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Algebra on AP (By)

DANIEL SUAREZ

ABSTRACT. Let A? be the Bergman space on the unit ball B,, of C"
for 1 < p < o, and T, be the corresponding Toeplitz algebra. We
show that every § € T, can be approximated by operators that are
specially suited for the study of local behavior. This is used to obtain
several estimates for the essential norm of S € %, an estimate for
the essential spectral radius of S € %5, and a localization result for its
essential spectrum. Finally, we characterize compactness in terms of
the Berezin transform for operators in T.
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2 DANIEL SUAREZ

1. INTRODUCTION AND PRELIMINARIES

For 0 < p < oo consider the space LP = L? (B, dv), where B, is the open unit
ball in C" and dv is the normalized volume measure on By. The Bergman space
AP consists of the analytic functions in L? (as usual, we write H* if p = o0).
When 1 < p < o0, the Bergman projection P defines a bounded operator from L?
onto AP. If a € L*® let My : LP — LP be the operator of multiplication by a and
Py = PMg. Then [Pyl < Cpllallw, where Cp is the norm of P acting on L?. The
Toeplitz operator T, : AP — AP is the restriction of P, to the space AP. If Ey and
E, are Banach spaces, we write £(E1, E2) for the space of all bounded operators
from E; into Ey, or just £(E;) if E; = E;. The Toeplitz algebra on A? is

T, = the closed subalgebra of £(A”) generated by {T, : a € L*}.

This paper has three purposes. The first purpose is to approximate in norm an op-
erator S € T, by a strongly convergent series of operators formed by ‘truncations’
of §. We call this series a segmented operator. Each truncation of S is associated
with a compact set K C By, so that its value at a given f € AP is controlled by the
behavior of f in a quantitatively determined hyperbolic neighborhood of K. This
means that a segmented operator splits into a sum of operators that in some sense
can be localized. This useful approximation-localization scheme will be applied to
obtain several estimates of the essential norm for § € ¥, (denoted [|S|l¢). This
is the second purpose of the paper. The most involved estimate of [|S|l. is given
in terms of a family of associated operators {Sx}xck, where E is the complement
of By, inside a special compactification of By. In the particular case p = 2, the
estimate will turn out to give the exact number [|S||c. Furthermore, if p = 2, the
family {Sx}xer will be used to estimate the essential spectral radius of S and to
localize its essential spectrum. This localization takes a distinctively simple form
when § € T, is essentially normal.

The Berezin transform is a bounded linear map B : £(A?) — L*, where
1 < p < co. Since the Berezin transform is one-to-one, every bounded oper-
ator S on A? is determined by B(S). Despite this fact, the information on S
that we can collect by only looking at B(S) rarely is in the surface. To further
complicate matters, the range of B is not closed, and therefore the inverse map
B~ : B(L£(AP)) — £(AP) is not bounded. In the positive direction, there is
a growing body of research to establish relations between some properties of S
and B(S). This view has been particularly successful when dealing with the com-
pactness of operators related to function theory. If § € £(AP) is compact, then
B(S)(z) — 0 when |z| — 1, while several authors have shown examples where the
reciprocal implication does not hold (see [2] and [11]).

On the other hand, when p = 2, Coburn [4] showed that the compact oper-
ators form the commutator ideal of %, (C(By,)), the closed algebra generated by
Toeplitz operators with continuous symbol on the closed ball B,,, and Englis [8]
proved that every compact operator is the norm limit of Toeplitz operators with
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bounded symbol. Any of these results implies that the compact operators are con-
tained in T,. We will see that this also holds for 1 < p < o. Therefore, we have
the following necessary conditions for S € £(AP) to be compact

(1.1) S§e%, and |lilmlB(S)(z) =0.

The above mentioned counterexamples show that there is no redundance in these
conditions, since there are plenty of non-compact operators S € £(A?) satisfying
the second condition. These facts triggered extensive studies showing that for
different subclasses G C %5, the implication

(1.2) lim B(S)(z) =0 = S is compact

|z]—-1

holds for S € & (see [2], [9,10], [12], [14], [16], [18], [20], [22], and [24]). The
survey paper of Stroethoff [19] is a good source to get a taste of some of the above
results. Clearly, the final goal of these studies is to find a reasonable answer to the
question: what operators S satisfy (1.2)?

One of the most general results obtained so far was given by Axler and Zheng
[2] for the disk and later generalized by Enlgis [9, 10] to irreducible bounded
symmetric domains in C". They proved that if S is a several variables polynomial
of Toeplitz operators T, (a € L™) acting on A?, then S satisfies (1.2) (the precise
statement in [9, 10] is more complicated, since it deals with weighted Bergman
spaces of more general domains). This means that (1.2) holds for a dense subclass
S C %, and it suggests that the answer to the question when p = 2 should be %,.

The third purpose of this paper is to prove that (1.2) holds on the ball B,, for
every § € T, where 1 < p < oo. This is achieved by exploiting the interaction
between B(S) and the family {Sx}xcf together with the corresponding character-
ization of [|S|lc in terms of this family. This means that the conditions in (1.1)
characterize compactness, which gives a complete answer to the question. These
results are new even forn = 1 and p = 2.

2. OPERATORS ASSOCIATED TO CARLESON MEASURES

We fix the dimension n and write B = Bj. Accordingly, it should be assumed
that the multiplicative constants in the paper depend on n, even when this is not
always explicitly stated. If z, w € B, we write (z, w) for the inner product in C"
and |z| for the norm; P, will be the orthogonal projection onto the complex line
Cz, and Q; = I — P; its complementary projection. The function

_z=P(w) - (1-1z[*)'"?Qz(w)

@z (w) 1—(w,z)
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is the (unique) automorphism of B that satisfies ¢, o @, = id and @.(0) = z.
The pseudo-hyperbolic and hyperbolic metrics on B are defined, respectively, by

1+p(z,w)

1
p(z,w) = |@z(w)| and B(z,w) = Elog 1-p(z,w)’

Thus, p = (2 —1)/(e?# +1) = tanh . These metrics are invariant under actions
of Aut(B). For » > 0 write

D(z,7) ¥ {weB:B(w,z) <7}

Therefore, D(z,7) = {w € B : p(w,z) < s}, where s = tanh7. We shall make
extensive use of the classical equality

(1=1zIH)(1 = |wl?)
1 —(w,z)|?

1- |(PZ(W)|2 =

(see [17, Chapter 2]). We will also write (, ) for the usual integral pairing between
functions. If 1 < p < oo, the Bergman projection P : L? — AP is defined as
(Pf)(z) = (f,K:), where

1

KW =0 =, zpmr

w € B,
is the reproducing kernel for z € B. If 1/p + 1/q = 1, there is a constant ¢, > 0
such that the functions

_ (L |z
(1= (w, z))n+t?

P (w) w e B,

satisfy c,;l < ||k;p)||p < ¢p forall z € B. That is, kP plays the same role for

a general p that the normalized reproducing kernel k2 = K- /lIK:ll> plays for
p = 2. The Berezin transform of S € £(AP) is the function

B(S)(z) = (1 — |zI)"(SK,,K2) = (SKP) kP, (z € B).

It is clear that B(S) € L* and ||B(S) |l < CplIS|l, where C,, > 0 only depends on
p.
Unless stated otherwise, by a measure we mean a positive, finite, regular, Borel

measure. If p > 1, a measure v on B is called a Carleson measure (for A?) if there
is C > 0 such that

JBlflpdvsCJBIflpdv
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for every f € AP. When this holds, the inclusion of A? into L¥ (dv) will be
denoted t,. If v is a measure, the operator

) = | fw)

WdV(W),

defines an analytic function for every f € H®. So, T, is densely defined on A”
and it is well-known that for 1 < p < o, T, is bounded if and only if v is a
Carleson measure for A”. As it turned out, this condition does not depend on p.

The next four lemmas are well-known or easily deduced from well-known
results, so proofs are kept to a minimum.

Lemma 2.1. Ler 1 < p < o, vV be a measure on B and v > 0. The following
quantities are equivalent (with constants depending on n, v and p).

def (1— |zt
W vl iemj T dvw),
) lipll? = inf{c >0 [ 1P dv < cJ 1P dv for f € Ar’},
3) v(D(z,7))

Dz

(4) 1Tyl gcar).

Proof. The equivalence between (1), (2) and (3) is in the proof of Theorem
2.25 in [26]. If (4) holds, then [[VIls« = IIB(Ty)lle < CpllTyll, so (1) holds.
Finally, if (1) holds and f, g € H®, Fubinis theorem and Hélder’s inequality
yield

(T f,g)] = ' J[Bfgdv‘ < 1Nl vy 1191 zacav)

< ltpll gl lf lar Ngllaa < CpllvIis I 1lar 111l aa,

where the last inequality follows from the equivalence between (1) and (2). The
isomorphism (AFP)* =~ A1 then gives (4). O

A measure V satisfying any of the above conditions will be simply called a Carleson
measure.

Lemma 2.2. Let1 <p <o, q=p/(p—1), F CB beacompact set and v be
a Carleson measure. Then there exists a constant &, such that

||Tvaf||AF’ = ‘Xp”lq” ||pr||U’(dv)

for every f € AP.
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Proof. Since F is compact and v is a finite measure, it is clear that Ty, f
is a bounded analytic function for any f € AP. As in the proof of the previous
lemma, if g € A4,

K Txpv.f, 9 < IXpSflle@av) 1gllaav) < IXpfllr@v) gl gllae.  E

The following covering was initially constructed by Coifman and Rochberg
in connection with a family of atomic decompositions of AP (Q), for bounded
symmetric domains Q € C" [5]. The proof depends on simple volume arguments,
and a version suited for our purpose can be found in [26, Lemma 2.28].

Lemma 2.3. Given ¢ > 0, there is a family of Borel sets Dy C B and points
W € Dy such that
(@) D(wm,e/4) C Dy C D(wm, Q) forallm = 1,
(b) D NDy =D ifm +k,
(©) Umz1Dm = B.

The next result is in [17, Proposition 1.4.10].
Lemma 2.4. For z € B, s real andt > —1, let
(1-Jw?)!

s Py ERAE

dv(w).

Then Fs is bounded if s < n + 1+t and grows as (1 — |z|*)" 1S when |z| — 1
ifs>n+1+t

Lemma 2.5. Let 1 < p < oo, v be a Carleson measure, Fj, Kj C B be Borel
sets such that {F;} are pairwise disjoint and B(Fj,Kj) > o = 1 for every j. If

0 <y <min{1/((n+1)p), 1-1/p}, then

1—{z,w)nt! dv(w)

_ 2\=1/p
(2.1) J[BZ[XFJ.(Z)XKJ(w)] |(1 Ll
i

<GIvILQ-8")rA - |z|)7VP,

where & = tanh(0 /2) and G > 0 only depends onn, p andy.

