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Abstract.

The significance of recommender systems has steadily grown in recent years as
they help users to access relevant items from the vast universe of possibilities avail-
able these days. However, most of the research in recommenders is based purely
on quantitative aspects, i.e., measures of similarity between items or users. In this
paper we introduce a novel hybrid approach to refine recommendations achieved
by quantitative methods with a qualitative approach based on argumentation, where
suggestions are given after considering several arguments in favor or against the
recommendations. In order to accomplish this, we use Defeasible Logic Program-
ming (DeLP) as the underlying formalism for obtaining recommendations. This ap-
proach has a number of advantages over other existing recommendation techniques.
In particular, recommendations can be refined at any time by adding new polished
rules, and explanations may be provided supporting each recommendation in a way
that can be easily understood by the user, by means of the computed arguments.

Keywords. Defeasible Argumentation, Recommender Systems, Qualitative
Recommendations

1. Introduction

Recommendation systems are support mechanisms that assist users in their decision-
making process while interacting with large or complex information spaces. Most rec-
ommender systems are aimed at helping users to deal with the problem of information
overload by facilitating access to relevant items [3]. Recommenders attempt to generate
a model of the user or user’s task and apply diverse heuristics to anticipate what informa-
tion may be useful to the user. In order to come up with recommendations, conventional
recommender systems rely on similarity measures between users or contents, computed
on the basis of methods coming either from the information retrieval or the machine
learning communities.

Recommender systems adopt mainly two different views to help predict information
needs. The first approach is known as user modeling and relies on the use of a profile or
model of the users, which can be created by observing users’ behavior (e.g., [4]). The
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second approach is based on task modeling, where recommendations are based on the
context in which the user is immersed (e.g.,[5]).

Two main techniques have typically been used to compute recommendations:
content-based and collaborative filtering. Content-based recommenders [7] are driven by
the premise that user’s preferences tend to persist through time. These recommenders
frequently use machine-learning techniques to generate a profile of the active user, typ-
ically stored as a list of rated items. In order to determine if a new item is a potentially
good recommendation, content-based recommender systems rely on similarity measures
between the new items and the rated items stored as part of the user model. Recom-
mender systems based on collaborative filtering [8] relies on the assumption that users’
preferences are correlated. These systems maintain a pool of users’ profiles associated
with items that the users rated in the past. For a given active user, collaborative recom-
mender systems find other similar users whose ratings strongly correlate with the current
user. New items not rated by the active user can be presented as suggestions if similar
users have rated them highly. A combination of collaborative-filtering and content-based
recommendation gives rise to hybrid recommender systems (e.g., [11]). These systems
typically generate a model of the active user by monitoring the user behavior or by ana-
lyzing user’s declared interests or feedback. The generated user model is combined with
the user information needs and a request for recommendations is presented to a search
engine. In addition, the system maintains a pool of profiles from other users, making
possible the application of collaborative filtering to further refine the selected set of rec-
ommendations. Although hybrid recommender systems are substantially more effective
than the basic content-based and collaborative filtering approaches, existing systems are
still limited.

Existing recommender systems cannot deal formally with the defeasible nature of
users’ preferences in complex environments [6]. Decisions about user preferences are
mostly based on heuristics which rely on ranking previous user choices or gathering
information from other users with similar interests. Besides, the quantitative approaches
adopted by most existing recommender systems do not have a clean underlying model.
This makes it hard to provide users with a clear explanation of the factors and procedures
that led the system to come up with certain recommendations.

Another problem faced by recommender systems is that modeling the users’ pref-
erence criteria is not an easy task, since it generally involves incomplete and potentially
inconsistent knowledge about the search domain. To solve this, we propose to model the
users’ preference criteria in terms of a DeLLP program [2]. In this way defeasible argu-
mentation can be integrated into existing recommender system technologies, paving the
way to solve the problems mentioned above.

