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The Essential Norm of Operators in the Toeplitz
Algebra on Ap(Bn)

DANIEL SUÁREZ

ABSTRACT. Let Ap be the Bergman space on the unit ball Bn of Cn
for 1 < p < ∞, and Tp be the corresponding Toeplitz algebra. We
show that every S ∈ Tp can be approximated by operators that are
specially suited for the study of local behavior. This is used to obtain
several estimates for the essential norm of S ∈ Tp, an estimate for
the essential spectral radius of S ∈ T2, and a localization result for its
essential spectrum. Finally, we characterize compactness in terms of
the Berezin transform for operators in Tp.
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1. INTRODUCTION AND PRELIMINARIES

For 0 < p ≤ ∞ consider the space Lp = Lp(Bn,dv), where Bn is the open unit
ball in Cn and dv is the normalized volume measure on Bn. The Bergman space
Ap consists of the analytic functions in Lp (as usual, we write H∞ if p = ∞).
When 1 < p <∞, the Bergman projection P defines a bounded operator from Lp
onto Ap. If a ∈ L∞ let Ma : Lp → Lp be the operator of multiplication by a and
Pa = PMa. Then ‖Pa‖ ≤ Cp‖a‖∞, where Cp is the norm of P acting on Lp. The
Toeplitz operator Ta : Ap → Ap is the restriction of Pa to the space Ap. If E1 and
E2 are Banach spaces, we write L(E1, E2) for the space of all bounded operators
from E1 into E2, or just L(E1) if E1 = E2. The Toeplitz algebra on Ap is

Tp = the closed subalgebra of L(Ap) generated by {Ta : a ∈ L∞}.

This paper has three purposes. The first purpose is to approximate in norm an op-
erator S ∈ Tp by a strongly convergent series of operators formed by ‘truncations’
of S. We call this series a segmented operator. Each truncation of S is associated
with a compact set K ⊂ Bn, so that its value at a given f ∈ Ap is controlled by the
behavior of f in a quantitatively determined hyperbolic neighborhood of K. This
means that a segmented operator splits into a sum of operators that in some sense
can be localized. This useful approximation-localization scheme will be applied to
obtain several estimates of the essential norm for S ∈ Tp (denoted ‖S‖e). This
is the second purpose of the paper. The most involved estimate of ‖S‖e is given
in terms of a family of associated operators {Sx}x∈E , where E is the complement
of Bn inside a special compactification of Bn. In the particular case p = 2, the
estimate will turn out to give the exact number ‖S‖e. Furthermore, if p = 2, the
family {Sx}x∈E will be used to estimate the essential spectral radius of S and to
localize its essential spectrum. This localization takes a distinctively simple form
when S ∈ T2 is essentially normal.

The Berezin transform is a bounded linear map B : L(Ap) → L∞, where
1 < p < ∞. Since the Berezin transform is one-to-one, every bounded oper-
ator S on Ap is determined by B(S). Despite this fact, the information on S
that we can collect by only looking at B(S) rarely is in the surface. To further
complicate matters, the range of B is not closed, and therefore the inverse map
B−1 : B(L(Ap)) → L(Ap) is not bounded. In the positive direction, there is
a growing body of research to establish relations between some properties of S
and B(S). This view has been particularly successful when dealing with the com-
pactness of operators related to function theory. If S ∈ L(Ap) is compact, then
B(S)(z) → 0 when |z| → 1, while several authors have shown examples where the
reciprocal implication does not hold (see [2] and [11]).

On the other hand, when p = 2, Coburn [4] showed that the compact oper-
ators form the commutator ideal of T2(C(B̄n)), the closed algebra generated by
Toeplitz operators with continuous symbol on the closed ball B̄n, and Engliš [8]
proved that every compact operator is the norm limit of Toeplitz operators with
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bounded symbol. Any of these results implies that the compact operators are con-
tained in T2. We will see that this also holds for 1 < p < ∞. Therefore, we have
the following necessary conditions for S ∈ L(Ap) to be compact

(1.1) S ∈ Tp and lim
|z|→1

B(S)(z) = 0.

The above mentioned counterexamples show that there is no redundance in these
conditions, since there are plenty of non-compact operators S ∈ L(A2) satisfying
the second condition. These facts triggered extensive studies showing that for
different subclasses S ⊂ T2, the implication

(1.2) lim
|z|→1

B(S)(z) = 0 ⇒ S is compact

holds for S ∈ S (see [2], [9, 10], [12], [14], [16], [18], [20], [22], and [24]). The
survey paper of Stroethoff [19] is a good source to get a taste of some of the above
results. Clearly, the final goal of these studies is to find a reasonable answer to the
question: what operators S satisfy (1.2)?

One of the most general results obtained so far was given by Axler and Zheng
[2] for the disk and later generalized by Enlgiš [9, 10] to irreducible bounded
symmetric domains in Cn. They proved that if S is a several variables polynomial
of Toeplitz operators Ta (a ∈ L∞) acting on A2, then S satisfies (1.2) (the precise
statement in [9, 10] is more complicated, since it deals with weighted Bergman
spaces of more general domains). This means that (1.2) holds for a dense subclass
S ⊂ T2, and it suggests that the answer to the question when p = 2 should be T2.

The third purpose of this paper is to prove that (1.2) holds on the ball Bn for
every S ∈ Tp, where 1 < p < ∞. This is achieved by exploiting the interaction
between B(S) and the family {Sx}x∈E together with the corresponding character-
ization of ‖S‖e in terms of this family. This means that the conditions in (1.1)
characterize compactness, which gives a complete answer to the question. These
results are new even for n = 1 and p = 2.

2. OPERATORS ASSOCIATED TO CARLESON MEASURES

We fix the dimension n and write B = Bn. Accordingly, it should be assumed
that the multiplicative constants in the paper depend on n, even when this is not
always explicitly stated. If z, w ∈ B, we write 〈z,w〉 for the inner product in Cn
and |z| for the norm; Pz will be the orthogonal projection onto the complex line
Cz, and Qz = I − Pz its complementary projection. The function

ϕz(ω) = z − Pz(ω)− (1− |z|
2)1/2Qz(ω)

1− 〈ω,z〉
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is the (unique) automorphism of B that satisfies ϕz ◦ϕz = id and ϕz(0) = z.
The pseudo-hyperbolic and hyperbolic metrics on B are defined, respectively, by

ρ(z,ω) = |ϕz(ω)| and β(z,ω) = 1
2

log
1+ ρ(z,ω)
1− ρ(z,ω) .

Thus, ρ = (e2β−1)/(e2β+1) = tanhβ. These metrics are invariant under actions
of Aut(B). For r > 0 write

D(z, r) def= {ω ∈ B : β(ω,z) ≤ r}.

Therefore, D(z, r) = {ω ∈ B : ρ(ω,z) ≤ s}, where s = tanh r . We shall make
extensive use of the classical equality

1− |ϕz(w)|2 = (1− |z|
2)(1− |w|2)

|1− 〈w,z〉|2

(see [17, Chapter 2]). We will also write 〈, 〉 for the usual integral pairing between
functions. If 1 < p < ∞, the Bergman projection P : Lp → Ap is defined as
(Pf)(z) = 〈f ,Kz〉, where

Kz(w) = 1
(1− 〈w,z〉)n+1 , w ∈ B,

is the reproducing kernel for z ∈ B. If 1/p + 1/q = 1, there is a constant cp > 0
such that the functions

k(p)z (w) = (1− |z|
2)(n+1)/q

(1− 〈w,z〉)n+1 , w ∈ B,

satisfy c−1
p ≤ ‖k(p)z ‖p ≤ cp for all z ∈ B. That is, k(p)z plays the same role for

a general p that the normalized reproducing kernel k(2)z = Kz/‖Kz‖2 plays for
p = 2. The Berezin transform of S ∈ L(Ap) is the function

B(S)(z) = (1− |z|2)n+1〈SKz,Kz〉 = 〈Sk(p)z , k(q)z 〉, (z ∈ B).

It is clear that B(S) ∈ L∞ and ‖B(S)‖∞ ≤ Cp‖S‖, where Cp > 0 only depends on
p.

Unless stated otherwise, by a measure we mean a positive, finite, regular, Borel
measure. If p ≥ 1, a measure ν on B is called a Carleson measure (for Ap) if there
is C > 0 such that ∫

B
|f |p dν ≤ C

∫
B
|f |p dv
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for every f ∈ Ap. When this holds, the inclusion of Ap into Lp(dν) will be
denoted ιp. If ν is a measure, the operator

Tνf(z) =
∫
B

f(w)
(1− 〈z,w〉)n+1 dν(w),

defines an analytic function for every f ∈ H∞. So, Tν is densely defined on Ap
and it is well-known that for 1 < p < ∞, Tν is bounded if and only if ν is a
Carleson measure for Ap. As it turned out, this condition does not depend on p.

The next four lemmas are well-known or easily deduced from well-known
results, so proofs are kept to a minimum.

Lemma 2.1. Let 1 < p < ∞, ν be a measure on B and r > 0. The following
quantities are equivalent (with constants depending on n, r and p).

‖ν‖∗ def= sup
z∈B

∫
B

(1− |z|2)n+1

|1− 〈w,z〉|2(n+1) dν(w),(1)

‖ιp‖p = inf
{
C > 0 :

∫
|f |p dν ≤ C

∫
|f |p dv for f ∈ Ap

}
,(2)

sup
z∈B

ν(D(z, r))
v(D(z, r))

,(3)

‖Tν‖L(Ap).(4)

Proof. The equivalence between (1), (2) and (3) is in the proof of Theorem
2.25 in [26]. If (4) holds, then ‖ν‖∗ = ‖B(Tν)‖∞ ≤ Cp‖Tν‖, so (1) holds.
Finally, if (1) holds and f , g ∈ H∞, Fubini’s theorem and Hölder’s inequality
yield

|〈Tνf , g〉| =
∣∣∣∣∫

B
f ḡ dν

∣∣∣∣ ≤ ‖f‖Lp(dν) ‖g‖Lq(dν)
≤ ‖ιp‖‖ιq‖‖f‖Ap ‖g‖Aq ≤ Cp‖ν‖∗ ‖f‖Ap ‖g‖Aq ,

where the last inequality follows from the equivalence between (1) and (2). The
isomorphism (Ap)∗ ' Aq then gives (4). ❐

A measure ν satisfying any of the above conditions will be simply called a Carleson
measure.

Lemma 2.2. Let 1 < p <∞, q = p/(p− 1), F ⊂ B be a compact set and ν be
a Carleson measure. Then there exists a constant αp such that

‖TχFνf‖Ap ≤ αp‖ιq‖ ‖χFf‖Lp(dν)
for every f ∈ Ap.
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Proof. Since F is compact and ν is a finite measure, it is clear that TχFνf
is a bounded analytic function for any f ∈ Ap. As in the proof of the previous
lemma, if g ∈ Aq,

|〈TχFνf , g〉| ≤ ‖χFf‖Lp(dν) ‖g‖Lq(dν) ≤ ‖χFf‖Lp(dν) ‖ιq‖ ‖g‖Aq . ❐

The following covering was initially constructed by Coifman and Rochberg
in connection with a family of atomic decompositions of Ap(Ω), for bounded
symmetric domainsΩ ∈ Cn [5]. The proof depends on simple volume arguments,
and a version suited for our purpose can be found in [26, Lemma 2.28].

Lemma 2.3. Given % > 0, there is a family of Borel sets Dm ⊂ B and points
wm ∈ Dm such that
(a) D(wm,%/4) ⊂ Dm ⊂ D(wm,%) for all m ≥ 1,
(b) Dm ∩Dk = ∅ if m ≠ k,
(c)

⋃
m≥1Dm = B.

The next result is in [17, Proposition 1.4.10].

Lemma 2.4. For z ∈ B, s real and t > −1, let

Fs,t(z) =
∫
B

(1− |ω|2)t
|1− 〈z,ω〉|s dv(ω).

Then Fs,t is bounded if s < n+ 1+ t and grows as (1− |z|2)n+1+t−s when |z| → 1
if s > n+ 1+ t.

Lemma 2.5. Let 1 < p < ∞, ν be a Carleson measure, Fj , Kj ⊂ B be Borel
sets such that {Fj} are pairwise disjoint and β(Fj,Kj) > σ ≥ 1 for every j. If
0 < γ < min

{
1/
(
(n+1)p

)
, 1−1/p

}
, then

(2.1)
∫
B

∑
j
[χFj (z)χKj (ω)]

(1− |ω|2)−1/p

|1− 〈z,ω〉|n+1 dν(ω)

≤ G‖ν‖∗(1− δ2n)γ(1− |z|2)−1/p,

where δ = tanh(σ/2) and G > 0 only depends on n, p and γ.

Proof. Since for z ∈ Fj and ω ∈ Kj , β(ω,z) > σ , then Kj ⊂ B \D(z,σ)
and ∑

j
χFj (z)χKj (ω) ≤

∑
j
χFj (z)χB\D(z,σ)(ω).

Hence, the integral in (2.1) is bounded by

(2.2) J =
∑
j
χFj (z)

∫
B
χB\D(z,σ)(ω)

(1− |ω|2)−1/p

|1− 〈z,ω〉|n+1 dν(ω).
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Let wm ∈ Dm ⊂ B be as in Lemma 2.3 with % = 1
10 . When w ∈ Dm, (a) says

that β(w,wm) ≤ 1
10 . Hence, (1 − |w|2) and (1 − |wm|2) are equivalent, and

|1− 〈z,w〉| is equivalent to |1− 〈z,wm〉| independently of z ∈ B. This implies
that there exists C1 > 0 depending only on n and p such that

(2.3) C−1
1
(1− |ω|2)−1/p

|1− 〈z,ω〉|n+1 ≤
(1− |ωm|2)−1/p

|1− 〈z,ωm〉|n+1 ≤ C1
(1− |ω|2)−1/p

|1− 〈z,ω〉|n+1

for every w ∈ Dm and z ∈ B. Also, since ν is a Carleson measure and we have
fixed % = 1

10 , Lemma 2.1 and (a) of Lemma 2.3 say that there exists an absolute
constant C2 > 0 (depending only on n) such that

(2.4) ν(Dm) ≤ C2‖ν‖∗v(Dm).

