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Let 0<p<1. The stable rank of the Banach algebra Q,N H> is 1 if given fi, f> in
0,N H> such that

inf ()] + 1A > 0,

there exists g in Q,N H™ such that f, 4 gf; is invertible in 0, N H*. As a partial
answer to this problem, we prove the result when f; is an inner function in Q,,.

Keywords: Q,-spaces; stable rank; Carleson measures

AMS Subject Classifications: 30HO0S5; 32A37; 46J15

1. Introduction

Let B be a commutative ring with identity. An element a =(ay, ..., a,) € B" is unimodular if
there is b= (by,...,b,) € B" with ) ;_, brar = 1. Denote the set of unimodular elements of
B" by U,(B). An element a € U,(B) is reducible if there are x,...,x,_; € B such that

(a1 + X100, a2 + X2y, . . .y Q1 + Xp—1ay) € Uy—1(B).

The stable rank of B, denoted by sr(B), is the smallest positive integer n such that each
a€ U, 1(B) is reducible. This notion was introduced by Bass in [1] to study the
stabilization of certain algebraic groups associated to a given ring. It was shown to be
a useful concept for analysis after Vaserstein proved that if X is a compact Hausdorff
space, the stable rank of the algebra of continuous complex-valued functions on X is
[dim X/2] 4 1, where dim X is the covering dimension of X and [7] is the integer that satisfies
[[=<t<[f]+1[2].

The clear relation between the condition of stable rank 1 and corona-type theorems
made this concept especially suitable for study by the specialists in algebras of analytic
functions. One of the first results on this direction was the first proof that the stable rank
of the disc algebra is 1 [3]. Maybe the most successful accomplishment in this vein of
thought is Treil’s proof of st H° =1 [4]. In the present article, we explore this possibility
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958 J. Pau and D. Sudrez

for the Banach algebra Q,N H, and give a partial result, by showing that if the first
coordinate of a unimodular pair is an inner function, then the pair is reducible.
Let 0 <p<oo. A function f belongs to Q, if it is analytic on the unit disc I and

1713, = sup [ 17 P gz d4() < +x.
we D

where g(z, w) = —log|g,(z)| is the Green’s function on the unit disc with pole at we D,
dA is the normalized area measure, and

w—z

Pu(z) = T— 7
— Wz

is a Mobius map. The Q,, spaces are conformally invariant, in the sense that if f'e Q,, then

Ifodlg, =11,

for each automorphism ¢ of the disc. It turns out that Qy=7D, the Dirichlet space,
0,=BMOA and for p>1, Q,=B, the Bloch space. These spaces have attracted a lot of
attention in the past years, and the theory of O, functions has been extensively developed.
We refer to [5] for more properties of these spaces.

We ask if sr(Q, N H>)=1. That is, given functions f}, /> € Q,N H> with

inf (/1) + 4G >0, ()

does there exist g€ Q,N H™ such that f; 4+ gf> is invertible in Q, N H>?
As a partial answer to that question we prove the following result.

THEOREM 1.1 Let 0<p<1. Let fi be an inner function in Q, and f>€ Q,NH™ that
satisfy (1). Then there exists g€ Q,NH™ such that fi+gf is invertible in Q,H™.

This article is organized as follows. In Section 3, we study solutions of the d-equation,
in Section 4 we study some properties of the p-interpolating Blaschke products and we
prove Theorem 1.1 in Section 5.

We use the notation a < b to indicate that there is a constant C>0 such that a < Cb.
Also, we use the symbol C to denote a positive constant whose value may change from line
to line. For any arc /C T, we denote by |/| its normalized Lebesgue measure and by S(/)
the Carleson box based on I:

SI)={re’ eD:1—r<|I|; el

We also denote by p(z, w) the pseudohyperbolic distance between two points z, w of the
unit disc, that is p(z, w) = |@,(2)|.

2. Preliminary facts
On Q,N H™ consider the norm given by

1% = 1A% + 115, -
With this norm, Q,N H™ is a Banach algebra with invertible group

(meHoo)_l = me(Hoo)_l-
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The Blaschke product with zeros {a,} is

B(Z):Zml_[@ ay, — Z

= s
a0 9 1 —a,z

where {a,} is a sequence of points in the unit disc [ satisfying the Blaschke
condition (1 — la,|?) < oo, and m is the number of indexes n with a,=0. We denote
by Z(B) the sequence {a,} of zeros of B. Given a set ECD, the angular and radial
projections of E are

Eug ={lzl:z€ E} and Eng = {z/|zl: z € E\ {0}}.