2. Defeasible Logic Programming

We have chosen the formalism of Defeasible Logic Programming (DeLP) [2] as the key
to integrate argumentation into recommender systems. The language of DeLP is based
on the language of logic programming. Standard logic programming concepts (such as
signature, variables, functions, etc) are defined in the usual way. Literals are atoms that
may be preceded by the symbol “~” denoting strict negation, as in extended logic pro-
gramming. Facts are simply literals. Strict rules are ordered pairs Lo <— Li,...,L, whose
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first component, Ly, is a literal, and whose second component, L, ...,L,, is a finite non-
empty set of literals. Defeasible rules are ordered pairs Lo —< Ly, ..., L, whose first com-
ponent, L, is a literal, and whose second component, Ly, ..., L,, is a finite non-empty set

of literals. Defeasible rules are used to represent defeasible knowledge (i.e., , tentative
information that can be used as long as nothing is posed against it), whereas strict rules
are used to represent unbreakable information.

In DeLP, the state of the world is modelled as a Defeasible Logic Program (de.l.p),
essentially a possibly infinite set of facts, strict rules and defeasible rules. In a given
de.l.p &, the subset of facts and strict rules is referred to as I1, and the subset of defea-
sible rules as A, thus a de.l.p &2 can also be noted as (IT,A). Since the set IT represents
non-defeasible information it must be non-contradictory.

Givenade.l.p &2, a query posed to & is a ground literal Q which must be supported
by an argument. We apply this setting in our recommender, so to determine whether a
track should be recommended to a certain user or not, our system must compute argu-
ments based on the rules in &?. Arguments are built on the basis of a defeasible deriva-
tion computed by backward chaining applying the usual SLD inference procedure used
in logic programming.

Definition 1 Argument structure/2] Let h be a literal, and & = (I1,A) be a de.l.p. We
say that (A, h) is an argument structure for h, if, and only if, A is a set of defeasible rules
from & (i.e.,, A C A), such that: (1) there exists a defeasible derivation for h from I1UA,
(2) the set ITTUA is non-contradictory, and (3) A is minimal with respect to set inclusion
(i.e.,, no A’ C A satisfies the previous conditions).

Arguments can attack each other, an argument (Aj,h;) aftacks (A2, hy) at h if, and
only if, there exists a sub-argument structure (A, %) from (A, h,) such that ITU {h, h; }
is contradictory. Defeat among arguments is defined combining the attack relation and
a preference criterion “=<”. An argument (Aj,h) defeats (Ax,hy) if (A1,h;) attacks
(Az,hy) at a literal h and (A;,h;) = (A,h) (proper defeater) or (A|,h) is unrelated to
(A, hy (blocking defeater).

In order to decide if a partial attack really succeeds, becoming a defeat, one or sev-
eral comparison criteria must be used, establishing the relative strength of the arguments
involved in the attack. This criterion will then solve clash situations between arguments.
In our recommender system we have chosen to use a particular instantiation of DeLLP
preference criteria that combines the following elements:

® Priorities Among Rules: a predefined preference order among rules is used to
determine which argument prevails. To do this, a partial order relation among
rules must be defined. Then, when comparing two arguments, we consider the
two rules that have conflicting conclusions, and the winner argument is the one
that contains the rule that is preferred.

e Generalized Specificity [2]: those arguments that are based on more information
or those that support their conclusions more directly are preferred.

Given these criteria, we must describe how they are combined to establish which
arguments prevail in an attack situation. Basically, we give the Priority Among Rules
criterion preponderance over Generalized Specificity. In a forthcoming section we will
show how this order between the two criteria will enable us to establish a preference
relation between the different aspects involved in a recommendation.
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Definition 2 (Defeat) Ler & = (I1,A) be a de.l.p. Let (A1, h1) and (Ay,hy) be two ar-
guments in &. We say that (Ay,hy) defeats (Aj,hy) if and only if there exists a sub-
argument (A, h) of (A1,h) such that (Ay,hy) counter-argues (Ay,hy) at literal h and it
holds that:

1. (Aa,hy) is preferred by priority to (A, h) (proper defeater), or

2. (A,h) is not preferred by priority to (A2, hy) and (A, hy) is strictly more specific
that (A, h) (proper defeater), or

3. (Aa,ho) is unrelated to (A, h) (blocking defeater)

In DeLP a literal & will be warranted if there exists a non-defeated argument struc-
ture (A, h). To establish whether (A, ) is non-defeated, the set of defeaters for A will be
considered. Defeaters are arguments and may in turn be defeated. Thus, a complete di-
alectical analysis is required to determine which arguments are ultimately accepted. Such
analysis results in a tree structure (dialectical tree), in which arguments are nodes labeled
as undefeated (U-nodes) or defeated (D—nodes) according to a marking procedure.