Proof. Since for z € Fj and w € K}, B(w,z) > o, then Kj € B\ D(z,0)
and

ZXFJ- (Z)XKJ.(CU) =< ZXFJ- (Z)X[B\D(Z,a—)(w)'
J J
Hence, the integral in (2.1) is bounded by

_ (1-|w|>)"l/P
(2.2) J = %:XFJ’(Z)JX\D(Z,O')(UJ)W dv(w).
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Let wy, € Dy, C B be as in Lemma 2.3 with ¢ = %. When w € Dy, (a) says
that B(w, wp) < %. Hence, (1 — |w|?) and (1 — |wm|?) are equivalent, and
|1 — (z,w)| is equivalent to |1 — (z, Wy, )| independently of z € B. This implies
that there exists C; > 0 depending only on n and p such that

1 A-lo®)™P (4= wml?) P (1-Jw[H) /P
[1—(z, )" = 1= (z, )"~ 1= (z,00)[n+]

(2.3) Cy

for every w € Dy, and z € B. Also, since v is a Carleson measure and we have
fixed o = %, Lemma 2.1 and (a) of Lemma 2.3 say that there exists an absolute
constant C; > 0 (depending only on 1) such that

(2.4) V(Dm) = ClIvI«v(Dm).

It will be convenient to write

(1-|wl|?)"1/P
1 —(z,w)[n*!

Thus J = X; XF, (z2) ]2, where

P(w,z) = and D(z,0) =B\ D(z,0).

Jz = J[B XD (z,0)c (W) P(w, z) dv(w)

= z JD XD(Z,O’)C(w)(P(w’Z) dv(w)

nx=1

< > P (w,z)dv(w)

DwunD(z,0)c @ * Pm

<C > JD P (Wi, 2) dv(w) by (2.3)

DynD(z,0)¢+Q

saGIvie Y | dwmzdvi@ by @4)

DnnD(z,0)¢+Q

< CIG IV« > jD b(w,z)dv(w) by (2.3).

DmunD(z,0)¢+0

If Dy NnD(z,0)¢ + @ and w € Dy, then B(w,D(z,0)¢) < diamg Dy, <20 =
%, and since
1

B(D(z,0/2),D(z,0)) = = = >

NS

we get
Dy,.NnD(z,0/2) =@ whenever D, ND(z,0)¢ + &.
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Therefore

Je =GOV S | Xpeme @)bw,2) dv(w)

m=1

= GOV | Koo (W), 2) dv(@).
Going back to (2.2), we obtain

25  J=2 X2
J

< C12C2||V||* ZXFJ' (Z) JB XD(Z,O'/Z)C (w>¢(w,2) dV(w)
J

The last sum in (2.5) is

(1-Jw[?)~P
(2.6) %XFJ.(Z) J[B XD(Z,U/Z)C(w)W dv(w)

§ (1~ lg.) )17
‘%XFJ(Z)LM Tz &Y

SJ (1-|v|®)~p

2y-1/
wiss |1 —(z,v)y|n+ti-2/p (1 =1z[*)"Pdv(v),

where the equality comes from the change of variables v = @, (w) and the obser-
vation that @, (D(z,0/2)¢) = D(0,0/2)¢ = {v € B: |[v| > § = tanh(0/2)},
and the inequality because the sets F; are pairwise disjoint. Pick a number a =
a(n, p) satisfying simultaneously the conditions

l<a<p and an+1-1/p)<n+1.

Ifa !+ b~! =1, Holder’s inequality gives

[ (1—|v2)

s |1 —(z,v)n+1-2/p

(1-|v»)-a/r ta 1/b
S(an de)) v({lv] > 8P

11— (z,v)[atnt1=2/p)

dv(v)

Sincean+1-2/p) =an+1-1/p) —a/p <n+1-a/p, Lemma 2.4
says that the last expression is bounded by C3v({|v]| > SHVP = C3(1 — §2m)l/b,
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where C3 depends only on n, p and a. Inserting this inequality in (2.6) and the
resulting inequality in (2.5), we get

J < GGGV (1 = 82MYP (1 - |z|2)7 VP,

Write G = C$C,C3 and observe that since b~! = 1 — a~!, the restrictions on a
translate in terms of b as 0 < b~! < min{1/((n + 1)p),1 — 1/p}. The lemma
follows from the last inequality and the paragraph preceding (2.2). O

We are going to need one of many known versions of Schur’s test. There is a proof
for p = 2 in [15, p. 282] that can be easily adapted to 1 < p < co. A proof
containing the result that we need can be found in [7, Proposition 5.12].

Lemma 2.6. Ler (X,dp) and (X,dv) be measure spaces, R(x,y) be a non-
negative Ay X dv-measurable function on X x X, 1 <p < candq =p/(p—-1). If
h is a positive function on X that is measurable with respect to both du and dv, and
Cq» Cp are positive numbers such that

J R(x,y)h(y)1dv(y) < Cjh(x)1, du(x)-almost everywhere,
X

J R(x,y)h(x)? du(x) < Cph(y)?, dv(y)-almost everywhere;
X

then Sf(x) = J R(x,y)f(y)dv(y) defines a bounded operator S : LF (X,dv) —
X
LP (X, dp) with |T|| < C3'C)/”.

If v is a Carleson measure and 1 < p < oo, for f € LP(dv) define

e = |

The argument in the proof of Lemma 2.1 shows that P, is a bounded operator
from L? (dv) into AP. Observe also that T, = P, o 1. If a € L®(dv), we write
M, for the operator of multiplication by a.

Lemma 2.7. Suppose that 1 < p < oo, v is a Carleson measure, Fj, Kj C B are
Borel sets, and aj € L*(dv), bj € L*(AV) are functions of norm < 1 forall j = 1.
If

(1) B(FJ',KJ') >0 =1,

(ii) suppaj C Fj and suppb; C K},
(iii) every z € B belongs to at most N (a positive integer) of the sets Fj,
then Y i1 Mg, PyMy; € £(AP,LF(dv)), and there is a function By (o) — 0 when
o — © such that

2.7) || > Ma, Py My ||,

, = NBp o)Vl
j=1

AP LP (dv)
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and for every f € AP of norm < 1,

(2.8) Z HMat,-PvMb‘,-sz)n(dv) = Nﬁg(U)HVHi-
j=1

Proof: Write 6 = tanh(0/2). Since v is a Carleson measure, Lemma 2.1

says that the norm of the inclusion t, : AP C L?(dv) is bounded by C, [IvI”,

for some constant C,, > 0. So, the lemma will follow if we prove that there is a
function kj, (6) — 0 when 6 — 1 such that

(2.9) | > Ma, oMy |

= Nk (3)][v]["""
j=1

L(LP(dv),LP (dv)

and for every f € LP(dVv) of norm < 1,

(2.10) 2 1Ma, Py My, £1I7 o ay < NEB(SVIIE
j=1

First let us assume that N = 1, meaning that the family {F;} is pairwise disjoint.

Write
1

o(z,w) = > X, ()X, () T =yt

j=1

Let f € LP(dv). Since [|ajlle, [1bjllo < 1 forall j, (ii) yields

(3 Mo, P ) @] = | S ay(2) [ byt fra) =)

— 1
j=1 j=1 1-{z, )"+

SJ d(z,w)|f(w)|dv(w).

Taking h(z) = (1 — |z|?)"'/P4, where p~' + ¢! = 1, and y > 0 as in Lemma
2.5, the lemma asserts that there is a constant G > 0 such that

J ®(z, w)h(w)1dv(w) < ||[v|+G(1 = §*)Yh(z)4.
On the other hand, Lemma 2.4 implies that there is some C > 0 such that
J ®(z,w)h(z)P dv(z) < Ch(w)”.
B

By Lemma 2.6 the integral operator with kernel ®(z, w) is bounded from L? (B, dv)
into L? (B, dv) and its norm is bounded by IIVIIL/q(l — §nyylagiacl/p Thus,
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writing kp (8) = (1 — §2")Y/4G/4C/P | we obtain (2.9) for N = 1. Since in this
case,

> 11Ma, P M, £ ey = || Z (Ma,PM, P},
j=1
it also proves (2.10).

Now assume that N > 1. For z € B let A(z) = {j : z € Fj}, ordered in the
natural way. Then F; admits the disjoint decomposition F; = Aj U - - - U AY,
where A} ={zeF;:jisthe ith element of A(2)}. It is clear that for each value
of 1 <i < N, the family {A; : j = 1} is pairwise disjoint. Thus,

> 1|Ma, Py M, f1125 ()
Jj=1

= Z ||M aJxAn)PvMbeHLn (dv) toeeet ||M(¢1JXAIJ§/)PVMbJ’f||€V(dv))

N
= Z ||(MaJxAl)PvMbe)||Ln (dv) —Nkp(5)||v||

where the last inequality follows from the previous case N = 1. So, (2.10) holds.
To prove (2.9) observe that just as in the above formula, > ;. Mga;PyMy; can be
written as a sum of N operators that satisfy the hypotheses of the previous case. O

3. A COVERING OF THE BALL
Lemma 3.1. There is a positive integer N (depending only on the dimension n)
such that for any o > 0 there is a covering of B by Borel sets B; satisfying
(1) Bjn By = @ ifj * k,
(2) every point of B belongs to at most N of the sets Qo (Bj) = {z: B(z,Bj) < 0},
(3) there is a constant C(0) > 0 such that diamg Bj < C(0) for every j.
Proof. First observe that (2) says that every closed hyperbolic ball of radius o
cannot meet more than N sets Bj. Therefore, it is enough to replace (2) by
(2) every set of hyperbolic diameter 20 cannot meet more than N sets B;.
Also, we only need to construct a numerable covering {B}} satisfying (2") and (3),

since the family By = By, \ Ulj;ll B; will satisfy the lemma. For E C B write
E={el'z:z€E, 0<t<2m}.

Given 0 > 0, let M > 2 be an integer to be chosen later, depending only on o
(and n). Let

={z=(z1,...,zn) EB:zI?>1-M°, 2z, €R, z; > 1/2Vn)}.
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ThenT! ¢ (I x {0}) x I?""2 = [*""1 where I = [—1,1]. For any integer k > 3,
let Qk,; be the standard decomposition of I?"~! into closed cubes of side length
2/M*-1 and denote

Arj=Qrinizel :M*2 <1 |z < M2},

where we disregard all the indexes for which this intersection is empty. Now pick
an arbitrary point zy,; € A, j and for all integers 0 < £ < M?*=5 let

<t<

At = {e”w W E Akyjy AW, Zij) 2 0, 5 s - M2

Thus Ay j ¢ C Ak,j for every ¢, and if z € Ak,j, then (z1/|z11)z € Ax,j. Since
k = 3, it is clear that the sets Ay j ¢ form a covering of ['!l. We shall show that if
M = M(0) is big enough, this covering of I'! satisfies properties (2) and (3) of
the lemma. If Sg = {z : |z|?> = 1 — M~2k}, an elementary calculation shows that

1 1
1= p2(Sk, Ske1) 1= p2((1 = M~2K)172, (1 - M=2k=2)112)

=M (7 + ),
where the pseudohyperbolic metric in the second member is taken on the disk,
and hy (M) are functions that tend to 0 uniformly on k when M — co. Hence, by
choosing M large enough, we can assure that 40 < B(Sk, Sk+1). This inequality

guarantees that every set of hyperbolic diameter 20 meets no more than 2 strips
M~2k=2 <1 —|z|2 < M2, So, fix k > 3.

