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In a attempt to treat a supergravity as a tensor representation, the four-dimensional
N-extended quaternionic superspaces are constructed from the (diffeomorphyc) graded
extension of the ordinary Penrose-twistor formulation, performed in a previous work
of the authors [D. J . Cirilo-Lombardo and V. N. Pervushin, Int. J. Geom. Meth-
ods Mod. Phys., doi: http://dx.doi.org/10.1142/S0219887816501139.], with N = p + k.
These quaternionic superspaces have 4 + k(N − k) even-quaternionic coordinates and
4N odd-quaternionic coordinates, where each coordinate is a quaternion composed by
four C-fields (bosons and fermions respectively). The fields content as the dimensional-
ity (even and odd sectors) of these superspaces are given and exemplified by selected
physical cases. In this case, the number of fields of the supergravity is determined
by the number of components of the tensor representation of the four-dimensional
N-extended quaternionic superspaces. The role of tensorial central charges for any N
even USp(N) = Sp(N, HC) ∩ U(N, HC) is elucidated from this theoretical context.
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1. Introduction

In theoretical physics from long ago, there are an increment of the use of mod-
ern mathematical methods to treat several problems of diverse degrees of com-
plexity [9]. From the hydrodynamics and the mechanics of the continuous media,
passing for the quantum mechanics (QM), quantum field theory (QFT) and rel-
ativistic astrophysics, the correct description of the physical phenomena is based
in the application of the geometry and group theory. Between these methods, the

1750009-1

http://dx.doi.org/10.1142/S0219887817500098


2nd Reading

September 23, 2016 15:8 WSPC/S0219-8878 IJGMMP-J043 1750009

D. J. Cirilo-Lombardo & V. N. Pervushin

introduction of spinors constrained by conformal symmetries in order to map the
spacetime, have a particular importance in classical and quantum field theories.
For example, in classical mechanics, string theories and supersymmetrical exten-
sions of the spacetime, this construction (map) has been successfully introduced for
the description of different scenarios. Here, we introduce such “spinorial mapping”
(supertwistors) to describe the diverse superspaces. According with Penrose’s sug-
gestion, the spacetime continuum can be considered as a derivative construction
with respect to an underlying spinor structure. For instance, the spinor structure
contains the pre-images of the fundamental properties of the classical spacetime:
dimension, signature, connections, etc. These superspaces will be the basis of non-
linear realized unified theories containing the SM+GR that, with the help of a
super biquaternionic extension of the coordinates, the correct number of fields will
be reached.

2. Twistor Theory and Quaternionic Extension

As suggested by Penrose long ago [3], from the beginning in the twistor theory
the starting point a complex space CM ∼ C2,4(T ) by mean conformal spinors

tα = (ω
·
α, πα) with α = 1, 2 and a = 1, 2, 3, 4 as describing the prior geometry with

the complex Minkowski space coordinates usually denoted

z
·
αβ =

1
2
σ

·
αβ
µ zµ (1)

related with the twistors coordinates tα ⊂ T by the incidence equation

ω
·
α = iz

·
αβπβ (2)

that is in fact, a particular case of geometrical (in general harmonic) mapping.
Notice that (1) is directly a biquaternion, namely

z
·
αβ =

1
2
(σ

·
αβ
0 z0 + σ

·
αβ
1 z1 + σ

·
αβ
2 z2 + σ

·
αβ
3 z3), zµ ∈ C (3)

that have eight real dimensions and can be extended even more to 16 real dimen-
sional if each coordinate is quaternionic itself, namely

q
·
αβ =

1
2
(σ

·
αβ
0 q0 + σ

·
αβ
1 q1 + σ

·
αβ
2 q2 + σ

·
αβ
3 q3), qµ ∈ H. (4)

Now we can promote tα = (ω
·
α, πα) to fermionic quaternion, then a quaternionic

twistor is a quaternion with conformal spinors as coefficients. From (2), a point
in a CM space (in this case an element of H1(C)) defines a plane in T or a line
in CP (3). Consequently, the mapping (1) is a one-dimensional quaternionic one
(minimal map in H).
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2.1. Quaternionic conformal spinors

A four component spinor over a field K can be realized following the scheme.

Remark 1.