Definition 3 Dialectical tree [2] The dialectical tree for an argument (A,h), denoted
'?(AJ!)’ is recursively defined as follows: (1) A single node labeled with an argu-
ment (A,h) with no defeaters (proper or blocking) is by itself the dialectical tree for
(A, h); (2) Let (Ay,hy), (A2, h2),...,{An, hy) be all the defeaters (proper or blocking) for
(A, h). The dialectical tree for (A,h), T4, is obtained by labeling the root node with
(A,h), and making this node the parent of the root nodes for the dialectical trees of
(A1,h1),(A2,h2), . (An ).

For the marking procedure we start labeling the leaves as U-nodes. Then, for any
inner node (A2, (0,), it will be marked as U-node if and only if every child of (A2, 0>)
is marked as a D-node. If (A, Q;) has at least one child marked as U-node then it is
marked as a D-node. This marking allows us to characterize the set of literals sanctioned
by a given de.l.p, called warranted literals. A literal h is warranted if and only if there
exists an argument structure (A, i) for A, such that the root of its marked dialectical tree
y*

(A is a U-node.

3. Providing decision-relevant information to the argumentative process: The
DBI-DeLP Framework

As we have stated in previous sections, we have used DeLP (and some of its extensions)
as the basis to develop a music recommender system. However, if we want our system
to make useful recommendations to our users, we cannot rely on information included
in the program by manual codification. Instead, we have to feed it with real-world infor-
mation both about the music tracks that can be recommended and the users for which
recommendations are made. So, instead of using encoded facts, we will use relational
databases as the source of argument support information. To do this, our recommender
is developed using the Database Integration for Defeasible Logic Programming (DBI-
DeLP) framework [9], which will enable us to use a relational database supported dataset.
We will briefly introduce the framework in this section.

Basically, a DBI-DeLP program is a DeLP program extended with information ob-
tained from a database. To do this, tuples in databases are represented as ‘“defeasible
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facts” called operative presumptions, which are literals in the form func(qi, . .. ,gm)—<true.
So a DBI-DeLP program accounts for a DeLP program along with a set ¥ of operative
presumptions, associated with a number of available databases D ... Dy. Such operative
presumptions are built on demand when the system is trying to solve a query. So, our
system could have strict rules such as child_restricted(Track) < explicit_lyrics(Track)
and defeasible rules such as track_genre(Track, progressive) — performer(Track,
genesis) and dynamically added operative presumptions such as has_listened(user X,
stairway to Heaven) or has listened(user X, whole lotta love) if we found in our
dataset that User X has listened to the tracks Stairway to Heaven and Whole Lotta Love.
The dynamic search for operative presumptions in the dataset will be crucial if we want
to obtain relevant data from the universe of available data in the dataset.

To start the process of obtaining from databases relevant data to a particular query,
we first identify the literal in the query that is being solved. DeLLP constructs arguments
to solve queries by a backward chaining process. That is, when DeLP is trying to build
an argument for a literal L it searches its knowledge base looking for strict rules, facts,
presumptions and defeasible rules that have L as its Head, and when it finds them, it tries
to prove the literals in the Body. We will call these literals in the Body part of a rule
Function Objectives (FO), as they will be the next fargets of the inference procedure.

