Application of exterior calculus to waveguides
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Exterior calculus is a powerful tool for finding solutions to the electromagnetic field equations. Its
strength can be better appreciated when applied to nontrivial configurations. We show how to
exploit this tool to obtain the TM and TE modes in hollow cylindrical waveguides. The use of
exterior calculus and Lorentz boosts leads straightforwardly to the solutions and their respective
power transmitted along the waveguide. © 2010 American Association of Physics Teachers.
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L. INTRODUCTION

Although most textbooks devoted to exterior calculus for
physicists  discuss  some  basic  applications  to
electromagnetism,l_4 none stresses the power of this lan-
guage by applying it to Maxwell equations in waveguides
and cavities. However, the application of relativity and exte-
rior calculus in this context allows for a concise presentation
of the subject and an easier way of determining the field
configurations, which highlights the power of exterior calcu-
lus as a practical tool for solving difficult problems. Instead,
the vector language, which is commonly used to treat the
field configurations in waveguides (however, see Ref. 5), is
not a natural language for electromagnetism, and thus the
vector approach tends to be tedious. Frequently, the lack of
an appropriate geometric language limits the derivation to a
simple case such as a waveguide with a rectangular or circu-
lar cross-section (however, see Ref. 6).

In this paper we employ exterior calculus to treat propa-
gating waves in hollow cylindrical waveguides of arbitrary
cross-section. We start with TM (TE) (nonpropagating) sta-
tionary modes, whose field structure is an electric (magnetic)
field along the waveguide and a magnetic (electric) field per-
pendicular to the waveguide. We turn these stationary solu-
tions into propagating solutions by performing a Lorentz
boost along the waveguide. Finally we calculate the transmit-
ted power and emphasize its relativistic relation to the energy
per unit length in the waveguide. The use of exterior deriva-
tives, Hodge dualities, and the generalized Stokes theorem
will provide a straightforward way for finding the solutions
because all the vector equations become just one equation in
the geometric language, which will show the power of this
tool.

II. A BRIEF REVIEW OF EXTERIOR CALCULUS

Exterior calculus is the natural language for
electrodynamics.7’8 Developments in  Hamiltonian
mechanics,4‘9 thermodynamics.,l’4 Yang—Mills ﬁelds,lo‘11 geo-
metric (Berry) phases in quantum mechanics, - topological
quantum fields such as the Chern—Simons theory,1 A
gravity,13 symplectic geometry,14 and connections in fiber
bundles' among other areas gain in clarity and depth when
expressed in terms of exterior calculus. The reader is referred
to Refs. 1-4 for an introduction to the subject. We will
briefly review the main features of the exterior derivative d
and the wedge product A between differential forms.

Any linear combination of coordinate differentials at each
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point of space is a I-form field (whatever the coordinates,
Cartesian or not, and even if the geometry is non-Euclidean).
An example of a 1-form is

(1)

If the space is three-dimensional and (x,y,z) are the chosen
coordinates, we say that {dx,dy,dz} is a coordinate basis for
I-forms. The components of 7 in this basis are 7,=3x%y’,
7,=0, and 7,=5y. Generically, a 1-form in a n-dimensional
space is

n="3x>y"dx + Sydz.

(2)

(the Einstein convention is used). The superindex in dx* la-
bels the n 1-forms of the coordinate basis, and the subindex
in a, labels the components of the 1-form «, which are
functions of the coordinates.

1-forms can be introduced geometrically as linear real val-
ued functions on the space of (contravariant) vectors—the
tangent space: They are covectors or covariant vectors. "
Here we are not interested in the action of forms on vectors.
Instead we will operate within the set of p -forms, which are
defined as totally antisymmetric covariant tensors of p indi-
ces (p=n). p-forms can be obtained from the (antisymme-
trized) wedge tensor product A of 1-forms. For example, the
wedge product between 7 and the 1-form é=zdx+2dy is the
2-form

- u
a= aludx

3)

Note the absence of the term dxAdx=0 because the wedge
product is antisymmetric. We also use the fact that dxAdz
=—dzAdx. There are (;) linearly independent 2-forms
dx* Adx”=dx* @ dx"—dx’® dx* (® is the tensor product),
which span the coordinate basis of 2-forms. Any 2-form can
be written as

w=nAE=6x2ydx Ady - Syzdx A dz.