It will be convenient to write

φ(w,z) = (1− |ω|2)−1/p

|1− 〈z,ω〉|n+1 and D(z,σ)c = B \D(z,σ).

Thus J =∑j χFj (z)Jz, where

Jz :=
∫
B
χD(z,σ)c (ω)φ(w,z)dν(ω)

=
∑
n≥1

∫
Dm
χD(z,σ)c (ω)φ(w,z)dν(ω)

≤
∑

Dm∩D(z,σ)c≠∅

∫
Dm
φ(w,z)dν(ω)

≤ C1
∑

Dm∩D(z,σ)c≠∅

∫
Dm
φ(wm,z)dν(ω) by (2.3)

≤ C1C2‖ν‖∗
∑

Dm∩D(z,σ)c≠∅

∫
Dm
φ(wm,z)dv(ω) by (2.4)

≤ C2
1C2‖ν‖∗

∑
Dm∩D(z,σ)c≠∅

∫
Dm
φ(w,z)dv(ω) by (2.3).

If Dm ∩D(z,σ)c ≠∅ and w ∈ Dm, then β(w,D(z,σ)c) ≤ diamβ Dm ≤ 2% =
1
5 , and since

β(D(z,σ/2),D(z,σ)c) = σ
2
≥ 1

2
,

we get
Dm ∩D(z,σ/2) = ∅ whenever Dm ∩D(z,σ)c ≠∅.
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Therefore

Jz ≤ C2
1C2‖ν‖∗

∑
m≥1

∫
Dm
χD(z,σ/2)c (w)φ(w,z)dv(ω)

= C2
1C2‖ν‖∗

∫
B
χD(z,σ/2)c (w)φ(w,z)dv(ω).

Going back to (2.2), we obtain

J =
∑
j
χFj (z)Jz(2.5)

≤ C2
1C2‖ν‖∗

∑
j
χFj (z)

∫
B
χD(z,σ/2)c (w)φ(w,z)dv(ω).

The last sum in (2.5) is

∑
j
χFj (z)

∫
B
χD(z,σ/2)c (ω)

(1− |ω|2)−1/p

|1− 〈z,ω〉|n+1 dv(ω)(2.6)

=
∑
j
χFj (z)

∫
|v|>δ

(1− |ϕz(v)|2)−1/p

|1− 〈z,v〉|n+1 dv(v)

≤
∫
|v|>δ

(1− |v|2)−1/p

|1− 〈z,v〉|n+1−2/p (1− |z|2)−1/p dv(v),

where the equality comes from the change of variables v =ϕz(ω) and the obser-
vation that ϕz(D(z,σ/2)c) = D(0, σ/2)c = {v ∈ B : |v| > δ = tanh(σ/2)},
and the inequality because the sets Fj are pairwise disjoint. Pick a number a =
a(n,p) satisfying simultaneously the conditions

1 < a < p and a(n+ 1− 1/p) < n+ 1.

If a−1 + b−1 = 1, Hölder’s inequality gives

∫
|v|>δ

(1− |v|2)−1/p

|1− 〈z,v〉|n+1−2/p dv(v)

≤
(∫

B

(1− |v|2)−a/p
|1− 〈z,v〉|a(n+1−2/p) dv(v)

)1/a
v({|v| > δ})1/b.

Since a(n + 1 − 2/p) = a(n + 1 − 1/p) − a/p < n + 1 − a/p, Lemma 2.4
says that the last expression is bounded by C3v({|v| > δ})1/b = C3(1 − δ2n)1/b,
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where C3 depends only on n, p and a. Inserting this inequality in (2.6) and the
resulting inequality in (2.5), we get

J ≤ C2
1C2C3‖ν‖∗(1− δ2n)1/b(1− |z|2)−1/p.

Write G = C2
1C2C3 and observe that since b−1 = 1 − a−1, the restrictions on a

translate in terms of b as 0 < b−1 < min{1/((n + 1)p),1 − 1/p}. The lemma
follows from the last inequality and the paragraph preceding (2.2). ❐

We are going to need one of many known versions of Schur’s test. There is a proof
for p = 2 in [15, p. 282] that can be easily adapted to 1 < p < ∞. A proof
containing the result that we need can be found in [7, Proposition 5.12].

Lemma 2.6. Let (X,dµ) and (X,dν) be measure spaces, R(x,y) be a non-
negative dµ×dν-measurable function on X×X, 1 < p <∞ and q = p/(p−1). If
h is a positive function on X that is measurable with respect to both dµ and dν, and
Cq, Cp are positive numbers such that∫

X
R(x,y)h(y)q dν(y) ≤ Cqh(x)q, dµ(x)-almost everywhere,∫

X
R(x,y)h(x)p dµ(x) ≤ Cph(y)p, dν(y)-almost everywhere;

then Sf(x) =
∫
X
R(x,y)f(y)dν(y) defines a bounded operator S : Lp(X,dν)→

Lp(X,dµ) with ‖T‖ ≤ C1/q
q C1/p

p .

If ν is a Carleson measure and 1 < p < ∞, for f ∈ Lp(dν) define

Pνf(z) =
∫
B

f(w)
(1− 〈z,w〉)n+1 dν(w).

The argument in the proof of Lemma 2.1 shows that Pν is a bounded operator
from Lp(dν) into Ap. Observe also that Tν = Pν ◦ ιp. If a ∈ L∞(dν), we write
Ma for the operator of multiplication by a.

Lemma 2.7. Suppose that 1 < p < ∞, ν is a Carleson measure, Fj , Kj ⊂ B are
Borel sets, and aj ∈ L∞(dv), bj ∈ L∞(dν) are functions of norm ≤ 1 for all j ≥ 1.
If

(i) β(Fj,Kj) ≥ σ ≥ 1,
(ii) suppaj ⊂ Fj and suppbj ⊂ Kj ,

(iii) every z ∈ B belongs to at most N (a positive integer) of the sets Fj ,

then
∑
j≥1MajPνMbj ∈ L(Ap, Lp(dv)), and there is a function βp(σ) → 0 when

σ → ∞ such that

(2.7)
∥∥∥ ∑
j≥1

MajPνMbj
∥∥∥

L(Ap,Lp(dv))
≤ Nβp(σ)‖ν‖∗
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and for every f ∈ Ap of norm ≤ 1,

(2.8)
∑
j≥1

∥∥MajPνMbjf∥∥pLp(dv) ≤ Nβpp(σ)∥∥ν∥∥p∗.
Proof. Write δ = tanh(σ/2). Since ν is a Carleson measure, Lemma 2.1

says that the norm of the inclusion ιp : Ap ⊂ Lp(dν) is bounded by Cp‖ν‖1/p
∗ ,

for some constant Cp > 0. So, the lemma will follow if we prove that there is a
function kp(δ)→ 0 when δ→ 1 such that∥∥∥ ∑

j≥1

MajPνMbj
∥∥∥

L(Lp(dν),Lp(dv))
≤ Nkp(δ)

∥∥ν∥∥(p−1)/p
∗(2.9)

and for every f ∈ Lp(dν) of norm ≤ 1,

∑
j≥1

∥∥MajPνMbjf∥∥pLp(dv) ≤ Nkpp(δ)∥∥ν∥∥p−1
∗ .(2.10)

First let us assume that N = 1, meaning that the family {Fj} is pairwise disjoint.
Write Φ(z,ω) = ∑

j≥1

χFj (z)χKj (ω)
1

|1− 〈z,ω〉|n+1 .

Let f ∈ Lp(dν). Since ‖aj‖∞, ‖bj‖∞ ≤ 1 for all j, (ii) yields

∣∣∣( ∑
j≥1

MajPνMbjf
)
(z)

∣∣∣ = ∣∣∣∣ ∑
j≥1

aj(z)
∫
B
bj(ω)f(ω)

dν(ω)
(1− 〈z,ω〉)n+1

∣∣∣∣
≤
∫
B
Φ(z,ω)|f(ω)|dν(ω).

Taking h(z) = (1 − |z|2)−1/pq, where p−1 + q−1 = 1, and γ > 0 as in Lemma
2.5, the lemma asserts that there is a constant G > 0 such that∫

B
Φ(z,ω)h(ω)q dν(ω) ≤ ‖ν‖∗G(1− δ2n)γh(z)q.

On the other hand, Lemma 2.4 implies that there is some C > 0 such that∫
B
Φ(z,ω)h(z)p dv(z) ≤ Ch(ω)p.

By Lemma 2.6 the integral operator with kernel Φ(z,ω) is bounded from Lp(B, dν)
into Lp(B, dv) and its norm is bounded by ‖ν‖1/q

∗ (1− δ2n)γ/qG1/qC1/p. Thus,
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writing kp(δ) = (1 − δ2n)γ/qG1/qC1/p, we obtain (2.9) for N = 1. Since in this
case, ∑

j≥1

∥∥MajPνMbjf∥∥pLp(dv) = ∥∥∥ ∑
j≥1

(MajPνMbjf )
∥∥∥p
Lp(dv)

,

it also proves (2.10).
Now assume that N > 1. For z ∈ B let Λ(z) = {j : z ∈ Fj}, ordered in the

natural way. Then Fj admits the disjoint decomposition Fj = A1
j ∪ · · · ∪ ANj ,

where Aij = {z ∈ Fj : j is the ith element of Λ(z)}. It is clear that for each value
of 1 ≤ i ≤ N, the family {Aij : j ≥ 1} is pairwise disjoint. Thus,

∑
j≥1

∥∥MajPνMbjf∥∥pLp(dv)
=
∑
j≥1

(∥∥M(ajχA1
j
)PνMbjf

∥∥p
Lp(dv) + · · · +

∥∥M(ajχANj )PνMbjf∥∥pLp(dv))

=
N∑
i=1

∑
j≥1

∥∥(M(ajχAij )PνMbjf )∥∥pLp(dv) ≤ Nkpp(δ)∥∥ν∥∥p∗,
where the last inequality follows from the previous case N = 1. So, (2.10) holds.
To prove (2.9) observe that just as in the above formula,

∑
j≥1MajPνMbj can be

written as a sum of N operators that satisfy the hypotheses of the previous case. ❐

3. A COVERING OF THE BALL

Lemma 3.1. There is a positive integer N (depending only on the dimension n)
such that for any σ > 0 there is a covering of B by Borel sets Bj satisfying
(1) Bj ∩ Bk = ∅ if j ≠ k,
(2) every point of B belongs to at most N of the sets Ωσ(Bj) = {z : β(z, Bj) ≤ σ},
(3) there is a constant C(σ) > 0 such that diamβ Bj ≤ C(σ) for every j.

Proof. First observe that (2) says that every closed hyperbolic ball of radius σ
cannot meet more than N sets Bj . Therefore, it is enough to replace (2) by

(2′) every set of hyperbolic diameter 2σ cannot meet more than N sets Bj .
Also, we only need to construct a numerable covering {B′j} satisfying (2′) and (3),

since the family Bk = B′k \
⋃k−1
j=1 Bj will satisfy the lemma. For E ⊂ B write

Ẽ = {eitz : z ∈ E, 0 ≤ t < 2π}.

Given σ > 0, let M ≥ 2 be an integer to be chosen later, depending only on σ
(and n). Let

Γ 1 = {z = (z1, . . . , zn) ∈ B : |z|2 ≥ 1−M−6, z1 ∈ R, z1 ≥ 1/(2
√
n)}.
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Then Γ 1 ⊂ (I × {0})× I2n−2 = I2n−1, where I = [−1,1]. For any integer k ≥ 3,
let Qk,j be the standard decomposition of I2n−1 into closed cubes of side length
2/Mk−1, and denote

Ak,j = Qk,j ∩ {z ∈ Γ 1 : M−2k−2 ≤ 1− |z|2 ≤M−2k},

where we disregard all the indexes for which this intersection is empty. Now pick
an arbitrary point zk,j ∈ Ak,j and for all integers 0 ≤ ` < M2k−5 let

Ak,j,` =
{
eitw : w ∈ Ãk,j , 〈w,zk,j〉 ≥ 0,

2π`
M2k−5 ≤ t ≤

2π(` + 1)
M2k−5

}
.

Thus Ak,j,` ⊂ Ãk,j for every `, and if z ∈ Ãk,j , then (z̄1/|z1|)z ∈ Ak,j . Since
k ≥ 3, it is clear that the sets Ak,j,` form a covering of Γ̃ 1. We shall show that if
M = M(σ) is big enough, this covering of Γ̃ 1 satisfies properties (2′) and (3) of
the lemma. If Sk = {z : |z|2 = 1−M−2k}, an elementary calculation shows that

1
1− ρ2(Sk, Sk+1)

= 1
1− ρ2((1−M−2k)1/2, (1−M−2k−2)1/2)

=M2
(

1
4
+ hk(M)

)
,

where the pseudohyperbolic metric in the second member is taken on the disk,
and hk(M) are functions that tend to 0 uniformly on k when M →∞. Hence, by
choosing M large enough, we can assure that 4σ < β(Sk, Sk+1). This inequality
guarantees that every set of hyperbolic diameter 2σ meets no more than 2 strips
M−2k−2 ≤ 1− |z|2 ≤M−2k. So, fix k ≥ 3.

Sublemma 3.2. If 1 − M−2k ≤ |z|2, |w|2 ≤ 1 − M−2k−2, |z1|, |w1| ≥
1/(2

√
n), and we denote δ = ∣∣ (z1/|z1|)z − (w1/|w1|)w

∣∣, then

(3.1)
M2kδ2

18n
≤ 1− |〈z,w〉|
(1− |z|2)1/2(1− |w|2)1/2 ≤

M2k+2δ2

2
+M2.

Proof. If d̃ = inft |z − eitw|, then

d̃2 = |z|2 + |w|2 − 2|〈z,w〉|
= (|z|2 − 1)+ (|w|2 − 1)+ 2(1− |〈z,w〉|).

Hence, d̃2/2+M−2k−2 ≤ 1− |〈z,w〉| ≤ d̃2/2+M−2k, and since

(3.2) M2k ≤ [(1− |z|2)(1− |w|2)]−1/2 ≤ M2k+2,



The Essential Norm of Operators in the Toeplitz Algebra on Ap(Bn) 13

we get

M2kd̃2

2
+M−2 ≤ 1− |〈z,w〉|

(1− |z|2)1/2(1− |w|2)1/2(3.3)

≤ M
2k+2d̃2

2
+M2.

