure (g, J)

and ω(X,Y ) = g(JX,Y ) the corresponding Kähler form. Then, ω is a Killing–Yano 2-form
on M if and only if (M, g, J) is nearly Kähler.

Next we give conditions on an endomorphism T of the tangent bundle of M to satisfy
∇T (X; X ) = 0, when M is a Lie group with a left invariant Riemannian metric.

2.1. Left invariant Killing–Yano tensors

Let G be an n-dimensional Lie group and let g be the associated Lie algebra of all left invariant
vector fields on G. If TeG is the tangent space of G at e, the identity of G, the correspondence
X → Xe := x from g → TeG is an isomorphism so alternatively we could take as the
Lie algebra if G the tangent space TeG with the bracket defined to make the map above an
isomorphism of Lie algebras, that is, [x, y] = [X,Y ]e where X,Y are the left invariant vector
fields defined by x, y respectively on TeG. Q3

A left invariant metric on G is a Riemannian metric such that left multiplication for every
a ∈ G is an isometry. Every inner product on TeG gives rise, by left translating, to a left
invariant metric. Thus, each n-dimensional Lie group possesses a 1

2 n(n + 1)- dimensional
family of distinct left invariant metrics. Different left invariant metrics on a fixed Lie group
can give rise to non-isometric Riemannian manifolds.

The Riemannian manifold consisting of a Lie group with a left invariant metric is a
homogeneous manifold where many geometric invariants can be computed at the Lie algebra
level. In particular, the Lévi Cività connection, associated with a left invariant metric, ∇x is a
skew-symmetric endomorphism of g for any x ∈ g. If 〈 , 〉 stands for the left invariant metric
at TeG, then the Lévi Cività connection on left invariant vector fields is given by

2〈∇xy, z〉 = 〈[x, y], z〉 − 〈[y, z], x〉 + 〈[z, x], y〉, x, y, z ∈ g. (4)

A left invariant 2-form ω on G will satisfy the Killing–Yano equation if the associated left
invariant endomorphism T of the tangent bundle of G satisfies the condition in the following
proposition.

Proposition 2.4. A left invariant skew-adjoint endomorphism T of T G = G × g satisfies
∇T (X; X ) = 0 for all left invariant vector fields X if and only if αT (x, y, z) = 0 for all
x, y, z ∈ g where

αT (x, y, z) := 〈[T x, y] − [x, Ty], z〉 + 〈−T [y, z] + [Ty, z] + 2[y, T z], x〉
+ 〈−T [x, z] + [T x, z] + 2[x, T z], y〉. (5)
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Proof. A skew symmetric left invariant endomorphism T of the tangent bundle T G is a
Killing–Yano tensor if and only if 〈(∇xT )y + (∇yT )x, z〉 = 0 for all x, y, z ∈ g. Thus, using
equation (4), we obtain, for all x, y, z ∈ g,

〈(∇xT )y + (∇yT )x, z〉 = 〈∇xTy − T∇xy + ∇yT x − T∇yx, z〉
= 〈[x, Ty], z〉 − 〈[Ty, z], x〉 + 〈[z, x], Ty〉 + 〈[x, y], T z〉

− 〈[y, T z], x〉 + 〈[T z, x], y〉 + 〈[y, T x], z〉 − 〈[T x, z], y〉
+ 〈[z, y], T x〉 + 〈[y, x], T z〉 − 〈[x, T z], y〉 + 〈[T z, y], x〉

= 〈[x, Ty], z〉 − 〈[Ty, z], x〉 − 〈T [z, x], y〉+ 2〈[T z, y], x〉+ 2〈[T z, x], y〉
+ 〈−[T x, y], z〉 − 〈[T x, z], y〉 − 〈T [z, y], x〉 = −αT (x, y, z).

Thus, the assertion follows. �

Remark 2.5. Note that αT (x, y, z) = αT (y, x, z) and αT (x, x, z) = (−2)αT (z, x, x).

3. Two-step nilpotent Lie groups

In this section, we give a characterization of the skew symmetric endomorphisms of 2-step
nilpotent metric Lie algebras which give rise to left invariant 2-forms satisfying (1) on the
corresponding simply connected Lie groups. As a main corollary, it turns out that the Iwasawa
manifold with the standard half-flat metric carries a nondegenerate Killing–Yano 2-form.

Let n be a 2-step nilpotent Lie algebra, that is, [n′, n] = 0, where n′ = [n, n] is the
commutator ideal. Fix an inner product 〈· , ·〉 on n and let z be the center and v its orthogonal
complement.