Majorana K = Rξ(x) (5)

Dirac K = Cψ(x) =
1√
2
(ξ1(x) + iξ2(x)) (6)

Quaternionic K = HΨ(x) =
1√
2
(ξ0(x) + îiξi(x)) (i = 1, 2, 3) (7)

Bi-Quaternionic K = HCΨ(x) =
1√
2
(ψ0(x) + îiψi(x)) (i = 1, 2, 3). (8)

Case 5 is an ordinary Majorana fermion realized over reals, Case 6 is the com-
plex realized Dirac one, Case 7 is the quaternionic Dirac field (ordinary fermionic-
quaternion) and Case 8 is a biquaternionic realized spinor where each coefficient is
a Dirac field. Case 8 is what we are interested in.

2.2. Quaternionic extension

In the quaternionic-twistor theory our starting point a quaternionic space HM ∼
H1,4(T ) implemented as CM × CM by mean quaternionic spinors tα = (ω

·
α, πα)

(with α = 1, 2 and a = 1, 2, 3, 4 and ω
·
α, πα ∈ H) as describing the prior geometry

with the quaternionic Minkowski space coordinates denoted

q
·
αβ =

1
2
σ

·
αβ
µ qµ (9)

related with the twistors coordinates tα ⊂ T by the quaternionic incidence equation

ω
·
α = iq

·
αβπβ (10)

we have now 16 real dimensions being each coordinate quaternionic

q
·
αβ =

1
2
(σ

·
αβ
0 q0 + σ

·
αβ
1 q1 + σ

·
αβ
2 q2 + σ

·
αβ
3 q3), qµ ∈ H (11)

being ω
·
α, πα ∈ H biquaternionic fermions of the form given by Case 8 (see [15] for

the simplest case with reality condition), namely Ψ(x) = 1√
2
(ψ0(x) + îiψi(x)) (i =

1, 2, 3), as we have pointed out before. As in the ordinary twistor case, we can
introduce a pair of nonparallel quaternionic twistors to determine the corresponding
“point” (really a R-subspace) q ∈ HM by solving the matrix equation

Q = −iΩΠ−1

→ q
·
αβ = −i (ω

·
α
1 π

β
2 − ω

·
α
2 π

β
1 )

πα
2 πα1

, (12)

where the matrices are Q = (q
·
αβ),Ω = (ω

·
α
1 , ω

·
α
2 ),Π = (πα1,πα2).
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As is easily seen, the HM coordinates are invariant under the transformations
in T as follows

Ω′ = XΩ, Π′ = XΠ (13)

with X ⊂ GL(2,H). Notice the important fact that the introduction of biquater-
nions (e.g. an almost complex structure) imply an underlying symplectic one.

3. Supergroups and Quaternionic Superframes

Some points to consider about complex graded vector spaces and quaternionic ones:

(i) For quaternions, the minimal dimension for its representation is 2 (e.g. SU(2)×
R1).

(ii) The corresponding complex graded vector space is consequently C2n;2m equiva-
lent to Hn;m due (i) with n quaternions with 4n complex commuting coefficients
(bosons) and 4m complex anticommuting coefficients (fermions).

3.1. Fundamental representations

As was commented somewhere for the simplest complex case [8] (see also [13]
for introduction to quaternionic structures in QFT), it is possible to introduce
(in the biquaternionic case) the following two fundamental representations of
SU(2, 2;N‖HC):

(a) Quaternionic supertwistors: [10]

T
(N)
A = (t1 . . . t4, ξ1 . . . ξN ) ⊂ T

(N)
HC

≡ H
4;N
C

(C8;2Nbiquaternionic extension of the Ferber construction). (14)

(b) Quaternionic fermionic supertwistors:

T̃
(N)
A = (η1 . . . η4, u1 . . . uN) ⊂ T̃

(N)
HC

≡ H
N ;4
C

(C2N ;8biquaternionic extension of the

Litov–Pervushin construction). (15)

For these two biquaternionic representations the following U(2, 2;N‖HC) scalar
products can be introduced:

〈T (N), T (N)′〉 = T
(N)

A GABT
(N)′
B (even)

〈T̃ (N), T̃ (N)′〉 = T̃
(N)

A GABT̃
(N)′
B (even)

〈T̃ (N), T (N)′〉 = 〈T (N), T̃ (N)′〉 = T̃
(N)

A GABT
(N)′
B

= T
(N)

A GABT̃
(N)′
B (odd : linear in fermionic coordinates),

where G(N)
AB is the U(2, 2;N‖HC) supermetric, schematically G

(N)
AB =

(
g 0

0 iIN

)
g is

symplectic and each entry is a quaternionic one (e.g a 2 × 2 block). Consequently,
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the supergroup U(2, 2;N‖HC) is defined as the set of graded 2(4 +N) × 2(4 +N)
matrices U ((4+N)×(4+N) biquaternionic matrices in the lowest H-representation)
satisfying the relation

∗UDAG
(N)
ABUBC = G

(N)
DC .