On the other hand, for any t ∈ [0,2π),

δ =
∣∣∣∣ z1

|z1|z −
w1

|w1|w
∣∣∣∣

≤
∣∣∣∣ z1

|z1|z − e
it w1

|w1|w
∣∣∣∣+ ∣∣∣∣eit w1

|w1|w − w1

|w1|w
∣∣∣∣ .

If we pick t ∈ [0,2π) such that the first summand above is d̃, then

(3.4) δ ≤ d̃+ |w| |eit−1| ≤ d̃+ |eit−1|.
By hypothesis we can assume that 1/(2

√
n) ≤ |z1| ≤ |w1|, which leads to

1
2
√
n
|1− eit| ≤ |z1| |1− eit|

=
∣∣∣ |z1| − |z1|eit

∣∣∣ ≤ ∣∣∣ |z1| − |w1|eit
∣∣∣

≤ d̃,

where the last inequality holds by our choice of t, and the previous one from
a simple drawing. Thus, on (3.4) we get δ ≤ d̃ + 2

√
nd̃ ≤ 3

√
nd̃, and since

obviously d̃ ≤ δ,
δ2

9n
≤ d̃2 ≤ δ2.

The sublemma follows by inserting these inequalities in (3.3). ❐

We recall that we have fixed k ≥ 3. An immediate volume argument shows that
every cubeQk,j meets no more than 32n−1 of the other cubes. So, the same holds
for the sets Ãk,j . In addition, if z ∈ Ãk,j1 ,w ∈ Ãk,j2 , andQk,j1∩Qk,j2 = ∅, then∣∣∣∣ z̄1

|z1|z −
w̄1

|w1|w
∣∣∣∣ ≥ 2

Mk−1 ,

which together with the first inequality in (3.1) yields

1
(1− ρ(z,w)2)1/2 ≥

1− |〈z,w〉|
(1− |z|2)1/2(1− |w|2)1/2 ≥

2
9n
M2 →∞
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when M → ∞. Hence, we can choose M depending on σ big enough so that
β(Ãk,j1 , Ãk,j2) > 4σ . Together with the previous comments, this implies that for
any fixed value of k, every set of hyperbolic diameter 2σ meets no more than 32n

of the sets Ãk,j . On the other hand, if z, w ∈ Ãk,j , then

∣∣∣∣ z̄1

|z1|z −
w̄1

|w1|w
∣∣∣∣ ≤ diamQk,j = 2

√
2n− 1
Mk−1 ,

and the second inequality in (3.1) gives

(3.5)
1− |〈z,w〉|

(1− |z|2)1/2(1− |w|2)1/2 ≤ 4nM4.

Observe that the restriction k ≥ 3, (3.2) and (3.5) imply that if w ∈ Ãk,j , then
〈w,zk,j〉 ≠ 0 as soon as M2 > 4n. So, assuming this restriction on M, in the
definition of Ak,j,` we could have taken 〈w,zk,j〉 > 0 instead of 〈w,zk,j〉 ≥ 0.
This guarantees that no point of Ãk,j is in more than 2 of the sets Ak,j,`.

Finally, we fix the values of k and j, and see what happens inside the set Ãk,j .
Since everyAk,j,` is a rotation ofAk,j,0, they all have the same hyperbolic diameter.
If w ∈ Ak,j,0, then 〈w,zk,j〉 = eit|〈w,zk,j〉|, with 0 ≤ t ≤ 2πM−2k+5, so

∣∣∣1− 〈w,zk,j〉
∣∣∣ = ∣∣∣1− eit|〈w,zk,j〉|

∣∣∣
≤ |1− eit| + 1− ∣∣〈w,zk,j〉∣∣
≤ t + 1− ∣∣〈w,zk,j〉∣∣,

which, together with (3.2) and (3.5), implies

1
(1− ρ(w,zk,j)2)1/2 =

|1− 〈w,zk,j〉|
(1− |zk,j|2)1/2(1− |w|2)1/2

≤ 2πM7 + 4nM4.

Therefore, the hyperbolic diameter of Ak,j,` is bounded by a constant that only
depends on M. In symbols,

(3.6) diamβ Ak,j,` ≤ C1(M) for all k, j and `.

Since k and j are fixed, each Ak,j,` meets two other of these sets, and we shall see
next that disjoint sets are hyperbolically far away (depending on M). So, suppose
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that u ∈ Ak,j,`1 , v ∈ Ak,j,`2 , and Ak,j,`1 ∩Ak,j,`2 = ∅. This means that

〈u,zk,j〉
|〈u,zk,j〉| = e

it1 and
〈v, zk,j〉
|〈v, zk,j〉| = e

it2 ,

with
2π
M2k−5 ≤ |t1 − t2| ≤ 2π − 2π

M2k−5 .

We recall that for z ∈ B, Pz and Qz denote the projection onto Cz and its or-
thogonal complement, respectively. Since |〈u,zk,j〉|2 = |zk,j|2 |Pzk,j (u)|2, (3.5)
and (3.2) yield

|zk,j|2 |Qzk,j (u)|2 = |zk,j|2 |u|2 − |zk,j|2 |Pzk,j (u)|2

≤ 1− ∣∣〈u,zk,j〉∣∣2 ≤ 8nM4−2k,

and since the same holds for Qzk,j (v),

|zk,j|2 |〈Qzk,j (u),Qzk,j (v)〉| ≤ 8nM4−2k.

Together with the equality |zk,j|2〈Pzk,j (u), Pzk,j (v)〉 = 〈u,zk,j〉〈v, zk,j〉, this
gives

|zk,j|2 |1− 〈u,v〉|

= |zk,j|2 |1− 〈Pzk,j (u), Pzk,j (v)〉 − 〈Qzk,j (u),Qzk,j (v)〉|

≥ |1− 〈u,zk,j〉〈v, zk,j〉| − (1− |zk,j|2)− |zk,j|2 |〈Qzk,j (u),Qzk,j (v)〉|

≥ |1− 〈u,zk,j〉〈v, zk,j〉| − (M−2k + 8nM4−2k).

If 0 < α ≤ π , the elementary inequality

|1− eix| = |1− e−ix| ≥ α
2π

when x ∈ [α, 2π−α]

applied to α = 2π/M2k−5 and x = |t1− t2| gives |1− ei(t1−t2)| ≥ M5−2k. Hence,

|1− 〈u,zk,j〉〈v, zk,j〉|
= ∣∣1− ei(t1−t2)|〈u,zk,j〉〈v, zk,j〉|

∣∣
≥ |1− ei(t1−t2)| − (1− |〈u,zk,j〉|)− |〈u,zk,j〉|(1− |〈v, zk,j〉|)
≥ M5−2k − 8nM4−2k,
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where the last inequality follows from (3.2) and (3.5). The last two chains of
inequalities and (3.2) say that

1
(1− ρ(u,v)2)1/2

by (3.2)≥ M2k|zk,j|2 |1− 〈u,v〉|

≥ M5 − (16nM4 + 1),

which tends to infinity as M →∞. That is, we can chooseM =M(σ) big enough
so that β(u,v) > 4σ whenever u ∈ Ak,j,`1 , v ∈ Ak,j,`2 , and these sets do not
meet. Thus, a set of hyperbolic diameter 2σ in Ãk,j can only intersect 2 of the
sets Ak,j,`.

Summing up, any set of hyperbolic diameter 2σ meets at most 2 of the strips
{M−2k ≤ 1 − |z|2 ≤ M−2k−2}. For any fixed k, it meets at most 32n sets Ãk,j ,
and for any fixed pair k, j, it meets at most two sets Ak,j,`. Henceforth, any such
set meets at most 2 · 32n · 2 of the sets Ak,j,`, an absolute constant if we take the
dimension as such. That is, we have constructed a covering of Γ̃ 1 that satisfies
conditions (2′) and (3) of the lemma. By permuting the coordinates we obtain
similar coverings {Aik,j,`}k,j,` of

Γ̃ i = {z ∈ B : |z|2 ≥ 1−M−6, |zi| ≥ 1
2
√
n

}
(i = 1, . . . , n).

In addition, since M ≥ 2, we have 1−M−6 > 1
4 , which clearly implies that

{
z ∈ B : |z|2 ≥ 1−M−6

}
=

n⋃
i=1

Γ̃ i.
So, {Aik,j,`} together with the closed Euclidean ball U , centered at the origin and
of radius (1−M−6)1/2, form a covering of B that satisfies conditions (2′) and (3),
where N is bounded by 2 · 32n · 2 · n + 1, and such that all its elements have
hyperbolic diameter bounded by the maximum between the constant C1(M) of
(3.6) and diamβ U , both depending on M, which in turn depends on σ . ❐

Remark 3.3. In the particular case of the disk, the above lemma can be sim-
plified notoriously. The construction is clearer in the upper half plane C+ = {z ∈
C : Imz > 0}. If M > 1 is an integer, consider the rectangles

Vj,m =
[
j
Mm

,
j + 1
Mm

]
×
[

1
Mm+2 ,

1
Mm+1

]
,

where j and m run over all the integers. These sets form an essentially disjoint
decomposition of C+, and since they can be transformed into each other by a
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real translation followed by a dilation, they have the same hyperbolic size. All
the upper horizontal sides of the rectangles are conformally equivalent and their
hyperbolic diameter tends to infinity as M → ∞, and the same holds for all the
lower horizontal sides and for all the vertical sides. A moment of reflection shows
that if σ > 0, we can take M = M(σ) big enough so that any hyperbolic ball of
radius σ in C+ meets no more than 4 of the above rectangles.

Let σ > 0 and k be a non-negative integer. Let {Bj} be a covering of the ball
satisfying the conditions of Lemma 3.1 for (k+ 1)σ instead of σ . For 0 ≤ i ≤ k
and j ≥ 1 write

(3.7) F0,j = Bj, and Fi+1,j = {z : β(z, Fi,j) ≤ σ}.

The next result is now immediate.

Corollary 3.4. Let σ > 0 and k be a non-negative integer. For each 0 ≤ i ≤
k+ 1 the family F i = {Fi,j : j ≥ 1} forms a covering of B such that

(a) F0,j1 ∩ F0,j2 = ∅ if j1 6= j2,
(b) F0,j ⊂ F1,j ⊂ · · · ⊂ Fk+1,j for all j,
(c) β(Fi,j , Fci+1,j) ≥ σ for all 0 ≤ i ≤ k and j ≥ 1,

(d) every point of B belongs to no more than N elements of F i,
(e) diamβ Fi,j ≤ C(k,σ) for all i, j, where C(k,σ) depends only on k and σ .

The constants N and C(k,σ) = C((k+1)σ) are given, respectively, by items (2) and
(3) of Lemma 3.1.

4. APPROXIMATION BY SEGMENTED OPERATORS

Lemma 4.1. Let 1 < p < ∞, σ ≥ 1, functions a1, . . . , ak ∈ L∞ of norm
≤ 1 and ν be a Carleson measure. Consider the coverings of B given by (3.7) for these
values of k and σ . Then there is a positive constant C0 = C0(p, k,n) such that

(4.1)
∥∥∥Ta1 · · ·TakTν −

∑
j
MχF0,j

Ta1 · · ·TakT(χFk+1,j
ν)

∥∥∥
L(Ap,Lp)

≤ C0βp(σ)‖Tν‖L(Ap),

where βp(σ) → 0 as σ →∞.

Proof. Step 1. We shall show that there is a constant C1 = C1(p, k,n) such
that
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(4.2)
∥∥∥∥Ta1 · · ·TakTν −

∑
j
MχF0,j

T(χF1,j
a1) · · ·T(χFk,j ak)T(χFk+1,j

ν)

∥∥∥∥
L(Ap,Lp)

≤ C1βp(σ)‖Tν‖L(Ap).

For 0 ≤m ≤ k+ 1 define the operators Sm ∈ L(Ap, Lp) as

Sm =
∑
j
MχF0,j

T(χF1,j
a1) · · ·T(χFm,j am)Tam+1 · · ·TakTν .

It is clear that

S0 =
∑
j
(MχF0,j

Ta1 · · ·TakTν) = Ta1 · · ·TakTν ,

where the series converges in the strong operator topology. If 0 ≤m ≤ k− 1,

Sm − Sm+1 =
∑
j

{
MχF0,j

( m∏
i=1

T(χFi,j ai)
)[
Tam+1 − T(χFm+1,j

am+1)

]( k∏
i=m+2

Tai
)
Tν
}

=
∑
j

{
MχF0,j

( m∏
i=1

T(χFi,j ai)
)
T(χFcm+1,j

am+1)

( k∏
i=m+2

Tai
)
Tν
}

,

where any of the products above should be understood as the identity when the
lower index is bigger than the upper index. For notational reasons we take a0 as
the constant function 1 in the next expression when m = 0. Hence, if f ∈ Ap
has norm 1, using that the sets F0,j are pairwise disjoint and Lemma 2.7 applied
to the measure dv, we obtain

∥∥(Sm − Sm+1)f
∥∥p
p ≤ (Cpp )m

∑
j

∥∥∥[M(χFm,j am)PM(χFcm+1,j
am+1)

]( k∏
i=m+2

Tai
)
Tνf

∥∥∥p
p

≤ (Cpp )mNβpp(σ)
∥∥∥( k∏

i=m+2

Tai
)
Tνf

∥∥∥p
p

by (2.8)

≤ (Cpp )m(Cpp )k−m−1Nβpp(σ)‖Tν‖p

= (Cpp )k−1Nβpp(σ)‖Tν‖p

for 0 ≤ m ≤ k − 1, where N is given by Corollary 3.4 and depends only on the
dimension n, βp(σ) is given by Lemma 2.7, and Cp = ‖P‖L(Lp). Similarly, since
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Sk − Sk+1 =
∑
j
MχF0,j

T(χF1,j
a1) · · ·T(χFk,j ak)T(χFck+1,j

ν),

Lemma 2.7 applied to dν gives∥∥(Sk − Sk+1)f
∥∥p
p ≤ (Cpp )k

∑
j

∥∥M(χFk,j am)PνM(χFck+1,j
)f
∥∥p
p

≤ (Cpp )kNβpp(σ)
∥∥ν∥∥p∗. by (2.8)

Since Lemma 2.1 says that ‖ν‖∗ is equivalent to ‖Tν‖L(Ap), there is a constant
c = c(p, k,n) such that

‖Sm − Sm+1‖ ≤ c(p, k,n)βp(σ)‖Tν‖, for all 0 ≤m ≤ k.