All FO are first order predicates in the form func(py, ..., p,), where func is the pred-
icate’s functor and py,..., p, is a list of the predicate’s parameters (e.g., for genre(pride,
Genre) its functor is genre while “pride” and “Genre” are its parameters). The SLD pro-
cedure will try to prove every FO using all available knowledge, i.e., all the rules, facts
and presumptions in the DBI-DeLP program; but for the purpose of this section we will
focus on how presumptions can be obtained from databases. To do this, we first identify
pertinent data-sources, i.e., those databases (and those tables and fields) that are expected
to have useful data for the FO. We will say that a data-source (more specifically some
tables and fields in a database) is pertinent to a FO if the data-source has the potential
to support the FO, i.e., we may use some data stored in those tables and fields to prove
the literal. Once we have identified the pertinent data-sources, we have to retrieve from
them the relevant data for a recommendation. To do this we use a presumption retrieval
function (PRF). Generally speaking, the goal of the function is to feed the argumentation
process with relevant data obtained from the databases that are available to the system.
That way we can discriminate useless information from the dataset based on the content,
focusing only on data that is valuable for the particular recommendation under analysis.

4. An argument-based music recommender

The usual approaches for recommendation founded in the literature have a serious draw-
back [6]: although they are very effective, they often fail at giving users the reasons be-
hind recommendations, thus affecting the users’ trust in the results. In qualitative ap-
proaches such as the one we will describe in this paper, explanations can accompany
recommendations, so the user will know which item is suggested and the reason behind
the recommendation. This has a two-fold advantage: the user will have more confidence
on the presented result, and also the user can give the system feedback about the process
behind the obtained result, as it is a “white-box” approach.

The process of obtaining recommendations in an argument-based system is very
different from the usual approach applied by quantitative systems. Nevertheless, they
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share the same spirit: they try to somehow establish the similarity between objects or
users, and then they use this similarity to make recommendations. The main difference is
that while quantitative approaches establish similarity by giving it a numerical measure,
in the argumentative-based qualitative approach proposed here we establish similarity
using rules that state which characteristics have to be shared between objects or users to
be considered similar.

For our recommender we have developed some intuitive postulates that state the con-
ditions that need to be met so a certain track is recommended to a given user. These pos-
tulates, which can be easily translated into DeLP rules, are used to express aspects based
on the principles of both the collaborative filtering and the content-based approaches,
thus making our recommender a hybrid one. The postulates used by the system are:

Postulate

1 A user may like a song if he likes another song by the same artist.

A user may dislike a song if he dislikes another song by the same artist.

A user may like a song if he likes another song performed by an artist related to this song.

A user may dislike a song if he dislikes another song performed by an artist related to this song.
A user may like a song if he likes another song with the same musical genre.

A user may dislike a song if he dislikes another song with the same musical genre.

A user may like a song if the song is liked by a similar user.

A user may dislike a song if the song is disliked by a similar user.

© % 9 Un A WD

A user may like a song if the song is liked by a group of similar users.

S

A user may dislike a song if the song is disliked by a group of similar users.

jy

A user may like a song if the song is often listened by the rest of the system’s users.

N

A user may dislike a song if the song is not often listened by the rest of the system’s users.
Figure 1. Postulates

With the presented postulates it is possible to obtain arguments in favor or against
the potential recommendations. A problem arising from this situation is how to decide
whether to finally recommend the track or not. We have introduced two argument pref-
erence criteria that will help to solve this problem. We will use the priority among rules
preference criterion to state which postulates prevail over others. This gives us the op-
portunity to easily find the best combination of postulates by empirical trials. So, we
can go from a collaborative filtering based recommender which refines its answers on
content-based aspects to the other way around effortlessly; or even go a step further and
mix aspects in any arbitrary way we want, just by switching priorities between rules and
running tests. The second preference criterion, generalized specificity, is used just for
the sake of simplicity, as it will solve conflicts in those cases where we do not want to
establish priorities as a rule is used to refine the conditions stated in another one.

The rules represent the cases they model in a very clear, colloquial way that is easy to
understand and discuss. This leads to another advantage of our approach: we can model
new cases by adding rules to the system at any time, without the need of examining the
effects on other rules.

Basically, there are two cases when we want to expand the aspects that the recom-
mender takes into account. On the one hand, we may want to add a rule that refines an
existing one, if we discover that certain rule has marked counter-examples, and we know
the characteristics that those counter-examples share. On the other hand, we can add an
entirely new postulate modeling a relation between data that we have not been taking
into account, or if we suddenly have access to data that was previously absent.
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5. The role of argumentation in recommendations

As we will show through this section, the use of argumentation allows us to give pre-
ponderance to those characteristics we consider that better define similarity by simply
stating them as rules in the program, and then establishing an adequate priority among
them. Argumentation will also give us the possibility of easily offering explanations to
given recommendations as arguments themselves can be presented as explanations, being
arguments coherent sets of reasons in favor or against the recommendation.