(4)

1
- yn v
a—z!aﬂydx Adx?,

where a,,=-a,,. In our example we have w,,=6x%y’, w,,
=0, and w,.=—5yz. The factor 1/2! in Eq. (4) takes into
account the fact that each independent element of the basis
appears 2! times in the sum over w and v.

If @ and B are 1-forms on a three-dimensional manifold,
then the components of the product aA 8 look like the Car-
tesian components of the vector product in Euclidean space,
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an B=(apy—a,B)dx ndy— (e, — a,B,)dz A dx
+(a,B,— a,B,)dy ndz. (5)
Any p-form a and g-form S satisfy
aAB=(-1)IBAa. (6)

Thus 1-forms anticommute, but 2-forms commute, etc.

The exterior derivative d is a nilpotent operator (d2 0). If
d acts on a function f (0-form), the result is the 1-form df
=(df/ dx*)dx*. If d acts on a p-form «, then the result is a
(p+1)-form da. Because d(dx*)=0, da is obtained by dif-
ferentiating its components as exterior derivatives of func-
tions,

da= d( . )Adx)‘/\dx“/\dx”.... (7)

For instance

dn=—-21x*y%dx A dy + 5dy A dz. (8)
If «a is a p-form, then

dlanB)=dan B+ (-1)andB. 9)

A given p-form «a is closed if da=0, and it is exact if it can
be written as the exterior derivative of a (p—1)-form. Each
exact form is closed, and the inverse proposition is locally
true, but its global Vahdlty dez(pends on the topology of the
space (see Poincaré’s lemma

Finally, we will introduce the Hodge star operator *. This
operator changes p-forms into (n—p)-forms and involves the
components g,,,, of the metric tensor present in the space-
time interval. If a is a p-form whose components are
gy then

—
*a/‘pﬂ"'f‘n_ \'|det(guv)|8,up+l...,un,ul.,.,u,pa”ul Mpv (10)

where the indices are raised with the inverse metric tensor
g a1 “p—g“l”l g'ra, ., . € is the Levi-Civita sym-
bol, which is 1 (—1) for even odd) permutations of the
natural order of 1ts indices and is zero if there are indices of
equal value. The successive application of the Hodge star
operator on a p-form « is™

%k v = (_ 1)P(”‘P)+("_0')/2a’ (1 1)

where o is the signature of the metric tensor (the difference
between the numbers of positive and negative eigenvalues of
the metric tensor).

III. POTENTIAL AND FIELD AS DIFFERENTIAL
FORMS ON A MANIFOLD

The electromagnetic field is an exact 2-form F=dA, where
the 1-form A is the potential. Given a set of non-necessarily
Cartesian coordinates x, y, and z together with the time 7, we

can express these forms in the coordinate basis
{dt,dx,dy,dz},
A=A dx". (12)

If x, y, and z are Cartesian coordinates, then the components
A, will coincide with the scalar and vector potential:
A,=(—¢,A) (ST units). Therefore,
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F=dA=dA,Andx"=d,Adx" A dx". (13)

Because dx*Adx"=dx* ® dx"—dx"® dx*, then the (antisym-
metrig) components of F are F = 5'#1146 »—d,A,,. For Cartesian
coordinates, it is F;,=E; in Sl units, ~ F\,=B,, F,,=B,, F,,
=B

F=EAdt+B,dy ndz+ Bydz Adx + B.dx Ady, (14)

where E=E,dx" is a 1-form. As Eq. (14) shows, in the three-
dimensional Euclidean space the wedge product between
1-forms works as the vector product because dyAdz is the
basis element for the x-component of the pseudovector B and
so on (think of the wedge product as a vector product; see
Eq. (5)).