Consequently

‖S0 − Sk+1‖ ≤
k∑

m=0
‖Sm − Sm+1‖ ≤ (k+ 1)c(p, k,n)βp(σ)‖Tν‖,

which proves (4.2).

Step 2. We show now that there is a constant C2 = C2(p, k,n) such that

(4.3)
∥∥∥∥∑
j
MχF0,j

Ta1 · · ·TakT(χFk+1,j
ν)

−
∑
j
MχF0,j

T(χF1,j
a1) · · ·T(χFk,j ak)T(χFk+1,j

ν)

∥∥∥∥
L(Ap,Lp)

≤ C2βp(σ)‖Tν‖L(Ap).

For 0 ≤m ≤ k, define

Sm =
∑
j
MχF0,j

T(χF1,j
a1) · · ·T(χFm,j am)Tam+1 · · ·TakT(χFk+1,j

ν).

Therefore, if 0 ≤m ≤ k− 1,

Sm − Sm+1 =
∑
j

{
MχF0,j

( m∏
i=1

T(χFi,j ai)
)[
Tam+1 − T(χFm+1,j

am+1)

]

×
( k∏
i=m+2

Tai
)
T(χFk+1,j

ν)

}
=
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=
∑
j

{
MχF0,j

( m∏
i=1

T(χFi,j ai)
)
T(χFcm+1,j

am+1)

( k∏
i=m+2

Tai
)
T(χFk+1,j

ν)

}
,

where as before, any of the products above is the identity when the lower index is
bigger than the upper index. Hence, if f ∈ Ap has norm 1,

(4.4)
∥∥(Sm − Sm+1)f

∥∥p
p

≤ (Cpp )m
∑
j

∥∥∥[M(χFm,j am)PM(χFcm+1,j
am+1)]

( k∏
i=m+2

Tai
)
T(χFk+1,j

ν)f
∥∥∥p
p

≤ (Cpp )m
∑
j

{∥∥M(χFm,j am)PM(χFcm+1,j
am+1)

∥∥p
L(Ap,Lp)

×
∥∥∥ k∏
i=m+2

Tai
∥∥∥p ∥∥T(χFk+1,j

ν)f
∥∥p
p

}

≤ (Cpp )m
∑
j
βpp(σ)(C

p
p )k−m−1∥∥T(χFk+1,j

ν)f
∥∥p
p

≤ (Cpp )k−1βpp(σ)
∑
j

∥∥T(χFk+1,j
ν)f

∥∥p
p,

where the third inequality holds because ‖∏k
i=m+2 Tai‖p ≤ Ck−m−1

p , and (2.7)
applied to the measure dv implies that

‖M(χFm,j am)PM(χFcm+1,j
am+1)‖L(Ap,Lp) ≤ βp(σ)

for all j ≥ 1. By Lemma 2.2 there is a constant αp depending only on p such
that ‖T(χFk+1,j

ν)f‖p ≤ αp‖ιq‖ ‖χFk+1,j
f‖Lp(dν), and since every point of B is in

no more than N of the sets Fk+1,j , we get∑
j
‖T(χFk+1,j

ν)f‖pp ≤ αpp‖ιq‖p
∑
j

∥∥χFk+1,jνf
∥∥p
Lp(dν)(4.5)

≤ αpp‖ιq‖p N‖f‖pLp(dν)

≤ αppN‖ιq‖p ‖ιp‖p ‖f‖pAp .

Since Lemma 2.1 says that ‖ιs‖ is equivalent to ‖ν‖1/s
∗ for s = p, q, we see

that (‖ιq‖ ‖ιp‖)p is equivalent to (‖ν‖1/q
∗ ‖ν‖1/p

∗ )p = ‖ν‖p∗, which by the same
lemma, is equivalent to ‖Tν‖pL(Ap). Inserting this equivalence in (4.5) and going
back from there to (4.4), we obtain that there is a constant c(p, k,n) such that

‖(Sm − Sm+1)‖p ≤ c(p, k,n)βp(σ)‖Tν‖
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for all 0 ≤m ≤ k− 1. Consequently,

‖S0 − Sk‖ ≤
k−1∑
m=0

‖Sm − Sm+1‖ ≤ kc(p, k,n)βp(σ)‖Tν‖,

which proves (4.3). The lemma follows from (4.2) and (4.3) with C0 =
C1 + C2. ❐

If ν is a complex-valued measure whose total variation |ν| is a Carleson measure,
decompose ν into its real and imaginary parts and then use the Jordan decompo-
sition of each part to obtain ν = ν1 − ν2 + i(ν3 − ν4), where each νj is a positive
measure such that |ν| ∼ ∑4

j=1 |νj|. Thus, each νj is a Carleson measure with
‖ |ν| ‖∗ ∼

∑4
j=1 ‖νj‖∗. The comments above and Lemma 2.1 imply that Tν is a

bounded operator on Ap for all 1 < p < ∞, with norm bounded by a constant
that only depends on p and ‖ |ν| ‖∗.

Lemma 4.2. Let

S =
m∑
i=1

Tai1 · · ·Taiki Tνi ,

where aij ∈ L∞, k1, . . . , km ≤ k, and νi are complex-valued measures on B such
that |νi| are Carleson measures. Given ε > 0, there is σ = σ(S, ε) ≥ 1 such that if
{Fi,j}j≥1, i = 0, . . . , k + 1, are the sets given by (3.7) for these values of k and σ ,
then

(4.6)
∥∥∥S −∑

j
MχF0,j

( m∑
i=1

Tai1 · · ·Taiki T(χFk+1,j
νi)

)∥∥∥
L(Ap,Lp)

< ε.

Proof. Consider first the case where all the measures νi are positive (so they
are Carleson). We can assume that ki = k for i = 1, . . . ,m by filling up the ‘holes’
in each product with products of the identity T1 if necessary. A straightforward
application of Lemma 4.1 tells us that if σ is sufficiently large, then∥∥∥Tai1 · · ·TaikTνi −∑

j
MχF0,j

Tai1 · · ·TaikT(χFk+1,j
νi)

∥∥∥
L(Ap,Lp)

<
ε
m

for i = 1, . . . ,m. Summing from i = 1 tom yields

∥∥∥S − m∑
i=1

(∑
j
MχF0,j

Tai1 . . . TaikT(χFk+1,j
νi)

)∥∥∥
L(Ap,Lp)

< ε.

Since for every 1 ≤ i ≤m the series Si =
∑
j MχF0,j

Tai1 . . . TaikT(χFk+1,j
νi) converges

in the strong operator topology, the result follows from the above inequality and
the linearity of the limit.
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In the general case, decompose νi = νi,1−νi,2+i(νi,3−νi,4), where for j = 1,
. . . , 4, νi, j is a Carleson measure with ‖νi, j‖∗ ≤ ‖ |νi| ‖∗ ∼

∑4
`=1 ‖νi, `‖∗. Apply

the previous result to νi, j for each j and then use again the linearity of the limit
in the strong operator topology to get the desired result. ❐

Theorem 4.3. Let S ∈ Tp, ν be a Carleson measure, and ε > 0. Then there are
Borel sets Fj ⊂ Gj ⊂ B, with j ≥ 1, such that

(a) B = ⋃Fj ,
(b) Fj ∩ Fk = ∅ if j 6= k,
(c) each point of B is in no more than N sets Gj , where N depends only on n,
(d) diamβ Gj ≤ d = d(p, S, ε),

and ∥∥∥STν −∑
j
MχFj STχGj ν

∥∥∥
L(Ap,Lp)

< ε.

Proof. Since S ∈ Tp, there is

S0 =
m∑
i=1

Tai1 · · ·Taiki

such that ‖S − S0‖ < ε, where aij ∈ L∞, and ki are positive integers. Let k =
max{ki : 1 ≤ i ≤ m}. By Lemma 4.2 there are two families of Borel sets,
Fj := F0,j and Gj := Fk+1,j , that satisfy the theorem for S0. Furthermore, if
f ∈ Ap,

∥∥∥∑
j
MχFj (S − S0)TχGj νf

∥∥∥p
p
=
∑
j

∥∥MχFj (S − S0)TχGj νf
∥∥p
p

≤ εp
∑
j

∥∥TχGj νf∥∥pp
≤ εpαpp‖ιq‖p

∑
j

∥∥χGjf∥∥pLp(dν)
≤ εpαpp‖ιq‖p N

∥∥f∥∥pLp(dν)
≤ εpαpp N‖ιq‖p ‖ιp‖p

∥∥f∥∥pAp
≤ εpCpN

∥∥ν∥∥p∗ ∥∥f∥∥pAp
for some constant Cp > 0, where the second inequality holds by Lemma 2.2, the
third one by item (c), and the last one by Lemma 2.1. ❐
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5. THREE CHARACTERIZATIONS OF THE ESSENTIAL NORM

For % > 0 letwm andDm be as in Lemma 2.3. It is immediate from conditions (a)
and (b) of the lemma that µ% =

∑
m v(Dm)δwm is a Carleson measure, where δw

denotes the Dirac measure atw. Therefore Tµ% is bounded on Ap for 1 < p <∞.
The next lemma is related to an atomic decomposition of Ap given by Lueck-

ing, and it is essentially proved in [13]. Since it is not explicitly stated, we sketch
here a proof. For n = 1, a detailed proof can be found in [25, Chapter 4].

Lemma 5.1. Tµ% → I on L(Ap) when % → 0.

Proof. If z ∈ B and r > 0, in [17, p. 30] it is shown that

(5.1) v(D(z, r)) = s2n
r

(
1− |z|2

1− s2
r |z|2

)n+1

,

where sr = tanh r . Assume that % ≤ 1 and write s = tanh%. By (a) of Lemma
2.3, if z ∈ B is such that wm ∈ D(z,1), then Dm ⊂ D(z,2). Thus

µ%(D(z,1)) =
∑

wm∈D(z,1)
v(Dm) ≤ v(D(z,2)) ≤ Cv(D(z,1)),

where the last equality follows from (5.1), with C > 0 independent of %. The
equivalence between (2) and (3) of Lemma 2.1 now says that

(5.2)
∑
m

v(Dm)|g(wm)|q ≤ Cq
∥∥g∥∥qq

for all g ∈ Aq, where Cq > 0 does not depend on %. By [13, Lemma 3.10] applied
to our measures dv and dµ%, there is a constant Cp > 0 independent of % such
that

∑
m≥1

v(Dm)
v(D(wm,%))

∫
D(wm,%)

|f(w)− f(wm)|p dv(w) ≤ Cpsp
∥∥f∥∥pp

for all f ∈ Ap. Since D(wm,%/4) ⊂ Dm ⊂ D(wm,%), (5.1) leads to v(Dm) ∼
v(D(wm,%)), with constants not depending on %. Then

(5.3)
∑
m≥1

∫
Dm
|f(w)− f(wm)|p dv(w) ≤ C′psp

∥∥f∥∥pp.
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If f , g ∈ H∞, then

〈(I − Tµ%)f , g〉 =
∫
B
f(z)g(z)dv(z)−

∞∑
m=1

v(Dm)f(wm)〈Kwm,g〉

=
∞∑
m=1

∫
Dm
f(z)(g(z)− g(wm))dv(z)

+
∞∑
m=1

∫
Dm
(f(z)− f(wm))g(wm)dv(z).

Applying Hölder’s inequality twice (to the integral and the sum) to each one of
the above sums, (5.3) and (5.2) show that |〈(I − Tµ%)f , g〉| ≤ Gps‖f‖p ‖g‖q,
where Gp > 0 depends only on p. The density of H∞ in Ap and Aq, together
with the isomorphism (Ap)∗ ' Aq, imply that ‖I −Tµ%‖ ≤ Cs for some constant
C > 0 depending only on p. Since s → 0 as % → 0, the lemma follows. ❐

By Lemma 5.1, for each 1 < p < ∞ we can choose 0 < % ≤ 1 small enough, so
that

‖I − Tµ%‖L(Ap) <
1
4
.

This implies that Tµ% is invertible in L(Ap), with ‖Tµ%‖, ‖T−1
µ% ‖ ≤ 3

2 . For the
rest of the paper we fix % = %(p) according to these conditions and simply write
µ = µ%. For S ∈ L(Ap) and r > 0, let

αS(r)
def= lim sup

|z|→1
sup

{
‖Sf‖ : f ∈ TχD(z,r)µ(Ap), ‖f‖ ≤ 1

}
.

Since TχD(z,r1)µ
(Ap) ⊂ TχD(z,r2)µ

(Ap) when r1 < r2, then αS(r) increases with
r , and since αS(r) ≤ ‖S‖ for all r , we have

αS
def= lim

r→∞αS(r) = sup
r>0
αS(r) ≤ ‖S‖.

If E and F are Banach spaces, the essential norm of an operator R ∈ L(E, F) is

‖R‖e
def= inf

{
‖R −Q‖ : Q ∈ L(E, F) is compact

}
.

Theorem 5.2. Let 1 < p < ∞ and S ∈ Tp. Then ‖S‖e is equivalent to the
following quantities (with constants depending only on p and n)
(1) αS ,
(2) βS = supd>0 lim sup|z|→1 ‖MχD(z,d)S‖L(Ap,Lp),
(3) γS = limr→1 ‖Mχ(rB)c S‖L(Ap,Lp), where (rB)c = B \ rB.
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Beginning of the proof. In order to distinguish between essential norms for
operators in L(Ap) or L(Ap, Lp), we write ‖ ‖e and ‖ ‖ex for the respective
essential norm. Any R ∈ L(Ap) can be thought of as belonging to L(Ap, Lp), so
both quantities apply to R, and since PR = R, where P is the Bergman projection,
we have

(5.4) ‖R‖ex ≤ ‖R‖e ≤ ‖P‖L(Lp)‖R‖ex.

