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Introduction

Abstract

The Patagonian steppe is an immense, cold, arid region, yet phylogeographical-
ly understudied. Nassauvia subgen. Strongyloma is a characteristic element of
the steppe, exhibiting a continuum of morphological variation. This taxon pro-
vides a relevant phylogeographical model not only to understand how past
environmental changes shaped the genetic structure of its populations, but also
to explore phylogeographical scenarios at the large geographical scale of the
Patagonian steppe. Here, we (1) assess demographic processes and historical
events that shaped current geographic patterns of haplotypic diversity; (2) ana-
lyze hypotheses of isolation in refugia, fragmentation of populations, and/or
colonization of available areas during Pleistocene glaciations; and (3) model
extant and palaeoclimatic distributions to support inferred phylogeographical
patterns. Chloroplast intergenic spacers, rpl32—trnl and trnQ-5'rpsl6, were
sequenced for 372 individuals from 63 populations. Nested clade analysis,
analyses of molecular variance, and neutrality tests were performed to assess
genetic structure and range expansion. The present potential distribution was
modelled and projected onto a last glacial maximum (LGM) model. Of 41
haplotypes observed, ten were shared among populations associated with differ-
ent morphological variants. Populations with highest haplotype diversity and
private haplotypes were found in central-western and south-eastern Patagonia,
consistent with long-term persistence in refugia during Pleistocene. Palacomod-
elling suggested a shift toward the palacoseashore during LGM; new available
areas over the exposed Atlantic submarine platform were colonized during gla-
ciations with postglacial retraction of populations. A scenario of fragmentation
and posterior range expansion may explain the observed patterns in the center
of the steppe, which is supported by palaecomodelling. Northern Patagonian
populations were isolated from southern populations by the Chubut and the
Deseado river basins during glaciations. Pleistocene glaciations indirectly
impacted the distribution, demography, and diversification of subgen. Strongy-
loma through decreased winter temperatures and water availability in different
areas of its range.

a typical element throughout the immense territory of the
Patagonian steppe.

Phylogeographical reconstructions along large, extensive
geographic areas are difficult to assess because they ideally
need widely distributed, ubiquitous taxa, present at regio-
nal scale as a characteristic element of different local com-
munities. Nassauvia Comm. ex Juss. subgen. Strongyloma
(DC) Cabrera (Asteraceae) is one of these rare cases; it is
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Cabrera (1982) distinguished five species within sub-
gen. Strongyloma by o taxonomy: Nassauvia axillaris (Lag.
ex Lindl.) D. Don, Nassauvia fuegiana (Speg.) Cabrera,
Nassauvia glomerulosa (Lag. ex Lindl.) D. Don, Nassauvia
maeviae Cabrera, and Nassauvia ulicina (Hook. f.)
Macloskie. The subgenus as a whole is easy to recognize
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in the field: it comprises small shrubs with a tendency to
heteroblasty, with 1-5 white flowers per capitulum, and
hairy cypselas (Cabrera 1982; Freire et al. 1993). Although
Cabrera (1982) suggested wind dispersal, our personal
observations in the field suggest that cypselas are dis-
persed mainly rolling on the ground, because the pappus
is quickly deciduous. Distinguishing species within this
complex is challenging; however, because variation in
morphological traits does not strictly follow species
boundaries as traditionally defined (Nicola et al. 2014).
Maraner et al. (2012) found that subgen. Strongyloma is
polyphyletic based on the ITS region of nuclear ribosomal
DNA, but this appears to be an error in sample or
sequence identity, or the use of divergent sequence para-
logs (Nicola et al. 2014; Nicola, M. V., S. M. Sede, L. A.
Johnson, and R. Pozne in preparation). Morphological
evidence (Cabrera 1982; Freire et al. 1993; Nicola et al.
2014) and molecular data derived from plastid and
nuclear ribosomal DNA regions (Nicola, M. V., S. M.
Sede, L. A. Johnson, and R. Pozner in preparation) indi-
cate subgen. Strongyloma is a well-supported monophy-
letic group with wide and continuous morphological
variation coupled with little genetic divergence. We follow
here the taxonomical decision of Nicola, M. V., S. M.
Sede, L. A. Johnson, and R. Pozner (in preparation) by
considering Nassauvia subgen. Strongyloma as a monospe-
cific taxon. The morphological combinations traditionally
accepted as species (Cabrera 1982; Freire et al. 1993) are
here referred as “morphological variants” (i.e., axillaris,
glomerulosa, fuegiana, maeviae, and ulicina morphologi-
es), just to allow some reference points within the mor-
phological, continuous variation observed in this group
of plants (Nicola et al. 2014).

Nassauvia subgen. Strongyloma has a remarkably wide
distribution, mainly in the Patagonian steppe with a few
enclaves in the Andean region, from sea level to 4560 m
a.s.l, in southern Bolivia (c. 21°S), in Argentina (from
Jujuy Province c. 22°S to northern Tierra del Fuego Prov-
ince ¢. 54°S), and in Chile (from Valparaiso c. 32°S to
Magallanes ¢. 51°S), including a variety of climatic zones
but mainly adapted to extremely xeric environments
(Cabrera 1982; Nicola et al. 2014). With a particularly
abundant distribution, populations with axillaris and
glomerulosa morphological variants characterized the
Western and the Central Patagonian districts of the Pata-
gonian Phytogeographical Province, respectively (Cabrera
and Willink 1980). Sympatric assemblages of different
combinations of two or three morphological variants of
subgen. Strongyloma are frequent in some areas of Pata-
gonia. With abundant morphologically intermediate indi-
viduals, such areas might represent secondary contact
zones or populations with incomplete sorting of lineages
(Nicola et al. 2014). The fossil record refers the oldest
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members of subtribe Nassauviinae back to the Miocene,
when progenitors of this group were expanding in eastern
Patagonia (Barreda et al. 2008). Nassauviinae, together
with Mutisieae, are among the oldest, early branching
groups within Asteraceae, after Onoseridae and Barnade-
sioideae (Funk et al. 2009).

The vast, flat, arid Patagonian steppe ecoregion is lon-
gitudinally placed from the east of the slopes of the
southern Andes to the Atlantic coast, and latitudinally
located from central Mendoza Province (c. 32°S) to
northern Tierra del Fuego Province (c. 54°S) in Argen-
tina, covering a total area of approximately 787,000 km®
(Correa 1998). It was shaped during the Middle-Late
Miocene (16-5.3 Ma) mainly by the uplift of the Andes.
This orogeny blocked and filtered moist winds coming
from the Pacific Ocean and produced a substantial rain
shadow to the east, resulting in cold and dry conditions
throughout the steppe, a contraction of the forest, and
the expansion of xerophytic taxa (Barreda and Palazzesi
2007). Major glacial-interglacial cycles in Patagonia began
during the Late Miocene (c. 5-6 Ma), with ice reaching
its maximum development in the Early Pleistocene (c.
1.15 Ma; Ogg et al. 2008; Rabassa et al. 2011). The major
glacial advances in southern South America were the
Great Patagonian Glaciation (GPG; ¢. 1 Ma) and the Last
Glacial Maximum (LGM; c. 21 Ka). The GPG resulted in
the greatest expansion of ice sheets in the Patagonian
steppe compared with LGM and other Pleistocene glacia-
tions (Rabassa et al. 2011). However, a large part of the
steppe remained free of ice during the glacial episodes,
and climatic conditions were less severe than those occur-
ring in North America (Markgraf et al. 1995).