Our first auxiliary result is

LemMMA 2.1 Let fe H® with ||flleo <1. Given 0<8, <1, there exists a=a(8,¢), with
0<a<1, such that for any Carleson box S(I),

sup{[f(): 1 = |zl = [I/4, zeSU)} =6
implies
I(Ec)ang| < €lll  and  |(Ey)paal < €l
where
Ey={zeSU):1/(2)] < a}.

Proof The result follows immediately from Lemma 2.1 of [6]. We note also that
the estimate for the radial projection can also be deduced from [7, Chapter VIII,
Theorem 3.2]. |

3. p-Carleson measures and the d-equation

Let p>0. We say that a positive Borel measure u on D is a p-Carleson measure if

w(S())
1”

llell, = sup <00
ICT

When p=1, we get the standard definition of a Carleson measure. Also, p-Carleson
measures can be described in terms of conformal invariants as those positive measures p
for which

1—|w> \»
sup <—_2) du(z) < oo,
weD Jo N1 —wz]

and this quantity is equivalent to |ull, (see [5, Chapter IV]). It is well known that an
analytic function f'is in Q, if and only if the measure

dusp(2) = 11 @1 (1= 217V dA(z)
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is p-Carleson. Moreover, this is equivalent for f to have a radial boundary function
f€0,(T), where Q,(T) are the functions fe L*(T) with

/ /() —f())?
il

Reciprocally, if fe Q,(T) and f is the Poisson integral of f, then

sup |7 |dZ| 1dn| < oco.

IcT

IVAZ)IP (1 = |27V dA(z) )

is a p-Carleson measure. We refer to [5] for the properties stated before. Let d and 3 be the
Cauchy-Riemann operators and A = 39 (that is, a quarter of the standard Laplacian
operator). The following two results were proved in [8] (see also Corollary 7.1.1 of [5]).

LemmA 3.1 Let fe LX(T). If there is Fe C' (D) such that
ljn} F(re") = f(e") for almost every ¢ € T

and |VF(Z)|2 (1- |z|2)” dA(z) is a p-Carleson measure, then fe Q,(T).

LemMa 3.2 Let 0<p<1 and g be a function on D such that = 1g(z)|* (1 —|z|>)’ dA(z) is
a p-Carleson measure. Then there is a function fe CXD) with boundary values in

OAT)NLX(T) such that 3f (2) = g(z) for z€D and max{|| [l =l flg,m} < Cllll,)-
We will also use several times the following well-known lemma [8]. For completeness
we give a proof here.

LemMA 3.3 Ler O<p<l1. If du=|V()|* (1 —|z[* dA(2) is a p-Carleson measure, then
[V(2)|dA(z2) is a 1-Carleson measure.

Proof For any Carleson box S(7), the Cauchy—Schwarz inequality gives

([ werdae) sifr [ vepa - Y dae) < 1Pl
S(I) S

The following lemma is a modification of a result given by Treil [4].
LemMmA 34 Let 0<p<1, and V€ C*(D) such that

(@) du,=|V(©)> (1 — |2V dA4 is a p-Carleson measure with leeill, < Ky,
(b) du=[aV(2)| (1 — |z|2) dA is a 1-Carleson measure with ||| < Ks,
() sup-cp (1 = |2)*|aV(2)| < K5 and sup.cp (1 = 2| V(2)| < K.

Then there exists b e CX(ID) with boundary values in O,T) such that 3b =V, and

sup |b(2)| < C,
zelD

for some positive constant depending only of K, K> and Kj.
Proof For any n>1 let ¢,,:[D— [0, 1] be a C* function such that

1 if|zl<1—2"

%@2{0ﬂm>1—2WU
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and |V¢,(z)| < C2", for some absolute positive constant C. Therefore (1 — |z|)|V¢,(z)| < C.
Now, the function ¢,V is also in C(ID), and by condition (a), we can apply Lemma 3.2
to obtain a function b, € C*(D) with 9b, = ¢,V and max{||b,|l =), ballg,m} < C(K1).
Hence, the Poisson integral u, of b, is also bounded by C(K;) in the whole closed disc.
We want to show that b, is bounded on D independently of 7. By Green’s formula we have
b(z) = u,(z) — g,(z), where

—zZw

2(2) = / Ab (w)logj ] dA(w).