Sublemma 3.2. If 1 — M2k < |z]2, [w]?> < 1 - M~%72, |z1], |wy| >
1/(2yn), and we denote § = | (Z1/1z11)z — (Wi /|lwi)w |, then

M2k52 - 1— |(Z,w)| - M2k+252
18n ~ (1—[z)12(1- w22~ 2

(3.1) + M?.

Proof. Ifd = inf; |z — eitw], then

d? = |z* + lw]* - 2[(z,w)|

=(zP -1+ (wl*=1) +2(1 = {(z,w)]).
Hence, d2/2 + M~%-2 < 1 — |{z,w)| < d?/2 + M2k, and since

(3.2) M < [(1 -1z - lw]?)] V2 < M*+2,
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we get
M2k g2 1- [z, w)]|
) +M72 < ’
3 2 A= 1z)72(1 — w7
2k+2 32
2
On the other hand, for any t € [0, 21),
_ A, W ‘
|z1] [w; |
VR S V)
|z1] w1 w1 w1 |

If we pick t € [0,277) such that the first summand above is d, then
(3.4) S<d+|w|le-1 <d+ |e't-1].
By hypothesis we can assume that 1/(2/n) < |z;| < |w,|, which leads to

1 . .
—|1-e"| <|z1| |1 - e

2yn

= [ 1zil = lzile® | < | 1z1] = lwylet |
<d,

where the last inequality holds by our choice of ¢, and the previous one from
a simple drawing. Thus, on (3.4) we get 6 < d + 2ynd < 3ymd, and since
obviously d<S§,

8 _m_ o

— <d” <96
The sublemma follows by inserting these inequalities in (3.3). o

We recall that we have fixed k > 3. An immediate volume argument shows that
every cube Qg ; meets no more than 3%" — 1 of the other cubes. So, the same holds
for the sets Ay, j. In addition, if z € Ay j,, w € Ay j,, and Qk,j, N Qk,j, = D, then
Z 2 w1 wl > 2
|21 lwy| 1~ MkL

which together with the first inequality in (3.1) yields

1 - 1-[(z,w)] 2
(- pzw))2 =~ (- 2P0 - w2~ 9n

M? - «
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when M — oo. Hence, we can choose M depending on o big enough so that
B(Axj,, Ak j,) > 40. Together with the previous comments, this implies that for
any fixed value of k, every set of hyperbolic diameter 20" meets no more than 32n
of the sets Ak,j. On the other hand, if z, w € Ak,j, then

Z_l ’u_}1 . 2V2n -1
2, W]y _2van-1
207 " Twy | = dam Qs = s

and the second inequality in (3.1) gives

1 - [{z,w)]
(I—-1z[H12(1 - |w

(3.5) 17 < 4nM*.

Observe that the restriction k > 3, (3.2) and (3.5) imply that if w € Ay j, then
(w, zk,j) # 0 as soon as M? > 4n. So, assuming this restriction on M, in the
definition of Ay j 4 we could have taken (w,zy;) > 0 instead of (w, zx,;) = 0.

This guarantees that no point of A j is in more than 2 of the sets At
Finally, we fix the values of k and j, and see what happens inside the set Ay ;.

Since every Ay j ¢ is a rotation of Ay, j0, they all have the same hyperbolic diameter.
Ifw € A jo, then (w,zy j) = e [(w, zx j)|, with 0 < t < 2TM~2k*5, 50
1- (w,zk,j)’ = ’1 - €it|<w,2k,j>|’
<[1-el+1- [(w,z;)]|

<t+1-[(w,zrj)|,
which, together with (3.2) and (3.5), implies

1 1 —(w, z, ;)|

(1-pw,zk )2 (1= |z 121201 = |w|2)1/2

<21tM’ + 4nM*.

Therefore, the hyperbolic diameter of Ay j ¢ is bounded by a constant that only
depends on M. In symbols,

(3.6) diamg Ay j o < C(M) forall k, jand L.

Since k and j are fixed, each A ; ¢ meets two other of these sets, and we shall see
next that disjoint sets are hyperbolically far away (depending on M). So, suppose
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that u € Ay j¢, V € Agjp,> and Ay jp, N Ay je, = D. This means that

Wazkej) iy g ViZki) oit2
{u, zk, ;)| (v, zk, ;)|
. 21T 21
with W < |t1 - t2| < 21T — W

We recall that for z € B, P, and Q. denote the projection onto Cz and its or-
thogonal complement, respectively. Since [(u, zi,j)[* = [2k,j1? | Pz, (w)]?, (3.5)
and (3.2) yield

21,17 1Qz, (WP = |zij 12 [ul® = |21 j1 1Py () |2
<1-[{u,zp;)|* < 8nM*2k,

and since the same holds for Q, ; (v),

21,12 Q2 (W), Qz, (V)| < 8MA2K,

Together with the equality |Zk,j|2(szJ(u),szJ(v)) = (U, zx,j){v, zx,j), this
gives

|zij 12 11 = (u, v)|
= |zij 1 11 = (Pz, (W), P2, (V) = (Qz,, (W), Qzy (V)]
> 1 = (U, 2, ) (U, zig ) | = (1= [2r,51%) = [2x,51* Q2 (W), Qz (V)|
> |1 = (u, zk ) (0, zx ;)| — (M~2* + 8nM*-2k),

If 0 < & < 17, the elementary inequality
, > o
[1-e®|=|1-e"|>— whenx € [« 2T—«]
21
applied to & = 211 /M2%=5 and x = |t; — ] gives |1 — etlti=t2)| > M5-2k Hence,

T —(u, zx, ;) (v, Zk,j) |
= |1 -2 [(u, z ) (v, zx ;)|
> |1 — et — (1= (u,zi )]) = {u, zi ) (1= (v, zi ) )

> M572k _ 8nM472k,
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where the last inequality follows from (3.2) and (3.5). The last two chains of
inequalities and (3.2) say that

1 by (3.2)
(1-p(u,v)?)l/2 = M2k|zk'j|2 1= (u,v)|

> M’ — (16nM* + 1),

which tends to infinity as M — co. That is, we can choose M = M (o) big enough
so that B(u,v) > 40 whenever u € Ay jy4,, V € Ay j,> and these sets do not
meet. Thus, a set of hyperbolic diameter 20" in Ay ; can only intersect 2 of the
sets A, j ¢-

Summing up, any set of hyperbolic diameter 20 meets at most 2 of the strips
M2k < 1 —|z|? < M~%-2}_ For any fixed k, it meets at most 32" sets Ak,j,
and for any fixed pair k, j, it meets at most two sets Ay, j.¢- Henceforth, any such
set meets at most 2 - 3*™ - 2 of the sets Ay j ¢, an absolute constant if we take the
dimension as such. That is, we have constructed a covering of [! that satisfies
conditions (2") and (3) of the lemma. By permuting the coordinates we obtain
similar coverings {A;;,j,g}k,j,i of

_ 1
rl:{ EB:|zI2>1-MF, -_—}
z |z] |ZL|>2\/ﬁ

In addition, since M > 2, we have 1 — M6 > %, which clearly implies that

{ze B:|z]>>1 —M’G} = Lnjfi.
i-1

So, {A}‘(’ i ¢} together with the closed Euclidean ball U, centered at the origin and

of radius (1 — M~°)1/2, form a covering of B that satisfies conditions (2’) and (3),
where N is bounded by 2 - 32" - 2 - n + 1, and such that all its elements have
hyperbolic diameter bounded by the maximum between the constant C; (M) of
(3.6) and diamg U, both depending on M, which in turn depends on o. O

Remark 3.3. In the particular case of the disk, the above lemma can be sim-
plified notoriously. The construction is clearer in the upper half plane C; = {z €
C:Imz > 0}. If M > 1 is an integer, consider the rectangles

B j Jj+1 1 1
Vim = [W’ Mm ] X |:Mm+2’Mm+1:|’

where j and m run over all the integers. These sets form an essentially disjoint
decomposition of C,, and since they can be transformed into each other by a
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real translation followed by a dilation, they have the same hyperbolic size. All
the upper horizontal sides of the rectangles are conformally equivalent and their
hyperbolic diameter tends to infinity as M — oo, and the same holds for all the
lower horizontal sides and for all the vertical sides. A moment of reflection shows
that if o > 0, we can take M = M (o) big enough so that any hyperbolic ball of
radius 0 in C; meets no more than 4 of the above rectangles.

Let 0 > 0 and k be a non-negative integer. Let {B;} be a covering of the ball
satisfying the conditions of Lemma 3.1 for (k + 1)0 instead of 0. For 0 <i < k
and j = 1 write

(3.7) Foj=Bj, and Fi.j=1{z:pB(zF;j) <o}.

The next result is now immediate.
Corollary 3.4. Let 0 > 0 and k be a non-negative integer. For each 0 < i <
k + 1 the family Fi= {Fi,j: j = 1} forms a covering of B such that

(@) Fo,j, NFoj, = D if j1 # jo

(b) Fo‘j C FLJ' c---C Fk+1‘jﬁrﬂ[lj,

(© B(Fij,Fiy ;) 20 forall0<i<kandj=>1,

(d) every point of B belongs to no more than N elements of T,

(e) diamg Fij < C(k, o) for all i, j, where C(k,0) depends only on k and o .

The constants N and C(k, o) = C((k+ 1)0) are given, respectively, by items (2) and
(3) of Lemma 3.1.

4. APPROXIMATION BY SEGMENTED OPERATORS

Lemma 4.1. Let 1 < p < oo, 0 = 1, functions a1, ... ,ax € L™ of norm
< 1 and v be a Carleson measure. Consider the coverings of B given by (3.7) for these
values of k and o. Then there is a positive constant Co = Co(p, k, n) such that

(4.1) HT“I o Tady - ZMXFO,J’ Tay -+ TakT(XFkH,jV)HE(AV,U’)
J

< CoBp (o) ITyll2ar),

where Bp(0) — 0 as o — .

Proof. Step 1. We shall show that there is a constant C; = Ci(p, k, n) such
that
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4.2) l

Ta, - - To Ty — ZMXFOJ Tixp, ;a0 Tixp a0 Tixp,,, v ean o)
J‘ ’

< C1Bp ()Tl ¢ar)-
For 0 < m < k + 1 define the operators Sy, € £(AP,LF) as

Sm = ZMXFOJ T(XFI’jal) T T(me’jam)Tamﬂ o Ta Ty
J

It is clear that

SO = Z(MXFO,-T“I et TakTv) = Ta1 e TakTv,
; N

where the series converges in the strong operator topology. If 0 < m < k — 1,

k
Sm = Smi1 = Z {MXFO (n T(xF al )[Tamﬂ - T(mew.amﬂ)]( 1_[ Tﬂi>TV}

J i=m+2
m k
Z { XFO j ( T XF ai) )T(XFC am+l ( 1_[ T(lj) Tv} 5
Jj i=1 i=m+2

where any of the products above should be understood as the identity when the
lower index is bigger than the upper index. For notational reasons we take ag as
the constant function 1 in the next expression when m = 0. Hence, if f € A¥
has norm 1, using that the sets Fy,; are pairwise disjoint and Lemma 2.7 applied
to the measure dv, we obtain

k
1S = Smen £I = (€)™ X |[Moxg, am PMixge annJ( 1T Ta) o))
: y

i=m+2

< (CHy™NB (o)][( ﬂ Ta ) Tof|[) by 2.8)

i=m+2

< (CH™(CHYFm=INBD (o) ITyIIP
= (CHINBL (o) ITy |17

for 0 < m < k — 1, where N is given by Corollary 3.4 and depends only on the
dimension n, B, (0) is given by Lemma 2.7, and Cp = ||P|l¢(rr). Similarly, since
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Sk — Sk+1 = zMXFo.j T(xplvjal) e T(X[:k‘fllk)T(XFlijV)’
J ) '

Lemma 2.7 applied to dv gives

1Sk = Sk=1) fI1h < (CPHF D ||M<ka,jam>PvM<xplgﬂj>f||Z
- ,

< (CHKNBL(o)|[V]]Z. by (2.8)

Since Lemma 2.1 says that ||V« is equivalent to || Ty [|¢(ar), there is a constant
¢ =c(p,k,n) such that

[Sm = Sm+1ll < c(p,k,n)Bp ()T, forall0 <m <k.
Consequently
k
IS0 = Sks1ll = D0 ISm = Smerll < (k+ Delp,k,n) By () I Ty,
m=0

which proves (4.2).

