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A B S T R A C T   

PredictingTreeGrowth is free and open-source application software written in Python 3.7 that allows easy and 
fast development of predictive models using the Recurrent Neural Network (RNN)/Long Short-Term Memory 
(LSTM) framework. RNNs have an upgraded architecture able to capture tree growth mechanisms related to time 
ordering and size dependence. The motivation for this App is to demystify the use of Machine Learning algo-
rithms and allow accessibility of Machine Learning algorithms by the scientific community. Its simple graphical 
user interface (GUI) provides straightforward tools for building predictive models with the RNN algorithm.   

1. Introduction 

1.1. A machine learning approach to modelling individual tree growth 

The most common approach to modelling individual tree growth is 
statistical data modelling, such as regression models. Regression models 
produce a coherent and straightforward picture of predictors and 
response variables relationship. Nevertheless, tree growth features time 
ordering and size dependence that these models may not be flexible 
enough to capture, reducing their predictive performance (Vanclay, 
1994). The previous year’s weather influences the current year’s growth 
of tree species (Speer, 2010). Previous year’s level of carbon dioxide, 
heat and rainfall determine leaves and roots production, which in the 
following year, produce new leaves and roots (Pallardy, 2008). 
Furthermore, adding the right polynomials to account for nonlinear 
relationship between local site, weather, and competition can be diffi-
cult and time-consuming. 

Modelling with Machine Learning (ML) algorithms may require some 
a priori assumption about data format but ML algorithms are flexible 

enough to learn tree growth while dispensing many statistical assump-
tions, such as homogeneity of variance, independence of observations 
and normal distribution of errors (Ramasubramanian & Singh, 2017). 
One advantage over statistical data modelling is considering predictors 
and response variables relationship as complex and unknown, rather 
than a pre-established function (i.e. linear or logistic; Figure 1).. First, 
ML algorithms explore all functions that can potentially fit an observed 
training dataset and then find a target function that best maps the 
predictor-response relationship (Breiman, 2001;Supplementary File 1). 
Modelling with ML algorithms is a new approach to developing 
advanced individual tree growth models with superior predictive 
performance. 

Among all ML algorithms currently available, Artificial Neural 
Network (ANN), is an information processing system that imitates 
human brain’s ability to recognize, associate and generalize patterns 
(Haykin, 1999). It consists of input, hidden, and output layers of artifi-
cial neurons called nodes (Figure 1). Similar to what occurs in a brain, 
signals of excitation or inhibition propagate through the interconnected 
nodes. Learning happens by adjusting the strength of connections 
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between nodes, known as weights (Smith, 1997). ANN adjustments in-
crease or decrease weight values, and thus the algorithm learns a task 
without any pre-specified rule. 

ANN and some other ML algorithms have already been applied in 
Forestry research, but their use is limited to specific research designs. 
For instance, (Wu et al. 2007) described an ANN algorithm that iden-
tifies 32 plants by recognizing patterns in leaf structure with accuracy 
greater than 90% (Thuiller 2003). evaluated the performance of four 
modelling techniques (Linear, Generalized Additive Models, Regression 
Tree analysis and Artificial Neural Networks) in predicting the distri-
bution of 61 tree species in Europe, and ANN demonstrate higher area 
under the curve (AUC) mean value on evaluation data compared to 
Generalized Linear Models and Generalized Additive Models. (Garzón 
et al. 2006) compared the performance of ANN and two other ML al-
gorithms (Tree-Based Classification and Random Forest) to forecast the 
potential areas of distribution of Pinus sylvestris as well as of 20 other 
species throughout the whole Iberian Peninsula, with the resultant map 
demonstrating a loss of Mediterranean forests (Garzón et al., 2008). 
Therefore, a knowledge gap remains as to how to utilize ML algorithms 
to model individual tree growth, and so we framed individual tree 
growth prediction as a ML task and developed an algorithm that auto-
mates modelling. 

1.2. Individual tree growth modelling as a computer task: choosing the 
most appropriate ANN architecture and building models 

Recurrent Neural Network (RNN) is well suited to capture tree 
growth mechanisms related to time ordering and size dependence. RNN 
contains a recurrent hidden state whose activation at each time is 
dependent on that of the previous time (Mandic & Chambers, 2001). The 
combination of current input (Xt) with the previous output (Yt-1) is what 
controls the new output (Yt). The algorithm calculates the error between 
ANN output and input values with respect to hidden nodes’ weights 
(Figure 1). That error valueis used to adjust weights up or down, 
depending on which direction it is reduced (Rashid, 2013). Once pro-
ducing a final output, it is saved and looped back into the network (Gulli 
& Pal, 2017). The algorithm then calculates the error for each time step 
and automatically updates the weights. RNN algorithms learn how 
previous outputs affect new outputs by providing the order of error 
calculation. The rectified linear unit (ReLU) activation function, defined 
as y = max(0,x), accounts for nonlinear relationship between input and 

output variables (Nwankpa et al., 2018). Final model then has weights 
setting error to a global minimum. 