Let us to observe, in resume, the following points:

• (A) The graded quaternionic matrices U :

(i) Are described by four biquaternionic supertwistors and N biquaternionic
fermionic supertwistors.

(ii) Are represented with 2(4 + N) × 2(4 + N) matrices U ((4 +N) × (4 + N)
biquaternionic matrices in the lowest H-representation).

• (B) And the four biquaternionic supertwistors and N biquaternionic fermionic
supertwistors satisfy:

(i) 16 = 4 × 4 relations defining an arbitrary four frame in the biquaternionic
supertwistor space H

4;N
C

;
(ii) N × N biquaternionic relations defining an arbitrary N -frame in the

biquaternionic fermionic supertwistor space H
N ;N
C

;
(iii) 4N biquaternionic relations defining graded structure (orthogonality in some

cases) of the biquaternionic superframes in H
4;N
C

and H
N ;4
C

. Schematically
these structures are:(

4 × 4 4 ×N(H4,N
C

)

N × 4(HN,4
C

) N ×N(HN,N
C

)

)
.

• (C) And the most important is that the biquaternionic fields t, ξ, η, u (indexes
avoided) into the structures T (N)

A and T̃
(N)
A contain four spinors each one as

coefficients: e.g.

ta = e0t
0
a + eit

i
a, (16)

uN = e0u
0
N + eiu

i
N , (i = 1, 2, 3) (17)

etc. In consequence, the supergroup SU(2, 2;N |HC) describes all the super-
frames-(modulo a global phase factor) in T (N)

HC
= T

(N)
HC

⊕ T̃
(N)
HC

= H
4;N
C

⊕ H
N ;4
C

(Penrose notation), being the corresponding parametric equations describing the
respective coset written in T (N)

HC
.

4. Penrose Equations and Super-Quaternionic
Extension: The General Case

The quaternionic superspace coordinates are (N = p+ k)

HC(N,N − k) = (qµ, λ r
s , θ

α
s , θ

·
αr), (18)
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where in the general case, k(N − k) bosonic quaternionic coordinates describe the
internal symmetry coset U(N |HC)

U(N |HC)U(N−k |HC) and shall be called regular or Fueter-
analytic coordinates. The above quaternionic superspace coordinate can be deter-
mined in terms of two supertwistor and k fermionic supertwistors. This can be
achieved introducing the following graded matrices:

(i) The (2 + N − k) × (2 + k) quaternionic matrix describing the quaternionic
superspace coordinates

Q =

(
q

·
αβ θ

·
αr

θ β
s λ r

s

)
(19)

also the graded (2 +N − k) × (2 + k) quaternionic matrix

Ω =

(
ω

·
α
γ ρ

·
α
r

ςsγ usr

)
(20)

and the (2 + k) × (2 + k) quaternionic matrix

Π =

(
παγ σαr′

ξrγ vrr′

)
, (21)

where γ = 1, 2 is twistor index and r = 1, . . . , k, s = 1, . . . , N − k(N − k = p in
the Litov–Pervushin notation). Consequently, the superextension of the ordinary
twistor equations becomes to(

ω
·
α
γ ρ

·
α
r′

ςsγ usr′

)
=

(
q

·
αβπβγ + θ

·
αrξrγ q

·
αβσβr′ + θ

·
αrvrr′

θ β
s πβγ + λ r

s ξrγ θ β
s σβr′ + λ r

s vrr′

)
. (22)

Consequently, the reconstruction via twistors of the superspace namely

Q = −iΩΠ−1 (23)

using

Π−1 =

(
Aγβ Bγ′r

Cγβ Dr′r

)
, (24)

where

Aγβ = −(π−1)r′′γσr′′r′ [vr′β − ξβ
γ′(π−1)γ′′γ′

σ r′
γ′′ ]−1,

Bγ′r = −(ξ−1)r′′γ′
vr′′r′ [σrr′ − πrγ(ξ−1)γr′′′vr′′′r′

]−1,

Cr′β = [vr′β − ξβ
γ′(π−1)γ′′γ′

σ r′
γ′′ ]−1,

Dr′r = [σrr′ − πr
γ(ξ−1)γr′′′

v r′
r′′′ ]−1

(25)

carry explicitly to the following expressions in general form:

q
·
αβ = (−ω

·
α
γ(π−1)γ′γσγ′r′ + ρ

·
α
r′)[vr′β − ξβ

γ′(π−1)γ′′γ′
σ r′

γ′′ ]−1, (26)