Step 2. We show now that there is a constant C; = C2(p, k, n) such that

(4.3)

Z’MXFO,‘; Ta,+ TaeTixp,,, v
J

- ZMXFOJ. Tixp, ja0 -+ Tixp a0 Tixp,,, v car o)
I ,

< GBp () ITy [l ecar).

For 0 < m < k, define

Sm = ZMXFO,j T(XFlyjal) T T(XFijam)TamH T TakT(kaHJv)-
J

Therefore, if 0 <m < k — 1,

m
Sm = Sm+1 = Z {MXFO,]' ( n T(XFiyiai)) I:Tam+1 - T(meﬂ’,.amﬂ)]
F iNT . :

k
X( 1_[ Tai)T(XFkHJ")} =

i=m+2
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k
T(XFi,J'ai)>T(XF;nH,jamH)( I—[ Tai>T(ka+1,jv)}’

i=m+2

—s

,.
I
—_

_ Z {MXFOJ<

where as before, any of the products above is the identity when the lower index is
bigger than the upper index. Hence, if f € A” has norm 1,

44 [|(Sm — Sme) fII5

k
= (Cg)m Z H[M(meyjamPM(xFﬁmjamm]( H Tai)T(kaH’jv)fHZ
; :

i=m+2

= (C;)’)m z {”M(meYjam)PM(Xpyanjam+1)||g(Av,Ln)

<[l TT 7a

i=m+2

< (CP™ X Bp (@) (R I Ti w1l
: .

= (B S T, I
J

14
s, w15}

where the third inequality holds because || ]_[’f=m+2 Tallp < C’rj_m_l, and (2.7)
applied to the measure dv implies that

||M(me’l_am)PM(xchn+ljamﬂ)||£(AF’,LV) < Bp(0)

forall j = 1. By Lemma 2.2 there is a constant &, depending only on p such
that ||T(XFk+1 iv)fllp < aplltgll ”XFkH,jf”L”(dv): and since every point of B is in

no more than N of the sets Fy1,j, we get

p p 14
(4.5) Z ||T(ka+lle)f||v < oplligl? Z ||XFk+1,jvf||Lv(dv)
Jj J
< ohllgl? NIFILy )

IA

pNIgl? P 1L 115

Since Lemma 2.1 says that [/ts]| is equivalent to IvIIYS for s = P, 4, we see
that (gl 1, 1)7 is equivalent to (I[VIIY* [vIY7)P = [IvII%, which by the same
lemma, is equivalent to [|Ty || 4. Inserting this equivalence in (4.5) and going
back from there to (4.4), we obtain that there is a constant c(p, k, 1) such that

1(Sm = Sm+Dllp < c(p,k, W) Bp () I T4 |l
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forall 0 < m < k — 1. Consequently,

1So = Sll <= > 11Sm = Smerll < ke(p,k,n) By ()T |,
m=0

which proves (4.3). The lemma follows from (4.2) and (4.3) with Cp =
Ci+ G, [

If v is a complex-valued measure whose total variation |v| is a Carleson measure,
decompose v into its real and imaginary parts and then use the Jordan decompo-
sition of each part to obtain v = vi — v, + i1(v3 — v4), where each v; is a positive

measure such that |[v| ~ Z§=1 |vil. Thus, each vj is a Carleson measure with
v ls ~ Z?zl IVjll«. The comments above and Lemma 2.1 imply that T, is a

bounded operator on A? forall 1 < p < oo, with norm bounded by a constant
that only depends on p and || [V || «.

Lemma 4.2. Let

%)
I
M=

a

T T TaiiT""’
1

.
1l

where a;- € L*®, ki, ..., km <k, and v are complex-valued measures on B such
that |vi| are Carleson measures. Given € > 0, there is 0 = 0(S,€) = 1 such that if
{Fij}j=1,1 =0, ..., k+ 1, are the sets given by (3.7) for these values of k and o,

then

m
(4.6) HS zMXFoJ < 2. Tag -+ Taii T(XFkH,jvi))HE(AV,Lp) <&

i=1

Proof. Consider first the case where all the measures v; are positive (so they
are Carleson). We can assume that k; = k fori = 1, ..., m by filling up the ‘holes’
in each product with products of the identity T} if necessary. A straightforward
application of Lemma 4.1 tells us that if o is sufficiently large, then

3
HTai T Ty - Z,MXFOJ Tap = Tap g, 0 ‘»:(Av,m) “m
J
fori=1,..., m. Summing from i = 1 to m yields
HS (ZMXFO aj T IT(XFMU i)>H2(AIf’,LV) <&
Since for every 1 < i < m the series S; = 3 My, Tai -+ Tai Tixp, v converges

in the strong operator topology, the result follows from the above 1nequallty and
the linearity of the limit.
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In the general case, decompose v; = Vi 1 — Vi 2+1(Vi3— Vi 4), where for j = 1,

. . 4
...» 4, vj jisa Carleson measure with [|v; jll« < I [vil I« ~ 2y, Vi ¢ll«. Apply
the previous result to v;, ; for each j and then use again the linearity of the limit
in the strong operator topology to get the desired result. o

Theorem 4.3. LetS € T, v be a Carleson measure, and € > 0. Then there are
Borel sets Fi C Gj C B, with j = 1, such that

(@ B=UF,,
(b) FjﬂFkZ @l_f]?ék,
(c) each point of B is in no more than N sets G j, where N depends only on n,
(d) diamgGj =d =d(p,S,e),
and
J

Proof. Since S € T, there is
m
=S,y
i=1 !

such that [|S — Spll < &, where a;- € L*®, and k; are positive integers. Let k =
max{k; : 1 < i < m}. By Lemma 4.2 there are two families of Borel sets,
Fj := Foj and Gj := Fyy1,j, that satisfy the theorem for So. Furthermore, if
feAr,

H ZMXFJ (S — SO)TXijsz = Z HMXFJ- (S - So)TijfoZ
j J
<& > ||Tyg, v flly
J
< P apllgll? Z ||Xq,-f||fv(dv)
J
< &b llegl” NIAIE» av)

< 7ol Nllegll? Nl l? [1£]%

< e CpN|IVIIE (I

for some constant C, > 0, where the second inequality holds by Lemma 2.2, the
third one by item (c), and the last one by Lemma 2.1. O
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5. THREE CHARACTERIZATIONS OF THE ESSENTIAL NORM

For ¢ > 0 let w;, and D,,, be as in Lemma 2.3. It is immediate from conditions (a)
and (b) of the lemma that pp = >, v(Dm) 6w, is a Carleson measure, where 64,
denotes the Dirac measure at w. Therefore Ty, is bounded on A? for 1 < p < o,

The next lemma is related to an atomic decomposition of A? given by Lueck-
ing, and it is essentially proved in [13]. Since it is not explicitly stated, we sketch
here a proof. For n = 1, a detailed proof can be found in [25, Chapter 4].

Lemma 5.1. T,, — I on £(AP) when ¢ — 0.
Proof- 1f z € Band v > 0, in [17, p. 30] it is shown that

1— |Z|2 n+l1
1 - s#|z|? ’

(5.1) v(D(z,7)) = s2" (

where s, = tanh7. Assume that ¢ < 1 and write s = tanh ¢. By (a) of Lemma
2.3, if z € B is such that w,, € D(z,1), then D,, C D(z,2). Thus

He(D(z,1)) = > v(Dp) <v(D(z,2)) < Cv(D(z,1)),

wmeD(z,1)

where the last equality follows from (5.1), with C > 0 independent of ¢. The
equivalence between (2) and (3) of Lemma 2.1 now says that

(5.2) D V(D) g (wm) 11 < Cqllgll]

m

forall g € A1, where C; > 0 does not depend on ¢. By [13, Lemma 3.10] applied
to our measures dv and dpy, there is a constant C,, > 0 independent of ¢ such
that

Z V(Dm)

_ viDm) - ) -
v(D(wm, @) J,D(Wm,g) |f(w) = f(wm) 7 dv(w) < CpsP[[f]l,

m=1

for all f € AP. Since D(wyy,, 0/4) C Dy, C D(wyy, @), (5.1) leads to v(Dyy,) ~
v(D(wm, )), with constants not depending on ¢. Then

(5.3) > ij (W) = Fwm) P dvw) < Cps?|L£]I1.

m=1
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If f, g € H®, then

o]

LB F(2a@ dv(z) = S V(D) f W) (Kupr )

m=1

((I_ Tug)f’g>

> f f(2)(g(2) - g(wm)) dv(2)
m=1"Dm
+ ZJ (f(2) = flwm))g(wm) dv(2).
m=1"Dm

Applying Hélder’s inequality twice (to the integral and the sum) to each one of
the above sums, (5.3) and (5.2) show that [((I — Ty,).f, g9} < Gpslfllplgllas
where G, > 0 depends only on p. The density of H® in A” and A%, together
with the isomorphism (A?)* = A4, imply that ||[I - T, || < Cs for some constant
C > 0 depending only on p. Since s — 0 as ¢ — 0, the lemma follows. O

By Lemma 5.1, for each 1 < p < o we can choose 0 < ¢ < 1 small enough, so
that .
I = Ty, llecar) < i

This implies that T, is invertible in £(A?), with 1 Ty, 11 ”Tu_gl | < % For the
rest of the paper we fix ¢ = ¢(p) according to these conditions and simply write
M = Ho. For § € £(AP) and v > 0, let

as (r) = limsup sup {ISFIl < f € Ty, u(AP), I1£1 < 1]

[z|-1

Since TXD(ZM)H(A") C TXD(Z,VZ)“(Ap) when 71 < 713, then &g (7) increases with
v, and since &g () < ||S|| for all 7, we have

def 1.
as = lim og(r) = sup s (r) < |IS].
r=e >0

If E and F are Banach spaces, the essential norm of an operator R € £(E, F) is

IRle def inf{HR -Qll:Q e £(E,F) is compact}.