Since Ab,,=d(¢, V'), we have

0@ =€ [ (1 v og | =2 [ daon),

Split the integral into [, + le\ p.» where D= {w: p(w, z) <1/2}. By condition (c), the first
integral is bounded by '
K
/ 3 5 log’ el ‘ dA(w),
p. (1 —wl)

which by the conformal invariance of the measure (1 — |w|?)">dA(w), is bounded by
a constant times K3. Using that log x 2 < (1 — x?) for 1/2 <x < 1, the second integral can be
estimated by

1—|w| 1 —zw|?

/ ( V(w) +|8V(w)|> (A= 12— 4 .
D\D-

which by (a) and (b) is bounded by an absolute constant times K;+ K>, since by
Lemma 3.3, the fact that |V(2)|*(1 — |z|°)’ dA(z) is a p-Carleson measure implies that | V(z)|
dA(z) is a 1-Carleson measure. Hence, we deduce that

sup |b,(2)] < C.

zeD
Now we may consider a weak-star limit b€ L>(ID) of a suitable subsequence of b,,.
Then |[|b]l;~p) < C, has boundary values in Q,(T) and 3=V in the sense of
distributions. Since Ve C*°(D), we obtain that b€ C*(D) by the hypoellipticity of the
operator 9 (see [9, p. 270]). This completes the proof. |

4. p-interpolating Blaschke products

Let 0<p<1. We say that a Blaschke product B is a p-interpolating Blaschke product
(p-IBP for short) if its zero sequence Z(B) is an interpolating sequence for Q,N H™.
By a result from [8], this holds if and only if Z(B) is separated and the measure

pp=y (I=Iz’)s

zeZ(B)

is a p-Carleson measure. It is clear that a p-IBP is also a 1-IBP. The following lemma
appears in the proof of Lemma 4.1 of [6].
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LemmA 4.1  Let B be a 1-IBP. For each a € Z(B) there is a curve T,=H,UV, froma toT
consisting of an angular arc H, and a radial arc V,, with lengths |H,| and |V ,| majorized by
(1 —|al), such that

0Ty, Tp) > a,

where a>0 depends only on ||ug|l\ and the separation constant of Z(B).

LemMMA 4.2 Let B be a 1-IBP and g € H™ with ||g|lec < 1. Suppose that there are 8, y>0
such that

|B(z)| >y if |g(z)] <.

Consider the curves T,, a€ Z(B), of Lemma 4.1. There is 0<& <6 such that if Q is any
connected component of {z:|g(z)| <8}, then the number of curves T, which meet Q is
bounded by a constant C independent of Q2.

Proof This result is in the proof of Lemma 4.1 of [6], but we sketch it here for
our purposes. By Lemma 2.1 there is 0 <§ <6 such that if Q is a Carleson box and any of
the sets

(r: Frel’ € Q.1g(re")] < 8}, {e": Frell € Q. Ig(re")| < &'},
has length bigger than |Q|/8 then
lg(2)] <& on{zeQ:1—|z[=]0Q|/4}. 3)

Let © be any connected component of {z:|g(z)| <&}, and let Q be a minimal Carleson box
containing 2. We note that if a € Z(B) is such that 1 —|a| >|Q]/100 and T',N Q # @, then
I, must meet

{ze Q:1—1z1 = 10]/100}.

Since this set has pseudohyperbolic diameter bounded away from 1, Lemma 4.1 implies
that the number of such zeros is bounded by a constant C.