In Patagonia, Pleistocene glaciations caused several cli-
matic and environmental changes. The sea level lowered,
shifting the coastline about four degrees eastward. Cli-
matic continentality of the surrounding areas enhanced,
with rising extreme temperatures and decreased precipita-
tion. The Argentinean submarine platform was partially
exposed, substantially increasing the space available for
animal and plant colonization (Rabassa 2008). Although
these climatic and environmental changes are thought to
have affected species distribution, the Patagonian steppe
remains poorly phylogeographically studied (Sérsic et al.
2011). Plant studies have focused mainly on the Andean
region (e.g., Muellner et al. 2005; Marchelli and Gallo
2006; Amico and Nickrent 2009; Acosta and Premoli
2010; Vidal-Russell et al. 2011; Segovia et al. 2012; among
others), although interest in understanding the evolution-
ary history and processes of plant diversification in the
Patagonian steppe has increased in recent years (Jakob
et al. 2009; Cosacov et al. 2010, 2013; Sede et al. 2012).
Considering this background, subgen. Strongyloma is a
relevant plant phylogeographical model not only to
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understand how recent past environmental changes
shaped the genetic structure of its populations, but also
to explore regional phylogeographical scenarios. Here, we
examine the relative importance of probable historical
events and/or past demographic processes that can
explain the current genetic population structure in sub-
gen. Strongyloma through phylogeographical analyses
using plastid DNA sequences. We also investigate how
palaeoclimatic conditions have influenced the distribution
of this subgenus using distribution modelling (Hijmans
and Graham 2006). We analyze three hypotheses: (1) the
existence of multiple glacial refugia in flanking zones of
the Andes covered by ice followed by postglacial expan-
sion; (2) the expansion of populations over the current
marine platform during the Pleistocene and their succes-
sive, recent retraction to the surroundings of the current
Atlantic coast of Patagonia; and/or (3) the fragmentation
of populations that persisted in areas not reached by the
ice sheet during glacial periods in the center of the steppe
due to past river basins dynamic. Under the first scenario,
population expansion from refugia should leave genetic
signatures of high diversity and private haplotypes in ref-
ugial areas, produced by considerable genome divergence
and reorganization. From the perspective of the second
hypothesis, in recently reduced areas nearby the Atlantic
coast with rapid population retraction, diversity should
be low due to successive bottlenecks on the colonizing
genomes that lead to a loss of alleles. Lastly, if popula-
tions persisted in more or less fragmented areas, then
genetic diversity and unique haplotypes within popula-
tions should be low: during posterior expansions, haplo-
types may spread slowly and more equally (Hewitt 1996).
Finally, we search for significant phylogeographical breaks
consistent with those found previously for other Patago-
nian organisms and consider these breaks with prior
hypotheses (Sérsic et al. 2011; and literature therein; Sede
et al. 2012; Cosacov et al. 2013).

Materials and Methods

Sampling

A total of 372 individuals from 63 populations were sam-
pled in Argentina (excepting Tierra del Fuego), covering
most of the distribution of subgen. Strongyloma and its
wide morphological variation, including axillaris, glomerul-
osa, fuegiana, and ulicina morphological variants (Table 1,
Fig. 1). The maeviae morphological variant is known only
from the type collection, and DNA could not be obtained
from the herbarium voucher. Fresh leaves were sampled
from one to eight individuals at each site, separated by at
least 10 m along a linear transect to minimize the potential
of sibling relationships among samples. Herbarium vouch-
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ers were identified following Cabrera (1982) and deposited
at SI (Instituto de Botanica Darwinion) or CORD (Museo
Botanico, Universidad Nacional de Cérdoba).

DNA isolation, amplification, and
sequencing

Genomic DNA was isolated from silica dried leaf tissue
following a modified cetyl trimethyl ammonium bromide
(CTAB) protocol (Doyle and Doyle 1987; Cullings 1992).
The chloroplast intergenic spacers rpl32—trnL (primers
rpL32-F and trnLYA%; Shaw et al. 2007) and trnQ-5'rps16
(primers trnQYYC and rps16 * 1 Shaw et al. 2007) were
selected as markers because they showed the highest
sequence variability among several surveyed regions.

DNA was amplified and sequenced with a profile con-
sisting of 94°C for 3 min followed by 30 cycles of 94°C
for 1 min, 50 or 52°C for 1 min for trnQ-5rpsi6 and
rpl32—trnL, respectively, and 72°C for 1 min. Amplifica-
tion products were purified using PCRys cleanup plates
(Millipore Corp, Billerica, MA), sequenced with BigDye 3
(Applied Biosystems, Foster City, CA), and purified with
Sephadex (GE Healthcare, Piscataway, NJ) before electro-
phoresis on an AB 3730x] automated sequencer housed in
Brigham Young University’s DNA Sequencing Centre.
Electropherograms were edited and assembled using
SEQUENCHER 4.6 (Gene Codes, Ann Arbor, MI). Sequences
were aligned with CrustatX 1.81 (Thompson et al. 1997)
with subsequent manual adjustments using BioEpir 5.0.9
(Hall 1999). Indels were coded as binary characters using
simple indel coding (Simmons and Ochoterena 2000) as
implemented in SeqQStaTte 1.4 (Miller 2005). The two
chloroplast regions were concatenated into a single matrix
a priori given their shared ancestry, maternal inheritance,
and extremely rare instances of recombination within the
chloroplast genome. Unique sequences from this com-
bined matrix were identified as haplotypes. All sequences
were deposited in GenBank (rpl32—trnl KM978451—
KM978491 and trnQ-5"rps16 KM978492-KM978532).

Haplotype network and geographic
distribution

Nested clade analysis (NCA) was performed following Tem-
pleton et al. (1995) and Templeton (2004) using ANECA 1.2
(Panchal 2007). Although NCA has been criticized (Petit
2007; Beaumont and Panchal 2008; Knowles 2008), it has
been validated extensively (Templeton 2008, 2009) and is
used as an exploratory analysis in conjunction with other
population genetic parameters to draw inferences here.

A haplotype network was constructed using TCS 1.21
(Clement et al. 2000) with the default 0.95 probability
connection limit. Ambiguous connections (loops) were
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Table 1. Sampling sites (Nc), collectors, and collection numbers (herbaria in parenthesis), morphological variant, collection localities, elevation
(meters), geographic coordinates, and sample size (Nj,q) of the Nassauvia subgen. Strongyloma populations studied in Argentina. Localities are
numbered consecutively, as shown on the map in Figure 1.

Nioc  Legit (herbarium) Morphology  Province Sample location Elevation  Latitude (°S)  Longitude (°W)  Ning
1 Zuloaga 11934 (SI) axillaris Catamarca  Minas Capillitas 3740 27°21 66°20' 7
2 Zavala 57 (Sl) axillaris Mendoza Laguna del Diamante 2622 34014/ 69°25' 8
3 Nicola 127 (SI) glomerulosa  Neuquén El Huect 1483 37°42' 70°30’ 7
4 Sérsic 4126 (CORD)  glomerulosa ~ Neuquén Zapala 1091 39°01' 70°01" 7
5 Nicola 121 (SI) glomerulosa  Neuquén Catan Lil 980 39°44' 70°29' 5
6 Sérsic 4122 (CORD)  glomerulosa ~ Neuquén Collén Curd 604 40°25' 70°39 8
7 Nicola 98 (S) fuegiana Rio Negro Aguada del Trapo 775 39°56 69°03' 2
8 Zanotti 42 (SI) glomerulosa  Rio Negro Chasicé 1117 40°17 68°55 3
9 Zanotti 45 (SI) axillaris Rio Negro Colan Conué 1145 40044/ 69°09’ 8