Theorem 3.1. Let T be a skew-symmetric endomorphism of n = z ⊕ v. Then, T is a Killing–
Yano tensor on n if and only if T preserves the center z and for all x, y ∈ v it holds that

[T x, y] = [x, Ty], T [x, y] = 3[T x, y], (6)

or equivalently

ad(x) ◦ T = ad(T x) = 1
2 [T, ad(x)].

Proof. According to proposition 5, a skew-symmetric endomorphism T of n is a Killing–Yano
tensor if and only if αT (x, y, z) = 0 for all x, y, z ∈ n. But

(i) if x, y, z ∈ z then always αT (x, y, z) = 0,
(ii) if x, y, z ∈ v then αT (x, y, z) = 0 if and only if 〈T [z, y], x〉 + 〈T [z, x], y〉 = 0,

(iii) if x, y ∈ z and z ∈ v then αT (x, y, z) = 0 if and only if 〈[Ty, z], x〉 + 〈[T x, z], y〉 = 0,

(iv) if x, y ∈ v and z ∈ z then αT (x, y, z) = 0 if and only if [T x, y] = [x, Ty],
(v) if x ∈ z and y, z ∈ v then αT (x, y, z) = 0 if and only if 〈−T [y, z]+[Ty, z]+2[y, T z], x〉 = 0,

(vi) if x ∈ v and y, z ∈ z then αT (x, y, z) = 0 if and only if 〈−[x, Ty], z〉 + 〈2[x, T z], y〉 = 0.

If T is a Killing–Yano tensor, then from (iii) one has 〈[T z2, v], z1〉+〈[T z1, v], z2〉 = 0, and
from (vi) 〈−[v, T z1], z2〉 + 〈2[v, T z2], z1〉 = 0 for all v ∈ v and z1, z2 ∈ z. Thus, [T z, v] = 0
for z ∈ z and v ∈ v showing that T preserves z. Furthermore, [T x, y] = [x, Ty] for all x, y ∈ v

(see (iv)). It remains to show that T [x, y] = 3[T x, y] for all x, y ∈ v. Note that (v) and (iv)
imply 〈−T [v1, v2] + 3[Tv1, v2], z〉 = 0 for all z ∈ z and v1, v2 ∈ v. But the v− component
〈−T [v1, v2] + 3[Tv1, v2], v〉 is also trivial since T preserves v. Thus, the assertion follows.
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Assume next that T is a skew endomorphism preserving the center and satisfying the two
identities in (6); then, it follows easily that αT (x, y, z) = 0 in all cases (i) through (vi). �

We recall from [14] that the Lie bracket on n is completely determined by the linear
operator j : z → so(v) defined by

〈 jzx, y〉 = 〈z, [x, y]〉 for z ∈ z, x, y ∈ v. (7)

In terms of the operator j, the condition of T being Killing–Yano is contained in the following
corollary.

Corollary 3.2. Let T be a skew-symmetric endomorphism of n = z ⊕ v. Then, T is a Killing–
Yano tensor if and only if T preserves the center z and the map j satisfies

1
3 j T z = T ◦ jz = − jz ◦ T for every z ∈ z. (8)

Let H2n+1 be the (2n + 1)-dimensional Heisenberg group, given by real matrices:

H2n+1 =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎜⎝

1 x1 . . . xn z
1 y1

. . .
...

yn

1

⎞
⎟⎟⎟⎟⎟⎠ : x j, y j, z ∈ R

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

The next corollary shows that given any left invariant metric on H2n+1, there are no
non-trivial solutions to the Killing–Yano equation.

Corollary 3.3. If T is a left invariant Killing–Yano tensor on the (2n + 1)-dimensional
Heisenberg group H2n+1, then T is trivial.

Proof. Let z 
= 0 generate the center of the Lie algebra of H2n+1. As a consequence of
corollary 3.2, one has j T z = 0 = jz ◦ T and since jz is an isomorphism, T = 0. �

We consider next the complex Heisenberg group N with the standard left invariant
Riemannian metric and complex structure. It is given by complex matrices

N =
⎧⎨
⎩

⎛
⎝1 x1 + ix2 x5 + ix6

1 x3 + ix4

1

⎞
⎠ : x j ∈ R

⎫⎬
⎭ ,

with the left invariant metric

g = (dx5 − x1dx3 + x2dx4)
2 + (dx6 − x2dx3 − x1dx4)

2 + dx2
1 + dx2

2 + dx2
3 + dx2

4 (9)

and the bi-invariant complex structure, given by multiplication by i.
The Lie algebra n of N has an orthonormal basis {e1, . . . , e6} with Lie brackets given by

[e1, e3] = −[e2, e4] = e5, [e1, e4] = [e2, e3] = e6.