Because F=dA is exact and d is nilpotent, we have the
identity

dF =0, (15)

which is equivalent to the Maxwell equations that are used
for defining the potentials: VX E=-dB/df and V-B=0.

The remaining Maxwell equations, V X B=-c20E/t,
V-E=0, come from varying the electromagnetic action
S[A]=—(4uoc)~'[*F AF. Because F is a 2-form in a mani-
fold of dimension n=4 (the space-time), *F is also a 2-form.
*FAF is a 4-form (a volume in space-time). The resulting
Euler-Lagrange equations are

d*F=0. (16)

IV. CYLINDRICAL WAVEGUIDES

We will solve Maxwell equations for the electromagnetic
field in hollow cylindrical waveguides. Let z be the Cartesian
coordinate along the waveguide and x and y represent the
transverse coordinates. We will use Cartesian coordinates for
a rectangular cross-section and polar coordinates for a circu-
lar cross-section. We begin by determining the stationary
waves. We will then introduce propagation along the wave-
guide by means of a Lorentz boost in the z direction. There-
fore we will start by proposing a solution independent of z.

A. Stationary TM modes

Consider a monochromatic potential having only a com-
ponent along the waveguide,

A=eMi(x,y)dz. (17)

The function ¢ has units of magnetic field times length.
Thus, the electromagnetic field is

F=dA = (iQuydt + dip) A dz (18a)

=" M(iQdt A dz + 9 pdx A dz + dypdy ndz).  (18b)

The first term is an electric field along z, and the other terms
make up a magnetic field orthogonal to the z-axis. Therefore
the proposed solution is a TM mode. For the moment this
solution does not propagate along the waveguide because the
components do not depend on z. The field in Eq. (18b) is a
stationary wave. The function ¢ must satisfy perfect conduc-
tor boundary conditions: The tangential electric field and the
normal magnetic field must vanish on the boundary. Thus, ¢
must be zero on the boundary so that the (pure) tangential
electric field vanishes,
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Table I. TM stationary modes with d¢ the longitude element in the wave-
guide cross-section where i and ®(+dy) are defined.

F™= (i Q) iy, dt+dih,,) Adz
# ™M= ol (—jc=1Q), \s“‘;gyyw,,mdx/\dy +cD(xedy,,) nd)
(Z)A lr/fmn (x B y) = —0_295", l//mn(x s )’) s lr/fnm |b0undary =0
de*=g, (x,y)dx*+g,,(x,y)dy*

¢|b0undary =0 (19)

(Dirichlet condition for the potential ¢(x,y)). Because i is
constant on the boundary, the 1-form dy=(d/ xt)dx* is
normal to the boundary, and thus the magnetic part dipAadz is
tangent to the boundary and perpendicular to the z-axis
(think of the product as a vector product). Thus, the bound-
ary condition for the electric field also guarantees the bound-
ary condition for the magnetic field.

The 2-form *F involves the metric tensor. If orthogonal
coordinates are used, then the space-time interval is

ds*=—cdi + g . dx* + gyydy2 +d7%, (20)

where the metric diag(g,,,gy,) in the transverse directions
depends on the choice of the x and y coordinates. The deter-
minant of the metric and the inverse metric tensor are

|det(g,,)| = *ggyy,  &*"=diag(— ¢, 1/g,,,1/g,,,1).

