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Abstract A classical field theory for a Schrödinger equation with a non-Hermitian Hamiltonian describing a particle
with position-dependent mass has been recently advanced by Nobre and Rego–Monteiro (NR) [Phys. Rev. A 88 (2013)
032105]. This field theory is based on a variational principle involving the wavefunction Ψ(x, t) and an auxiliary field
Φ(x, t). It is here shown that the relation between the dynamics of the auxiliary field Φ(x, t) and that of the original
wavefunction Ψ(x, t) is deeper than suggested by the NR approach. Indeed, we formulate a variational principle for the
aforementioned Schrödinger equation which is based solely on the wavefunction Ψ(x, t). A continuity equation for an
appropriately defined probability density, and the concomitant preservation of the norm, follows from this variational
principle via Noether’s theorem. Moreover, the norm-conservation law obtained by NR is reinterpreted as the preservation
of the inner product between pairs of solutions of the variable mass Schrödinger equation.

PACS numbers: 03.65.Ca, 03.65.Ge, 11.10.Ef
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A Schrödinger equation for a particle with an effective,
position-dependent mass has been recently introduced by
Costa Filho, Almeida, Farias, and Andrade (CAFA).[1]

This equation describes an interesting example of a quan-
tum system with a dynamics governed by a non-Hermitian
Hamiltonian, a subject that has attracted considerable
attention recently (see for instance Refs. [2–4] and ref-
erences therein). Another noticeable feature of the CAFA
equation is that it is related to a deformed displace-
ment operator, which has been found to be closely related
to the Morse potential.[5] The CAFA proposal provides
an intriguing alternative point of view on the dynamics
of quantum particles with position dependent mass (see
Refs. [6–9] and references therein for discussions on other
approaches).

A field theory leading to the CAFA equation has been
advanced by Rego–Monteiro and Nobre (RN).[10] This is
a potentially important endeavor because it provides fur-
ther support for the idea that it is possible to formulate
a consistent quantum dynamics based on non-Hermitian
Hamiltonians. In order to obtain the aforementioned
field theory, and the concomitant variational principle,
RN followed the procedure of introducing an auxiliary
field besides the wave function Ψ appearing in the CAFA
equation. This approach is well-known in mathematical

physics for the formulation of variational principles lead-
ing to non-Hamiltonian evolution equations such as, for in-
stance, the diffusion equation.[11] Motivated by their varia-
tional principle, RN also introduced a probability density,
involving both the wave function and the auxiliary field,
that satisfies a continuity equation.

The aim of our present contribution is to show that
there is no need for an auxiliary field in order to formulate
the variational principle for the CAFA equation. In fact,
as we shall presently see, there is a variational principle
for the CAFA equation involving solely the Ψ wave func-
tion and its complex conjugate, similarly to what occurs
with the standard Schrödinger equation. An appropriate
symmetry corresponding to this variational principle has
an associated Noether’s conserved current, leading to a
probability density continuity equation.

The CAFA equation governs the behavior of the wave
function Ψ corresponding to a quantum particle with a
position dependent effective mass given by,

me =
m

(1 + γx)2
, (1)

where m is a constant with dimensions of mass and γ a
constant with dimensions of inverse length. The CAFA
equation reads,

i~
∂Ψ(x, t)

∂t
= − ~

2

2m
D̂2

γΨ(x, t) + V (x)Ψ(x, t) , (2)

∗Corresponding author, E-mail: plastino@fisica.unlp.edu.ar

c© 2015 Chinese Physical Society and IOP Publishing Ltd

http://www.iop.org/EJ/journal/ctp http://ctp.itp.ac.cn



276 Communications in Theoretical Physics Vol. 63

where ~ stands for the Planck constant and the operator
D̂γ is,

D̂γ = (1 + γx)
d
dx

. (3)

The CAFA equation can be re-cast directly in terms of
the effective mass me,

i~
∂Ψ(x, t)

∂t
= − ~2

2me

∂2

∂x2
Ψ(x, t)− ~

2

2

[ d
dx

( 1
2me

)]

× ∂Ψ(x, t)
∂x

+ V (x)Ψ(x, t) . (4)

In order to obtain the CAFA equation from a varia-
tional principle, NR introduced the Lagrangian density,