Theorem 5.2. Let1 < p < © and S € Tp. Then ||S||c is equivalent ro the
Jollowing quantities (with constants depending only on p and n)
1) «s, .
(2) Bs =supy.qlimsup, ||MXD(Z‘d)S||2(AP‘LF'),
(3) ys =limy—y [IMy,p)cSllecar,ir), where (rB)¢ = B\ rB.
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Beginning of the proof- In order to distinguish between essential norms for
operators in £(AP) or £(A?,L?), we write || |le and || [lex for the respective
essential norm. Any R € £(APF) can be thought of as belonging to £(A¥,L?), so
both quantities apply to R, and since PR = R, where P is the Bergman projection,
we have

(5.4) [Rllex < [IRlle < [[Pllee) IR llex-

First observe that since [|Tyll, Tl < %, the numbers [|Sle and [|STy . are
equivalent. Given € > 0, there are Borel sets F; € Gj C B as in Theorem 4.3 such
that

(5.5) |7, - ZlMijSTiju HE(AW) <.
j=

Since XL, My STxg,u is compact for any m > 1, we have

(5.6) [STu— 3 Myp, STyg

j=m

< é&

ex

for any m = 1. Write Sy = Xjom My STxg u and let f € AP be of norm 1.
Since every z € B belongs to at most N of the sets G, Lemma 2.2 yields

> ||Tijuf|V7 <> C5||chf||€f’(dy> = CgN”foP(du) = Kp,

j=m Jj=1

a constant that only depends on p. Therefore

(5.7) MSmfIP = > My STy uf 1P

j=m
1My, STyg uf |

jzm,TXG,ufaéo( ”TXGJ“f”
J

p
) 1 Txg,uf 17

< sup sup{HMijSg”v :g € TXGJ_“(A?’), gl = 1} > IITijuf“r’

j=m jz=m

< Kp sup sup {[IMy; Sg1I” : g € Tyg u(AP), llgll = 1.

j=m

For each j pick z; € G;. Since (d) of Theorem 4.3 says that diamg G < d, then
Gj € D(zj,d), and consequently Txg,u(AP) € Typ(,, ayu(AP). Also, there is a
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sequence 0 <y, < 1 tending to 1, such that |z;| = y, when j = m. So, (5.7)
yields

(5.8) ISml” = Kf sup sup {[|My. SgII" : g € Typ . pu(AP), llgll = 1]

j=m

<Kp | siup Sup{”MXD(z,d)Sng 19 € Typan(AP), lIgll = 1}
ZlZyYm

<Kp | siup sup{lngllp 19 € Typau(AP), lIgll = 1}.
ZIZYm

When m — o we have y, — 1, and consequently

limsup [|Sm |l < Kp as(d).

M-
Joining this estimate with (5.6) we get

ISTyllex < limsup |Smll + € < Kp as(d) + € < Kp s + €.
m

Since € > 0 is arbitrary, it can be deleted from the above chain of inequalities.
Therefore, (5.4) and the equivalence between [|ST, e and [|S]|. lead to

(5.9) ISlle < Gp limysup [Smll = G, as,

where Gy, and G, are positive constants depending on p.
It is clear that Bs < ys. On the other hand, if 0 < * < 1, there exists a
positive integer m.(r) — o0 as ¥ — 1, such that U ) Fj C ¥B. By (5.5) then
1My, gy Sl 1T, 7T < 1My () gye STyl

= HMX(YB)C (STU B .Z;MXEI'STXG;'“)H * HMX(VB)C ZIMXFJ'STXGJ“H
Jj= Jj=

<e+| > MXEfSTXGJH“:s+||Sm(T)||.

j=m(r)

Since ||T; ! < 2, we get
IT; 2 g

ys = limsup [ My, S|l < 3 (€ +limsup S 1) < 3 (& + limsup IS ).
r—1 r—1 m-oo

Since € > 0 is arbitrary, we can delete it.
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Since by (5.8), [ISmll < Kpsup, ., IMypza)Sl,

llmsup [Smll < Kp limsup [| My, z,d) S|l < KpBs.

|z]—-1

All this proves the equivalence between Bs, ys and limsup,, . [ISm|l. By (5.9)
the theorem will follow if we show that

(5.10) xs < ClISlle

for some constant C > 0 depending only on p. The proof of this inequality will
be postponed until the proof of Theorem 9.3. O

6. A UNIFORM ALGEBRA AND ITS MAXIMAL IDEAL SPACE

Consider the uniform algebra A of all the bounded functions that are uniformly
continuous from the metric space (B, p) into the metric space (C, | |). Clearly, p
can be replaced by B in the above definition. The maximal ideal space M4 of A
is formed by all the nonzero multiplicative linear maps from A into C, endowed
with the weak star topology. It is a compact Hausdorff space, and the Gelfand
transform of a € A is the function d € C(M4) defined as a(p) = @(a), for
@ € M. Since A is a commutative C*-algebra, the Gelfand-Naimark Theorem
asserts that the Gelfand transform is an isomorphism (see [6, Theorem 4.29]).
That is, we can identify A with C(M24) via this transform. Evaluations at points
of B are in M4, so B C M4, and the Euclidean topology on B agrees with the
topology induced by M 4. Also, the fact that A is a C*-algebra easily implies that
B is dense in M 4.

In the next lemma, E denotes the closure of E C M4 in the space M4. By a
comment above, when E C ¥B for some 0 < ¥ < 1, E has the same meaning in
both, the M4 and the Euclidean topologies. Also, we shall not write the roof for
the Gelfand transform of a € A.

Lemma 6.1. LetE,FCB. ThenENF = @ if and only if p(E, F) > 0.

Proof. If ENF = @, Tietze’s theorem says that there isa € C(Ma) = A
such that @ = 1 on E and @ = 0 on F. The uniform p-continuity of a on B
implies that p(E,F) > 0. If p(E,F) > 0, the function a(z) = p(z,E) € A and
separates E from F, so they are disjoint. O

Lemma 6.2. Let z, w, § € B. Then there is a constant G > 0 depending only
on N such that

P(Pz(8),pw(8)) < (-

T P(zw).

IEI)

Proof. We are going to need the following elementary inequality for u, v €
B,

[Puu—v) + (1 - [u»)'"?Quu-v)| _|u-v]

(6.1) p(u,v) = 11— (v, u)]| Tl ul”
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By Cartan’s theorem every automorphisms of B that fixes the origin has the form
¢(z) = Uz, where ‘U belongs to the complex unitary group (n) ¢ C*" (see
(17, p. 24]). Hence

Qo) PuwoP,="U

for some ‘U € {(n). Furthermore, in [14, Lemma 2.8] it is shown that
(6.2) I+ Ul < Cn)p(z,w).

We can assume that z # w. If we write v = @, (2), then |v| = p(z,w) # 0,
and

P(Pz(E),Pw (&) = p(Puw o P2(E), Pw o Puw(E)) = p(Pe, ) (UE),E)

= p(@u(UE), &) < p(Py(UE), —UE) + p(-UE, &)

< %@U%Wa T UE| + € + UED),

where the last inequality comes from (6.1) and |'UE| = |&|. By (6.2) the second

summand between brackets is bounded by C(n)p(z,w). To estimate the first
summand within the brackets, write & = ‘UE. Thus

v—-Py(&) -1~ |U|2)1/2Qv(§/) n

Qo (E) +E| T

gl

'—g’(g’,w +vt (g’ - (E’,v)#) [1- (- v)?]

[1—-(&,v)l
_ 22 - (A=)
B (1-1&
4|v ]| 4p(z,w)
< = . |
(1-1&h (1-1&h

Let x € M4 and suppose that (z«) is a net in B that tends to x. By compact-
ness, the net (2, ) in the product space Mﬂ% admits a convergent subnet (szaﬂ ).
This means that there is some function @ : B — M4 such that f o Pzyy — fop

pointwise on B for every f € A. We show next that the whole net (z«) tends to
@ and that @ does not depend on the net. So, suppose that (wy) is another net
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in B converging to x such that @, tends to some ¢ € M%. If thereis § € B
such that @ (&) # @ (&), then there are tails of both nets whose underlying sets

E= {cpzaﬁ(g) B = Bo} and F = {pry(f) 1y = }/o}

have disjoint closures in M 4. By Lemma 6.1 then p(E,F) > 0. But Lemma 6.2
says that

p(E,F) = inf{ (@, (€), P, (8)) : B= Bo, ¥ = yol
G .
= (1 _ |§|)2 lnf{p(zalglwy) . B > Bo, Y > YO} = O,

where the last equality holds by Lemma 6.1, because both nets (Zag) and (wy)
tend to x. The map @ will be denoted @, and observe that  (0) = lim @, (0) =
limzy = x.

Lemma 6.3. Let (z) be a net in B converging to x € Ma. Then

(i) ao@x € Aforeverya € A (hence x : B — Ma is continuous),
(ii) ao @z, = a o @x uniformly on compact sets of B for every a € A.

Proof. If a € A, given € > 0 there is 6 > 0 such thatif u, v € B,
p(u,v) <6 = |la(u) —a(v)| <.
Since p(@z, (W), P2, (V) = p(u,v) and |la(@px(u)) — alex(v))| =

lim|a(@z,(w)) — a(@z,(v))|, (i) follows. Suppose that (ii) fails. This means
that therearea € A, 0 < v < 1 and € > 0 such that

[(@o @z,)(Ex) = (@0 @x)(Ea)| > €

for some points Ex € ¥ B. Taking a suitable subnet we can assume that §x — & €
rB. Therefore
[(@ 0 @z,)(Ex) = (a0 @x)(E)| = [(ae Pz,)(Ex) = (@0 Pz, )(E)]

+ 1 (@eo@z)(&) —(@o@x)(E)]+(aoc@x)(E) —(aecpx)(Ex)l,

where the first and third summands tend to 0 by the p-continuity of @ and ao @y,
respectively, and the second tends to 0 because a o @, — a o @ pointwise. This
contradicts the previous inequality. O
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7. APPROXIMATING TOEPLITZ OPERATORS BY
k-BEREZIN TRANSFORMS

Our goal in this section is to show that ¥, is generated by Toeplitz operators
with symbols in A for every 1 < p < oo. Actually, we prove the more general
statement that if v is a complex-valued measure whose total variation is Carleson,
then T, can be approximated in £(A”)-norm by operators of the form T, with
a € A. Forn =1, p = 2, this was proved in [22, Corollary 2.5], and except for
some minor simplifications, the proof here is essentially the same. If z € B, the
(complex) Jacobian of the map @ is

(1- |Z|2)(n+1)/2
(I —(-,z))n+!

Joz=(D" — (=1)"(1 — |z|2) D 2K

Let v be a complex-valued, Borel, regular measure on B of finite total variation.
For z € B consider the measure v, = |J@.|2(v o @), where (v o @) (E) def
V(@ (E)) for every Borel set E C B (i.e., v o @ is the pull-back measure). From

the identity (J@2) (pz(8))(JPz)(E) = 1 we get

7.1 [ Fopauparav =] rav.
for every bounded continuous function f.

Definition. 1If z € Band k = 0, 1, ..., the k-Berezin transform of v is the
function

B (v)(2) = (”;k) jB - w) (1 = @z w)?)* dv(w).