First observe that since ‖Tµ‖, ‖T−1
µ ‖ ≤ 3

2 , the numbers ‖S‖e and ‖STµ‖e are
equivalent. Given ε > 0, there are Borel sets Fj ⊂ Gj ⊂ B as in Theorem 4.3 such
that

(5.5)
∥∥∥STµ − ∑

j≥1

MχFj STχGj µ
∥∥∥

L(Ap,Lp)
< ε.

Since
∑m
j=1MχFj STχGj µ is compact for anym ≥ 1, we have

(5.6)
∥∥∥STµ − ∑

j≥m
MχFj STχGj µ

∥∥∥
ex
< ε

for any m ≥ 1. Write Sm = ∑
j≥mMχFj STχGj µ and let f ∈ Ap be of norm 1.

Since every z ∈ B belongs to at most N of the sets Gj , Lemma 2.2 yields

∑
j≥m

‖TχGj µf‖
p ≤

∑
j≥1

Cpp
∥∥χGjf∥∥pLP (dµ) ≤ CppN∥∥f∥∥pLP (dµ) = Kpp ,

a constant that only depends on p. Therefore

‖Smf‖p =
∑
j≥m

‖MχFj STχGj µf‖
p(5.7)

=
∑

j≥m,TχGj µf 6=0

‖MχFj STχGj µf‖
‖TχGj µf‖

p ‖TχGj µf‖p

≤ sup
j≥m

sup
{
‖MχFj Sg‖

p : g ∈ TχGj µ(A
p), ‖g‖ = 1

} ∑
j≥m

‖TχGjµf‖p

≤ Kpp sup
j≥m

sup
{
‖MχFj Sg‖

p : g ∈ TχGj µ(A
p), ‖g‖ = 1

}
.

For each j pick zj ∈ Gj . Since (d) of Theorem 4.3 says that diamβ Gj ≤ d, then
Gj ⊂ D(zj, d), and consequently TχGjµ(A

p) ⊂ TχD(zj,d)µ(Ap). Also, there is a
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sequence 0 < γm < 1 tending to 1, such that |zj| ≥ γm when j ≥ m. So, (5.7)
yields

‖Sm‖p ≤ Kpp sup
j≥m

sup
{
‖MχFj Sg‖

p : g ∈ TχD(zj ,d)µ(A
p), ‖g‖ = 1

}
(5.8)

≤ Kpp sup
|z|≥γm

sup
{
‖MχD(z,d)Sg‖p : g ∈ TχD(z,d)µ(Ap), ‖g‖ = 1

}
≤ Kpp sup

|z|≥γm
sup

{
‖Sg‖p : g ∈ TχD(z,d)µ(Ap), ‖g‖ = 1

}
.

Whenm →∞ we have γm → 1, and consequently

lim sup
m→∞

‖Sm‖ ≤ Kp αS(d).

Joining this estimate with (5.6) we get

‖STµ‖ex ≤ lim sup
m

‖Sm‖ + ε ≤ Kp αS(d)+ ε ≤ Kp αS + ε.

Since ε > 0 is arbitrary, it can be deleted from the above chain of inequalities.
Therefore, (5.4) and the equivalence between ‖STµ‖e and ‖S‖e lead to

(5.9) ‖S‖e ≤ Gp lim sup
m

‖Sm‖ ≤ G′p αS,

where Gp and G′p are positive constants depending on p.
It is clear that βS ≤ γS . On the other hand, if 0 < r < 1, there exists a

positive integerm(r)→∞ as r → 1, such that
⋃
j<m(r) Fj ⊂ rB. By (5.5) then

‖Mχ(rB)c S‖ ‖T−1
µ ‖−1 ≤ ‖Mχ(rB)c STµ‖

≤
∥∥∥Mχ(rB)c (STµ − ∑

j≥1

MχFj STχGj µ
)∥∥∥+ ∥∥∥Mχ(rB)c ∑

j≥1

MχFj STχGj µ
∥∥∥

≤ ε +
∥∥∥ ∑
j≥m(r)

MχFj STχGj µ
∥∥∥ = ε + ‖Sm(r)‖.

Since ‖T−1
µ ‖ ≤ 3

2 , we get

γS = lim sup
r→1

‖Mχ(rB)c S‖ ≤ 3
2(ε + lim sup

r→1
‖Sm(r)‖) ≤ 3

2(ε + lim sup
m→∞

‖Sm‖).

Since ε > 0 is arbitrary, we can delete it.
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Since by (5.8), ‖Sm‖ ≤ Kp sup|z|≥γm ‖MχD(z,d)S‖,

lim sup
m

‖Sm‖ ≤ Kp lim sup
|z|→1

‖MχD(z,d)S‖ ≤ KpβS.

All this proves the equivalence between βS , γS and lim supm→∞ ‖Sm‖. By (5.9)
the theorem will follow if we show that

(5.10) αS ≤ C‖S‖e

for some constant C > 0 depending only on p. The proof of this inequality will
be postponed until the proof of Theorem 9.3. ❐

6. A UNIFORM ALGEBRA AND ITS MAXIMAL IDEAL SPACE

Consider the uniform algebra A of all the bounded functions that are uniformly
continuous from the metric space (B, ρ) into the metric space (C, | |). Clearly, ρ
can be replaced by β in the above definition. The maximal ideal space MA of A
is formed by all the nonzero multiplicative linear maps from A into C, endowed
with the weak star topology. It is a compact Hausdorff space, and the Gelfand
transform of a ∈ A is the function â ∈ C(MA) defined as â(ϕ) = ϕ(a), for
ϕ ∈ MA. Since A is a commutative C∗-algebra, the Gelfand-Naimark Theorem
asserts that the Gelfand transform is an isomorphism (see [6, Theorem 4.29]).
That is, we can identify A with C(MA) via this transform. Evaluations at points
of B are in MA, so B ⊂ MA, and the Euclidean topology on B agrees with the
topology induced by MA. Also, the fact that A is a C∗-algebra easily implies that
B is dense in MA.

In the next lemma, Ē denotes the closure of E ⊂ MA in the space MA. By a
comment above, when E ⊂ rB for some 0 < r < 1, Ē has the same meaning in
both, the MA and the Euclidean topologies. Also, we shall not write the roof for
the Gelfand transform of a ∈A.

Lemma 6.1. Let E, F ⊂ B. Then Ē ∩ F̄ = ∅ if and only if ρ(E, F) > 0.

Proof. If Ē ∩ F̄ = ∅, Tietze’s theorem says that there is a ∈ C(MA) = A
such that a ≡ 1 on Ē and a ≡ 0 on F̄ . The uniform ρ-continuity of a on B
implies that ρ(E, F) > 0. If ρ(E, F) > 0, the function a(z) = ρ(z, E) ∈ A and
separates Ē from F̄ , so they are disjoint. ❐

Lemma 6.2. Let z, w, ξ ∈ B. Then there is a constant G > 0 depending only
on n such that

ρ(ϕz(ξ),ϕw(ξ)) ≤ G
(1− |ξ|)2ρ(z,w).

Proof. We are going to need the following elementary inequality for u, v ∈
B,

(6.1) ρ(u,v) = |Pu(u− v)+ (1− |u|2)1/2Qu(u− v)|
|1− 〈v,u〉| ≤ |u− v|

1− |u| .
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By Cartan’s theorem every automorphisms of B that fixes the origin has the form
φ(z) = Uz, where U belongs to the complex unitary group U(n) ⊂ Cn×n (see
[17, p. 24]). Hence

ϕϕw(z) ◦ϕw ◦ϕz = U
for some U ∈ U(n). Furthermore, in [14, Lemma 2.8] it is shown that

(6.2) ‖I +U‖ ≤ C(n)ρ(z,w).

We can assume that z ≠ w. If we write v = ϕw(z), then |v| = ρ(z,w) ≠ 0,
and

ρ(ϕz(ξ),ϕw(ξ)) = ρ(ϕw ◦ϕz(ξ),ϕw ◦ϕw(ξ)) = ρ(ϕϕw(z)(Uξ), ξ)

= ρ(ϕv(Uξ), ξ) ≤ ρ(ϕv(Uξ),−Uξ)+ ρ(−Uξ, ξ)

≤ 1
1− |ξ|(|ϕv(Uξ)+Uξ| + |ξ +Uξ|),

where the last inequality comes from (6.1) and |Uξ| = |ξ|. By (6.2) the second
summand between brackets is bounded by C(n)ρ(z,w). To estimate the first
summand within the brackets, write ξ′ = Uξ. Thus

|ϕv(ξ′)+ ξ′| =
∣∣∣∣∣v − Pv(ξ′)− (1− |v|2)1/2Qv(ξ′)1− 〈ξ′, v〉 + ξ′

∣∣∣∣∣

=

∣∣∣∣∣−ξ′〈ξ′, v〉 + v +
(
ξ′ − 〈ξ′, v〉 v|v|2

)[
1− (1− |v|2)1/2

]∣∣∣∣∣
|1− 〈ξ′, v〉|

≤ 2|v| + 2[1− (1− |v|2)1/2]
(1− |ξ′|)

≤ 4|v|
(1− |ξ′|) =

4ρ(z,w)
(1− |ξ|) . ❐

Let x ∈MA and suppose that (zα) is a net in B that tends to x. By compact-
ness, the net (ϕzα) in the product space MB

A admits a convergent subnet (ϕzαβ ).
This means that there is some function ϕ : B→ MA such that f ◦ϕzαβ → f ◦ϕ
pointwise on B for every f ∈ A. We show next that the whole net (zα) tends to
ϕ and that ϕ does not depend on the net. So, suppose that (ωγ) is another net
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in B converging to x such that ϕωγ tends to some ψ ∈ MB
A. If there is ξ ∈ B

such that ϕ(ξ) 6= ψ(ξ), then there are tails of both nets whose underlying sets

E =
{
ϕzαβ (ξ) : β ≥ β0

}
and F =

{
ϕωγ(ξ) : γ ≥ γ0

}
have disjoint closures in MA. By Lemma 6.1 then ρ(E, F) > 0. But Lemma 6.2
says that

ρ(E, F) = inf
{
ρ(ϕzαβ (ξ),ϕωγ(ξ)) : β ≥ β0, γ ≥ γ0

}
≤ G
(1− |ξ|)2 inf

{
ρ(zαβ,ωγ) : β ≥ β0, γ ≥ γ0

}
= 0,

where the last equality holds by Lemma 6.1, because both nets (zαβ) and (ωγ)
tend to x. The mapϕ will be denotedϕx , and observe thatϕx(0) = limϕzα(0) =
limzα = x.

Lemma 6.3. Let (zα) be a net in B converging to x ∈ MA. Then

(i) a ◦ϕx ∈A for every a ∈ A ( hence ϕx : B→ MA is continuous ),
(ii) a ◦ϕzα → a ◦ϕx uniformly on compact sets of B for every a ∈A.

Proof. If a ∈A, given ε > 0 there is δ > 0 such that if u, v ∈ B,

ρ(u,v) < δ ⇒ |a(u)− a(v)| < ε.

Since ρ(ϕzα(u),ϕzα(v)) = ρ(u,v) and |a(ϕx(u)) − a(ϕx(v))| =
lim |a(ϕzα(u)) − a(ϕzα(v))|, (i) follows. Suppose that (ii) fails. This means
that there are a ∈A, 0 < r < 1 and ε > 0 such that

∣∣(a ◦ϕzα)(ξα)− (a ◦ϕx)(ξα)∣∣ > ε
for some points ξα ∈ rB. Taking a suitable subnet we can assume that ξα → ξ ∈
rB. Therefore

|(a ◦ϕzα)(ξα)− (a ◦ϕx)(ξα)| ≤ |(a ◦ϕzα)(ξα)− (a ◦ϕzα)(ξ)|
+ |(a ◦ϕzα)(ξ)− (a ◦ϕx)(ξ)| + |(a ◦ϕx)(ξ)− (a ◦ϕx)(ξα)|,

where the first and third summands tend to 0 by the ρ-continuity of a and a◦ϕx ,
respectively, and the second tends to 0 because a ◦ϕzα → a ◦ϕx pointwise. This
contradicts the previous inequality. ❐
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7. APPROXIMATING TOEPLITZ OPERATORS BY
k-BEREZIN TRANSFORMS

Our goal in this section is to show that Tp is generated by Toeplitz operators
with symbols in A for every 1 < p < ∞. Actually, we prove the more general
statement that if ν is a complex-valued measure whose total variation is Carleson,
then Tν can be approximated in L(Ap)-norm by operators of the form Ta, with
a ∈ A. For n = 1, p = 2, this was proved in [22, Corollary 2.5], and except for
some minor simplifications, the proof here is essentially the same. If z ∈ B, the
(complex) Jacobian of the map ϕz is

Jϕz = (−1)n
(1− |z|2)(n+1)/2

(1− 〈· , z〉)n+1 = (−1)n(1− |z|2)(n+1)/2Kz.

Let ν be a complex-valued, Borel, regular measure on B of finite total variation.

For z ∈ B consider the measure νz = |Jϕz|−2(ν ◦ϕz), where (ν ◦ϕz)(E) def=
ν(ϕz(E)) for every Borel set E ⊂ B (i.e., ν ◦ϕz is the pull-back measure). From
the identity (Jϕz)(ϕz(ξ))(Jϕz)(ξ) = 1 we get

(7.1)
∫
B
(f ◦ϕz)|Jϕz|2 dν =

∫
B
f dνz

for every bounded continuous function f .

Definition. If z ∈ B and k = 0, 1, . . . , the k-Berezin transform of ν is the
function

Bk(ν)(z) =
(
n+ k
n

)∫
B
|Jϕz(w)|2

(
1− |ϕz(w)|2

)k dν(w).

If z,w ∈ B, Cartan’s theorem implies thatϕw ◦ϕz = V ◦ϕϕz(w), where V ∈
Cn×n is a unitary matrix, leading to |(Jϕw) ◦ϕz| |Jϕz| = |Jϕϕz(w)|. It follows
immediately from these equalities and (7.1) that Bk(ν)(ϕz(w)) = Bk(νz)(w)
for all k ≥ 0. In particular, if ν is a Carleson measure,

(7.2) ‖ν‖∗ = ‖B0(ν)‖∞ = ‖B0(νz)‖∞ = ‖νz‖∗.