(21)
To write *F we need a few results,
w(dt Adz) =— c_l\e”gxxgyydx Ady, (22a)
#(dx Adz) == cNg&yg dt Ady, (22b)
#(dy A dz) = cNgwgyyg dt Adx. (22¢)
Thus,
*F=cy gxxgyye’ﬂ’{— ic>Qpdx A dy
+ (g% d,ydy — g9, hdx) A dt}, (23)

d*F= C\"gxxgy},e"glt(c_292¢+ DAY dt Adx ndy.  (24)

Equation (16) implies that function ¢ must be an eigenfunc-
tion ¢, of the two-dimensional Laplacian operator, where
—c‘zﬂfm is its respective eigenvalue,

1 —
(Z)A I/Imn = \/g—g[&x( \”gxxgyygxxax lr//mn)
xX5yy
2

an
2 Yn- (25)
C

+ ﬁy(\’ gxxgyygyyaywmn)] ==

Note that Eq. (23) contains the two-dimensional
1-form (2)(*d¢//). (The superscript (2) means that the Hodge
star is applied in a n=2 submanifold; see the Appendix.) As
can be seen, the Laplacian in the waveguide cross-section is
DA=D(—xqxd). Its eigenfunctions ,,,, which satisfy the
boundary conditions, are identified by two discrete indices
m,n. Table I summarizes the results for monochromatic TM
stationary modes. Table II shows the solutions ¢ of Egs. (19)
and (25) and their eigenvalues () (allowed frequencies for
stationary TM modes) for typical waveguide cross-sections.

266 Am. J. Phys., Vol. 78, No. 3, March 2010

Table II. TM ¢’s and ’s for rectangular and circular cross-sections.

Rectangular cross-section
x,y are Cartesian coordinates, 0=x=a, 0=y=b, g,,=1, and g, =1

U6, y) =4, sin(ﬂx>sin<%y) (m,n e N)
a

2 2
a2 mir nw
=22+ ()
a b

Circular cross-section

x,y are polar coordinates r,¢: 0=r=R, 0=¢=2m, g,.=1, and g(p(,,:fz

Y15 ©) =X, R)(A,,, cos(mep)+B,,, sin(me))
_ xﬂlﬂc
mn R
X, are zeros of Bessel functions J,,

Q

B. Stationary TE modes

Remarkably F and #F are on an equal footing in Egs. (15)
and (16). This property will let us construct the stationary TE
modes by exchanging their roles. In Eq. (14) this exchange
amounts to the interchanging of E and B. Thus, we define

FTE= « F™, (26)

We will apply Eq. (11) to obtain #FTE=s%F™ [n
space-time it is n=4 and o=2 (see Eq. (20)), and thus
sk =(—1)P*!, Thus,

x«FTE = fT™M (27)

The field (26) can be ascribed to the potential

einC — i
Al= i 88y, (8" 0y hdx — g9, pdy)

_en,
== P ed). (28)

By differentiating the middle expression in Eq. (28) we rec-
ognize the appearance of the Laplacian defined in Eq. (25),

—_—

FTE — dATE — eith \'/gxxgyy

X { é(z)A Pdx A dy + (g7 dpdy — g dyihdx) A dt}

(29a)

=ef“fmgxxgyy{ é% pdx A dy + P(dip) A d;} _

(29b)

This result coincides with field in Eq. (23) when the pair
Q, ¢ is chosen among the solutions (),,,,,,, of the eigen-
value Eq. (25). Although FF solves both Eqs. (15) and (16),
the boundary condition should be changed so that the electric
field is normal to the boundary to satisfy the perfect conduc-
tor boundary condition. Because m(*d(ﬁ) in Eq. (29b) is a
I-form proportional to the electric field in the waveguide
cross-section, we require that
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Table III. TE stationary modes with d¢ the longitude element in the wave-
guide cross-section where i and ®(+dy) are defined.

FTE= i (—jc=1Q),,, \““‘Kg}.yiﬁmndx/\dy +cD(xdyp,,) ndt)
#«FTE=_eiQmi (i Q) iy dt+difs,,) Adz
DAY, (. == 200, (. Y). 0Py =0
de*=g, (x,y)dx*+g,,(x,y)dy*

(2)(*d¢) A n|boundary =0, (30)
where n=n.dx+n,dy is a l-form normal to the boundary
(think of the product as a vector product). In terms of vector

language this requirement means
n- Vlz”'boundary =0 (31)

(Neumann boundary condition for the potential #(x,y)).
Table III summarizes the monochromatic stationary TE
modes. Table IV shows the functions ¢ for typical wave-
guide cross-sections.