10 Nicola 109 (SI) axillaris Rio Negro Sierra de Queupuniyeu 1156 40°32' 68°11/ 8

11 Nicola 108 (SI) glomerulosa  Rio Negro Sierra Colorada 749 40°34' 67°52' 8

12 Zanotti 35 (SI) glomerulosa  Rio Negro Los Menucos 874 40°46' 68°11/ 8

13 Nicola 103 (SI) glomerulosa  Rio Negro Prahuaniyeu 857 41°05 67°53' 8

14 Avila s.n.1 (SI) axillaris Rio Negro Aguada de Guerra 896 41°04/ 68°23/ 6

15 Zanotti 23 (SI) fuegiana Rio Negro Meseta de Somuncura 618 40°58’ 66°40’ 2

16 Zanotti 24 (SI) glomerulosa  Rio Negro Cerro Corona 1425 41°24 66°57' 8

17 Zanotti 49 (SI) axillaris Rio Negro Ingeniero Jacobacci 865 41°20 69°28' 5

18 Zanotti 53 (SI) glomerulosa  Rio Negro Moligle 1162 41°45' 69°22' 4

19 Nicola 5 (SI) glomerulosa  Chubut El Escorial 1025 42°56' 68°31/ 5

20 Biganzoli 1975 (SI) fuegiana Chubut Dolavon 95 43°271 65°56' 1

21 Nicola 62 (SI) glomerulosa  Chubut Dique Florentino Ameghino 260 43047 66°29 7

22 Nicola 66 (SI) ulicina Chubut Las Plumas 270 43°56' 67°18' 2

23 Nicola 76 (SI) fuegiana Chubut Los Altares 250 43°50’ 68°35/ 2

24 Nicola 75 (SI) ulicina Chubut Meseta del Canquel 364 44°30/ 68°12' 2

25 Paiaro s.n.43 (SI) glomerulosa  Chubut Pampa Salamanca 579 45°08' 67°09 6

26 Nicola 74 (SI) ulicina Chubut Puente Nollman 269 45018’ 67°46' 2

27 Nicola 58 (SI) glomerulosa  Chubut Pampa del Castillo 364 45033’ 68°11/ 4

28 Nicola 8 (SI) glomerulosa  Chubut Paso del Sapo 584 42045 69°43’ 8

29 Nicola 14 (SI) axillaris Chubut Piedra Parada 540 42041 70°09’ 1

30 Nicola 33 (SI) glomerulosa  Chubut Canadén Grande 900 44°15 69°24’ 7

31 Nicola 17 (SI) glomerulosa ~ Chubut Tecka 676 43015 70°52' 8

32 Nicola 29 (SI) glomerulosa  Chubut Matasiete 854 45°07’ 69°20/ 8

33 Nicola 170 (Sl) ulicina Chubut Rio Mayo 421 45°28' 69°50' 1

34 Nicola 28 (SI) glomerulosa  Chubut Alto Rio Senguer 643 44°48' 70°42' 8

35 Nicola 55 (SI) glomerulosa  Santa Cruz ~ Pico Truncado 268 46°58' 68°25' 7

36 Biganzoli 2345 (SI) glomerulosa  Santa Cruz  Las Heras 1 343 46°36' 69°27' 6

37 Biganzoli 2347 (SI) ulicina Santa Cruz  Las Heras 2 343 46°37’ 69°28' 8

38 Paiaro s.n.42 (Sl) glomerulosa  Santa Cruz  Las Heras 3 336 46°36' 69°27' 7

39 Paiaro s.n.40 (Sl glomerulosa  Santa Cruz  Estancia Sol de Mayo 822 47°22' 69°49' 8

40 Paiaro s.n.38 (SI) glomerulosa  Santa Cruz  Estancia Piedra Grande 775 47°36' 69°46' 8

41 Paiaro s.n.16 (Sl glomerulosa  Santa Cruz ~ Meseta del Guenguel 739 46°12' 71°35' 8

42 Paiaro s.n.12 (Sl) glomerulosa  Santa Cruz ~ Meseta Lago Buenos Aires 1353 46°58' 71°06' 8

43 Nicola 167 (SI) ulicina Santa Cruz  Estancia La Bajada 473 47°58' 70024/ 1

44 Zanotti 117 (SI) glomerulosa  Santa Cruz  Estancia El Delfin 618 47°58' 70°58' 8

45 Paiaro s.n.34 (Sl) glomerulosa  Santa Cruz  Estancia Cerro Beltza 912 48°00/ 71°41 8

46 Paiaro s.n.19 (SI) glomerulosa  Santa Cruz ~ Gobernador Gregores 1 459 48°51’ 70°36' 6

47 Nicola 157 (Sl) ulicina Santa Cruz  Gobernador Gregores 2 434 48°50/ 70°33/ 1

48 Zanotti 98 (SI) glomerulosa  Santa Cruz ~ Meseta de San Adolfo 597 49°11/ 71053/ 8

49 Zanotti 93 (S) glomerulosa  Santa Cruz  La Leona 294 490571/ 72°02' 8

50 Zanotti 89 (SI) glomerulosa  Santa Cruz  Rio Bote 234 50°18’ 71°39 8

51 Paiaro s.n.27 (S) glomerulosa  Santa Cruz ~ Cerro Mank Aike 807 49°46' 70°44' 3

52 Paiaro s.n.36 (Sl) glomerulosa  Santa Cruz  Estancia Dos Manantiales 741 48°15/ 69°47' 6

53 Zanotti 66 (SI) glomerulosa  Santa Cruz ~ Estancia 8 hermanos 331 48°48' 69°45' 8

54 Zanotti 69 (SI) glomerulosa ~ Santa Cruz  Estancia La Delfina 121 49028’ 69°41/ 6

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. 4273
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Table 1. Continued.

M. V. Nicola et al.

Nioc  Legit (herbarium) Morphology  Province Sample location Elevation  Latitude (°S)  Longitude (°W)  Ning
55 Paiaro s.n.24 (SI) glomerulosa  Santa Cruz  Estancia El Mendocino 332 50°42’ 70°14' 4
56 Zanotti 70 (SI) glomerulosa  Santa Cruz ~ Comandante Luis Piedra Buena 108 49054/ 69°00/ 8
57 Zanotti 71 (Sl) glomerulosa  Santa Cruz ~ Puerto Santa Cruz 126 50°03’ 68°53' 8
58 Nicola 47 (SI) glomerulosa  Santa Cruz  Estancia Vega Grande 214 48°30/ 68°52' 7
59 Zanotti 64 (SI) glomerulosa  Santa Cruz  Estancia Cerro Perdido 241 48°58' 68°29 7
60 Nicola 51 (SI) glomerulosa  Santa Cruz  Estancia Piedra Negra 221 48°09’ 68°13/ 8
61 Biganzoli 2343 (Sl) glomerulosa  Santa Cruz  Fitz Roy 242 46°58' 67°16' 3
62 Nicola 37 (SI) glomerulosa ~ Santa Cruz  Estancia El Polvorin 106 47°07’ 66°28' 7
63 Zanotti 142 (Sl) glomerulosa  Santa Cruz  Puerto Deseado 16 47°43' 65°50" 5

resolved using predictions from coalescent theory and
information about sampling according to three criteria:
frequency, network topology, and geography (Crandall
and Templeton 1993).

The resolved haplotype network was converted into a
hierarchical nested design following Templeton et al.
(1987) and Templeton and Sing (1993). Clade (Dc) and
nested clades (Dn) distances were estimated to assess
association between the nested cladogram and geographic
distances among sampled localities (Templeton et al.
1995) using GeoDrs 2.6 (Posada et al. 2000). Null distri-
butions (i.e., under a hypothesis of no geographic associa-
tion of clades and nested clades) for permutational
contingency table test comparisons were generated from
10,000 Monte Carlo replications, with a 95% confidence
level. For significant associations, the inference key of
Templeton (2011) was used to recognize probable demo-
graphic processes and/or historical events of the clades.

Population genetic analyses

Haplotype diversity (h; Nei 1987), nucleotide diversity (7;
mean number of pairwise differences per site; Nei 1987),
and mean number of pairwise differences (p; Tajima
1983) were calculated for the subgenus as a whole, each
sampling location, and each geographic region, using
DNaSP 5.10.01 (Librado and Rozas 2009).

To investigate hierarchical levels of population struc-
ture, two analyses of molecular variance (AMOVA) were
performed that consider genetic distances between haplo-
types and their frequencies using ArRLEQUIN 3.5.1.2 (Excof-
fier and Lischer 2010). First, populations were grouped
according to different latitudinal regions, defined by
major rivers: (1) north of Agrio, Neuquén, and Negro riv-
ers, ¢. 38°S; (2) between Agrio, Neuquén, and Negro riv-
ers, and Chubut River, c. 38°-43°S; (3) between Chubut
and Deseado rivers, c. 43°-47°S; (4) between Deseado
and Chico rivers, c¢. 47°-50°S; and (5) south of Chico
River, ¢. 50°S (Fig. 1). The aim of the second analysis
was to test whether genetic variation was significantly

4274

structured among glaciated and nonglaciated sites during
GPG in populations south of Chubut River (Rabassa
et al. 2011), following a longitudinal transect at c. 71°W.
This region was selected given that eight of the 63 popu-
lations were located within the ice zone (Fig. 1). Estima-
tion of molecular diversity indexes and AMOVAs were
performed considering only populations with four or
more sampled individuals.