We recall (see [8]) that an SU (3)-structure (F, ψ+) on a six-dimensional manifold is half-flat
if F ∧ dF = 0 and dψ+ = 0. In the case of the Lie group N, the SU (3)-structure given by the
Kähler form F and the 3-form ψ+,

F = e12 + e34 + e56, ψ+ = de5 ∧ e5 − de6 ∧ e6,

is half-flat.

5
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The skew-symmetric endomorphisms T of n which give a solution of the Killing–Yano
equation (equivalently, satisfy the hypotheses of theorem 3.1) are given as follows in the
ordered basis {e5, e6, e1, . . . , e4}:

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −3a
3a 0

0 −a
a 0

0 −a
a 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, a ∈ R. (10)

Corollary 3.4. The nondegenerate 2-form given by

ω = 3(dx5 − x1 dx3 + x2 dx4) ∧ (dx6 − x2 dx3 − x1 dx4) + dx1 ∧ dx2 + dx3 ∧ dx4 (11)

is a nondegenerate Killing–Yano form on the complex Heisenberg Lie group. Any other left
invariant solution of equation (1) is of the form aω with a ∈ R.

The subgroup � of matrices in N with x j ∈ Z is discrete and co-compact. The six-
dimensional compact manifold M = �\N is known as the Iwasawa manifold. Since both the
metric g and the 2-form ω are left invariant, they descend to M and one has

Corollary 3.5. The Iwasawa manifold with its standard half-flat metric carries a nondegenerate
Killing–Yano tensor.

Remark 3.6. We observe that the solution to the Killing–Yano equation given in (10) has an
eigenvalue with multiplicity 2. Thus, the results in [17] cannot be applied in a direct manner.
On the other hand, left invariant solutions of the Killing–Yano equation on a nilpotent Lie
group are not parallel [1]. This is in contrast with results of [19] where it is proved that every
Killing p-form on a compact quaternion-Kähler manifold has to be parallel for p � 2.

A family of 2-step nilpotent Lie algebras generalizing the real and complex Heisenberg
Lie algebras is the class of Heisenberg-type Lie algebras first considered in [14]. We recall
that a metric two-step nilpotent Lie algebra (n, 〈·, ·〉) with n′ = z is of Heisenberg type if the
following condition is satisfied:

jz1 jz2 + jz2 jz1 = −〈z1, z2〉Id for any z1, z2 ∈ z,

where jz are given in (7). The corresponding simply connected Lie group with Lie algebra of
Heisenberg type will be called the Heisenberg type Lie group.

In [6], the Riemann curvature tensor R, the Ricci tensor Ric and the scalar curvature τ of
the Riemannian metric on a Heisenberg type Lie group are obtained in terms of the maps jz
given in (7). As a consequence, one can derive an expression for the Weyl tensor C. Moreover,
it is shown in [6] that the Ricci tensor of any Heisenberg type Lie group is a Killing tensor,
that is, ∇ Ric(X; X, X ) = 0 for all vector fields.

In the particular case of the complex Heisenberg Lie group, there are two natural left
invariant Killing tensors. One is given by the square of the Killing–Yano tensor, and the other
by the Ricci tensor. While the first one is positive definite, the second one has positive and
negative eigenvalues. Indeed

g(T (z + v), T (z′ + v′)) = 9g(z, z′) + g(v, v′),
Ric(z + v, z′ + v′) = 2g(z, z′) − g(v, v′).

6
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3.1. Higher-dimensional 2-step nilpotent examples

The next examples, obtained by applying (8), are natural extensions of the complex Heisenberg
group carrying nondegenerate Killing–Yano tensors.

(1) Let n be a vector space with an inner product 〈· , ·〉 and an orthogonal decomposition
n = z ⊕ v. Fix orthonormal bases of z and v, respectively, z = span{z1, z2}, v =
span{x1, . . . , x2n, y1, . . . , y2n}. Let T be the skew-symmetric endomorphism of n whose
matrix in the ordered basis {z1, z2, x1, . . . , x2n, y1, . . . , y2n} is given by

T =

⎛
⎜⎜⎝

0 −3
3 0

0 −I
I 0

⎞
⎟⎟⎠,

where I is the identity 2n × 2n matrix. We define a Lie bracket on n as follows. Let A be
a skew-symmetric 2n × 2n matrix and set

jz1 =
(

A 0
0 −A

)
jz2 =

(
0 A
A 0

)
.