2. Implementation and availability 

PredictingTreeGrowth is free and open-source simulation software, 
written in Python 3.7 using Keras application programming interface 
(Chollet, 2015) and designed to run in Microsoft Windows operating 
systems. Graphical user interface provides tools for building predictive 
models with the RNN algorithm (Figure 2). The prototype version 
(available at https://github.com/jgsmagalhaes/PredictTreeGrowth.git) 
simulates individual tree growth. The main requirement is observations 
in a multivariate time series format. 

3. Use case 

We trained individual tree growth models for two endemic trees 
species of the temperate forests of Argentine Patagonia, Nothofagus 
dombeyi and Nothofagus pumilio. The study area encompasses 5.8 hect-
ares of mixed and pure stands growing in the Castaño Overa Valley at the 
Nahuel Huapi National Park, Rio Negro Province, Argentina (Bianchi 
et al., 2016). The RNN algorithm learned growth patterns from 61 target 
trees, 21 N. dombeyi and 40 N. pumilio. In 2017, we used dendrochro-
nological techniques to reconstruct N. dombeyi and N. pumilio radial 
growth patterns. Individual tree annual growth measured basal area 
increment (BAI), the annual increase in stem area expressed in mm2. The 
App prototype version allows splitting the observed dataset by year or 
tree. For this modeling exercise, we divided the BAI series by year with 
training set of 30 years (1980 – 2009) and testing set of 6 years (2010 – 
2015). A 30-year period of training indicated to the RNN algorithm the 
climatic conditions those species were exposed to, essential information 
to understanding current and to predict future growth. This is a typical 
multivariate time series predictive problem that we turned into a ma-
chine learning task. The RNN algorithm goal was to find a set of pa-
rameters that in year (t) and for each individual tree (j) could accurately 
estimate basal area growth as a nonlinear relationship between the ef-
fects of local site, weather conditions, and competition. We trained 
complete (1 to 3) and simple (4 to 6) model types. Within each type, we 
trained models without competition (1 and 4), with total competition (2 
and 5) and with explicit competition indices calculated from each spe-
cies (3 and 6) (Table 1). 

Fig. 1. Illustrative representation of the Artificial Neural Network (ANN) learning process. A) ANN architecture encompasses three layers: input, hidden and output. 
Input nodes feed the network with independent variable values. In the hidden layer, those values are weighted depending on the connection strength between nodes. 
In this example, all nodes are fully connected to the previous layer’s nodes. B) In hidden and output nodes, a two-step computation occurs: first, all input values are 
weighted (w), and a bias (b) term is added. After, an activation function (a) transforms the sum value of weighted input variables and bias (Z= w ∗x+b) into a limited 
range. The output node’s results are the network’s final output. Adapted from Smith (1997). 
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To train all six models, we first indicated dataset file’s locations as 
well as training and testing scripts. After, we specified model architec-
ture according to the grid-search results (batch size of 2, Adam opti-
mizer, learning rate of 0.001 and three neurons in the hidden layer) 

further explained on Supplementary File 2. We also specified starting 
years for training (1980) and testing (2009). Finally, we indicated the 
inputs for each model, and then started the RNN algorithm training 
process. The algorithm kept species separated and trained the model by 
adjusting weight parameters to each individual tree. Total computation 
time was on average of two minutes per model. Example of model 
configuration output for one individual tree is available on Supple-
mentary File 3. 

3.1. Visualizing the RNN algorithm learning process 

The App gathers training and testing history and tracks the root mean 
squared error (RMSE), the mean squared error (MSE) and coefficient of 
correlation (r) metrics. That information is stored in training_results.csv 
file inside results folder. That file should generate diagnostic plots, 
graphical representations of algorithm learning process displaying 
learning curves, loss function after each epoch, one forward-backward 
pass of all training samples. In predictive tasks, train and test learning 
curves’ position, shape and trend can indicate two undesirable algo-
rithm behaviours: underfitting and overfitting. Eventually, both be-
haviours lead to poor model generalization. 