L =
i~
2

Φ(x, t)∂tΨ(x, t)

+
~2

8

[ d
dx

( 1
me

)]
Φ(x, t)∂xΨ(x, t)

+
~2

4me
Φ(x, t)∂2

xΨ(x, t)

− 1
2
V (x)Ψ(x, t)Φ(x, t)

− i~
2

Φ∗(x, t)∂tΨ∗(x, t)

+
~2

8

[ d
dx

( 1
me

)]
Φ∗(x, t)∂xΨ∗(x, t)

+
~2

4me
Φ∗(x, t)∂2

xΨ∗(x, t)

− 1
2
V (x)Ψ∗(x, t)Φ∗(x, t) , (5)

involving the original wave function Ψ and an auxiliary
field Φ. In the above equation ∂x and ∂t are shorthand no-
tations for ∂/∂x and ∂/∂t, respectively. In this paper we
are going to use both notations, as well as the ∇-notation.

The action variational principle associated with the
Lagrangian density (5) leads to the CAFA equation (2),
together with a new differential equation governing the
evolution of the auxiliary field Φ. This last equation is,

−i~
∂Φ(x, t)

∂t
= − ~2

2me

∂2Φ(x, t)
∂x2

− 3~2γ(1 + γx)
2m

∂Φ(x, t)
∂x

− ~
2γ2

2m
Φ(x, t) + V (x)Φ(x, t) . (6)

As already mentioned, this kind of scheme involving an
auxiliary field provides a convenient way of formulating
action variational principles for evolution equations that
are not necessarily Hamiltonian or conservative (the aux-
iliary field is sometimes referred to as the “mirror-image”
variable or field[11]). As paradigmatic examples of this
approach we can mention, for instance, its application
to the damped harmonic oscillator, and to the diffusion
equation.[11] Variational principles obtained in this way

are of considerable practical value in order to obtain, on
the basis of an appropriate variational ansatz, approx-
imate solutions to the evolution equation under study.
From the fundamental point of view, however, these kind
of variational principles are not as satisfactory as those
based solely on the original field. The latter ones have
the desirable features of providing highly “compressed”
and economical descriptions of the system’s dynamics and
shedding light on the symmetries and conservation laws
satisfied by the concomitant evolution equations. It is
therefore of some interest to find out if the CAFA equa-
tion can be derived from a variational principle involving
only the wave function Ψ and its complex conjugate Ψ∗.
This is our purpose here. In order to answer the above
question in a transparent way it will prove convenient to
discuss an evolution equation slightly more general than
the CAFA one. Let us consider the evolution equation (in
N spatial dimensions),

i~
∂Ψ
∂t

= − ~
2

2m
g(x)∇[g(x)∇Ψ(x, t)] + V (x)Ψ(x, t) , (7)

where x ∈ RN , and ∇ = (∂/∂x1, . . . , ∂/∂xN) is the N -
dimensional ∇-operator. In the one-dimensional case with

g(x) = 1 + γx , (8)

we recover the CAFA equation as a particular instance of
Eq. (7). We now introduce the Lagrangian density,

L =
i~

g(x)
Ψ∗(x, t)

∂Ψ(x, t)
∂t

− ~2

2m
g(x)(∇Ψ∗(x, t)) · (∇Ψ(x, t))

− 1
g(x)

V (x)Ψ∗(x, t)Ψ(x, t) . (9)

The action variational principle associated with the La-
grangian (9) reads,

δ

∫ t2

t1

dt
[ ∫

LdNx
]

= 0 , (10)

which leads to,

δ

∫ t2

t1

dt
{∫

δΨ∗
[ i~
g(x)

∂Ψ
∂t

+
~2

2m
∇[g(x)∇Ψ]− 1

g(x)
V Ψ

]

+ δΨ
[
− i~

g(x)
∂Ψ∗

∂t
+
~2

2m
∇

[
g(x)∇Ψ∗− 1

g(x)
V Ψ∗

]]}
dNx

= 0 . (11)

Defining now,

C(x, t) =
i~

g(x)
∂Ψ
∂t

+
~2

2m
∇[g(x)∇Ψ]− 1

g(x)
V Ψ, (12)

we obtain,

δ

∫
dt

{∫
δΨ∗(x, t)C(x, t) + δΨ(x, t)C∗(x, t)