Lemma 7.1. Let 0 < α < 1 and ν be a complex-valued measure such that its
total variation |ν| is a Carleson measure. If 1/p1 + 1/q1 = 1, where q1 > 1 is close
enough to 1 so that q1α < 1 and q1(n + 1 − α) < n + 1, then there is a constant
Cp1 > 0 such that

(7.3)
∫
B

|(TνKz)(w)|
(1− |w|2)α dv(w) ≤ Cp1‖Tνz1‖p1

(1− |z|2)α

for all z ∈ B.
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Proof. If z ∈ B, a straightforward calculation from (7.1) gives

(Jϕz)[(TνJϕz) ◦ϕz] = Tνz1,
and consequently (−1)n(1− |z|2)(n+1)/2TνKz = TνJϕz = [(Tνz1) ◦ϕz](Jϕz).
Thus ∫

B

|(TνKz)(w)|
(1− |w|2)α dv(w)

= 1
(1− |z|2)(n+1)/2

∫
B

|(Tνz1)(ϕz(w))| |Jϕz(w)|
(1− |w|2)α dv(w)

= 1
(1− |z|2)α

∫
B

|(Tνz1)(λ)|
(1− |λ|2)α |1− 〈λ, z〉|(n+1)−2α dv(λ)

≤ ‖Tνz1‖p1

(1− |z|2)α
(∫

B

dv(λ)
(1− |λ|2)αq1|1− 〈λ, z〉|q1(n+1−2α)

)1/q1

≤ Cp1

‖Tνz1‖p1

(1− |z|2)α ,

where the second equality follows from the substitution w = ϕz(λ), and the last
inequality from Lemma 2.4 and our conditions on q1. ❐

Lemma 7.2. Let 1 < p < ∞ and ν be a measure as in Lemma 7.1. If 1/p1 +
1/q1 = 1, where q1 satisfies the conditions of Lemma 7.1 for both α = 1/p and 1/q,
where q = p/(p − 1), then

(7.4) ‖Tν‖L(Ap) ≤ Cp1

(
sup
z∈B

‖Tνz1‖p1

)1/p(
sup
z∈B

‖T∗νz1‖p1

)1/q
,

where Cp1 is the constant of Lemma 7.1.

Proof. Let f ∈ Ap and w ∈ B. Since (TνKλ)(w) = (T∗ν Kw)(λ), we have

(Tνf )(w) = 〈Tνf ,Kw〉 = 〈f , T∗ν Kw〉 =
∫
B
f(λ)(TνKλ)(w)dv(λ).

Letting Φ(λ,w) = |(TνKλ)(w)| = |(T∗ν Kw)(λ)| and h(λ) = (1 − |λ|2)−1/pq,
(7.3) with α = 1/q yields∫

B
Φ(λ,w)h(w)p dv(w) ≤ Cp1 sup

z∈B
‖Tνz1‖p1h(λ)

p,

and (7.3) with α = 1/p gives∫
B
Φ(λ,w)h(λ)q dv(λ) ≤ Cp1 sup

z∈B
‖T∗νz1‖p1 h(w)

q.
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Therefore (7.4) follows from Lemma 2.6. ❐

If ν is a Carleson measure, the formula Bk(ν) = Cn,k
∫
|Jϕz|2(1 − |ϕz|2)k dν

shows that ‖Bk(ν)‖∞ ≤ Cn,k‖B0(ν)‖∞ = Cn,k‖ν‖∗ for all k ≥ 0, and since [14,
Theorem 2.11] says that Bk(ν) is Lipschitz with respect to the pseudohyperbolic
metric, it follows that Bk(ν) ∈ A for all k ≥ 0. Hence, the same holds for a
complex measure ν such that |ν| is Carleson. If ν is absolutely continuous, so
ν = adv, with a ∈ L1(dv), the k-Berezin transform of ν will be simply denoted
Bk(a). In this case, the change of variable w = ϕz(ξ) in the integral defining
Bk(a) yields

(Bka)(z) =
(
n+ k
n

)∫
B
(1− |ξ|2)ka(ϕz(ξ))dv(ξ).

Since
(n+k
n
)
(1 − |w|2)k dv are probability measures whose masses tend to con-

centrate at 0 as k increases, it is clear that if a ∈A, then ‖Bk(a)−a‖∞ → 0 when
k→∞.

Theorem 7.3. Let 1 < p <∞ and ν be a complex-valued measure such that |ν|
is a Carleson measure. Then TBk(ν) → Tν in the norm of L(Ap). In particular, Tp is
the closed algebra generated by {Ta : a ∈A}.

Proof. By the linearity of Bk it is enough to prove the theorem for a Carleson
measure ν. In [1, Proposition 2.6] it is shown that B0Bk(ν) = BkB0(ν) for an
absolutely continuous measure ν, but the proof works in general. Since B0(ν) ∈
A, ∥∥B0(Bk(ν)dv− dν)∥∥∞ = ∥∥B0Bk(ν)− B0(ν)

∥∥∞
= ∥∥BkB0(ν)− B0(ν)

∥∥∞ → 0

as k→ ∞. Consequently,∥∥Bk(ν)dv
∥∥∗ + ‖ν‖∗ = ∥∥B0Bk(ν)

∥∥∞ + ∥∥B0(ν)
∥∥∞(7.5)

≤ C(ν),

which together with Lemma 2.1 says that ‖TBk(ν)−Tν‖L(A2) is bounded indepen-
dently of k. Under these conditions, [21, Lemma 5.5] for n = 1 and [14, Lemma
3.4] for a general n, say that

(7.6) sup
z∈B

|T(Bk(ν)dv−dν)z1| → 0

uniformly on compact sets as k →∞. Let ε > 0 and write Fk,z = T(Bk(ν)dv−dν)z1.
If 0 < r < 1 and 1 < p1 < ∞ is big enough so that (7.4) holds for our value of p,
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split the integral ‖Fk,z‖p1
p1 = ‖Fk,zχ(rB)c‖p1

p1+‖Fk,zχrB‖p1
p1 . The Cauchy-Schwarz’s

inequality gives

∥∥Fk,zχ(rB)c∥∥p1
p1
≤ ∥∥Fk,z∥∥p1

2p1
‖χ(rB)c‖2 =

∥∥Fk,z∥∥p1
2p1
(1− r 2n)1/2

≤ C2p1(‖(Bk(ν)dv)z‖∗ + ‖dνz‖∗)p1(1− r 2n)1/2

≤ C2p1C(ν)
p1(1− r 2n)1/2 < ε

if r is chosen close enough to 1, where the second inequality follows from Lemma
2.1 and the last one from (7.2) and (7.5). Once we have fixed such r , (7.6) says
that Fk,z(w)χrB(w) tends to 0 uniformly on z,w ∈ Bwhen k→∞. Henceforth,

sup
z∈B

‖Fk,z‖p1 = sup
z∈B

‖T(Bk(ν)dv−dν)z1‖p1 → 0

as k → ∞, and since T∗(Bk(ν)dv−dν)z = T(Bk(ν̄)dv−dν̄)z , the theorem follows from
(7.4). ❐

8. MAPS FROM MA INTO L(Ap)

If z, w ∈ B and α is any real number, we shall write

Jαz (w) =
(1− |z|2)α(n+1)/2

(1− 〈w,z〉)α(n+1) ,

where the argument of (1−〈w,z〉) used to define its α(n+1)-root varies within
the open interval (−π,π). In particular, for α = 1 we get Jz = (−1)nJϕz, where
we recall that Jϕz is the Jacobian of the mapϕz. It follows from (Jϕz)(ϕz)(Jϕz)
= 1 that (Jαz ◦ϕz)Jαz = 1 for any real number α. For 1 < p < ∞, z ∈ B and
f ∈ Ap, consider the map

Upz f(w) = (f ◦ϕz)(w)J2/p
z (w)

= f (ϕz(w)) (1− |z|2)(n+1)/p

(1− 〈w,z〉)2(n+1)/p .

Keep in mind that the p of Upz is an index, not a power. A change of variables and
the identity (J2/p

z ◦ϕz)J2/p
z = 1 show that ‖Upz f‖p = ‖f‖p for all f ∈ Ap and

Upz U
p
z = IAp . Also,

Upz = TJ2/p−1
z

U2
z = U2

zTJ1−2/p
z

,

and consequently for q = p/(p − 1),

(Uqz )∗ = U2
zTJ̄2/q−1

z
= TJ̄1−2/q

z
U2
z .
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Thus,

(Uqz )∗U
p
z = TJ̄1−2/q

z
U2
zU

2
zTJ1−2/p

z
= TJ̄1−2/q

z J1−2/p
z

= Tbz
and

Upz (U
q
z )∗ = TJ2/p−1

z
U2
zU2

zTJ̄2/q−1
z

= TJ2/p−1
z

TJ̄2/q−1
z

= T−1
bz ,

where

(8.1) bz(w) = J̄1−2/q
z (w)J1−2/p

z (w) = (1− 〈w,z〉)
(n+1)(1/q−1/p)

(1− 〈w,z〉)(n+1)(1/q−1/p) .

Definition. For S ∈ L(Ap) and z ∈ B define Sz = Upz S(Uqz )∗.

It should be kept in mind that the definition of Sz depends on p. Consider the
map ΨS : B→ L(Ap) given by ΨS(z) = Sz. We will study the possibility to extendΨS continuously to MA when L(Ap) is provided with the weak or the strong
operator topologies (WOT and SOT, respectively). The inclusion C(B̄) ⊂ A
induces by transposition a natural projection π : MA → MC(B̄). If x ∈ MA, let

bx(w) = (1− 〈w,π(x)〉)
(n+1)(1/q−1/p)

(1− 〈w,π(x)〉)(n+1)(1/q−1/p) .

It is clear that when (zα) is a net in B that tends to x inMA, then zα = π(zα)→
π(x) in the Euclidean metric. Therefore bzα → bx uniformly on compact sets of
B and boundedly. Thus,

(8.2) (Uqzα)∗U
p
zα = Tbzα

SOT
---------------------------------------------------------------------------------------------------------→ Tbx and (Upzα)∗U

q
zα = Tb̄zα

SOT
---------------------------------------------------------------------------------------------------------→ Tb̄x

in L(Ap) and L(Aq), respectively. If a ∈ A, Lemma 6.3 says that (a ◦ϕzα) →
(a ◦ϕx) uniformly on compact sets of B, and the above argument shows that

(8.3) T(a◦ϕzα)bzα
SOT
---------------------------------------------------------------------------------------------------------→ T(a◦ϕx)bx

in L(Ap). The following theorem for the disk is in [21, Theorem 4.1], but the
proof works word by word for a general n.

Theorem 8.1. Let (E,d) be a metric space and f : B→ E be a continuous map.
Then f admits a continuous extension fromM(A) into E if and only if f is uniformly
(ρ,d) continuous and f(B) is compact.

We recall that if 1 < p < ∞ and k(p)ξ = (1 − |ξ|2)(n+1)/qKξ , where ξ ∈ B
and 1/p + 1/q = 1, there is a constant cp > 0 such that c−1

p ≤ ‖k(p)ξ ‖p ≤ cp for
all ξ ∈ B. It is clear that

(1− |ξ|2)(n+1)/pJz(ξ)2/p = (1− |ϕz(ξ)|2)(n+1)/p |1− 〈ξ, z〉|2(n+1)/p

(1− 〈ξ, z〉)2(n+1)/p ,
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where the unimodular function at the end of the formula will be denoted λp(ξ, z).
If f ∈ Ap,

〈
f , (Upz )∗k

(q)
ξ
〉 = 〈Upz f , k(q)ξ 〉 = 〈(f ◦ϕz)J2/p

z , k(q)ξ
〉

= f (ϕz(ξ))(1− |ξ|2)(n+1)/pJz(ξ)2/p

= f (ϕz(ξ))(1− |ϕz(ξ)|2)(n+1)/pλp(ξ, z)

= 〈f , λp(ξ, z)k(q)ϕz(ξ)〉,
meaning that

(8.4) (Upz )∗k
(q)
ξ = λp(z, ξ)k(q)ϕz(ξ).

Lemma 8.2. Let ξ ∈ B be a fixed point. Then the map z , (Upz )∗k
(q)
ξ is

uniformly continuous from (B, ρ) into (Aq,‖ ‖q).
Proof. By (8.4) it suffices to prove that the maps z , λp(z, ξ) and z ,

k(q)ϕz(ξ) are uniformly continuous from (B, ρ) into (C, | |) and (Aq,‖ ‖q), respec-
tively.

For the first of these maps the assertion is obvious (actually, the map can be
extended continuously to the closure of B in Cn). Since Lemma 6.2 says that
z , ϕz(ξ) is uniformly continuous from (B, ρ) into itself, the proof for the
second map reduces to show the uniform continuity ofw , k(q)w . That is, we want
to prove that given ε > 0, there is δ > 0 such that supz∈B ‖k(q)z − k(q)ϕz(α)‖q < ε if
|α| < δ. For z, α ∈ B, the isomorphism (Ap)∗ ' Aq implies

(8.5) ‖k(q)z − k(q)ϕz(α)‖q
∼ sup
f∈Ap :‖f‖p=1

∣∣∣(1− |z|2)(n+1)/pf (z)− (1− |ϕz(α)|2)(n+1)/pf (ϕz(α))
∣∣∣,

where for f ∈ Ap of norm 1, the modulus in the above expression is bounded by

(8.6)
(
1− |z|2)(n+1)/p∣∣f(z)− f(ϕz(α))∣∣
+ (1− |ϕz(α)|2)(n+1)/p ∣∣f(ϕz(α))∣∣

∣∣∣∣∣1− (1− |z|2)(n+1)/p

(1− |ϕz(α)|2)(n+1)/p

∣∣∣∣∣
≤ |gz(0)− gz(α)| + cq‖f‖p

∣∣∣∣∣1− |1− 〈α,z〉|
2(n+1)/p

(1− |α|2)(n+1)/p

∣∣∣∣∣ ,
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where

gz(w) = (1− |z|2)(n+1)/p(f ◦ϕz)(w) = (1− 〈w,z〉)2(n+1)/p(Upz f )(w).

and the last inequality holds because

(
1− |ϕz(α)|2

)(n+1)/p ∣∣f(ϕz(α))∣∣ = ∣∣〈f , k(q)ϕz(α)〉∣∣ ≤ ‖f‖p ∥∥k(q)ϕz(α)∥∥q.
Since ‖f‖p = 1 and Upz is an isometry, ‖gz‖p ≤ 4(n+1)/p. The second summand
in (8.6) can be made < ε/2 independently of f and z if |α| is small. So, if we
denote by s the supremum in (8.5) and take α as small as before,

s ≤ 4(n+1)/p sup
g∈Ap :‖g‖p=1

|g(α)− g(0)| + ε
2

≤ 4(n+1)/p sup
g∈Ap :‖g‖p=1

‖g‖p ‖Kα −K0‖∞ + ε2 ,

which can be made as small as wished by taking α small enough. ❐

Proposition 8.3. Let S ∈ L(Ap). Then the map ΨS : B → (L(Ap),WOT)
extends continuously to MA.