It follows that jz satisfies (8) for every z ∈ z; therefore, T is a Killing–Yano tensor on

(n, 〈· , ·〉). Note that when n = 1 and A = (
0 1

−1 0

)
, then n is the Lie algebra of the complex

Heisenberg group. More generally, if the matrix A above satisfies A2 = −I, then n is a
Lie algebra of Heisenberg type (see [14]).

(2) Let (n, 〈·, ·〉) be a Lie algebra of Heisenberg type (see [14]) such that the center z

and its orthogonal complement v have orthonormal bases {z1, . . . , zm} and {x1, . . . , xn},
respectively. We set ñ = z̃ ⊕ ṽ, where

z̃ = span{z1, . . . , zm, w1, . . . , wm}, ṽ = span{x1, . . . , xn, y1, . . . , yn},
and fix the inner product on ñ, still denoted by 〈·, ·〉, such that z̃ is orthogonal to ṽ and
the above bases are orthonormal. We define the Lie bracket on ñ corresponding to the
following endomorphism j̃ : z̃ → so(̃v):

j̃zk =
(

jzk 0
0 − jzk

)
, j̃wk =

(
0 jzk

jzk 0

)
, 1 � k � m,

where j : z → so(v) is the linear map defining the Lie bracket on n. Using (8), it turns
out that the endomorphism T given by

T =

⎛
⎜⎜⎝

0 −3Im

3Im 0
0 −In

In 0

⎞
⎟⎟⎠

is a Killing–Yano tensor on (̃n, 〈· , ·〉), where Ip is the identity p × p matrix. Note that the
complex Heisenberg Lie algebra is of the form ñ where n = h3 is the three-dimensional
Heisenberg Lie algebra.

4. The Killing–Yano equation on Lie groups with a non-negative curvature

In this section, we characterize in theorem 4.1 the Killing–Yano tensors on a Lie group with
a flat metric. We also show that for any left invariant metric on SU (2) there are no nontrivial
solutions of the Killing–Yano equation (theorem 4.7). We note that it was shown in [24] that
SU (2) is the only simply connected Lie group with left invariant metrics of positive sectional
curvature.

7
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4.1. Flat Lie groups

Let G be a Lie group with Lie algebra g. We recall from [18] that an inner product 〈· , ·〉 on g

induces a flat left invariant metric on G if and only if the following conditions are satisfied:

(i) there exists an Abelian ideal u of g such that its orthogonal complement a = u⊥ is an
Abelian subalgebra,

(ii) ad(x) is skew-symmetric for any x ∈ a.

Theorem 4.1. Let G be a Lie group with a flat left invariant metric whose Lie algebra g

decomposes g = a ⊕ u satisfying (i) and (ii) above. If T is a skew-symmetric endomorphism
of g, then T is a Killing–Yano tensor if and only if [T x, z] = 0 and [ad(x), T ] = 0 for any
x, z ∈ a.

Proof. Let T be a skew-symmetric endomorphism of g. Studying the various cases to obtain
the vanishing of αT , one can show that

(1) αT (x, y, z) = 0 if x, y, z ∈ a since a is Abelian and [g, g] ⊂ u,

(2) if x, y, z ∈ u then αT (x, y, z) = 0 since ad(a) is skew-symmetric for any a ∈ a,

(3) if x, y ∈ a and z ∈ u, then αT (x, y, z) = 0 if and only if [T x, y] = [x, Ty],
(4) if x, y ∈ u and z ∈ a, then αT (x, y, z) = 0 since [g, g] ⊂ u and ad(a) is skew-symmetric

for any a ∈ a,

(5) if x ∈ a and y, z ∈ u, then αT (x, y, z) = 0 if and only if (T [x, z])u = [x, T z],
(6) if x ∈ u and y, z ∈ a, then αT (x, y, z) = 0 if and only if [y, T z] = 0.