Demographic history analyses

To analyze the demographic history of populations in
each geographic area, Tajima’s D (Tajima 1989), Fu’s Fg
(Fu 1997), and Ramos-Onsins and Rozas’ R, (Ramos-
Onsins and Rozas 2002) statistics of neutrality were cal-
culated to test for evidence of range expansion. Signifi-
cant negative values of D and Fs and small positive
values of R, indicate an excess of low frequency muta-
tions relative to expectations under the standard neutral
model (i.e., strict selective neutrality of variants, constant
population size, and lack of subdivision and gene flow).
Fs and R, are the most powerful tests used to detect
population growth (Ramos-Onsins and Rozas 2002). Sig-
nificance was evaluated by comparing observed values
with null distributions generated by 10,000 replicates,
using the empirical population sample size and observed
number of segregating sites implemented by DNaSP
5.10.01.

Distribution modelling

To validate the phylogeographical analyses, we modelled
the present potential geographic distribution of Nassauvia
subgen. Strongyloma and projected it onto a LGM model
about 21 Ka using point locality information and envi-
ronmental data in Diva-Gis 7.3 (Hijmans et al. 2001) and
MaxENT 3.3.3, with the maximum entropy machine-
learning algorithm (Phillips et al. 2004).

We recorded latitudinal and longitudinal coordinates
from 224 localities of subgen. Strongyloma, covering its

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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Figure 1. The inset depicts a geographic map of South America with
the study area indicated in a box. The main map shows the locations
of the 63 sampled populations of Nassauvia subgen. Strongyloma.
Locality numbers correspond to those in Table 1. Symbols indicate
four of the five morphological variants: stars, axillaris; triangles,
fuegiana; circles, glomerulosa; and squares, ulicina. Acronyms
designate the Argentinean provinces sampled: CA, Catamarca; CH,
Chubut; MZ, Mendoza; NE, Neuquén; RN, Rio Negro; and SC, Santa
Cruz. The solid lines illustrate schematically the main rivers considered
in the analyses: A. Agrio, Neuquén, and Negro rivers; B. Chubut
River; C. Deseado River; and D. Chico River. The dotted line shows
the limit of the ice during the Great Patagonian Glaciation (GPG;
Rabassa et al. 2011).

entire distribution range primarily using a handheld
geographical positioning system (GPS) unit. Only 36
point localities of the total were geo-referenced using
Google Earth (http://www.google.com/earth/index.html).
Environmental data with a resolution of 2.5 arc minutes
(5 km?) for current and past conditions were down-
loaded from the WorldClim database 1.4 (Hijmans et al.
2005) and were represented by 19 bioclimatic variables
derived from the monthly temperature and rainfall
values.

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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Current conditions are interpolations of observed data
from climate stations around the world, representing a
50-year period from 1950 to 2000. Past conditions for the
LGM are calibrated and statistically downscaled recon-
structions based on the WorldClim data for current con-
ditions. We chose the prediction of one of two global
climate models tested for the LGM, the community cli-
mate system model (CCSM) and the Model for Interdisci-
plinary Research on Climate (MIROC), by evaluating the
MAaXENT values of the area under the curve (AUC)
and interpreting the resulting maps of each model in
Diva-Grs.

We generated 2000 random points from across Argen-
tina, Bolivia, and Chile using Geo Midpoint (http://www.
geomidpoint.com/random/) and extracted environmental
data in Diva-Gis. To avoid overestimation of climatic data
that can lead to misleading results (Phillips et al. 2004;
Peterson and Nakazawa 2008), we calculated Pearson’s
correlation coefficients (r > 0.75) and performed Princi-
pal Component Analyses in INroStaT 2.0 (Di Rienzo et al.
2011) following a similar procedure described by Werneck
et al. (2011) and Sede et al. (2012). We identified highly
correlated variables and selected ten that we considered
more biologically meaningful and directly relevant to sub-
gen. Strongyloma. These were the annual mean tempera-
ture (Bio 1), isothermality (Bio 3), temperature annual
range (Bio 7), mean temperature of the wettest quarter
(Bio 8), mean temperature of the driest quarter (Bio 9),
mean temperature of the coldest quarter (Bio 11), annual
precipitation (Bio 12), precipitation seasonality (Bio 15),
precipitation of the warmest quarter (Bio 18), and precip-
itation of the coldest quarter (Bio 19).

The bioclimatic layers were trimmed to the surround-
ing areas of the known geographic distribution of subgen.
Strongyloma, and then projected over a wider region
from latitude 17°41'S to 55°49'S and from longitude
57°31'W to 75°43’O for the present and the LGM in
Diva-Gis.

MAaXENT was run using the following settings for cur-
rent and past models: 10 replicates with auto features,
response curves, jackknife tests, logistic output format,
random seed, random test percentage = 25% (the test
data are a random sample taken from the 100% of the
species presence localities, which allows the program to
do some simple statistical analysis; therefore, the remain-
ing 75% represents the training data), replicate run
type = cross-validate, regularization multiplier = 1, maxi-
mum iterations = 500, convergence threshold = 0.00001,
and maximum number of background points = 10,000.
To determine the threshold value for each prediction, we
used the value of the minimum training presence logistic
threshold. Variable importance was determined compar-
ing percent contribution values and jackknife plots.
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Results

DNA data sets

DNA sequences of subgen. Strongyloma ranged from 913
to 928 base pairs (bp) for rpl32—trnL (with two indels of
seven and eight bp) and 916 to 925 bp for trnQ-5'rpsi6
(with one indel of nine bp). The three indels were coded
as present or absent and appended to the end of the
matrix. The combined matrix included 1856 characters,
of which 37 were variable.

Haplotype network and geographic
distribution of haplotypes

Statistical parsimony retrieved a well-resolved network in
which three closed loops were resolved unambiguously
(Fig. 2). A total of 41 haplotypes (H) were identified. Ele-
ven haplotypes occurred in interior positions and 30 at
tip positions. Nine additional haplotypes were not
observed in the analyzed individuals and occur only as
inferred intermediates in the network. Four frequent,
widespread haplotypes were found (H25, HI, H18, and
H12; Table 2, Fig. 2).

Among the total observed haplotypes (Table 2), eight
were shared by populations associated with different mor-
phological variant pairs: H41 in axillaris—fuegiana, H9,
H10, and H17 in axillaris—glomerulosa, H1 in axillaris—
ulicina, and H18, H25, and H28 in glomerulosa—ulicina.
Two additional haplotypes were found in populations
associated with different combinations of three morpho-
logical variants: H12 in axillaris—fuegiana—glomerulosa
and H27 in fuegiana—glomerulosa—ulicina.

The nested network resulted in 15 one-step clades,
seven 2-step clades, two 3-step clades, and the total clado-
gram (Fig. 3). Although not strictly nonoverlapping, a lat-
itudinal distribution of the two-step clades was observed
(Figs. 2, 3). Haplotypes in clade 2-1 (HA: high—Andean
region) were distributed through the Andes north of
38°S, clearly separated from the rest. Haplotypes in clade
2-3 (NP1: northern Patagonia 1 region) included the sec-
ond most frequent, widespread haplotype (H1) and were
distributed between 39° and 47°S, while haplotypes in
clade 2-4 (NP2: northern Patagonia 2 region) included
the fourth most frequent, widespread haplotype (H12)
and were distributed between 40°25' and 44°S. Haplo-
types in clades 2-6 (CP1: central Patagonia 1 region) and
2-5 (CP2: central Patagonia 2 region) were scarce and dis-
tributed between 40° and 43°15'S, and 43° and 46°37'S,
respectively. Haplotypes in clade 2-7 (SP1: southern Pata-
gonia 1 region) included the most frequent, widespread
haplotype (H25) and were distributed mainly south of
43°21'S, with one exception further north at 39°44’S.
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Finally, haplotypes in clade 2-2 (SP2: southern Patagonia
2 region) included the third most frequent, widespread
haplotype (H18) and were distributed south of 45°28'S.
All geographic regions presented populations with
exclusive haplotypes (Table 2, Fig. 3). The region with
the largest number of exclusive haplotypes was SP1, with
eight exclusive haplotypes distributed in southern Neu-
quén (population 5; H38) and mainly in Santa Cruz
(populations 37, 39, 44, 46, 50, 53, and 58; H26, H31,
H37, H36, H32, H30, and H29 respectively). The second
region with the highest number of exclusive haplotypes
was NP1, with six exclusive haplotypes distributed in
southern Neuquén (population 5; H7), in central Rio
Negro (population 8; H6), and in south-western Chubut
(populations 30, 32, and 34; H2, H3, H4, and H5). The
NP2 region had five exclusive haplotypes distributed in
southern Neuquén (population 6; H13), central and cen-
tral-southern Rio Negro (populations 10, 17, and 18;
H11, HI14, and HI16), and central-northern Chubut
(population 28; H15). The SP2 region had four exclusive
haplotypes distributed in Santa Cruz (populations 42, 47,

eacric

—-462 |

-512]