}
dNx=0.(13)

Writing Ψ and C explicitly in terms of their real and imag-
inary parts,

Ψ(x, t) = Ψr(x, t) + iΨi(x, t) , (14)
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C(x, t) = Cr(x, t) + iCi(x, t) , (15)

we can re-cast the variational principle (13) in the form,

2δ

∫
dt

{∫
δΨr(x, t)Cr(x, t)− δΨi(x, t)Ci(x, t)

}
dNx

= 0 . (16)

Now, taking into account that an arbitrary variation δΨ of
the complex wave function Ψ is tantamount to arbitrary
and independent variations of its real and imaginary parts,
one obtains from Eq. (16) that

Cr(x, t) = Ci(x, t) = 0 , (17)

meaning that,

i~
g(x)

∂Ψ
∂t

+
~2

2m
∇[g(x)∇Ψ]− 1

g(x)
V Ψ = 0 , (18)

which (after multiplying both members of Eq. (18) by
g(x)) yields precisely Eq. (7). The evolution equation (18)
can of course be obtained also by the conventional proce-
dure of regarding the wave function Ψ and its complex
conjugate Ψ∗ as independent fields when implementing
the variational principle associated with the Lagrangian,

L(Ψ, ∂tΨ, ∂x1Ψ, . . . , ∂xN
Ψ,Ψ∗, ∂tΨ∗, ∂x1Ψ

∗, . . . , ∂xN
Ψ∗) , (19)

given by Eq. (9). In that case, Eq. (18) and its complex conjugate are equivalent, respectively, to the Euler–Lagrange
equations derived from the Lagrangian (9),

∂

∂t

( ∂L
∂(∂tΨ∗)

)
+

[ N∑

i=1

∂

∂xi

( ∂L
∂(∂xiΨ∗)

)]
− ∂L

∂Ψ∗
= 0 ,

∂

∂t

( ∂L
∂(∂tΨ)

)
+

[ N∑

i=1

∂

∂xi

( ∂L
∂(∂xiΨ)

)]
− ∂L

∂Ψ
= 0 . (20)

Our previous procedure of explicitly considering indepen-
dent variations of the real and the imaginary parts of Ψ
was followed in order to emphasize that the complex con-
jugate wave function Ψ∗ appearing in the Lagrangian (9)
does not play the role of an independent “auxiliary field”
(in the sense of NR).

The Lagrangian density (9) is invariant under the
transformation

Ψ(x, t) → Λ(x, t) = e iθΨ(x, t) ,

Ψ∗(x, t) → Λ∗(x, t) = e−iθΨ∗(x, t) , (21)

characterized by the continuous, real parameter θ. Follow-
ing a standard procedure[12−13] one can verify that this
symmetry has an associated Noether conserved current
leading to the continuity equation,

∂

∂t

[ ∂L
∂(∂tΨ)

(∂Λ
∂θ

)
θ=0

]

+
N∑

i=1

∂

∂xi

[ ∂L
∂(∂xi

Ψ)

(∂Λ
∂θ

)
θ=0

]

+
∂

∂t

[ ∂L
∂(∂tΨ∗)

(∂Λ∗

∂θ

)
θ=0

]

+
N∑

i=1

∂

∂xi

[ ∂L
∂(∂xi

Ψ∗)

(∂Λ∗

∂θ

)
θ=0

]
= 0 . (22)

Defining now,

ρ =
1
g
ΨΨ∗ =

|Ψ|2
g

, J =
i~
2m

g[Ψ∇Ψ∗ −Ψ∗∇Ψ] , (23)

the continuity equation (22) can be re-written explicitly
in terms of a density ρ and a density current J , adopting
the standard form,

∂ρ

∂t
+∇ · J = 0 . (24)

As a consequence of Eq. (24) we obtain the preservation
of the norm,

d
dt

∫
ρdNx =

d
dt

∫
1

g(x)
Ψ(x, t)Ψ∗(x, t)dNx = 0 . (25)

Now, in order to clarify the meaning of the variational
principle proposed by NR, let us consider the Lagrangian
density,

L =
i~

g(x)
Ψ̃∗(x, t)

∂Ψ(x, t)
∂t

− ~2

2m
g(x)(∇Ψ̃∗(x, t)) · (∇Ψ(x, t))