If z, w € B, Cartan’s theorem implies that o @z = Vo g, (), where V €
C™™ is a unitary matrix, leading to [(JQw) o | |J@z| = [J@ g, w)|. It follows
immediately from these equalities and (7.1) that By (v) (@ (w)) = Bi(vz)(w)
for all k = 0. In particular, if v is a Carleson measure,

(7.2) VI« = [1Bo(V)lleo = [[Bo(V2) lleo = [[VzIlx.

Lemma 7.1. Let 0 < & < 1 and v be a complex-valued measure such that its
total variation |v| is a Carleson measure. If 1/p1 + 1/q1 = 1, where q1 > 1 is close
enough to 1 so that g1 < 1 and qi(n + 1 — &) < n+ 1, then there is a constant
Cp, > 0 such thar

[(TVKz)(w)]
B (1—|wl?)x

Cl’l ” TVz 1 ”Iﬂl

73 (- 1zP)e

dv(w) <

forall z € B.
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Proof. 1f z € B, a straightforward calculation from (7.1) gives

Je)(TvJ@z) o @] = Ty,1,

and consequently (~=1)" (1 — |z|2) " D2T K, = T, Jp, = [(Ty,1) o 9 1(J@2).
Thus

I(TVKz) (w)]

5 (1w W
- 1 [(Ty, 1) (@z(w)] |Jp(w)]
(1 |z]2)m+D/2 Jnaa (1 - [w[2)« dv(w)
_ 1 [(Ty,1)(A)]
1z« J{B (1—A12)x |1 = (A, z)|(ntD—2« dv(A)
< ”Tle”pl (J dv(A) )1/611
(I —=1z[H)*\Jg (1 = [A[2)xar |1 — (A, z) |4 (n+1-20)
= Cpl (1 _ |Z|2)0‘1

where the second equality follows from the substitution w = @, (A), and the last
inequality from Lemma 2.4 and our conditions on ¢;. O

Lemma 7.2. Let 1 < p < co and v be a measure as in Lemma 7.1. If 1/p1 +
1/a1 = 1, where q, satisfies the conditions of Lemma 7.1 for both x = 1/p and 1/q,
whereq = p/(p — 1), then

1/p 1/q
(7.4) 1Ty lletar) < Cp, (sup Ty 111y, ) (sup ITE LN, )
zeB zeB

where Cp, is the constant of Lemma 7.1.

Proof. Let f € AP and w € B. Since (T, Ki) (w) = (T) Ky ) (A), we have
(T )W) = (T K = (£ TEK) = | OO KD () dv().

Letting ®(A, w) = [(TvKx) (w)| = (T Kw)(A)] and h(A) = (1 — [A[2)~1/P4,
(7.3) with & = 1/q yields

J B\, w)h(w)? dv(w) = Cp, sup [ Ty, LIy KA,
zeB
and (7.3) with &« = 1/p gives

J SN, w)h(A) dv(A) = Cp, sup I T Ly, h(w)A.

zeB
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Therefore (7.4) follows from Lemma 2.6. O

If v is a Carleson measure, the formula By (v) = Cn,kJIJqozlz(l — |pz1H)kdv

shows that [|Bx (V) |l < CnkllBo(V) llw = CnillvIl« forall k > 0, and since [14,
Theorem 2.11] says that Bk (V) is Lipschitz with respect to the pseudohyperbolic
metric, it follows that Bx(v) € A for all k = 0. Hence, the same holds for a
complex measure v such that |v| is Carleson. If v is absolutely continuous, so
v = adv, with a € L'(dv), the k-Berezin transform of v will be simply denoted
Bx(a). In this case, the change of variable w = @, (&) in the integral defining
By (a) yields

(Bka)(z) = (”; k) Jﬂg(l — 18 a(@=(£)) dv(E).

Since (k) (1 — |w|?)kdv are probability measures whose masses tend to con-
centrate at 0 as k increases, it is clear that if a € A, then ||Bx(a) — all — 0 when
k — oo,

Theorem 7.3. Let 1 < p < o and v be a complex-valued measure such that |v |
is a Carleson measure. Then Tg, vy — Ty in the norm of £(AF). In particular, T, is
the closed algebra generated by {T, : a € A}.

Proof- By the linearity of By it is enough to prove the theorem for a Carleson
measure V. In [1, Proposition 2.6] it is shown that ByBx (V) = BxBo(V) for an
absolutely continuous measure v, but the proof works in general. Since By(v) €
A,

|[Bo(Bk(v) dv — dV)||s = [[BoBk (V) = Bo(V)][
= ||BkBo(v) — Bo(V)||, — O

as k — . Consequently,

(7.5) [|[Bk(v) dv||, + [IVIIs = [|BoBk(V) || + [|Bo(OV)]s
< C(v),

which together with Lemma 2.1 says that || Ts, (v) — T+ [ ¢(42) is bounded indepen-
dently of k. Under these conditions, [21, Lemma 5.5] for n = 1 and [14, Lemma
3.4] for a general n, say that

(7.6) sup | T(By(v) dv—dv), 1| — 0

zeB

uniformly on compact sets as k — co. Let € > 0 and write Fi,; = T(B,(v)dv-dv), L.
If0 <7 <land 1 < p; < o is big enough so that (7.4) holds for our value of p,
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split the integral IIFk,ZIIQ = | FrzX (rm)c IIzi + IIFk,Zxr[BHg}. The Cauchy-Schwarz’s
inequality gives
k=X mellpy < 1Fkzllop, 1XGmyella = [|Frzll5p, (1 =212
< Cop, (1B () dv) 2 |lx + AVl )P (1 — v21)1/2

< Cop, CV)PI(1 =212 < ¢

if 7 is chosen close enough to 1, where the second inequality follows from Lemma
2.1 and the last one from (7.2) and (7.5). Once we have fixed such 7, (7.6) says
that Fx - (w) X, 5(w) tends to 0 uniformly on z, w € B when k — co. Henceforth,

sup | Fx.zllp, = sup I T(p,(v) dv-dv), Lllp, — 0
zeB zeB

as k — oo, and since T(p, (y)ay_dv). = T(Bu(v)dv—dv). the theorem follows from

(7.4). O
8. MAPS FROM M4 INTO £(AP)

If z, w € B and « is any real number, we shall write

(1 _ |Z|2)1x(n+1)/2

JX(w) = (1= (w. 2)) @D’

where the argument of (1 — (w, z)) used to define its &x(n + 1)-root varies within
the open interval (-7, 7). In particular, for = 1 we get J, = (-=1)"J @, where
we recall that J@; is the Jacobian of the map @ . It follows from (J.) (@) (J@2)
= 1 that (J¥ o @2)J% = 1 for any real number &. For I < p < o, z € B and
f € AP, consider the map

UL f(w) = (f o @) (w)J2'P (w)

(1- |Z|2)(n+1)/lﬂ
(1 —(w, z))2n+ /v

= f(pz(w))

Keep in mind that the p of U? is an index, not a power. A change of variables and

the identity (J2'” o ,)J2'" = 1 show that [UZ fll, = |l fIl, for all f € AP and
UYUY = I4v. Also,
Ul = TJ;/,HUg = ngrj;z/n,

and consequently forq = p/(p — 1),

(UH* = UgTjg/q—l = Tji-21a UZ.
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Thus,
(UH*UE = Tj2aUZUZT 2w = Tyiaiapow = T,
and
UZ(UD* = Tpw-1UZUTpiar = T Tpiar = Tyl
where
1 _ (1 - (w,z))m+H/a=1/p)
(8.1) b (w) = 2 w) 2P (w) =

(1 —(w,z))m+D/a-1/p)"

Definition. For S € £(AP) and z € B define S, = UL S(US)*.

It should be kept in mind that the definition of S, depends on p. Consider the
map ¥s : B — £(AF) given by ¥s(z) = S,. We will study the possibility to extend
Y5 continuously to M4 when £(A?) is provided with the weak or the strong
operator topologies (WOT and SOT, respectively). The inclusion C(B) c A
induces by transposition a natural projection 71 : Ma — M¢(g). If x € Mg, let

(1 - (w, () a-1p)

Px () = T fw, ey a7

It is clear that when (z4) is a net in B that tends to x in M 4, then zy = T(z2y) —
1 (x) in the Euclidean metric. Therefore b, — by uniformly on compact sets of

B and boundedly. Thus,

SOT

82  (UL)*UL, =Ty~ Ty, and (UL)*UL =T, T;,

in £(A7) and £(A1), respectively. If a € A, Lemma 6.3 says that (a o ¢;,) —
(@ o @) uniformly on compact sets of B, and the above argument shows that

SOT
(83) T(aoqu(x)hz(x—

in £(AP). The following theorem for the disk is in [21, Theorem 4.1], but the
proof works word by word for a general n.

T(aoqvx)bx

Theorem 8.1. Let (E,d) be a metric space and f : B — E be a continuous map.
Then f admits a continuous extension from M(A) into E if and only if f is uniformly

(p,d) continuous and f(B) is compact.

We recall that if 1 < p < o and kg’ = (1 — |E])"*D/4Kg, where § € B
and 1/p + 1/q = 1, there is a constant ¢, > 0 such that ¢! < IIng) lp < cp for
all &€ € B. It is clear that

= (§’2)|2(n+1)/l7
(1 —(&,z))2m+D)/p’

(1- |§|2)(n+1)/njz(§)2/l9 =(1- |sz(§)|2)(”+1)/l!’
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where the unimodular function at the end of the formula will be denoted A, (§, z).
If f € AP,

(o UDY k) = (UL k) = ((f o @2 J27 k)
= f(@z(8) (1 - 1) ™7 (8)?P
= f(@2(8) (1 - 1@2(8) 1) " PA, (5, 2)
- <f'mk$j<§>>'

meaning that
(8.4) W)k = Ap (2, 80K

Lemma 8.2. Let § € B be a fixed point. Then the map z — (U¥ )*k(;) is
uniformly continuous from (B, p) into (A4, || |14).

Proof. By (8.4) it suffices to prove that the maps z — A,(z,8) and z ~
k;lz)(g) are uniformly continuous from (B, p) into (C, | |) and (A4, || |l4), respec-
tively.

For the first of these maps the assertion is obvious (actually, the map can be
extended continuously to the closure of B in C"). Since Lemma 6.2 says that
z — @z(&) is uniformly continuous from (B, p) into itself, the proof for the
second map reduces to show the uniform continuity of w — kiﬂ ). That is, we want

to prove that given & > 0, there is 6 > 0 such that sup,_g ||kéq) - k(p wlla <& if
|| < 8. For z, & € B, the isomorphism (A”)* =~ A% implies

8.5) Ik kg

~ sup (A= 1ZP)VF(2) = (1= @2 () ) MV £ (@,
FEAP:||fllp=1

where for f € A? of norm 1, the modulus in the above expression is bounded by

8.6) (1-1z)™7P|f(2) - f(@z(0) |

|Z| )(n+1
— @z (c)]?)n+D/p

+ (1= 1@z ) ™7 | f(@2 ()| ‘1—

11— (&, z)[2neDIp
(- [a)nnrp

>

<192(0) = gz ()| +cqll fllp
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where
gz(w) = (1= 2™V (f o) (w) = (1 - (w,2)? VP UL f)(w).
and the last inequality holds because
(1= 19z )™ | F(@z () | = [(F kD )] = 1F 1 1K ol
Since || fll, = 1 and UY is an isometry, || g |l, < 4"*D/?. The second summand

in (8.6) can be made < &/2 independently of f and z if || is small. So, if we
denote by s the supremum in (8.5) and take & as small as before,

s < 4mDIPqup lg(e) —g(0)] + %

gEAP:|Igllp=1
<4 sup gllp IKa =Kol + 5,
gEAP:|gllp=1 2
which can be made as small as wished by taking o small enough. O

Proposition 8.3. Let S € L(AP). Then the map ¥s : B — (£(AF), WOT)
extends continuously to M 5.