Note that if (6) holds, that is, [y, T z] = 0 for all y, z ∈ a, then (3) holds. Moreover, if (6)

holds then (T [x, z])a = 0, if x ∈ a and z ∈ u, since 〈T [x, z], y〉 = 〈z, [x, Ty]〉 = 0. Thus, a
solution T of the Killing–Yano equation exists if and only if [T x, z] = 0 and [ad(x), T ] = 0
for any x, z ∈ a as claimed. �

Remark 4.2. As a consequence of theorem 4.1, it turns out that any T = T1 + T2, with T1 a
skew-symmetric endomorphism of a and T2 a skew-symmetric endomorphism of u commuting
with ad(x) for all x ∈ a (take, for example, T2 = ad(y) for a fixed y ∈ a) will provide a left
invariant 2-form which gives a solution of equation (1).

Corollary 4.3. Any flat left invariant metric on a Lie group G admits a Killing–Yano 2-form.

Remark 4.4. As a consequence of corollary 4.3, it turns out that the Euclidean Lie algebra
e(2) admits a solution of the Killing–Yano equation, which is degenerate since this Lie algebra
is three dimensional.

Proposition 4.5. e(2) × e(2) carries a 3-parameter family of nondegenerate Killing–Yano
2-forms.

Proof. We consider the Lie subgroup of the isometry group of R
4 given by the semidirect

product of a maximal torus T 2 in SO(4) with R
4. The Lie algebra is isomorphic to e(2)× e(2).

Set {e1, e2, e3, e4} as an orthonormal basis of R
4 and {e5, e6} as an orthonormal basis of R

2,
the Lie algebra of T 2. The Lie bracket is given by

[e5, e1] = e2, [e5, e2] = −e1, [e6, e3] = e4, [e6, e4] = −e3.

8
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The family of skew-symmetric transformations, given in the basis {e5, e6, e1, e2, e3, e4}
by

Tr,s,t =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −r
r 0

0 −s
s 0

0 −t
t 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

provide left invariant 2-forms that are solutions of equation (1). They are non-degenerate if
rst 
= 0. �

4.2. The 3-sphere SU (2)

We recall that a left invariant metric on a Lie group G is called bi-invariant if right translations
are also isometries. This implies that ad(x) is a skew-symmetric endomorphism of g for all
x ∈ g. It is well known that a connected Lie group G carries a bi-invariant metric if and only
if it is a direct product of a connected compact Lie group with Rk (see, for example, [18]).

The proof of the next lemma follows as a direct application of equation (5).

Lemma 4.6. Let G be a Lie group with a bi-invariant metric. If T is a skew-symmetric
endomorphism of g, then ∇T (X; X ) = 0 for all left invariant vector fields if and only if
T |[g, g] = 0.

In particular, a compact semisimple Lie group has no non-trivial solution to the Killing–
Yano equation.

In the particular case of SU (2), we prove next a stronger version of lemma 4.6. In fact, it
follows that the solutions of the Killing–Yano equation are trivial for any left invariant metric
on SU (2), not just the bi-invariant one.

Theorem 4.7. For any left invariant metric g on SU (2), the solutions of the Killing–Yano
equation are trivial.

Proof. Let g0 be the bi-invariant metric on SU (2), that is, adx is skew-symmetric on its
Lie algebra su(2), let g be any left invariant metric and P be a positive definite matrix
such that g(u, v) = g0(Pu, v). Let {x, y, z} be an orthonormal basis of su(2) such that
P(x) = αx, P(y) = βy and P(z) = γ z. One verifies easily that

[x, y] = cz, [y, z] = ax, [z, x] = by, (12)

where c = γ η, a = αη, b = βη and η = g0([x, y], z) = g0([y, z], x) = g0([z, x], y).

Let T be a skew-symmetric transformation whose matrix with respect to the orthonormal
basis {x, y, z} is given by

T =
⎧⎨
⎩

⎛
⎝ 0 −a2,1 −a3,1

a2,1 0 −a3,2

a3,1 a3,2 0

⎞
⎠ : ai, j ∈ R

⎫⎬
⎭ .

We apply equation (5) and compute

(1) α(x, x, z) = 2a2,1(a − b − c) and α(y, y, z) = 2a2,1(−a + b − c). If a2,1 
= 0, then c = 0,
which is impossible. Hence, a2,1 = 0.

(2) α(x, x, y) = 2a3,1(−a + b+ c) and α(z, z, y) = 2a3,1(a + b− c). If a3,1 
= 0, then b = 0,
which is impossible. Hence, a3,1 = 0.

9
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(3) α(y, y, x) = 2a3,2(−a + b − c) and α(z, z, x) = 2a3,2(−a − b + c). If a3,2 
= 0, then
a = 0, which is impossible. Hence, a3,2 = 0.

Thus, T = 0, as claimed. �
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