S -

Figure 2. Geographic distribution and genealogical relationships of
the chloroplast DNA haplotypes found in Nassauvia subgen.
Strongyloma. (A) Pie charts reflect the frequency of occurrence of
each haplotype in each population. Haplotype colors correspond to
those shown in panel (B). (B) Statistical parsimony network linking the
41 haplotypes. Sampled haplotypes are designated by numbers, and
circle sizes are proportional to haplotype frequencies. The solid bars
represent hypothetical haplotypes not observed in the analyzed
individuals.
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Table 2. Distribution of haplotypes of Nassauvia subgen. Strongyloma between individuals, populations, morphological variants, Argentinean

provinces, and haploclades.

Haplotype Ning %ind Noop % pop Morphology Distribution Geographic region
1 60 0.161 13 0.127 AXI-ULI NE-RN-CH-SC NP1
2 1 0.003 1 0.010 GLO CH NP1
3 2 0.005 1 0.010 GLO CH NP1
4 2 0.005 1 0.010 GLO CH NP1
5 8 0.022 1 0.010 GLO CH NP1
6 3 0.008 1 0.010 GLO RN NP1
7 2 0.005 1 0.010 GLO SC NP1
8 7 0.019 1 0.010 AXI CA HA
9 15 0.040 2 0.020 AXI-GLO MZ-NE HA

10 1 0.030 3 0.025 AXI-GLO RN NP2

I 1 0.003 1 0.010 AXI RN NP2

12 20 0.054 8 0.067 AXI-FUE-GLO NE-RN-CH NP2

13 2 0.005 1 0.010 GLO NE NP2

14 4 0.011 1 0.010 AXI RN NP2

15 8 0.022 1 0.010 GLO CH NP2

16 1 0.003 1 0.010 GLO RN NP2

17 3 0.008 2 0.020 AXI-GLO CH NP2

18 38 0.102 9 0.075 GLO-ULI CH-SC SP2

19 3 0.008 1 0.010 GLO SC SP2

20 4 0.011 3 0.025 GLO SC SP2

21 3 0.008 1 0.010 GLO SC SP2

22 1 0.003 1 0.010 ULl SC SP2

23 1 0.003 1 0.010 GLO SC SP2

24 7 0.019 2 0.020 GLO CH SP1

25 102 0.274 23 0.192 GLO-ULI CH-SC SP1

26 3 0.008 1 0.010 uLl SC SP1

27 4 0.011 3 0.025 FUE-GLO-ULI CH SP1

28 6 0.016 2 0.020 GLO-ULI CH SP1

29 3 0.008 1 0.010 GLO SC SP1

30 1 0.003 1 0.010 GLO SC SP1

31 4 0.011 1 0.010 GLO SC SP1

32 5 0.013 1 0.010 GLO SC SP1

33 3 0.008 1 0.010 GLO SC CP2

34 4 0.011 1 0.010 ULl SC CP2

35 4 0.011 1 0.010 GLO CH CP2

36 2 0.005 1 0.010 GLO SC SP1

37 3 0.008 1 0.010 GLO SC SP1

38 2 0.005 1 0.010 GLO NE SP1

39 1 0.030 2 0.020 GLO SC SP1

40 4 0.011 1 0.010 GLO CH CP1

41 4 0.011 2 0.020 AXI-FUE RN CP1

Ning, number of individuals per haplotype; %inq, percentage of individuals per haplotype; Nyop, Number of populations per haplotype; %,qp, percent-
age of populations per haplotype; morphological variants: AXI, axillaris; FUE, fuegiana; GLO, glomerulosa; and ULI, ulicina; Distribution: CA, Catamar-
ca; CH, Chubut; MZ, Mendoza; NE, Neuguén; RN, Rio Negro; and SC, Santa Cruz; Geographic region: CP1, central Patagonia 1, CP2: central
Patagonia 2; HA, high-Andean; NP1, northern Patagonia 1; NP2, northern Patagonia 2; SP1, southern Patagonia 1; SP2, southern Patagonia 2.

49, and 57; H19, H21, H22, and H23). The CP2 region
presented three exclusive haplotypes distributed in cen-
tral-northern Chubut (population 19; H35) and in cen-
tral-northern Santa Cruz (populations 36 and 37; H33
and H34, respectively). The CP1 region had only one
exclusive haplotype in north-western Chubut (population
31; H40). The HA region possessed only one exclusive
haplotype in Catamarca (population 1; HS8). Exclusive

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

haplotypes were scattered throughout the study area,
although most were located in central-western and south-
eastern Santa Cruz.

Inferences from nested clade analysis

Six one-step clades (1-4, 1-5, 1-7, 1-9, 1-10, and 1-13), all
seven-two-step clades, the two-three-step clades, and the
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total cladogram showed significant levels of geographic
association, while the geographic association hypothesis
was rejected for the remaining nine-one-step clades
(Table 3, Fig. 3).

Historical fragmentation followed by isolation by
distance due to restricted gene flow was inferred for clade
1-4 (most haplotypes of NP2). Processes of restricted gene
flow and/or long-distance dispersal in intermediate areas
not occupied by the species, or gene flow followed by
extinction of intermediate populations were inferred for
clade 1-5 (most haplotypes of NP1). Clades 1-7 (most
haplotypes of SP2) and 3-1 (HA, NP1, NP2, and SP2)
have experienced long-distance colonization and/or frag-
mentation. Processes of restricted gene flow and/or long-
distance dispersal were inferred for clade 1-9 (part of
SP1). Isolation or long-distance dispersal was inferred for
clade 1-10 (most haplotypes of SP1). Clades 2-2 (SP2)
and 2-5 (CP2) have experienced restricted gene flow with
isolation by distance. Finally, range expansion was
inferred for clades 2-4 (NP2) and 3-2 (CP1, CP2, PSI,
and PS2; Table 3, Fig. 3).

Haplotype diversity

Considering all individuals from all 63 sampled popula-
tions, haplotype diversity (/) ranged from 0 to 0.821 with
an average of 0.532, nucleotide diversity () ranged from

M. V. Nicola et al.

0 to 0.00218 with an average of 0.00128, and mean num-
ber of pairwise differences among haplotypes within pop-
ulations (p) ranged from 0 and 3.857 with an average of
1.175 (Table 4).

With one exception, the highest values of h were found
in populations of central-western Patagonia (populations
5, 9, 30, 31, 36, 37, 42, 44, and 51; Table 1, Fig. 1),
located from the flanks of the Andes up to 69°W, and
latitudinally from 40°S in southern Neuquén to 50°S in
southern Santa Cruz. Population 57 had the highest hap-
lotype diversity and occurs outside this range in south-
eastern Santa Cruz. The highest values of 7 also occur
in populations of central-western Patagonia, coinciding
with most populations that showed higher haplotype
diversity (populations 5, 9, 31, 37, 48, and 57), and in
one population (24) located in south-eastern Santa Cruz.
The highest values of p similarly occur in populations of
central-western Patagonia, coinciding with most popula-
tions that showed higher haplotype and nucleotide
diversity (populations 5, 9, 31, 37, 48, and 57). Most
populations with high genetic diversity also had exclusive
haplotypes (populations 5, 30, 31, 36, 37, 42, 44, and
57, Table 4).