Proof. Bounded sets in £(AP) are metrizable and have compact closure with
the weak operator topology. Since ¥s(B) is bounded, Theorem 8.1 reduces the
problem to show that ¥s is uniformly continuous from the ball with the pseudo-
hyperbolic metric into £(A?) with the weak operator topology. This amounts to
see that for every f € A? and g € A4, the function z — (S.f,g) is uniformly
continuous from (B, p) into (C, | |). For z1, z, € B we have

Ul swi)* —ubswi)* = vl siwdys — wi)*1+ Uk - v 1swud)*
= A+ B.

Then
(Af,a)| < [[UES|[ILWwd)* — W) *1f]], gl
(Bf,0)1 = 1£,B79) | = I, 0SS LWE)* - WE)*1g]l,.

Interchanging p and g, it is enough to deal with the last expression. Since
I(UPHY*| < Cp for every z, we can assume that g is in a dense subset of A4,

and since the linear span of {k(gq) : & € B} is dense in A4, it is enough to see

that for every & € B, IL(UL)* - (UZ)*]kgl)llq can be made small as long as

p(z1,23) is small enough (depending on &). This is precisely the statement of
Lemma 8.2. O
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Lemma 8.4. If (z«) is a net in B converging to x € Ma, then Ty, is invertible
and Ty} =25 T; U in £(AP).

Proof: By Proposition 8.3 applied to the identity, we know that UL, (U2 )* =
T,. L has a WOT-limit in £(A?), say Q. The Banach-Steinhaus Theorem then says

that there is a constant Cy such that ”TE;ZL I < Cp forall @. Given f € AP and
g € A1, (8.2) says that ||(T;,Z‘x ~T3)gllqg = 0. Thus

(Tp, Qf,9) = (Qf Ty, 9) = iml(T; | f, (T, — Ty, )9} + Ty, f, T, 9]
= lim(T,,, f, (Tp, = Tp, V@) + (f,9),
where
(T fo Ty, = T, D < 1T, I 1Fllp (T, = T, )G lla
< Coll fllp 1Ty, = Tp, )gllq = 0.

This proves that Tp, Q = Iar. Since taking adjoints is continuous with respect
WOT

to the weak operator topologies, TB—Z L Q* in £(A%). So, interchanging

the roles of p and g we obrtain that T; Q* = Ia, which in turn proves that
QTp, = Iar. Thus, Q = T, and T,;! =% T; ! in £(AP). Since

Ty = To = T (Toe = T, )Ty

SOT SOT

where IITI;ZL | < Coand Ty, — Tp,, 0 in £(AP), then Tbi - Tgxl 0in
£(AP), as claimed. O

Observe that for any operators S1, ..., S™ € £(AP),

87) (S'---8™), =
= [UZstwhH*|WwhH*ul [UFs* (WU *] - - - (U * UL [UF s™(Ud)*]
=slwuh*vlsz...(uhH*vlsm =i, 82 Ty, S

Proposition 8.5. IfS € T, and (zy) is a net in B that tends to x € M a, then
SOT Sx in £(AP). Thus, ¥s : B — (L(AP),SOT) extends continuously to

SZ(X
M.

Proof. If S € T, and € > 0, Theorem 7.3 assures that there is a finite sum
of finite products of Toeplitz operators with symbols in A, denoted R, such that
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IS — Rl < €. Then [|S; — R;Il < Cpe for every z € B, and since except for a
multiplicative constant, WOT limits do not increment the norm, [|Sx — Rx|l <
Cp& for every x € Ma. Thus, it is enough to prove the proposition for R, and
by linearity, it is enough to assume that R = T, - - - T,,,, where a; € A for
1 <j<m.Sincefora € A, UlT U2 = Taop,,

(Ta)z = U (UH*UH*T, UL UL (UD)*
= U (UH*Tj2aUz ToUZ T 20 UZ (U2 *
= Uf(Ug)*T(ao(pz)jzl—zm];—z/pUf(Ug)*
= Tb_zl T(a"(pz)szb_zl’

which together with (8.7) gives

(Ta1 et Tam)z = (Tal)zThZ(Taz)z e TbZ(Tam)z
=T}, Tta,o0b. Ty, Taaropib. =+ = Ty, Ttamopn. Ty,

Since the product of SOT convergence nets is SOT convergent, Lemma 8.4 and
(8.3) imply that when z4 — x,

(Ta, -+ - Tay,) 2 —2

—1 —1 -1 —1
Tbx T(al(’ipx)bx Tbx T(llzo(Dz)bx e Tbx T(ﬂm(’(px)bx Tbx

in £(AP). The second assertion of the proposition now follows from a simple
diagonal argument. O

9. THE ESSENTIAL NORM VIA Sy FOR1 < p < ®

Lemma 9.1. Ler S € £(AP). Then B(S)(z) — 0 when |z| — 1 if and only if
Sx = 0 for every x € Ma \ B.

Proof If z, & € B, by (8.4)
B(S2)(§) = (S(UH* k", (W) k)
=2, D)4, (2, §)<5k$z)<§>' kégz)@)
= A4(2, 92,2, D)B(S) (@2 (£)).

Thus, |B(S2)(&)] = |B(S)(@-(&))]. If x € Ma \ B, (z«) is a net in B that tends
to x, and & € B is fixed, Proposition 8.3 assures that

B(Sz,)(8) = (Sz,k k") — (Sxckd” k) = B(S)(8).
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Therefore,

9.1) IB(S) (@2, (E))] = [B(Sx) ().

Since x € M4 \ B and z4 — X, then |z«| — 1, and consequently [p_ (E)| — 1.
So, if B(S) vanishes on 0B, (9.1) says that B(Sx)(§) = 0, and since & € B is
arbitrary and B is one-to-one, Sy = 0.

Reciprocally, if there is a sequence {zx} C B such that |zx| — 1 and |B(S) (zk)|
> § > 0, the compactness of M4 implies that there is a subnet (z«) of {zx} that
converges in M4 to some point X € M4 \ B. Taking & = 0 in (9.1) we get that
|B(Sx)(0)| = 6, and consequently Sx # 0. O

The following result follows immediately from a theorem of Berndtsson [3].

Lemma 9.2. Suppose that ¢ > 0,0 <v < 1 and wy € ¥B, fork =1, ...,
m, are points such that B(wg, wj) = ¢ if j # k. Then for any 1 < ko < m there is
Ik, € H* (B) such that

Gky(Wk) = Ok and |Gk, lle = C(o,7),

where Ok, x denotes Kroneckers delta.

Proof. Since p(wi, wj) = tanhg for j # k and |w;| < v forall 1 < j <m,
there is an integer M depending only on ¢ and ¥ such that m < M. Thus

inf [ [ p(wj, wk) = (tanh @)™~ 1.
k Jj*k
By [3, Theorem 2] there is g, € H®(B) satisfying the interpolation, with
gk, < C, a constant depending only on (tanh ¢)M. O

Theorem 9.3. There exists a constant Cp > O such that if S € Tp,

9.2) C,' sup ISkl <[ISlle <Cp sup ISkl
xXeMa\B xXeEMa\B

Proof of the Theorem and of (5.10). If S € £(AP) is compact,
9.3)  IBS)®) = Sk k) < 1Sk 11y Ik llg — 0 as [E] — 1,

because IIk((Eq) llq < cq independently of & € B and kgﬂ) — 0 weakly in AP when
|&l — 1. Hence, Lemma 9.1 says that Sx = 0 for every x € M4 \ B.

Now assume that § € £(A”) is arbitrary. Let Q € £(A”) be a compact
operator and x € M4 \ B. Take a net (z4) C B that converges to x. Since Uf(x
and U2, are isometries on A? and A4, respectively, we have [|S;, + Q2 Il < Cp IS+
Q. Since, except for a multiplicative constant, WOT limits do not increase the
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WOT

norm, the convergence Sz, + Qz,
Cp liminf||S,, + Qz,ll. Thus

Sx + Qx = Sx implies that [|Sx|| <

1Skl < C;,'IIS +Qll, forallx € Ma\BandQ € £(A”) compact.

Taking infimum at the right side and supremum at the left side we get the first
inequality in (9.2). Observe that this holds for any bounded operator S.

Now assume that § € T,. Since (5.9) tells us that [|S]l. < Gp s, we only
need to prove the second inequality in (9.2) with [|S|l. replaced by «s. This and
the first inequality in (9.2) will also prove (5.10), therefore finishing the proof of
Theorem 5.2. Since &s(7) is an increasing function of 7 that tends to &g when
¥ — oo, we must show that there is a constant C,, > 0 such that

xs(r) <Cp sup |ISxll, forr >0.
XEMa\B

So, fix ¥ > 0. By definition of «s(7), there is a sequence {z;} C B tending to 0B
and a normalized sequence f; € TXD(z~r)UAp such that ||Sfjll — «s(r). Thus,
Al

there are hj € AP such that

Z v(Dm)hj(wy)

fitw) = TXD(Zj,V)“hj(w) ) (1= (w,wpm))"+!

wm€eD(zj,v

5 (1= [wy|2) 41

Jm _ n+1’
WmeD(z;) (1 —(w, wm))

where ajm = v(Dm) (W) (1 — [y, |?)~MD/4, That is,

Si= Z aj,mkﬂ(fr:[-

wm€D(z;,r)

If we write Wj,m = @z (W), (8.4) gives

Ak g _ . . (») _ ’ (»)
(Uz‘,-) f] = Z a],m)\q(zj,wm)k(pzj(wm) = z aj‘mkw‘,-,m,
wm€D(zj,r) wim€D(0,r)
where a}m = ajmAg(zj,wm) and |wj,| = @z (Wm)| < sy = tanhr. For

each j arrange the points wj, (for m = 1) such that |[wjm| < |wjm+1] and
argWijm < argW;m+1. Since (a) and (b) of Lemma 2.3 say that B(wjm, wjk) =
B(wm, wk) = ¢/4 when m = k, there are only N points w;,m, where for each j,
Nj < M(g,7), a bound that depends only on ¢ and 7. Taking a subsequence we
can assume that N; = M, a quantity independent of j. Fix jand 1 < my < M.
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By Lemma 9.2 there is g = gjm, € H*(B), with [|gll < C(0/4, Sy), such that
IWjm) = Omym for 1 < m < M. Therefore,

(U Sfig) = > (1= Wi H g (w) )

w;jm€D(0,r)

2\(n+1)/
@ o (1= (W, [H) 14,

and consequently

1@ | < (1= W g D)~ VAUL)* £, 9)

<(1- 53)’("”>/qll(U2,)*ll I.fillp llgllq < Co,
where Cy = Co(n, p, 0,7) > 0 is independent of j and m. Hence, the sequence