3.2. Interpreting the RNN algorithm learning process 

Trying different hyperparameter configurations is essential in 
finding a model that fits the training data better and generalizes the 
testing data well. For this modeling exercise, observed dataset is small 
and we allowed a long learning process which ultimately favoured an 
overfitting behavior of the algorithm. Overfitting is depicted in Sup-
plementary File 4 when the RNN algorithm learning process reaches 100 
epochs. High epochs imply that training data is excessively passing 
through the algorithm’s computational graph so, it memorized rather 
than learned relevant patterns in the training data. 

Fig. 2. Predicting Tree Growth application software interface showing tools for individual tree growth modeling with the Recurrent Neural Network algorithm. Its 
interface has three components. 1) Locations loads different hyperparameters, identifies the dataset and output files’ path, saves the best model and runs a saved 
model (Choose Predictions Script Directory). Because this is a prototype version, it is possible to test a different script with the button Choose Training Script File. 2) 
Inputs has an area for empirical testing of models. The user can select inputs and hyperparameters controlling the RNN algorithm learning process. 3) Actions is 
necessary when using the App for the first time to set up the environment in which the RNN algorithm learning process will run. For instance, Set-up the environment 
installs dependencies, such as Keras (Chollet, 2015), SciKit (Pedregosa et al., 2011), Pandas (McKinney, 2011), Numpy (Oliphant, 2006; Van Der Walt, Colbert & 
Varoquaux, 2011), and Tensorflow (Abadi et al., 2016). Next, the Run training trains the algorithm. Once the optimal model is found, weight parameters must be 
saved (Save Parameters), and that model can later be used to make predictions on a new dataset (Run Prediction). 

Table 1 
List of models trained in this modeling exercise  

Model Output (Dependent 
variable) 

Input (Independent variables) 

(1) BAItj = BAI(t− 1)j + A+ E+ S+ Bamboo+ MAP+

MAT 
(2) BAItj = BAI(t− 1)j + A+ E+ S+ Bamboo+ CT+

MAP+ MAT 
(3) BAItj = BAI(t− 1)j + A+ E+ S+ Bamboo+ CCO+

CLE+ MAP+ MAT 
(4) BAItj = BAI(t− 1)j + MAP+ MAT 
(5) BAItj = BAI(t− 1)j + CT+ MAP+ MAT 
(6) BAItj = BAI(t− 1)j + CCO+ CLE+ MAP+ MAT 

BAItj is basal area increment in mm2, t is year, j is target tree number, A is aspect 
in degrees, E is elevation in meters above the sea level (m.a.s.l.), S is slope in 
degrees, MAP is mean annual precipitation in millimetres, MAT is mean annual 
temperature in Celsius degrees, CT is total competition index (CT = CCO +
CLE), CCO is competition from N. dombeyi neighbouring trees whereas CLE is 
from N. pumilio. Competition is the distant-dependent index from Martin and Ek 

(1984):Cij =
∑n

i=1

i∕=j

di

dj
× e− [16×distij/di+dj ], where n is the total number of com-

petitors, di is the diameter of competitor i, dj is the diameter of target tree j and 
distij is the distance between competitor i and target tree j. The understory of 
mixed stands is typically of bamboo (Chusquea sp.), so we included it as a binary 
variable (0 = absent and 1 = present) because of its negative influence on 
development of Nothofagus species in Northern Patagonia (Veblen et al., 1982; 
Donoso, 1993).  
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Considering that the amount of training data is limited, it was 
already expected that 100 epochs would make the RNN algorithm 
overfit. Nevertheless, training with increasing epochs is necessary to 
help evaluate the most appropriate epoch. It is not possible to visualize a 
learning improvement after 25 epochs because test and train learning 
curves are flat. Thus, 50-epoch also caused overfitting. To choose the 
appropriate epoch, it is essential to observe the metrics displayed in 
Table 2. Although RMSE values were smaller for models trained with 50 
epochs, 30-epoch models featured higher increase in the coefficient of 
determination (R2) values from training to testing dataset. That increase 
in R2 values indicated that 30-epoch models generalize better. 