The same diversity indices were calculated for each
geographic region (Table 5, Fig. 3). The NP2 region
showed the highest value of haplotype diversity
(h = 0.800), followed by the CP2 region, which also

Figure 3. Statistical parsimony network and

resulting nested clade design of the 41
haplotypes found in Nassauvia subgen.
Strongyloma. Haplotypes correspond to those
in Figure 2; solid bars represent hypothetical

haplotypes not observed in the analyzed
individuals. Haplotypes belonging to the same
clade level are boxed. Acronyms associated to
2-step clades indicate the geographic region to
which they belong: CP1, central Patagonia 1;
CP2: central Patagonia 2; HA, high-Andean;
NP1, northern Patagonia 1; NP2, northern
Patagonia 2; SP1, southern Patagonia 1; SP2,
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southern Patagonia 2.
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Table 3. Population processes and/or historical events affecting genetic structure in Nassauvia subgen. Strongyloma based on nested clade
analysis (NCA). Geographic region, hierarchically nested clades, results of permutation contingency tests with their associated P value, NCA infer-

ence chain and inferred events are shown.

Geographic
region Clade y° statistic  P-value Inference chain Inferred pattern/event

NP2  1-4 119.60 <0.05  1-2-3-4-9-10 NO Geographic sampling inadequate to discriminate between
fragmentation and isolation by distance.

NP1 1-5 222.50 <0.05  1-2-3-5-6-7-8 YES Restricted gene flow/dispersal but with some long-distance
dispersal over intermediate areas not occupied by the species,
or past gene flow followed by extinction of intermediate populations.

SP2 1-7 102.49 <0.05  1-2-3-5-6-13-14 NO  Long-distance colonization and/or past fragmentation.

SP11-9 42.54 <0.05  1-2-3-5-6-7 YES Restricted gene flow/dispersal but with some long-distance dispersal.

SP1T 1-10 464.99 <0.05  1-2-3-5-6-7-8 NO Sampling design inadequate to discriminate between isolation
by distance versus long-distance dispersal.

cpP2  1-13 7.00 <0.05 1-19-20 NO Inadequate geographic sampling.

HA  2-1 22.00 <0.05  1-19-20 NO Inadequate geographic sampling.

SP2 2-2 25.33 <0.05  1-2-3-4 NO Restricted gene flow with isolation by distance.

NP1 2-3 54.82 <0.05 - Null hypothesis cannot be rejected.

NP2 2-4 50.00 <0.05 1-2-11-12 NO Contiguous range expansion.

CP2 2-5 11.00 <0.05  1-2-3-4 NO Restricted gene flow with isolation by distance.

CP1  2-6 8.00 <0.05  1-19-20-NO Inadequate geographic sampling.

SP1 2-7 291.46 <0.05 1-210 Inconclusive outcome.

HA + NP1 +  3-1 548.03 <0.05  1-2-11-12-13-14 NO Long-distance colonization and/or past fragmentation.
NP2 + SP2
CP1 +CP2  3-2 271.93 <0.05 1-2-11-12 NO Contiguous range expansion.
+ SP1
Total 331.13 <0.05 1210 Inconclusive outcome.
cladogram

showed the highest values of nucleotide diversity and
pairwise differences (h = 0.727; n = 0.00084; p = 1.527),
while the NP1 region showed the lowest values of h, m,
and p (h = 0.399; © = 0.00027; p = 0.488).

Population genetic structure

Analyses of molecular variance (AMOVA; Table 6)
showed significant differences among all sources of varia-
tion tested (P < 0.001), with the exception of regions
located inside and outside the boundary of the GPG
(Fig. 1). The AMOVA revealed that genetic variation of
subgen. Strongyloma was best explained by differences
among populations within regions that were glaciated or
nonglaciated during GPG (73.6%, P < 0.001). By dividing
the regions according to major rivers (Fig. 1), the highest
percentage of variation was explained by differences
among populations within each of the regions (50.6%,
P < 0.001).

Past demographic analyses

Recent demographic expansion was evidenced for the
NP1 and the SP1 regions. For the NP1 region, Fu’s Fs
and Ramos-Onsins and Rozas’ R, statistics showed a

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

negative value of —4.18 and a small positive value of
0.0407, respectively. For the SP1 region, Tajima’s D and
Fu’s Fs showed negative values of —1.54473 and —7.324,
respectively, while Ramos-Onsins and Rozas’s R, showed
a small positive value of 0.0353 (Table 5).

Potential Pleistocene geographic
distribution

Present and LGM species distribution models for subgen.
Strongyloma are presented in Figure 4. In predicting the
current distribution, the mean value of the AUC for the
test data of the model for the present was 0.932 £ 0.008.
Because the mean value of the AUC for the test data
using the MIROC palacomodel was 0.836 + 0.075, com-
pared with 0.789 £ 0.021 using the CCSM palacomodel,
the former was selected for projecting the distribution
during the LGM.

The predicted model for the present (Fig. 4A) was a
fairly good representation of the known geographic distri-
bution for subgen. Strongyloma, although some inconsis-
tencies between projected and realized distribution areas
were found. Low probability (0.21-0.30) of suitable con-
ditions was found in the Islas Malvinas/Falkland Islands,
where these plants have never been observed.
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Table 4. Diversity indices of sampled Nassauvia subgen. Strongyloma populations: haplotype (h) and nucleotide (x) diversity, and mean number
of pairwise differences (p) with their respective standard deviation (DE).