− 1
g(x)

V (x)Ψ̃∗(x, t)Ψ(x, t) , (26)

which is obtained by replacing in Eq. (9) the complex con-
jugate Ψ∗ of the wave function Ψ by the complex conju-
gate Ψ̃∗ of the new field Ψ̃, independent of Ψ. The Euler–
Lagrange equations corresponding to the Lagrangian (26)
lead again to the evolution equation (7) for Ψ, and to an
evolution equation for Ψ̃∗ which, after complex conjuga-
tion, has exactly the form (7). That is, Ψ and Ψ̃ evolve
according to the same Schrödinger equation. Now, the
Lagrangian (26) is invariant under the transformation,

Ψ(x, t) → e iθΨ(x, t) , Ψ̃(x, t) → e iθΨ̃(x, t) . (27)

The conserved Noether current associated with the above
symmetry leads to the continuity-like equation,

∂P

∂t
+∇ ·K = 0 . (28)

where

P = (1/g(x))ΨΨ̃∗, K =
i~
2m

g(x)[Ψ∇Ψ̃∗ − Ψ̃∗∇Ψ] . (29)

Equation (28), in turn, yields,
d
dt

∫
1

g(x)
Ψ̃∗(x, t)Ψ(x, t)dNx = 0 . (30)
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That is, the quantity∫
1

g(x)
Ψ̃∗(x, t)Ψ(x, t)dNx , (31)

which can be interpreted as an inner product between two
time-dependent solutions of Eq. (7), is conserved under
the concomitant dynamics.

After the identification,

Ψ̃∗ → g(x)Φ , (32)

it is plain that, in the particular case of one spatial di-
mension and g given by Eq. (8), the variational principle
associated with the Lagrangian (26) is equivalent to the
one proposed by NR, which is derived from the Lagrangian
(5). In terms of the identification (32), the conserved norm
found by NR is,

1
2

∫
1

g(x)
(Ψ̃∗(x, t)Ψ(x, t) + Ψ̃(x, t)Ψ∗(x, t))dx , (33)

which turns out to be the real part of the (conserved) in-
ner product between two different solutions of the CAFA
equation. In the limit γ → 0 we have g → 1, the
CAFA equation reduces to the standard (constant mass)

Schrödinger equation, and the conserved norm found by
NR reduces to the real part of the inner product between
two time-dependent solutions of the usual Schrödinger
equation.

Summing up, we have shown that the CAFA Schrö-
dinger equation for a particle with an effective position-
dependent mass can be derived from a variational princi-
ple involving only the wave function Ψ and its complex
conjugate Ψ∗, with no need of introducing an auxiliary
field. This variational principle leads, via Noether’s theo-
rem, to a conserved Noether current, and to the concomi-
tant conservation of an appropriately defined norm. The
auxiliary field appearing in the variational principle pro-
posed by NR is itself, via the identification (32), closely
related to a time-dependent solution of the CAFA equa-
tion. Consequently, the NR variational principle can be
re-cast in terms of two independent solutions of the same
equation: the CAFA one. Moreover, the conserved norm
found by NR turns out to be the real part of the (also con-
served) inner product between two solutions of the CAFA
equation.
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[6] J.M. Lévy-Leblond, Phys. Rev. A 52 (1995) 1845.

[7] A.R. Plastino, A. Rigo, M. Casas, F. Garcias, and A.
Plastino, Phys. Rev. A 60 (1999) 4318.

[8] A.D. Alhaidari, H. Bahlouli, A. Al-Hasan, and M.S. Ab-
delmonem, Phys. Rev. A 75 (2007) 062711.

[9] S.H. Mazharimousavi, Phys. Rev. A 85 (2012) 034102.

[10] M.A. Rego-Monteiro and F.D. Nobre, Phys. Rev. A 88
(2013) 032105.

[11] P.M. Morse and H. Feshbach, Methods of Theoretical
Physics, Part I, McGraw-Hill, New York (1953)

[12] H. Goldstein, C.P. Poole, and J.L. Safko, Classical Me-
chanics, 3rd Edition, Addison Wesley, New York (2001).

[13] C. Itzykson and J.B. Zuber, Quantum Field Theory,

Dover, New York (2006).