If ae Z(B) with 1 —|a|<|Q]/100, an argument of Treil [4] will show that I, cannot
meet Q. Indeed, if I',NQ#0, taking the Carleson box R, whose base has the centre at
afla| and length |R,| =4(1 — |a|), the angular or the radial projection of R,N Q2 must have
length >|R,|/8. Hence, by (3), |g(z)|<don {ze R,:1—|z| > |R,|/4}, and therefore |g(a)| <§
in contradiction with the fact that « is a zero of B. |

ProrosiTioN 4.3 Let0<p<1, Bbe ap-IBP and g€ Q,NH™, with ||glloc < 1. Suppose that
there are 8, y>0 such that

IB(2)| >y iflg(z)] <. 4
Then there is 0<8' <8, a function h € Q,, and a suitable branch of log B on {|g| <&’} such that

Reh(z)| < Cy, zeD, and
[log B(z) — h(z)| < C» if |g(2)] < &,

Sfor some positive constants Cy, C, depending only on 8, y and B:= ||jgll,.
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Proof For each ae Z(B), consider the slits I', given by Lemma 4.1. Fix t=1(y)<
min{a/4, y/2} and let
1:‘a ={zeD:p(zT,) <t}

Since T <a/4, Lemma 4.1 implies that [, N\ T, = @ if a, b € Z(B), a#b. Since t<y/2, then
(4) and the Schwarz—Pick lemma gives

{z:0(z, Z(B)) = 1} N {z: |g(2)] < 8} = 0. ©)

For each a € Z(B) take a branch of log ¢,(z) defined in D\I",, that jumps 277 when z crosses
I',\{a}. By regularization we can obtain a smooth function ¥, on [ with

(A) Y,=log ¢, in D\ T,
(B) Rey,=log |¢,l in {z: p(z,a) > /4],
(©) Y, <Cand 0<Im y,<2m,

(D) (1—z])|Vy(2)] < C,
(EB) (1-1z)’|A¥.2) < C,

where C = C(7) is a constant depending only on 7.

The Blaschke condition implies that the sum ¥(z) := )" ,c#(5) ¥.(2) converges uniformly on
compact subsets of the disc. Also, |Re ¥/(z)| < C(B) for any z € D.

Let © be any connected component of {|g|<d'}, and fix zo € Q. Let log B be a suitable
branch of the logarithm of B on @ with log B(zg) = ¥(z). By (5) and (C),

|log ps — Val < 47 on {lg| < &'},
and since 2 is an arbitrary component, by Lemma 4.2 we have that
llog B(z) = ¥(2)l = Ci(x) if Ig(2)] < &' (6)
Since {I, : a € Z(B)} are pairwise disjoints, it follows from (D) and (E) that
(1= 1zDIVY@)I = C=C(0) and (1 - [z |AY()] < C = C(v). ()

Since the support of 3y is contained in Ur', and Y aez(l —lal)’s, is a p-Carleson
measure, then |0y(2)]> (1 — |z|?)’ dA(z) is a p-Carleson measure. In fact, let S(/) be
a Carleson box. It is ecasy to see that for 0 <s <1 one has

ﬂ _ 27\
/r a—1zp= <(1—1aPy, ae Z(B).

Also, since [,NT,=¢ for a#b, there are at most M points ae Z(B)\S(2I) with
', N S(7) # @. Therefore, by (7) we have

5 201 12 _ 3 2002
/Su)wwz» (—lzPydde) = 3 fs(lmww(zn (1= 2PV dA)

acZ(B)

dA(z) dA(z)
S D e =T DI
awezBmsendtL=1207"  ulvsen  Ismnt, (1= 12%)

< Y (—lalPY +Mup S|y
aeZ(B)NSQ2I)
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In a similar way, since ) 4ez5)(1 —lal)d, is a 1-Carleson measure, it follows that |[Ay(z)]
(1 —|z))dA(z) is a 1-Carleson measure. Hence 9y satisfies the hypothesis of Lemma 3.4,
which gives us a function b such that b = dv,

Suﬂl)? 1b(2)l < Ci(B,7) and |Ibllg,m = Ca(B, D).
ze
Hence, the function =1 — b is analytic. Since ||b]lg, ) < 0o and IVy(2)]* (1 — |27 dA(2)

is a p-Carleson measure, Lemma 3.1 tells us that s has boundary values in Q,(T). Since / is
analytic, /2 is in Q,. Finally, (6) yields

llog B(z) — h(z)] < C2(B,7) if |g(2)] <&

5. Proof of Theorem 1.1

Recall that a bounded analytic function in the unit disc is called inner if it has radial limits
of modulus 1 along almost every radius. Let B, denote the class of Blaschke products B
for which the measure