Nioc Nhap (Ning) h 4+ DE n + DE p + DE
1 H8 (7) 0.00000 0.00000 0.00000
2 H9 (8) 0.00000 0.00000 0.00000
3 H9 (7) 0.00000 0.00000 0.00000
4 H1 (7) 0.00000 0.00000 0.00000
5 H1 (1), H7 (2), H38 (2) 0.80000 + 0.16400 0.00131 + 0.00032 2.40000 + 0.93915
6 H12 (6), H13 (2) 0.42900 + 0.16900 0.00023 + 0.00009 0.42900 + 0.20248
7 H41 (2) 0.00000 0.00000 0.00000
8 H6 (3) 0.00000 0.00000 0.00000
9 H1 (5), H12 (1), H41 (2) 0.60700 + 0.16400 0.00167 + 0.00055 3.07100 + 0.87407
10 H1 (6), H10 (1), H11 (1) 0.46400 + 0.20000 0.00037 + 0.00017 0.67900 + 0.27203
11 H1 (8) 0.00000 0.00000 0.00000
12 H10 (8) 0.00000 0.00000 0.00000
13 H1 (7), H12 (1) 0.25000 + 0.18000 0.00027 + 0.00020 0.50000 + 0.22361
14 H1 (2), H12 (4) 0.53300 + 0.17200 0.00058 + 0.00019 1.06700 + 0.44271
15 H12 (2) 0.00000 0.00000 0.00000
16 H1 (6), H10 (2) 0.42900 + 0.16900 0.00023 + 0.00009 0.42900 + 0.20248
17 H12 (1), H14 (4) 0.40000 + 0.23700 0.00022 + 0.00013 0.40000 + 0.24900
18 H12 (3), H16 (1) 0.50000 + 0.26500 0.00027 + 0.00014 0.50000 + 0.32711
19 H24 (1), H35 (4) 0.40000 + 0.23700 0.00087 + 0.00052 1.60000 + 0.67305
20 H27 (1) - — _
21 H27 (2), H28 (5) 0.47600 + 0.17100 0.00052 + 0.00019 0.95200 + 0.37283
22 H27 (1), H30 (1) - - -
23 H12 (2) 0.00000 0.00000 0.00000
24 H1 (1), H28 (1) - - -
25 H24 (6) 0.00000 0.00000 0.00000
26 H25 (2) 0.00000 0.00000 0.00000
27 H1 (4) 0.00000 0.00000 0.00000
28 H15 (8) 0.00000 0.00000 0.00000
29 H17 (1) - - -
30 H1 (4), H2 (1), H4 (2) 0.66700 + 0.16000 0.00041 + 0.00013 0.76200 + 0.31780
31 H3 (2), H17 (2), H40 (4) 0.71400 + 0.12300 0.00210 + 0.00041 3.85700 + 1.06583
32 H1 (8) 0.00000 0.00000 0.00000
33 H18 (1) - - _
34 H5 (8) 0.00000 0.00000 0.00000
35 H18 (7) 0.00000 0.00000 0.00000
36 H25 (3), H33 (3) 0.60000 + 0.12900 0.00033 + 0.00007 0.60000 + 0.29496
37 H25 (1), H26 (3), H34 (4) 0.67900 + 0.12200 0.00123 + 0.00019 2.25000 + 0.67231
38 H25 (7) 0.00000 0.00000 0.00000
39 H25 (4), H31 (4) 0.57100 + 0.09400 0.00031 + 0.00005 0.57100 + 0.24290
40 H39 (8) 0.00000 0.00000 0.00000
41 H25 (8) 0.00000 0.00000 0.00000
42 H1 (1), H18 (4), H19 (3) 0.67900 + 0.12200 0.00043 + 0.00011 0.78600 + 0.30166
43 H25 (1) - - -
44 H25 (2), H37 (3), H39 (3) 0.75000 + 0.09600 0.00082 + 0.00011 1.50000 + 0.48580
45 H25 (8) 0.00000 0.00000 0.00000
46 H18 (4), H36 (2) 0.53300 + 0.17200 0.00087 + 0.00028 1.60000 + 0.60332
47 H22 (1) - - -
48 H18 (5), H25 (3) 0.53600 + 0.12300 0.00117 4+ 0.00027 2.14300 + 0.64653
49 H23 (1), H25 (7) 0.25000 + 0.18000 0.00041 + 0.00029 0.75000 + 0.29155
50 H25 (3), H32 (5) 0.53600 + 0.12300 0.00029 + 0.00007 0.53600 + 0.23238
51 H18 (2), H20 (1) 0.66700 + 0.31400 0.00036 + 0.00017 0.66700 + 0.47117
52 H25 (6) 0.00000 0.00000 0.00000
53 H25 (7), H30 (1) 0.25000 + 0.18000 0.00014 + 0.00010 0.25000 + 0.14491
54 H18 (6) 0.00000 0.00000 0.00000
55 H25 (4) 0.00000 0.00000 0.00000
4280 © 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.
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N\Oc Nhap (Nind) h + DE n + DE p £ DE
56 H18 (7), H20 (1) 0.25000 £ 0.18000 0.00014 £ 0.00010 0.25000 + 0.14491
57 H18 (2), H20 (2), H21 (3), H25 (1) 0.82100 £ 0.10100 0.00142 + 0.00042 2.60700 £ 0.76026
58 H25 (4), H29 (3) 0.57100 £ 0.11900 0.00031 £ 0.00007 0.57100 £ 0.26077
59 H25 (7) 0.00000 0.00000 0.00000
60 H25 (8) 0.00000 0.00000 0.00000
61 H25 (3) 0.00000 0.00000 0.00000
62 H25 (7) 0.00000 0.00000 0.00000
63 H25 (5) 0.00000 0.00000 0.00000

Table 5. Diversity indices and results of demographic analyses used to test range expansion in Nassauvia subgen. Strongyloma for each
geographic area in Argentina. Haplotype (h) and nucleotide (r) diversity, mean number of pairwise differences (p), Tajima’'s D, Fu's Fs, and

Ramos-Onsins and Rozas's R, are shown.

Diversity indices

Demographic analyses

Geographic region

h £+ SD

n + SD

High-Andean
Northern Patagonia 1
Northern Patagonia 2
Central Patagonia 1
Central Patagonia 2
Southern Patagonia 1
Southern Patagonia 2
Total

0.45500 £ 0.07800
0.39900 + 0.06800
0.80000 + 0.03400
0.57100 £ 0.09400
0.72700 £ 0.06800
0.54600 £ 0.04800
0.46300 £ 0.07930
0.88100 £ 0.01100

0.00049 + 0.00008
0.00027 £ 0.00005
0.00064 + 0.00006
0.00124 £ 0.00021
0.00084 + 0.00011
0.00050 + 0.00006
0.00041 £ 0.00011
0.00178 £ 0.00005

p £ SD D Fs Ra
0.90900 + 0.19493 1.48848 2.78400 0.22730
0.48800 + 0.07071 —1.40325 —4.18000*  0.04070*
1.16800 + 0.16124  —0.73108 —2.54900 0.08250
2.28600 + 0.68117 2.10118 3.93300 0.28570
1.52700 + 0.41231 1.68091 1.49100 0.25450
0.91600 + 0.07071 —1.54473* —7.32400%  0.03530*
0.75500 + 0.11832 —1.18369 —2.04400 0.06530
3.24600 + 0.12247 —1.38638 —20.51400 0.03850

Results consistent with demographic expansion are shown in bold.
*P < 0.05.

The model of the geographic distribution for the LGM
showed some important differences with the known cur-
rent geographic distribution of the subgenus (Fig. 4B).
Low (0.26-0.5) to null probability of suitable conditions
was found in an area between the Chubut and the Dese-
ado rivers and also in southern Santa Cruz and Tierra del
Fuego. The prediction was overprojected over the current
Atlantic continental shelf, extending approximately
between 45°S (San Jorge Gulf, Chubut) and 51°S (Bahia
Grande, Santa Cruz).

For the training data of the palaecomodel, the highest
contribution and the highest permutation importance
was for the annual mean temperature (Biol = 42.8%
and 36.1%, respectively), indicating that this environ-
mental variable contributed most to the construction of
the model. In the jackknife test for the training data, the
mean temperature of the coldest quarter (Bioll) pre-
sented the most useful information when used in isola-
tion to build the model, causing the model to reach the
highest gain and allowing a reasonable adjustment to the
training data. The mean temperature of the wettest quar-
ter (Bio8) contained a substantial amount of useful
information that was not contained in the model when
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only the remaining variables were used, since excluding
Bio8 in the model decreased training gain. Jackknife tests
for the gain and for the AUC of the test data yielded
similar results to the jackknife test for the gain of the
training data, suggesting that mean winter temperature
(i.e., the coldest and the wettest quarter) helped MAXENT
achieve a good fit to the training data and also to gener-
alize better, achieving comparatively better results on the
test data.

Discussion

The phylogeographical and palacomodelling analyses sug-
gest that the genetic diversity and structure found in
Nassauvia subgen. Strongyloma were shaped mainly by
three main different historical events: (1) isolation in
refugia and restricted gene flow during Pleistocene glacial
periods, followed by postglacial range expansions; (2) col-
onization of new available areas during Pleistocene glacia-
tions and postglacial retraction of populations; and (3)
fragmentation of populations in areas not reached by the
ice sheet during Pleistocene glacial periods followed by
postglacial range expansions.
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Table 6. Results of the analyses of molecular variance (AMOVA) for
63 populations of Nassauvia subgen. Strongyloma based on cpDNA
sequence data. Degrees of freedom (df), sum of squared deviations
(SSD), variance components (VC), percentage of total variance (%
total), and significance value (P) are given for each hierarchical level.

Source of variation df SSD VC % total P
1. Regions divided by rivers
Among regions 4 168.349 0.507 23.87 <0.001
Among populations 44  356.604 1.075 50.60 <0.001
within regions
Within populations 297  161.099 0.542 25.53  <0.001
Total 345 686.052 2.125

2. Glaciated versus nonglaciated regions during Great Patagonian
Glaciation

Among regions 1 10.703 -0.013 —0.68 n.s.

Among populations 47 514.250 1.477 73.64 <0.001
within regions

Within populations 297  161.099 0.542 27.04  <0.001

Total 345  686.052 2.006

n.s., not significant, P > 0.05.