θ
·
αr = (−ω

·
α
γ(ξ−1)γ′γvγ′r′ + ρ

·
α
r′)[σrr′ − πr

γ(ξ−1)γr′′′
v r′

r′′′ ]−1, (27)
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θ β
s = (−ςsγ(π−1)γ′γσγ′r′ + usr′)[vr′β − ξβ

γ′(π−1)γ′′γ′
σ r′

γ′′ ]−1, (28)

λ r
s = (−ςsγ(ξ−1)γ′γvγ′r′ + usr′)[σrr′ − πr

γ(ξ−1)γr′′′
v r′

r′′′ ]−1. (29)

5. The N = 4, K = 2 Superspace

This is the corresponding to the case p = q = 2(N = p+ q) in the Litov–Pervushin
notation [6]. Equations (23) and (24) describe for N = 4, k = 2 the supercoset

SU(2, 2; 4 | HC)

SU

(
2; 2︸︷︷︸

k

|HC

)
× SU

(
2; 2︸︷︷︸

N−k=p

| HC

), (30)

Q =


q

·
11 q

·
12 θ

·
11 θ

·
12

q
·
21 q

·
22 θ

·
21 θ

·
22

θ11 θ21 λ1
1 λ2

1

θ12 θ22 λ1
2 λ2

2

, (31)

Π =


π11 π12 σ11 σ12

π21 π22 σ21 σ22

ξ11 ξ12 v11 v12

ξ21 ξ22 v21 v22

, (32)

Ω =


ω

·
1
1 ω

·
1
2 ρ

·
1
1 ρ

·
1
2

ω
·
2
1 ω

·
2
2 ρ

·
2
1 ρ

·
2
2

ς11 ς12 u11 u12

ς12 ς22 u12 u22

, (33)

where γ = 1, 2 is twistor index r = 1, . . . , k, s = 1, . . . , N − k (N − k = p).
Explicitly

q
·
αβ = (−ω

·
α
1(π

−1)21σ2r′ + ω
·
α
2(π

−1)12σ1r′ + ρ
·
α
r′)

× [vr′β − ξβ
1(π

−1)21σ r′
2 + ξβ

2(π
−1)12σ r′

1 ]−1, (34)

θ
·
αr = (−ω

·
α
1(ξ

−1)21v2r′ + ω
·
α
2(ξ

−1)12v1r′ + ρ
·
α
r′)

× [σrr′ − πr
1(ξ

−1) r′′′
2 v r′

r′′′ + πr
2(ξ

−1) r′′′
1 v r′

r′′′ ]−1, (35)

θ β
s = (−ςs1(π−1)21σ2r′ + ςs2(π−1)12σ1r′ + usr′)

× [vr′β − ξβ
1(π

−1)21σ r′
2 + ξβ

2(π
−1)12σ r′

1 ]−1, (36)
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λ r
s = (−ςs1(ξ−1)21v2r′ + ςs2(ξ−1)12v1r′ + usr′)

× [σrr′ − πr
1(ξ

−1) r′′′
2 v r′

r′′′ + πr
2(ξ

−1) r′′′
1 v r′

r′′′ ]−1. (37)

Evidently, the above solutions are invariant under the arbitrary R ∈ GL(2; 2 |HC)
supertransformations (e.g.: superrotations) namely

Ω′ → ΩR, Π′ → ΠR (38)

with Ω and Π for N = 4, k = 2. We easily see that two biquaternionic supertwistors
and two biquaternionic fermionic supertwistors are described by 64 bosonic complex
coordinates (given by eighth bosonic biquaternions) and by 64 fermionic complex
coordinates (given by eighth fermionic biquaternions): one half of these coordinates
describes the N = 4, k = 2 biquaternionic superspace and the second half, however,
describes the GL(2; 2 |HC) degrees of freedom. Schematically, from the matrix Q,
each block describes faithfully the following supercoordinatesq ·

11 q
·
12

q
·
21 q

·
22

 → 2 × 4 × 4 = 32 bosonic fields, (39)

(
λ1

1 λ2
1

λ1
2 λ2

2

)
→ 2 × 4 × 4 = 32 bosonic fields, (40)

(
θ11 θ21

θ12 θ22

)
→ 2 × 4 × 4 = 32 fermionic fields, (41)

θ ·
11 θ

·
12

θ
·
21 θ

·
22

 → 2 × 4 × 4 = 32 fermionic fields. (42)