Proof. Bounded sets in L(Ap) are metrizable and have compact closure with
the weak operator topology. Since ΨS(B) is bounded, Theorem 8.1 reduces the
problem to show that ΨS is uniformly continuous from the ball with the pseudo-
hyperbolic metric into L(Ap) with the weak operator topology. This amounts to
see that for every f ∈ Ap and g ∈ Aq, the function z , 〈Szf , g〉 is uniformly
continuous from (B, ρ) into (C, | |). For z1, z2 ∈ B we have

Upz1S(U
q
z1)∗ −Upz2S(U

q
z2)∗ = Upz1S[(U

q
z1)∗ − (Uqz2)∗]+ [Upz1 − Upz2]S(U

q
z2)∗

= A+ B.

Then∣∣〈Af ,g〉∣∣ ≤ ∥∥Upz1S
∥∥ ∥∥[(Uqz1)∗ − (Uqz2)∗]f

∥∥
p
∥∥g∥∥q ,

|〈Bf ,g〉| = ∣∣〈f , B∗g〉∣∣ ≤ ∥∥f∥∥p ∥∥Uqz2S∗
∥∥ ∥∥ [(Upz1)∗ − (Upz2)∗]g

∥∥
q.

Interchanging p and q, it is enough to deal with the last expression. Since
‖(Upz )∗‖ ≤ Cp for every z, we can assume that g is in a dense subset of Aq,
and since the linear span of {k(q)ξ : ξ ∈ B} is dense in Aq, it is enough to see

that for every ξ ∈ B, ‖[(Upz1)∗ − (Upz2)∗]k
(q)
ξ ‖q can be made small as long as

ρ(z1, z2) is small enough (depending on ξ). This is precisely the statement of
Lemma 8.2. ❐
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Lemma 8.4. If (zα) is a net in B converging to x ∈ MA, then Tbx is invertible
and T−1

bzα
SOT
---------------------------------------------------------------------------------------------------------→ T−1

bx in L(Ap).

Proof. By Proposition 8.3 applied to the identity, we know that Upzα(U
q
zα)∗ =

T−1
bzα

has a WOT-limit in L(Ap), sayQ. The Banach-Steinhaus Theorem then says
that there is a constant C0 such that ‖T−1

bzα
‖ ≤ C0 for all α. Given f ∈ Ap and

g ∈ Aq, (8.2) says that ‖(Tb̄zα − Tb̄x )g‖q → 0. Thus

〈TbxQf ,g〉 = 〈Qf,Tb̄xg〉 = lim
α
[〈T−1

bzα
f , (Tb̄x − Tb̄zα )g〉 + 〈T−1

bzα
f , Tb̄zα g〉]

= lim
α
〈T−1
bzα
f , (Tb̄x − Tb̄zα )g〉 + 〈f , g〉,

where

|〈T−1
bzα
f , (Tb̄x − Tb̄zα )g〉| ≤ ‖T−1

bzα
‖ ‖f‖p ‖(Tb̄x − Tb̄zα )g‖q

≤ C0‖f‖p ‖(Tb̄x − Tb̄zα )g‖q → 0.

This proves that TbxQ = IAp . Since taking adjoints is continuous with respect

to the weak operator topologies, T−1
b̄zα

WOT
------------------------------------------------------------------------------------------------------------------------------→ Q∗ in L(Aq). So, interchanging

the roles of p and q we obtain that Tb̄xQ
∗ = IAq , which in turn proves that

QTbx = IAp . Thus, Q = T−1
bx and T−1

bzα
WOT
------------------------------------------------------------------------------------------------------------------------------→ T−1

bx in L(Ap). Since

T−1
bzα

− T−1
bx = T−1

bzα
(Tbx − Tbzα )T−1

bx ,

where ‖T−1
bzα
‖ ≤ C0 and Tbx −Tbzα

SOT
---------------------------------------------------------------------------------------------------------→ 0 in L(Ap), then T−1

bzα
−T−1

bx
SOT
---------------------------------------------------------------------------------------------------------→ 0 in

L(Ap), as claimed. ❐

Observe that for any operators S1, . . . , Sm ∈ L(Ap),

(S1 · · ·Sm)z =(8.7)

= [Upz S1(Uqz )∗
]
(Uqz )∗U

p
z
[
Upz S2(Uqz )∗

] · · · (Uqz )∗Upz [Upz Sm(Uqz )∗]
= S1

z(U
q
z )∗U

p
z S2
z · · · (Uqz )∗Upz Smz = S1

zTbzS
2
z · · ·TbzSmz .

Proposition 8.5. If S ∈ Tp and (zα) is a net in B that tends to x ∈ MA, then
Szα

SOT
---------------------------------------------------------------------------------------------------------→ Sx in L(Ap). Thus, ΨS : B → (L(Ap),SOT) extends continuously to

MA.

Proof. If S ∈ Tp and ε > 0, Theorem 7.3 assures that there is a finite sum
of finite products of Toeplitz operators with symbols in A, denoted R, such that
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‖S − R‖ < ε. Then ‖Sz − Rz‖ < Cpε for every z ∈ B, and since except for a
multiplicative constant, WOT limits do not increment the norm, ‖Sx − Rx‖ <
C′pε for every x ∈ MA. Thus, it is enough to prove the proposition for R, and
by linearity, it is enough to assume that R = Ta1 · · ·Tam , where aj ∈ A for
1 ≤ j ≤m. Since for a ∈A, U2

zTaU2
z = Ta◦ϕz ,

(Ta)z = Upz (Uqz )∗(Uqz )∗TaUpz Upz (Uqz )∗

= Upz (Uqz )∗TJ̄1−2/q
z

U2
zTaU

2
zTJ1−2/p

z
Upz (U

q
z )∗

= Upz (Uqz )∗T(a◦ϕz)J̄1−2/q
z J1−2/p

z
Upz (U

q
z )∗

= T−1
bz T(a◦ϕz)bzT

−1
bz ,

which together with (8.7) gives

(Ta1 · · ·Tam)z = (Ta1)zTbz(Ta2)z · · ·Tbz(Tam)z
= T−1

bz T(a1◦ϕz)bzT
−1
bz T(a2◦ϕz)bz · · ·T−1

bz T(am◦ϕz)bzT
−1
bz .

Since the product of SOT convergence nets is SOT convergent, Lemma 8.4 and
(8.3) imply that when zα → x,

(Ta1 · · ·Tam)zα SOT
---------------------------------------------------------------------------------------------------------→ T−1

bx T(a1◦ϕx)bxT
−1
bx T(a2◦ϕz)bx · · ·T−1

bx T(am◦ϕx)bxT
−1
bx

in L(Ap). The second assertion of the proposition now follows from a simple
diagonal argument. ❐

9. THE ESSENTIAL NORM VIA Sx FOR 1 < p <∞
Lemma 9.1. Let S ∈ L(Ap). Then B(S)(z) → 0 when |z| → 1 if and only if

Sx = 0 for every x ∈MA \ B.

Proof. If z, ξ ∈ B, by (8.4)

B(Sz)(ξ) = 〈S(Uqz )∗k(p)ξ , (Upz )∗k(q)ξ 〉

= λq(z, ξ)λp(z, ξ)〈Sk(p)ϕz(ξ), k
(q)
ϕz(ξ)〉

= λq(z, ξ)λp(z, ξ)B(S)(ϕz(ξ)).

Thus, |B(Sz)(ξ)| = |B(S)(ϕz(ξ))|. If x ∈ MA \ B, (zα) is a net in B that tends
to x, and ξ ∈ B is fixed, Proposition 8.3 assures that

B(Szα)(ξ) = 〈Szαk(p)ξ , k(q)ξ 〉 → 〈Sxk(p)ξ , k(q)ξ 〉 = B(Sx)(ξ).
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Therefore,

(9.1) |B(S)(ϕzα(ξ))| → |B(Sx)(ξ)|.

Since x ∈ MA \ B and zα → x, then |zα| → 1, and consequently |ϕzα(ξ)| → 1.
So, if B(S) vanishes on ∂B, (9.1) says that B(Sx)(ξ) = 0, and since ξ ∈ B is
arbitrary and B is one-to-one, Sx = 0.

Reciprocally, if there is a sequence {zk} ⊂ B such that |zk| → 1 and |B(S)(zk)|
≥ δ > 0, the compactness of MA implies that there is a subnet (zα) of {zk} that
converges in MA to some point x ∈ MA \ B. Taking ξ = 0 in (9.1) we get that
|B(Sx)(0)| ≥ δ, and consequently Sx ≠ 0. ❐

The following result follows immediately from a theorem of Berndtsson [3].

Lemma 9.2. Suppose that % > 0, 0 < r < 1 and wk ∈ rB, for k = 1, . . . ,
m, are points such that β(wk,wj) ≥ % if j 6= k. Then for any 1 ≤ k0 ≤m there is
gk0 ∈ H∞(B) such that

gk0(wk) = δk0,k and ‖gk0‖∞ ≤ C(%, r),

where δk0,k denotes Kronecker’s delta.

Proof. Since ρ(wk,wj) ≥ tanh% for j 6= k and |wj| ≤ r for all 1 ≤ j ≤m,
there is an integer M depending only on % and r such thatm ≤M. Thus

inf
k

∏
j≠k
ρ(wj,wk) ≥ (tanh%)M−1.

By [3, Theorem 2] there is gk0 ∈ H∞(B) satisfying the interpolation, with
‖gk0‖∞ ≤ C, a constant depending only on (tanh%)M . ❐

Theorem 9.3. There exists a constant Cp > 0 such that if S ∈ Tp,

(9.2) C−1
p sup
x∈MA\B

‖Sx‖ ≤ ‖S‖e ≤ Cp sup
x∈MA\B

‖Sx‖.

Proof of the Theorem and of (5.10). If S ∈ L(Ap) is compact,

(9.3) |B(S)(ξ)| = |〈Sk(p)ξ , k(q)ξ 〉| ≤ ‖Sk(p)ξ ‖p ‖k(q)ξ ‖q → 0 as |ξ| → 1,

because ‖k(q)ξ ‖q ≤ cq independently of ξ ∈ B and k(p)ξ → 0 weakly in Ap when
|ξ| → 1. Hence, Lemma 9.1 says that Sx = 0 for every x ∈ MA \ B.

Now assume that S ∈ L(Ap) is arbitrary. Let Q ∈ L(Ap) be a compact
operator and x ∈ MA \ B. Take a net (zα) ⊂ B that converges to x. Since Upzα
and Uqzα are isometries on Ap and Aq, respectively, we have ‖Szα+Qzα‖ ≤ Cp‖S+
Q‖. Since, except for a multiplicative constant, WOT limits do not increase the
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norm, the convergence Szα + Qzα WOT
------------------------------------------------------------------------------------------------------------------------------→ Sx + Qx = Sx implies that ‖Sx‖ ≤

C′p lim inf‖Szα +Qzα‖. Thus

‖Sx‖ ≤ C′′p ‖S +Q‖, for all x ∈ MA \ B and Q ∈ L(Ap) compact.

Taking infimum at the right side and supremum at the left side we get the first
inequality in (9.2). Observe that this holds for any bounded operator S.

Now assume that S ∈ Tp. Since (5.9) tells us that ‖S‖e ≤ G′p αS , we only
need to prove the second inequality in (9.2) with ‖S‖e replaced by αS . This and
the first inequality in (9.2) will also prove (5.10), therefore finishing the proof of
Theorem 5.2. Since αS(r) is an increasing function of r that tends to αS when
r →∞, we must show that there is a constant Cp > 0 such that

αS(r) ≤ Cp sup
x∈MA\B

‖Sx‖, for r > 0.

So, fix r > 0. By definition of αS(r), there is a sequence {zj} ⊂ B tending to ∂B
and a normalized sequence fj ∈ TχD(zj,r)µAp such that ‖Sfj‖ → αS(r). Thus,
there are hj ∈ Ap such that

fj(w) = TχD(zj ,r)µhj(w) =
∑

wm∈D(zj,r)

v(Dm)hj(wm)
(1− 〈w,wm〉)n+1

=
∑

wm∈D(zj,r)
aj,m

(1− |wm|2)(n+1)/q

(1− 〈w,wm〉)n+1 ,

where aj,m = v(Dm)hj(wm)(1− |wm|2)−(n+1)/q. That is,

fj =
∑

wm∈D(zj ,r)
aj,mk

(p)
wm.