YA —zPYs.

zeZ(B)

is a p-Carleson measure. By Theorem 5.2.1 of [5] we have that the functions in B), are just
the inner functions that are in Q,,. It can be noted that any Blaschke product B in B, is
a finite product of p-interpolating Blaschke products. Indeed, if D .cz)(1 — 1z|?Y’ 8. is
a p-Carleson measure, then ) .czp (1 — |z|2)8z is a 1-Carleson measure, and therefore
B is a finite product of interpolating Blaschke products b; (see, for example, [10]). But
it is clear that the measure Y ., (1 — |z1?)’ 8. is p-Carleson, and then b; is actually
a p-interpolating Blaschke product.

It is enough to prove the theorem when f; is a p-interpolating Blaschke product.
Indeed, suppose that f| € B, is such that (f1,/>) is a corona pair. Then f; = ]_[fi1 b;, where
N is some positive integer and each b; is a p-IBP. If the theorem holds for each pair (b, f>),
1<i<N, we can find functions k;e Q,NH™ such that b,+fok;e(Q,NH™)"" for
1 <i< N. Therefore, there is some k € Q,N H> such that

N N
(1‘[ b,) +kfy = [ [+ ki) € (@ 0 H®) ",
i=1

i=1
So, let fy =B be a p-IBP and f, € 0,N H> with
inf(1BG)| + | A(:)) > 28>0,
and we can assume that || f5||oc < 1. Observe that
|B(2)| > 48 if [f2(z)] <é. ®)
By Proposition 4.3, there is 0<§' <§ and € Q,, such that |[Re/| <C, and
llog B(z) = h(z)| < C>  if | fa(2)] <. )
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The p-Carleson measure characterization of Q, shows that e e 0,N H>. Now, in order
to find a function g€ Q,N H™ with B+ f>g invertible in Q,N H*, it is enough to find
ke Q,NH> with

_ (e — Be™)
5

To do this, take a radial C* function ¢ in a neighbourhood of D such that 0 < p=<l1,
=0 on |z|>¢§ and ¢=1 on |z|<§/2 with |V ¢| <K, and |Ag| <K, for some positive
constants K; and K, depending only on §'. Let W(z) = ¢( f>(z)). Then W is of class C*° in D,
0<W¥<1,¥Y(z)=0o0n {5 =8}, and ¥(z)=1 on {|f>| <&/2}. Also, note that

VU] < [(Vo) o ol 1 /3] = Kil f3] (10)

€ Q,NH™.

and
AV < |(Vo) o fal L3P + [(Ap) 0 ol 1 5] < Kil f3I* + Kal f5. (11)
Since f> € H*, these two inequalities say that
VU (1= 27 < K3 and  |AWE) (1 - |2*) < K, (12)

where K3>0 depends only on § and || /5|« Since |f72(z)|2 (1 —|z1?)" dA(z) is a p-Carleson
measure, (10) tells us that

V)P (1= |21 dA(z) (13)

is a p-Carleson measure.

Furthermore, since f>e€Q,, Theorem 1.4.1 of [5] says that | 2”|2 (1—|z»)*" d4
is a p-Carleson measure, which by Lemma 3.3 implies that | /7’| (1 — |z]?)dA is a 1-Carleson
measure. In addition, since f> € H™, |f2/|2 (1 —|z|*)dA4 is a 1-Carleson measure [7, VI,
Theorem 3.4], and consequently (11) yields

|AW|(1 — |z|*)dA4 (14)

is a 1-Carleson measure.
Consider the function

B log(B(z)e"’(Z))
B S2(2)

Now we are going to check that V satisfies the assumptions of Lemma 3.4. Observe that

V(z) W(z).

AV =03¥ =0 on {|f| =8 U{lfl<d/2), (15)
which together with (9) gives
log(Be™") — ' 20, —
—— L Y| < —=|3V¥|. (16)
2 oyl
By (13) then |V(z)]* (1 — |z|?)? dA(z) is a p-Carleson measure, which is (a) of Lemma 3.4.
To see that |3V(z)|, (1 — |z]*)dA(z) is a 1-Carleson measure we first compute 9V,

d(log(Be™)) —  log(Be™")
- W+

AW.