We have already seen how we can obtain from our dataset the relevant data that will
be used to build arguments. As stated in previous sections, we will recommend a certain
user to listen to a given track if after considering all arguments in favor and against the
recommendation, those arguments in favor prevail. In this section we will introduce how
the dialectical process is carried out, and how it is used to make recommendations to
users. For space reasons, we will show already computed arguments and state how they
interact with each other, without focusing on how arguments have been obtained.

U recommend(rabiosa, lidia) D ["‘recommend(rabiosa, Iidia)] U | recommend(rabiosa, lidia)
|
likes_by_artist(rabiosa, lidia) [Iikes_by_genre(rabiosa, Iidia)} likes_by_track(rabiosa, lidia)
e
has_listened_artist(lidia, loba, shakira, I), has_listened_artist(lidia, hang up, _, b), artist_track(shakira, rabiosa),
same_artist(rabiosa, loba) same_tags(rabiosa, hang up) good_ track(rabiosa, shakira)

Figure 2. A marked dialectical tree with a warranted root

Figure 2 shows arguments that have been computed to provide a recommendation
for the user Lidia. We can see how arguments can be built in favor or against the rec-
ommendation under consideration, and then perform an analysis of them. In this case, if
we give preponderance to the tracks performed by the same artist over those that share
a weaker link (e.g., those that share the musical genre), the track Rabiosa” is recom-
mended to Lidia because she has listened to the track “Loba”, and stated that she likes
it, and this track is performed by the same artist as "Rabiosa” (Shakira). So, we have a
reason to believe that the user Lidia would like the music track "Rabiosa”, and according
to our opinion this reason is better than the reason to believe otherwise, i.e., we give that
rule priority over the others. Thus, we finally recommend the track to the user.

Notice the way in which we have shown the reason behind the recommendation. We
simply have expressed in a slightly more colloquial way the structure of the argument
that has prevailed in the dialectical procedure, using the functors of predicates in the rule.
This leads to another advantage of the argumentative approach: giving explanations to
recommendations is almost straightforward when they are based on arguments, as they
can be seen as self-explanatory set of reasons.

6. Conclusions

We have introduced an argumentation-based approach with the capability to improve rec-
ommendation technologies. Argumentation can be used to perform a qualitative analysis
on users and items. This allows us to go a step forward with respect to the classical quan-
titative approach to recommendation. In particular, this approach makes it easier to take
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several aspects into consideration before we make the final recommendations to the user.
These aspects can be applied to model some useful features that are hard to take into ac-
count in quantitative approaches. For instance, the defeasible nature of users’ preferences
in complex environments. The quantitative approaches to recommendation are typically
based on the use of a number of parameters, which makes the interpretation of the results
non intuitive. In our proposal, it is possible to express in a colloquial way the reason be-
hind each recommendation. Also, we can model restrictions to recommendations based
on heterogeneous contextual information (e.g., weather or users’ moods).

A useful feature of our formalism is that in order to include a new aspect (postulate)
we simply have to state it in the form of one or more DeLP rules, and state the pref-
erence assigned to these rules. This rule-based modeling of aspects allows us to make
recommendations based on quantitative criteria (if the rules model them), or qualitative
criteria. In the meantime, the use of preference leads to another advantage: we can go
from content-based approaches to collaborative filtering approaches fairly easily, just
by switching priorities between rules. Finally, the use of coherent structures of reasons
(arguments) makes giving explanations to recommendations a straightforward process.

Future work may be done in different directions. First, we plan to further test the
presented recommendation model, and compare the results obtained by our hybrid rec-
ommender system against the ones obtained by a purely quantitative recommender sys-
tem. Second, we are currently working on an extension of the formalism presented here
for modeling context changes through time, to obtain different results for the same query
when it is formulated at different time points.
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