It is important to remark here that if the supermanifold described (spanned)
by two biquaternionic supertwistors : T (4)

1 T
(4)
2 and two biquaternionic fermionic

T̃
(4)
1 T̃

(4)
2 supertwistors is totally null or supergeodesic with respect to the norm of

SU(2, 2; 4, 4‖HC), namely

〈T (4)
1 , T

(4)
1 〉 = 〈T (4)

2 , T
(4)
2 〉 = 〈T̃ (4)

1 , T̃
(4)
1 〉 = 〈T̃ (4)

2 , T̃
(4)
2 〉 = 0 (43)

〈T (4)
1 , T

(4)
2 〉 = 〈T (4)

2 , T̃
(4)
1 〉 = 〈T (4)

1 , T̃
(4)
2 〉

= 〈T̃ (4)
1 , T

(4)
1 〉 = 〈T (4)

2 , T̃
(4)
2 〉 = 〈T̃ (4)

1 , T̃
(4)
2 〉 = 0 (44)

notice that this fact does not implies, in principle, a reality condition. However,
these conditions enforce a Majorana condition over the antidiagonal fermionic sec-
tors into the matrix Q.

Notice that the constraints (43) four bosonic complex variables can be elimi-
nated, and the constraints (44) two complex bosonic variables and four fermionic
ones can be eliminated. This counting evisently agrees with the restriction of
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biquaternionic superspace degrees of freedom of by the graded pseudohermiticity
condition given by construction.

6. The N = 8, k = 4 Superspace

This is the corresponding to the case p = q = 2 (N = p+ q) in the Litov–Pervushin
notation. Equations (23) and (24) describe for N = 8, k = 4 the supercoset

SU(2, 2; 8 | HC)

SU

(
2; 4︸︷︷︸

k

| HC

)
× SU

(
2; 4︸︷︷︸

N−k=p

| HC

), (45)

Q =



q
·
11 q

·
12 θ

·
11 θ

·
12 θ

·
13 θ

·
14

q
·
21 q

·
22 θ

·
21 θ

·
22 θ

·
23 θ

·
24

θ11 θ21 λ1
1 λ2

1 λ3
1 λ4

1

θ12 θ22 λ1
2 λ2

2 λ3
2 λ4

2

θ13 θ23 λ1
3 λ2

3 λ3
3 λ4

3

θ14 θ24 λ1
4 λ2

4 λ3
4 λ4

4


, (46)

Π =



π11 π12 σ11 σ12 σ13 σ14

π21 π22 σ21 σ22 σ23 σ24

ξ11 ξ12 v11 v12 v13 v14

ξ21 ξ22 v21 v22 v23 v24

ξ31 ξ32 v31 v32 v33 v34

ξ41 ξ42 v41 v42 v43 v44


, (47)

Ω =



ω
·
1
1 ω

·
1
2 ρ

·
1
1 ρ

·
1
2 ρ

·
1
3 ρ

·
1
4

ω
·
2
1 ω

·
2
2 ρ

·
2
1 ρ

·
2
2 ρ

·
2
3 ρ

·
2
4

ς11 ς12 u11 u12 u13 u14

ς21 ς22 u21 u22 u23 u24

ς31 ς32 u31 u32 u33 u34

ς41 ς42 u41 u42 u43 u44


, (48)

where γ = 1, 2 is twistor index r = 1, . . . , k, s = 1, . . . , N − k (N − k = p). This
case is very important to have the 64* dimensional sector to reproduce SU(3).

Evidently, the above solutions are invariant under the arbitrary R ∈
GL(2; 2 |HC) supertransformations (e.g.: superrotations) namely

Ω′ → ΩR, Π′ → ΠR (49)
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with Ω and Π given by (47, 48) with N = 8, k = 4. We easily see that two biquater-
nionic supertwistors and two biquaternionic fermionic supertwistors are described
by 64 bosonic complex coordinates (given by eighth bosonic biquaternions) and
by 64 fermionic complex coordinates (given by eighth fermionic biquaternions):
one half of these coordinates describes the N = 8, k = 4 biquaternionic super-
space and the second half, however, describes the GL(2; 2 |HC) degrees of freedom.
Schematically, from the matrix (46), each block describes faithfully the following
supercoordinates:q ·

11 q
·
12

q
·
21 q

·
22

 → 2 × 4 × 4 = 32 bosonic sector, (50)