Pleistocene refugia in central-western and
south-eastern Patagonia

Our data suggest that populations of Nassauvia subgen.
Strongyloma may have withstood the extreme cold and
aridity during the Pleistocene glaciations in two kinds of
refugia (Holderegger and Thiel-Egenter 2009): (1) periph-
eral glacial refugia—at least three along the eastern foot-
hills of the Andes— located in south-western Neuquén (c.
39°30" S 70°30' W), north-western Chubut (c. 43°S
71°W), and north-western Santa Cruz (c. 47°S 71°W);
and (2) lowland glacial refugia—at least four— located
near the Chubut River in central-western Chubut (c. 44°S
69°30" W), near the Deseado River in central-northern
Santa Cruz (c. 46°30" S 69°30' W), and near the Chico
River in central-western (c. 48°S 71°W), and south-east-
ern (c. 50°S 69°W) Santa Cruz.

The high diversity and several exclusive haplotypes
found in these populations of subgen. Strongyloma are
consistent with long-term habitation such as would be
expected from Pleistocene refugia (Hewitt 1996; Taberlet
and Cheddadi 2002; Petit et al. 2003; Provan and Bennett
2008). The finding of exclusive haplotypes suggests there
would have been restricted gene flow and that isolation
over time allowed the accumulation of genetic differences
among populations. Most of these populations were
found within the limits of the ice sheet of the GPG.
Moreover, restricted gene flow and posterior range expan-
sion were inferred by NCA and corroborated in most
cases by demographic analyses, indicating that they might
have survived in refugia during glacial periods, as
suggested for other Patagonian organisms in the areas
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mentioned above (Sérsic et al. 2011; Sede et al. 2012;
Cosacov et al. 2013). The highest probabilities of occur-
rence projected especially for central-western and south-
eastern Patagonia, both for the current distribution, as
well for the palaeodistribution, reinforce the conclusion
that subgen. Strongyloma probably persisted in refugia in
these areas, without drastic climatic restrictions.

Colonization of eastern Patagonia during
Pleistocene glaciations

During Pleistocene glaciations, the current Atlantic sub-
marine platform was partially exposed as a result of the
sea level lowering (c. 100-140 m during full glacial epi-
sodes), allowing for plant colonization (Rabassa 2008).
Palacomodelling supports that populations of Nassauvia
subgen. Strongyloma could have inhabited that exposed
area of the coast. After glaciations, and as the result of
the sea level rise, populations were forced to retract to
the current Atlantic coast. Low diversity and the absence
of exclusive haplotypes in eastern Patagonia are then
explained by the expansion of populations over the cur-
rent Atlantic coast during Pleistocene glaciations, and
their recent, postglacial retraction, with the consequent
loss of genetic diversity.

Population fragmentation in central
Patagonia and phylogeographical breaks

Latitudinal discontinuities have been previously reported
for other Patagonian organisms, both plants and animals
(Sérsic et al. 2011; Sede et al. 2012; Cosacov et al. 2013).
Dynamics of the river basins, palacobasins, and coastline
shift during the Pleistocene glacial-interglacial cycles con-
stitute factors that may have converted Patagonia into a
highly fragmented landscape (Sérsic et al. 2011). In par-
ticular, the Chubut and the Deseado river basins may
have been important historical barriers that facilitated iso-
lation between populations of different Patagonian species
that persisted north and/or south of these river basins
(e.g., Phyllotis xanthopygus, Kim et al. 1998; Hordeum
spp., Jakob et al. 2009; Mulinum spinosum, Sede et al.
2012; Anarthrophyllum desideratum, Cosacov et al. 2013).
However, adverse climatic conditions such as lower win-
ter temperature and precipitation during glacial periods
have been suggested as a possible reason for plant popula-
tion fragmentation in the same geographic area (Sede
et al. 2012; Cosacov et al. 2013). Our palacomodelling
results also support a low probability of suitable climatic
conditions for Nassauvia subgen. Strongyloma during the
LGM in the center of the steppe, between the Chubut
(c. 44°S) and the Deseado (c. 47°S) rivers. In fact, the
geographic distribution of this subgenus, as in the steppe
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Figure 4. Predictive distribution models of
Nassauvia subgen. Strongyloma for (A) the
present, and (B) the last glacial maximum,
showing habitat suitability in southern South
America calculated with MaxEnT. Black dots
refer to point localities on which the models
are based.
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shrub M. spinosum (Sede et al. 2012), seems to be influ-
enced mainly by the mean temperature of the winter, a
biologically important variable that defines the start of
the growing season (Paruelo et al. 1998). Our findings
also support the traditional water balance hypothesis,
which considers aridization as the main factor affecting
plant population demography and diversification in Pata-
gonia (Cosacov et al. 2013), related to the enlargement
and reduction of the main river basins.

Based on past river basin dynamics and climate condi-
tions cited above, a significant difference could be
expected between northern and southern haplotypes
within subgen. Strongyloma. Nevertheless, there is a close
genetic relation between a few northern and central-
northern lineages with southern lineages distributed in
distant areas. However, a general northern—southern hap-
loclade structure can be supported combining the above
environmental evidence with NCA inferences and demo-
graphic analyses, in two historical steps: (1) both frag-
mentation between northern and southern haploclades,
and isolation with restricted gene flow of one southern
haploclade during Pleistocene glaciations, produced the
split of the original distribution into two groups of popu-
lation, one north of the Chubut river basin, and one
south of the Deseado river basin; and (2) successive range
expansions after the Pleistocene glaciations, mainly
toward warmer and wetter conditions in the center of the

© 2014 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

Patagonian steppe. The most likely posterior demographic
expansions would be from both northern and southern
populations toward central-eastern Chubut Province. The
expansion of northern, central, and southern haploclades
could have generated recent contact areas throughout the
entire Patagonian steppe, but mainly between the Chubut
and the Deseado rivers.

Within a general latitudinal geographic structure of
haploclades, other phylogeographical breaks can be distin-
guished related to river basins. On one hand, the high-
Andean haploclade located just north of the Agrio and
Neuquén rivers at c. 38°S was clearly separated from the
rest, in accordance with a latitudinal break reported for a
lizard species (Liolaemus elongatus, Morando et al. 2003).
Low diversity and the presence of only one exclusive hap-
lotype in high-Andean populations may be explained by
recent colonization or this was a poor area for the sur-
vival of subgen. Strongyloma during the LGM. However,
these results should be interpreted with caution because
of incomplete sampling of high-Andean region. On the
other hand, the northern limit of one central haploclade
(CP1) coincides with the break at Limay River basin
reported for another lizard species (Liolaemus bibronii,
Morando et al. 2007).

Finally, according to haplotype analyses, the four most
widespread haplotypes and several other interior and tip
haplotypes were shared among populations of different
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morphological variants, suggesting that there is no strict
relation between morphology and genetic diversity. Fur-
thermore, throughout the entire Patagonian steppe, some
populations have haplotypes from different clades. This
indication of distantly related haplotypes co-occurring
suggests the existence of numerous contact zones (Avise
2000) throughout the steppe: within northern lineages in
central Rio Negro; between northern and central clades in
central-western Rio Negro; between northern and south-
ern lineages in southern Neuquén, north-western Chubut,
and north-western Santa Cruz; between central and
southern clades in central-northern Santa Cruz;
and within southern lineages in central, south-western,
and south-eastern Santa Cruz.

Conclusion

Phylogeographical and palacomodelling patterns found in
Nassauvia subgen. Strongyloma appear to reflect climatic
fluctuations and landscape changes that occurred during
the Pleistocene having an impact on the distribution,
demography, and diversification of different lineages
within the group. Past events differentially affected areas
within the immense geographic range of these shrubs.
During glaciations, subgen. Strongyloma persisted in
peripheral refugia along the eastern foothills of the Andes,
in lowland refugia in central-western and south-eastern
Patagonia, over the exposed Atlantic submarine platform
toward the east, and in fragmented populations north
and south the Chubut and the Deseado river basins.
Related to those past scenarios, Pleistocene glaciations
indirectly affected the demography of this group of plants
through decreased winter temperatures and water avail-
ability in different areas of its immense geographic range.
Future comparative phylogeographical studies should
consider patterns found in subgen. Strongyloma to better
comprehend the processes that have affected the Patago-
nian biota.
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