(Wji,...,Wjm,a,

oM
j’l,...,a}’M)e(C

is bounded. Taking another subsequence we can also assume that this sequence
converges in C* to a point (vy,..., Uy, al,...,ay), where |v;| < s, and |a}| <
Co. Thus,
q N x def . p
Uz)* fj — Z kvl in LP-norm,

where ||, = lim ||(U§j)*fj||p < ||(Ugj)*|| Il fillp < Cp. Since Ufj is isometric,
(U;?,)* (Ug,.)* = Iar, and ||Sz; | is bounded independently of j, we get

o (r) = lim IS fill = lim IISZ‘,(U%)*fJII = lim ||Sz‘,-h||-
By the compactness of M4 there is a subnet (zg) of the sequence {z;} that con-

verges to some point X € Mg \ B (x ¢ B because |z;| — 1). Consequently,
Proposition 8.5 says that Sz;h — Sxh in AP-norm, which leads to

as(r) =lim ISz hll = [ISxhll < [[SxlICp < Cp sup ISyl
UEMA\B

This proves the theorem and (5.10). O

Corollary 9.4. Let1 <p < coand S € Tp. Then

ISlle ~ sup limsup IS fllp.
Ifl,=1 |zI-1
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Proof. Proposition 8.5 and the compactness of M 4 imply that

sup  ISxfllp = limsup IS-.f 1l
XEMa\B |z|—1

for every f € AP. Taking supremum over the functions f € A? of norm 1 and
commuting the two suprema in the first member of the equality we get

sup [ISxll = sup limsuplISzfllp.
XEMa\B 1fllp=1  IzI—1

The result follows from Theorem 9.3. O

Theorem 9.5. Let1 < p < o and S € £(AP). Then S is compact if and only
if S € Ty and B(S) = 0 on 0B.

Proof. 1f S is compact, B(S) = 0 on 0B by (9.3). When p = 2, the inclusion
of the compact operators in T, follows from [4] or [8], both results being stronger
than this easy fact. For 1 < p < co we give here a short proof. It is well-known that
L? has the bounded approximation property, meaning that there exists a constant
C > 0 such that for every compact set K C L and € > 0, there is a finite rank
operator T € £(L?) such that |T|| < C and ITf — fIl < € forall f € K (see
(23, pp. 69-70]). It follows that every compact operator Q € £(L) can be
approximated by operators of finite rank. Since A” is a projection of L¥, the same
holds for AP. Thus, it is enough to prove that the operators of rank 1 are in
Tp. Every operator of rank 1 has the form f ® g, where f € A?, g € A and
(f®g)h =(h,g)f for h € A?. Since || f ® gll is equivalent to || fll, lgll4 and
the polynomials are dense in A” and A4, it is enough to assume that f and g are
polynomials. In such case, f®g = Tr(1®1)Tg, and the problem reduces to show
that 1 ® 1 € T,. This follows from Theorem 7.3 by noticing that 1 ® 1 = Tj,,
where &y is the Dirac measure with mass concentrated at 0.

Now suppose that B(S) = 0 on 0B. Lemma 9.1 then says that Sy = 0 for all
x € Ma \ B. If in addition S € T, Theorem 9.3 says that S is compact. O

10. THE CASEp =2

Let S € £(A?), where 1 < p < o. Since (S;)* = (S*), for z € B and the
adjoints of a WOT convergent net is WOT convergent, then (Sx)* = (§*) for
alxeM A.

If p = 2, (8.1) shows that b, = 1 for all z € B. Thus, (ST), = S, T, for S,
T € £(A?) and z € B. When z — x € M4, the first member tends WOT to
(ST)x and each of the factors of the second member tends WOT to Sy and Ty,
respectively. But since the product of two WOT-convergent nets is not necessarily
WOT-convergent, we could have (§T)x # SxTx. Indeed, if Sf(z) = f(-2), it
is clear that (§%)x = I, = I, but since SK, = K_,

B(S)(2) = (1 = 21" K 2, Kz) = [(1 = |z12)/(1 + |z[H) ],
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and Lemma 9.1 implies that Sy = 0 for every x € M4 \ B. However, since the
product of a WOT-convergent net by a SOT-convergent net is WOT-convergent,
Propositions 8.3 and 8.5 imply that if T € £(A?) and S € T, then T-S; wor
TxSx when z — x. In particular, (TS)x = TxSx in this case. Furthermore,
since ¥, is a self-adjoint algebra, the above equality applied to the adjoints gives
(T*S*) = (T*)x(S*) for all x € M4 whenever T € £(A2) and S € T,. Now
taking adjoints we also get (ST)x = SxTx. Summing up,

(10-1) (Tx)* = (T*)x, (TS)x = TxSx, and (ST)x = SxTx

forall x € Ma, T € £(A?) and S € T,. Also, observe that for any S € £(A?),
IS-1l = |IS|| for all z € B, and since WOT limits in £(A?) do not increase the
norm, then ||Sx|| < ||S|| forall x € M 4.

Let X € £(A?) be the ideal of compact operators. The Calkin algebra is the
C*-algebra £(A?)/K. We shall denote by 0 (S) the spectrum of § € £(A?) and
by 0.(S) the essential spectrum of S, which is defined as the spectrum of § + X in
£(A%) /K. The spectral radius of S € L£(A%) isr(S) = sup{|A] : A € 0(S)}, and
its essential spectral radius is ¥.(S) = sup{|A] : A € 0.(S)}. Theorem 9.3 can be
improved considerably when p = 2, as the next result shows.

Theorem 10.1. IfS € %>, then

(10.2) ISlle = sup [ISxl
XEM4\B
and
(10.3) sup 7(Sy) < lim ( sup ISKIVK) = 7(S),
xEMa\B k= Y xeMa\B

with equality if S is essentially normal.
Proof. Let k be a positive integer. Since by (10.1) (S)k = (5%, (9.2)
implies that

—-1/k 1/k
G sup ISORITE < ISKILE < 0 sup 1Sk IV,
XEMa\B XEMa\B

The equality in (10.3) follows by taking limits when k — o and the inequality
holds because ¥ (T) < || T*||V/* for every operator T and k > 1 (see [6, Theorem
2.38]). If S is essentially normal (i.e., S§* — $*§ is compact), then

SxSE — SESy = (S§* —§*8)x =0

for every x € Ma \ B. That is, Sx is normal, and consequently | (Sx) k|| Mk =
¥(Sx) for every k = 1 (see [6, Theorem 4.30]). Finally, applying (10.3) with
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equality to the self-adjoint operator $*S, we get

ISII2 = IS*Slle = 7e(S*S) = sup 7(SESy)

XEMa\B

= sup |IS¥Sxll= sup Skl
XEMa\B XEMa\B

proving (10.2). |

Corollary 10.2. Let R € T, be a self-adjoint operator and y, 6 € R such that
YI < Ry < 61 for every x € Ma\B. Then given € > O there is a compact self-adjoint
operator K such that (y —€)l <R+ K < (6 + &)L

Proof. Since yI < Ry < 61, then
0 — o+ S —
_< 23”)1st—< 2y)15( 2y>1

for every x € M4 \ B. Since the spectral radius of a self-adjoint element in a C*-
algebra coincides with its norm, Theorem 10.1 says that [[R — (& + y)27 ]|, <
(6 — ¥)27', and consequently there is a compact operator K such that

IR—(3+y)2  T+K| <5 -y)2" +e.

We can assume that K is self-adjoint by taking 271 (K + K*) instead of K. This
means that

—<5;y+s>IsR+K—(5;y>Is(5;y+5)1,

and the result follows by adding (6 + y)27!I to all the members of the
inequality. O

Theorem 10.3. Let S € X5. The following statements are equivalent.

(1) A& o0e(S),
(2) A ¢ Uxema\s 0(Sx) andsup, .y g I1(Sx — AD 7| < oo,
(3) there isy > 0 depending only on A, such that

1Sx =ADfI = ylIfIl and [1(S§ = ADfIl = yIIf|

forall f € A? and x € M4 \ B.

Proof. Replacing S by S — AI, there is no loss of generality if we assume
A = 0. Suppose that 0 ¢ 0,(S). This means that there is Q € £(A?) such that
both QS — I and SQ — I are compact operators. Let x € M4 \ B. Since S € %5,
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we have (SQ)x = SxQx and (QS)x = QxSx, and since Ky = 0 for K € £(A?)
compact,
QxSx —I=0=5xQx—1I.

Hence, Sy is invertible and Qy = (Sx) L. So, [[(Sx) "'l = Qx| < |Q]| for every
X € M4 \ B and (2) holds.

Now assume that (2) holds with A = 0. Hence, Sy is invertible and there is
y~! > 0 such that

IS = 11(Sx) Ml <y~ forallx € Ma\ B.

Then y='ISxfIl = ISc!Sxfll = | fIl forall f € A>and x € M4 \ B, and since
the same holds for S}, (3) follows.

Finally, suppose that (3) holds for A = 0. Thus, [ISxfIl = yllfll for every
f € A?and x € M4 \ B, meaning that

YT < S¥Sy < |ISI1%1.

So, given ¢, with 0 < & < y?, Corollary 10.2 tells us that there is a self-adjoint
compact operator K such that

(Y2 -l <S*S+K < (|S|I*> + &)I.

Since y? — € > 0, S*S + K is invertible, and consequently there is Q € £(A?)
such that (QS*)S + QK = I. This means that S + X is left-invertible in the
Calkin algebra. Since (3) also says that [|S¥fIl > yllfIl for every f € A? and
X € M4 \ B, the above argument applied to $* gives that $* + K is left-invertible
in the Calkin algebra, or equivalently, that S + X is right-invertible in the Calkin
algebra. Therefore S + K is invertible in the Calkin algebra and 0 ¢ 0. (S). O

Corollary 10.4. If'S € %,, then

U o(Sx) cou(s),
XEM4\B

with equality if S is essentially normal.

Proof Suppose that 0 ¢ 0.(S). It follows from Theorem 10.3 that Sy is
invertible and there is y > 0 such that [[(Sx) ']l < y~! for every x € M4 \ B.
Thus

r(Sx)™) < 1Sy Ml <y~

Since

(10.4) o(Sx) ={§:Eea((S)™N},
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it follows that |&] = y for all & € 0 (Sx). This means that the open ball centered
at the origin of radius y does not meet 0 (Sy) for any x € M4 \ B. Therefore

0 ¢ UxeMJq\IB U(Sx)-
If S is essentially normal, Sy is normal for every x € M4 \ B. If

0 é U(Sx)s
xeMa\B

there is some y > 0 such that the open ball of center 0 and radius y does not
meet 0 (Sy) for any x € Ma \ B. The spectral equality (10.4) then says that
r((Sx)™!) < y~!. Since (Sx)~! is normal and the spectral radius of a normal
operator coincides with its norm, we have || (Sy)~'l| < y~!. Theorem 10.3 then
says that 0 ¢ 0.(S). O

For a general S € £(A?) it could happen that none of the sets of the Corollary
is contained in the other, as our all-purpose counterexample shows. If Sf(z) =
f(=z), wesaw that S, = 0 forall x € M4 \ B, but 0.(S) = {-1, 1}.
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