λ1

1 λ2
1 λ3

1 λ3
1

λ1
2 λ2

2 λ3
2 λ3

2

λ1
3 λ2

3 λ3
3 λ3

3

λ1
4 λ2

4 λ3
4 λ4

4

 → 2 × 4 × 16 = 128 bosonic sector(internal “soul”),

(51)θ ·
11 θ

·
12 θ

·
13 θ

·
14

θ
·
21 θ

·
22 θ

·
23 θ

·
24

 → 2 × 4 × 8 = 64 fermionic sector, (52)


θ11 θ21

θ12 θ22

θ13 θ23

θ14 θ24

 → 2 × 4 × 8 = 64 fermionic sector. (53)

7. Discussion

As is well known, the knowledgement of the Casimir operators of any group is
important: they are needed for the classification of the irreducible representations
of the (extended supersymmetry) algebra. From the supersymmetic viewpoint,
they also can be used to find covariant equations of motion for superfields [7].
If there are not central charges, the maximal possible internal symmetry group
is U(N): in this case, a complete set of Casimirs operators are well know: P 2,

the square of the superspin vector and the corresponding super-Casimir extensions
for U(N).

In the general cases, was claimed that the central charges are needed being the
maximal possible internal group for any N even USp(N) = Sp(N,HC)∩U(N,HC),
however as we have shown, that if N = p+k with p, k �= 0 these central charges are
nothing more that the genereators associated to the tensorial representation (not
chiral or antichiral) given by the λ r

s parameters into the superspace matrix Q.
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8. Superfields and Coherent States

We know that the equation relating the B0 and B1 parts of the superspace in the
case of supertwistors can be in terms of quaternions into the form

(i) The fundamental representation can be decomposed, in principle, as in the
case of [6] as

U = t · h,

where h is an element of the maximal compact subgroup S(U(2m)× U(2n)) and t
of the corresponding coset space SU(2,2;k,N−k)

S(U(2,k)×U(2,N−k)) . Explicitly (see [5])

h = exp

[
i

(
χ 0

0 ε

)]
=

(
µ 0

0 υ

)
(56)

and

t = exp

[
i

(
0 ν

ν 0

)]
=

1√
1 −QQ†

(
I Q

Q† I

)
, (57)

where the parametrization is given by

QA
B =

[
tanh

√
νν√

νν
ν

]A

B

(58)

because the quaternionic supervariable transforms nonlinearly under SU(2, 2;
k,N − k)

Q→ αQ+ β

γQ+ δ
; α, β, γ, δ ∈ HC (59)

the superdisplacement operator is precisely

D = eη†Q†ξ†
e[η

† ln(1−QQ†)1/2η−ξ ln(1−QQ†)1/2ξ†]e−ξQη, (60)

where η and ξ are the quaternionic oscillator-like supertwistors of [6] (e.g.; super
quaternionic analog of the standard a and a† operators), namely

ξA = (ac,−ξi); ξA =

(
a†c
ξ†i

)}
2n+ 2q, (61)

ηM =

2m+2p︷ ︸︸ ︷
(b†m, η†l); ηM =

(
bm

ηl

)
, (62)

where we have defined

a†c =
1√
2
(λα + µ

·
α), (63)

bm = − 1√
2
(λα − µ

·
α). (64)
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9. Concluding Remarks

In this paper, we construct the four-dimensional N -extended quaternionic super-
spaces from the supersymmetric extension of the ordinary Penrose-twistor formu-
lation, with N = p+ k · (p = N − k).

These quaternionic superspaces have 4 + k(N − k) bosonic quaternionic coor-
dinates and 4N fermionic quaternionic coordinates, where each coordinate is a
quaternion composed by four fields (bosons and fermions respectively).

The superspace coordinates are determined in terms of two quaternionic super-
twistors corresponding to the fundamental Ferber’s representation and k quater-
nionic fermionic supertwistors corresponding to the Litov–Pervushin representation
as we show in a previous section.

The biquaternionic construction forN = 8, it is the more convenient to represent
the SM with N = 2k, being also possible the nonlinear realization of the symme-
tries. This fact is achieved due the (super) symplectic (almost complex) structure of
this construction conveniently extended to an even-orthogonal group O(2N). The
reason is fundamented by Ambrose–Singer theorem and extended Rothstein theo-
rem (R-C-L theorem see [11] and therein) that clearly relates the graded structure
of the tangent space and the field content of the realized physical theory e.g: GUT
containing the standard model.

Having into account the developments made here, in the next work [12], we will
perform the nonlinear realization for the N = 8 case to obtain GR+SM: [1, 2, 4].
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