If we write wj,m = ϕzj(wm), (8.4) gives

(Uqzj )
∗fj =

∑
wm∈D(zj,r)

aj,mλq(zj,wm)k
(p)
ϕzj (wm)

=
∑

wj,m∈D(0,r )
a′j,mk

(p)
wj,m,

where a′j,m = aj,mλq(zj,wm) and |wj,m| = |ϕzj(wm)| ≤ sr = tanh r . For
each j arrange the points wj,m (for m ≥ 1) such that |wj,m| ≤ |wj,m+1| and
argwj,m ≤ argwj,m+1. Since (a) and (b) of Lemma 2.3 say that β(wj,m,wj,k) =
β(wm,wk) ≥ %/4 whenm ≠ k, there are only Nj pointswj,m, where for each j,
Nj ≤ M(%, r), a bound that depends only on % and r . Taking a subsequence we
can assume that Nj = M, a quantity independent of j. Fix j and 1 ≤ m0 ≤ M.
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By Lemma 9.2 there is g = gj,m0 ∈ H∞(B), with ‖g‖∞ ≤ C(%/4, sr ), such that
g(wj,m) = δm0,m for 1 ≤m ≤ M. Therefore,

〈(Uqzj )∗fj, g〉 =
∑

wj,m∈D(0,r )
a′j,m(1− |wj,m|2)(n+1)/qg(wj,m)

= a′j,m0
(1− |wj,m0|2)(n+1)/q,

and consequently

|a′j,m0
| ≤ (1− |wj,m0|2)−(n+1)/q|〈(Uqzj )∗fj, g〉|

≤ (1− s2
r )−(n+1)/q‖(Uqzj )∗‖ ‖fj‖p ‖g‖q ≤ C0,

where C0 = C0(n,p, %, r) > 0 is independent of j andm0. Hence, the sequence

(wj,1, . . . ,wj,M, a′j,1, . . . , a
′
j,M) ∈ C2M

is bounded. Taking another subsequence we can also assume that this sequence
converges in C2M to a point (v1, . . . , vM,a′1, . . . , a

′
M), where |vi| ≤ sr and |a′i| ≤

C0. Thus,

(Uqzj )
∗fj → h def=

M∑
i=1

a′ik
(p)
vi in Lp-norm,

where ‖h‖p = lim‖(Uqzj )∗fj‖p ≤ ‖(Uqzj )∗‖ ‖fj‖p ≤ Cp. Since Upzj is isometric,
(Uqzj )∗(U

q
zj )∗ = IAp , and ‖Szj‖ is bounded independently of j, we get

αS(r) = lim‖Sfj‖ = lim‖Szj (Uqzj )∗fj‖ = lim‖Szjh‖.

By the compactness of MA there is a subnet (zβ) of the sequence {zj} that con-
verges to some point x ∈ MA \ B (x 6∈ B because |zj| → 1). Consequently,
Proposition 8.5 says that Szβh→ Sxh in Ap-norm, which leads to

αS(r) = lim‖Szβh‖ = ‖Sxh‖ ≤ ‖Sx‖Cp ≤ Cp sup
u∈MA\B

‖Su‖.

This proves the theorem and (5.10). ❐

Corollary 9.4. Let 1 < p <∞ and S ∈ Tp. Then

‖S‖e ∼ sup
‖f‖p=1

lim sup
|z|→1

‖Szf‖p.
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Proof. Proposition 8.5 and the compactness of MA imply that

sup
x∈MA\B

‖Sxf‖p = lim sup
|z|→1

‖Szf‖p

for every f ∈ Ap. Taking supremum over the functions f ∈ Ap of norm 1 and
commuting the two suprema in the first member of the equality we get

sup
x∈MA\B

‖Sx‖ = sup
‖f‖p=1

lim sup
|z|→1

‖Szf‖p.

The result follows from Theorem 9.3. ❐

Theorem 9.5. Let 1 < p < ∞ and S ∈ L(Ap). Then S is compact if and only
if S ∈ Tp and B(S) ≡ 0 on ∂B.

Proof. If S is compact, B(S) ≡ 0 on ∂B by (9.3). When p = 2, the inclusion
of the compact operators in T2 follows from [4] or [8], both results being stronger
than this easy fact. For 1 < p < ∞ we give here a short proof. It is well-known that
Lp has the bounded approximation property, meaning that there exists a constant
C > 0 such that for every compact set K ⊂ Lp and ε > 0, there is a finite rank
operator T ∈ L(Lp) such that ‖T‖ ≤ C and ‖Tf − f‖ < ε for all f ∈ K (see
[23, pp. 69–70]). It follows that every compact operator Q ∈ L(Lp) can be
approximated by operators of finite rank. Since Ap is a projection of Lp, the same
holds for Ap. Thus, it is enough to prove that the operators of rank 1 are in
Tp. Every operator of rank 1 has the form f ⊗ g, where f ∈ Ap, g ∈ Aq and
(f ⊗ g)h = 〈h,g〉f for h ∈ Ap. Since ‖f ⊗ g‖ is equivalent to ‖f‖p ‖g‖q and
the polynomials are dense in Ap and Aq, it is enough to assume that f and g are
polynomials. In such case, f ⊗g = Tf (1⊗1)Tḡ , and the problem reduces to show
that 1 ⊗ 1 ∈ Tp. This follows from Theorem 7.3 by noticing that 1 ⊗ 1 = Tδ0 ,
where δ0 is the Dirac measure with mass concentrated at 0.

Now suppose that B(S) ≡ 0 on ∂B. Lemma 9.1 then says that Sx = 0 for all
x ∈MA \ B. If in addition S ∈ Tp, Theorem 9.3 says that S is compact. ❐

10. THE CASE p = 2

Let S ∈ L(Ap), where 1 < p < ∞. Since (Sz)∗ = (S∗)z for z ∈ B and the
adjoints of a WOT convergent net is WOT convergent, then (Sx)∗ = (S∗)x for
all x ∈ MA.

If p = 2, (8.1) shows that bz = 1 for all z ∈ B. Thus, (ST)z = SzTz for S,
T ∈ L(A2) and z ∈ B. When z → x ∈ MA, the first member tends WOT to
(ST)x and each of the factors of the second member tends WOT to Sx and Tx ,
respectively. But since the product of two WOT-convergent nets is not necessarily
WOT-convergent, we could have (ST)x ≠ SxTx . Indeed, if Sf(z) = f(−z), it
is clear that (S2)x = Ix = I, but since SKz = K−z,

B(S)(z) = (1− |z|2)n+1〈K−z,Kz〉 = [(1− |z|2)/(1+ |z|2)]n+1,
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and Lemma 9.1 implies that Sx = 0 for every x ∈ MA \ B. However, since the
product of a WOT-convergent net by a SOT-convergent net is WOT-convergent,

Propositions 8.3 and 8.5 imply that if T ∈ L(A2) and S ∈ T2, then TzSz
WOT
------------------------------------------------------------------------------------------------------------------------------→

TxSx when z → x. In particular, (TS)x = TxSx in this case. Furthermore,
since T2 is a self-adjoint algebra, the above equality applied to the adjoints gives
(T∗S∗)x = (T∗)x(S∗)x for all x ∈ MA whenever T ∈ L(A2) and S ∈ T2. Now
taking adjoints we also get (ST)x = SxTx . Summing up,

(10.1) (Tx)∗ = (T∗)x, (TS)x = TxSx, and (ST)x = SxTx
for all x ∈ MA, T ∈ L(A2) and S ∈ T2. Also, observe that for any S ∈ L(A2),
‖Sz‖ = ‖S‖ for all z ∈ B, and since WOT limits in L(A2) do not increase the
norm, then ‖Sx‖ ≤ ‖S‖ for all x ∈MA.

Let K ∈ L(A2) be the ideal of compact operators. The Calkin algebra is the
C∗-algebra L(A2)/K. We shall denote by σ(S) the spectrum of S ∈ L(A2) and
by σe(S) the essential spectrum of S, which is defined as the spectrum of S+K in
L(A2)/K. The spectral radius of S ∈ L(A2) is r(S) = sup{|λ| : λ ∈ σ(S)}, and
its essential spectral radius is re(S) = sup{|λ| : λ ∈ σe(S)}. Theorem 9.3 can be
improved considerably when p = 2, as the next result shows.

Theorem 10.1. If S ∈ T2, then

(10.2) ‖S‖e = sup
x∈MA\B

‖Sx‖

and

(10.3) sup
x∈MA\B

r(Sx) ≤ lim
k→∞

(
sup

x∈MA\B
‖Skx‖1/k

)
= re(S),

with equality if S is essentially normal.

Proof. Let k be a positive integer. Since by (10.1) (Sx)k = (Sk)x , (9.2)
implies that

C−1/k
2 sup

x∈MA\B
‖(Sx)k‖1/k ≤ ‖Sk‖1/k

e ≤ C1/k
2 sup

x∈MA\B
‖(Sx)k‖1/k.

The equality in (10.3) follows by taking limits when k → ∞ and the inequality
holds because r(T) ≤ ‖Tk‖1/k for every operator T and k ≥ 1 (see [6, Theorem
2.38]). If S is essentially normal (i.e., SS∗ − S∗S is compact), then

SxS∗x − S∗x Sx = (SS∗ − S∗S)x = 0

for every x ∈ MA \ B. That is, Sx is normal, and consequently ‖(Sx)k‖1/k =
r(Sx) for every k ≥ 1 (see [6, Theorem 4.30]). Finally, applying (10.3) with
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equality to the self-adjoint operator S∗S, we get

∥∥S∥∥2
e = ‖S∗S‖e = re(S∗S) = sup

x∈MA\B
r(S∗x Sx)

= sup
x∈MA\B

‖S∗x Sx‖ = sup
x∈MA\B

‖Sx‖2,

proving (10.2). ❐

Corollary 10.2. Let R ∈ T2 be a self-adjoint operator and γ, δ ∈ R such that
γI ≤ Rx ≤ δI for every x ∈MA\B. Then given ε > 0 there is a compact self-adjoint
operator K such that (γ − ε)I ≤ R +K ≤ (δ+ ε)I.

Proof. Since γI ≤ Rx ≤ δI, then

−
(
δ− γ

2

)
I ≤ Rx −

(
δ+ γ

2

)
I ≤

(
δ− γ

2

)
I

for every x ∈ MA \ B. Since the spectral radius of a self-adjoint element in a C∗-
algebra coincides with its norm, Theorem 10.1 says that ‖R − (δ + γ)2−1I‖e ≤
(δ− γ)2−1, and consequently there is a compact operator K such that

‖R − (δ+ γ)2−1I +K‖ ≤ (δ− γ)2−1 + ε.

We can assume that K is self-adjoint by taking 2−1(K + K∗) instead of K. This
means that

−
(
δ− γ

2
+ ε

)
I ≤ R +K −

(
δ+ γ

2

)
I ≤

(
δ− γ

2
+ ε

)
I,

and the result follows by adding (δ + γ)2−1I to all the members of the
inequality. ❐

Theorem 10.3. Let S ∈ T2. The following statements are equivalent.
(1) λ 6∈ σe(S),
(2) λ 6∈ ⋃x∈MA\B σ(Sx) and supx∈MA\B ‖(Sx − λI)−1‖ <∞,
(3) there is γ > 0 depending only on λ, such that

‖(Sx − λI)f‖ ≥ γ‖f‖ and ‖(S∗x − λ̄I)f‖ ≥ γ‖f‖

for all f ∈ A2 and x ∈ MA \ B.

Proof. Replacing S by S − λI, there is no loss of generality if we assume
λ = 0. Suppose that 0 6∈ σe(S). This means that there is Q ∈ L(A2) such that
both QS − I and SQ − I are compact operators. Let x ∈ MA \ B. Since S ∈ T2,
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we have (SQ)x = SxQx and (QS)x = QxSx , and since Kx = 0 for K ∈ L(A2)
compact,

QxSx − I = 0 = SxQx − I.
Hence, Sx is invertible and Qx = (Sx)−1. So, ‖(Sx)−1‖ = ‖Qx‖ ≤ ‖Q‖ for every
x ∈MA \ B and (2) holds.

Now assume that (2) holds with λ = 0. Hence, Sx is invertible and there is
γ−1 > 0 such that

‖(S∗x )−1‖ = ‖(Sx)−1‖ ≤ γ−1 for all x ∈MA \ B.

Then γ−1‖Sxf‖ ≥ ‖S−1
x Sxf‖ = ‖f‖ for all f ∈ A2 and x ∈ MA \ B, and since

the same holds for S∗x , (3) follows.
Finally, suppose that (3) holds for λ = 0. Thus, ‖Sxf‖ ≥ γ‖f‖ for every

f ∈ A2 and x ∈ MA \ B, meaning that

γ2I ≤ S∗x Sx ≤ ‖S‖2I.

So, given ε, with 0 < ε < γ2, Corollary 10.2 tells us that there is a self-adjoint
compact operator K such that

(γ2 − ε)I ≤ S∗S + K ≤ (‖S‖2 + ε)I.

Since γ2 − ε > 0, S∗S + K is invertible, and consequently there is Q ∈ L(A2)
such that (QS∗)S + QK = I. This means that S + K is left-invertible in the
Calkin algebra. Since (3) also says that ‖S∗x f‖ ≥ γ‖f‖ for every f ∈ A2 and
x ∈MA \B, the above argument applied to S∗ gives that S∗ +K is left-invertible
in the Calkin algebra, or equivalently, that S +K is right-invertible in the Calkin
algebra. Therefore S +K is invertible in the Calkin algebra and 0 6∈ σe(S). ❐

Corollary 10.4. If S ∈ T2, then

⋃
x∈MA\B

σ(Sx) ⊂ σe(S),

with equality if S is essentially normal.

Proof. Suppose that 0 6∈ σe(S). It follows from Theorem 10.3 that Sx is
invertible and there is γ > 0 such that ‖(Sx)−1‖ ≤ γ−1 for every x ∈ MA \ B.
Thus

r((Sx)−1) ≤ ‖(Sx)−1‖ ≤ γ−1.

Since

(10.4) σ(Sx) = {ξ−1 : ξ ∈ σ((Sx)−1)},
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it follows that |ξ| ≥ γ for all ξ ∈ σ(Sx). This means that the open ball centered
at the origin of radius γ does not meet σ(Sx) for any x ∈ MA \ B. Therefore
0 6∈ ⋃x∈MA\B σ(Sx).

If S is essentially normal, Sx is normal for every x ∈ MA \ B. If

0 6∈
⋃

x∈MA\B
σ(Sx),

there is some γ > 0 such that the open ball of center 0 and radius γ does not
meet σ(Sx) for any x ∈ MA \ B. The spectral equality (10.4) then says that
r((Sx)−1) ≤ γ−1. Since (Sx)−1 is normal and the spectral radius of a normal
operator coincides with its norm, we have ‖(Sx)−1‖ ≤ γ−1. Theorem 10.3 then
says that 0 6∈ σe(S). ❐

For a general S ∈ L(A2) it could happen that none of the sets of the Corollary
is contained in the other, as our all-purpose counterexample shows. If Sf(z) =
f(−z), we saw that Sx = 0 for all x ∈ MA \ B, but σe(S) = {−1,1}.
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Department de Matemàtiques
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