3.3. Evaluating the quality of RNN individual tree growth model fit 

We visually evaluated the quality of all RNN models fit (Supple-
mentary File 5 and 6). Among all 30-epoch trained models, model 6 
demonstrated the best fit. Models that included the effects of site and 
bamboo (Models 1, 2 and 3) were less accurate, even though the algo-
rithm considered those effects to predict BAI. The App applies a fully 
connected layer, with each hidden neuron connected to every input 
neuron, and so each connection has a weight. When adjusting weights, 
the algorithm did not drop any input representing site and bamboo ef-
fects, as it usually happens to insignificant variables in statistical data 
modelling. Since algorithmic modelling considers the training data as 
true, it is possible that the algorithm recognized aspect, elevation, slope 
and bamboo, as good predictors of BAI (Breiman, 2001). Models that 
included the effects of climate (Model 4) as well as weather and 
competition (Model 5 and 6) were more accurate in predicting BAI, 
despite an overall overestimating trend as BAI values increased. Usually 
tree species have higher increment growth with greater precipitation, 
but that growth differs among individual trees depending on their size 
and competition (Zhang et al., 2017; Żywiec et al., 2017). Thus, pre-
senting to the algorithm a training dataset with BAI values highly 
dispersed along the 36-year period might have affected its robustness 
when predicting growth of large trees. 

Based on Model 6 results, representing competition with explicit 
indices increased model accuracy. In mixed species stands, trees 
demonstrate intraspecific and interspecific competition. Since species 
differ in their competitive behavior, both above and belowground, 
identification of competitors’ species is important to make realistic 
simulations of individual tree growth (Bella, 1971; Zhao et al., 2006; 
Maleki, Kiviste & Korjus, 2015). 

Results from the RNN models did not allow speculation about a 
negative competition effect on BAI. Higher predictive performance of 
models 5 and 6 reaffirms necessity of competition and weather inputs to 
predict BAI. Nevertheless, it is necessary a thorough investigation of 
weights to conclude about the direction of relationship between inputs 
(site, weather conditions, and competition) and BAI. For instance, in 
feedforward networks, the Neural Interpretation Diagram (NID) sug-
gested by Ӧzesmi and Ӧzesmi (1999) illustrates magnitude and math-
ematical sign of each weight by line thickness and shades, respectively, 
allowing inferences about individual and interacting inputs’ effect on 
the predicted output. The larger are the weights, the greater is the in-
tensity of signal transfer, and so the more important is that input to 
predict the output. 

The App allowed visualizing the weights estimated during the RNN 
algorithm process of learning to predict BAI, as listed in Supplementary 
File 3. However, tracking the weights associated with each input is 
difficult in fully connected RNNs. It was possible to visualize weights’ 
value and sign for the first hidden layer but after that weights are a 
combination of previous layer. RNNs contain large number of weights 
and utilize repeated transformations under time-varying conditions that 
constrain extracting information about inputs-output relationship with 
that NID method. Nevertheless, the algorithm considered all types of 
interactions during the 36-year period of this modeling exercise. Trees’ 
interactions were predominantly beneficial (mutualism) or with one 

individual having advantage over the others (competition). Even so, the 
predominant type of interaction assumed in this modeling exercise was 
competition because changes in weather conditions modify growth re-
sources availability. Therefore, speculations about of N. dombeyi and 
N. pumilio under a warmer climate scenario should be based on negative 
influence that competition has on individual tree growth. 

Conclusion 

The App introduces RNN algorithms as new modelling technique, a 
methodological contribution to current generation of advanced models 
that help researchers excel in individual tree growth prediction. Lack of 
big datasets does not constrain its use. Nevertheless, the amount of 
training data can limit model goodness of fit. The RNN algorithm learns 
by induction. It can only capture information about tree growth when 
there is relevant information in the training data. Hence, special atten-
tion should be given to the training data, in both quantity and quality, to 
allow highest predictive performance. 

Identification of the optimal RNN tree growth model requires 
interpretability, and ML models are considered complex systems. 
However, most of the complexity comes, in fact, from the data rather 
than the algorithms’ lines of code. To improve quality and reliability of 
ML models generated by the App, it is necessary to understand algo-
rithmic modelling weakness and what reasons induce failing, such as the 
close relation among bias and variance errors with model complexity. 

In sum, adding more parameters and extending the learning process 
can counterbalance underfitting. Ideally, the optimal RNN model should 
maximize accuracy of tree growth predictions. It is crucial to provide 
training samples with relevant information about tree growth mecha-
nisms. Modellers should then strike a balance between high bias error 
(underfitting) and high variance error (overfitting) to achieve optimal 
generalization. Although perfect balance of those errors cannot be 
determined a priori because it depends on the algorithm’s task, inter-
preting algorithm learning process and understanding source of errors 
can help handle that bias and variance trade-off. 
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