V= —jiélog(Be’h) W+
Ve
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Hence, by (8), (9) and (15),

4C 2C
V] < — | f3] W] + — (|B'| + |/
@y’ ¢
which together with (12) gives
(1= 2V SIAL+ BT+ 11+ (1 = |z1)]AY. (17)

Since f>, B and & are in Q,, using Lemma 3.3 for the first three summands in the above
sum, and (14), it follows that (1 —|z|*)[dV|dA4 is a 1-Carleson measure. Also, since 0, is
contained in the Bloch space, (17), (16) and (12) yield

(1—z)V()| < C and (1—[z?)|aV(2)| < C.

Then the function V satisfies the assumptions of Lemma 3.4, and hence there is a function
u e C(D) N L>(D) with boundary values in 0,(T) such that

- log(Be™) -
ou = ———= JW.
/2

Therefore, the function k := W log(Be ") — uf> is analytic. Since

lkllo = sup |log B — Al + llulloo II./2]lc0s
[fal<d

we have k € H*, and to see that k is also in Q,, it suffices to check that k| defined by
klp(e") ;== hn} k(re™)

is in Q,(T). Clearly uf> € Q,(T), and this implies that ¥ log(Be™") has radial limits almost
everywhere. Therefore, by Lemma 3.1 it is enough to prove that

IV(Wlog(Be ™) (1 — |21 dA(2) (18)
is a p-Carleson measure. But since W and VW are supported on {| frl<d'}, (8) and (9) give
B /
V(W log(Be ™)) < |VW| | log(Be™)| + W ‘ 4
B/ /
<ivwic;  UELEID,

and (18) follows from (13). Therefore, k is in Q,N H* and only remains to prove that

It is clear that g is bounded on {| f>| > §/2}, and since

I Caa)
="
the boundedness of g follows from the inequality |(e™ — 1)/x| < e, To see that g is also

in Q,, let k; = Wlog(Be™") — iif>, where i is the Poisson integral of the boundary values
of u, and consider the function

uBe™ on {| 5] < &8/2},

ekl _ Befh

g1 = 7
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Since g and g; have the same boundary values and g is analytic, by Lemma 3.1 it is enough
to show that |Vg(z)[*(1 — |z|*)" dA(z) is a p-Carleson measure.

Since by (2), |Vii(z)]* (1 — |z|?)’ dA(z) is a p-Carleson measure, (18) and the fact
that € Q,NH™ imply that so is |Vki(2)]> (1 —|z/*?dA(z). Therefore, if S(I) is
a Carleson box,

/ Vg1 (2)* (1 — |z[*) dA(z)
S(HN{] /21=(8"/2)}

s [ TR@P + B YO + AR (- Y d4e)
(&) Jsay

=

oy

since /> and Be ™" are in 0,. When | f5| <§&'/2, using the inequality

(=)

and rewriting g; = (e~ — 1)/if>)iiBe™", we obtain

X

= < e‘x‘
x2 -

‘1 —e " — xe~

[ Ve@P -1y dAe < .
SHN{ 1<%y

which completes the proof. |

6. Final remarks

To determine whether sr(Q, N H) =1 is a subtler problem than in the case of H>°, mainly
because the inner factor of a function in Q,N H* does not need to be in Q,. For this
reason, the usual methods to show that it is enough to consider f; an inner function in the
algebra, or even a finite Blaschke product, do not work in this setting. Probably, the key
obstruction to prove sr(Q,N H™)=1 is the problem that we pose below.

If 4 is a commutative Banach algebra with identity, it is shown in [11] that, for every
g€ A, the set {f: (f, g) is reducible} is closed in the set { f: (f, g) is a corona pair}. Using this
fact for the Banach algebra Q,N H™, together with Theorem 1.1, this immediately says
that if (f, g) is a corona pair and f'is in the closure of

B,I:={bh:beB, he(Q,NH®)"}
then (f, g) is reducible. This leads to the following question.
Question: Is B,Z dense in Q, N H>?

Note that an affirmative answer to that question would imply that the stable rank of
the algebra Q,N H* is one.
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