V. PROPAGATING MODES

The solutions given in Sec. IV do not propagate energy
along the waveguide. Because the Poynting vector is propor-
tional to E X B, there must exist transverse components of E
and B so that energy can propagate along the waveguide.
However, the field F™ in Eq. (18b) has only a perpendicular
component of the magnetic field, and F'E in Eq. (29b) has
only a perpendicular component of the electric field. Thus,
the Poynting vector in Egs. (18b) and (29b) is orthogonal to
the waveguide axis, and thus the solutions (18b) and (29b)
are stationary waves and energy does not propagate along the
waveguide. It is easy to prove that the time-averaged Poyn-
ting vector vanishes, which means that the fields (18b) and
(29b) are solutions in their proper frame.

The stationary solutions (18b) and (29b) can be trans-
formed into solutions that propagate energy along the wave-
guide by performing a Lorentz boost in the z-direction. To do
this we use

\% \%
t=y(V)(t’——2z’>, dt=y(V)<dt’——2dz’),
C C

Table IV. TE ¢’s and ()’s for rectangular and circular cross-sections.

Rectangular cross-section
x,y are Cartesian coordinates, 0=x=a, 0=y=b, g,.=1, and g>.>,=1

U (6,Y) = A, cos(m—ﬂx>cos<ﬂy>
a b
2 2
00 (m_ﬂ) . (H)
a b

Circular cross-section
x,y are polar coordinates r,¢: 0=r=R, 0=@=2m, g,=1, and g,,=r"
(s @)=y (Yt R)(A,yy cOS(m@) +B,,,, sin(me))
VyunC
QWU’( = ’;;”
Y are zeros of the derivatives of Bessel functions J,,
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dz=y(V)(dz' - Vdt'), (32)
where y(V)=(1-V?/¢?)~"2. Thus,

dt ndz=y(V)*(1 = V) dt' adz' =dt' Adz'. (33)
A. TM modes

Equation (33) means that the longitudinal electric field
remains invariant in Eq. (18b). In contrast, the transverse
term di(x,y) Adz changes to

di(x,y) ndz = Y(V)di(x,y) A (dz’ = Vdt'), (34)

which not only changes the transverse magnetic field but also
leads to a nonzero transverse electric field. This result is
nothing but the usual rule for transforming electric and mag-
netic fields (see, for example, Ref. 17). The geometric lan-
guage shows it more elegantly.

B. TE modes

In this case Eq. (33) means that the longitudinal magnetic
field remains invariant in Eq. (29b). Instead, the Lorentz
boost changes the transverse electric field of FE to

D dip,) A dr=cy(V)P(edis,,) A (dt' = Ve dz')

(35a)
— 8
=Y VINE8y, (8" ) pdx
— g%9.dy) A (dt' —Vc2dz').  (35b)

Therefore, not only the transverse electric field is changed by
the boost, but a nonzero transverse magnetic field appears in
the new frame.

In conclusion, in any frame differing from the proper
frame where the solutions (18b) and (29b) were determined,
the propagating TM and TE modes display both transverse
electric and transverse magnetic fields, and thus energy
propagates along the waveguide.

VI. TRANSMITTED POWER

The existence of both magnetic and electric transverse
fields in the new frame produces a nonzero Poynting vector
along the waveguide. Thus, in the new frame there is energy
propagating in the waveguide. The velocity V is the velocity
relative to the proper frame. In this sense V can be called the
energy velocity, because no energy propagates along the
waveguide in the original proper frame (there is just an en-
ergy flux orthogonal to the waveguide axis whose time aver-
age vanishes).

The time-averaged energy flux along the waveguide, in the
frame moving with velocity V relative to the proper frame,
results from the ¢’z component of the electromagnetic
energy-momentum tensor TM,,,6

1
IU’OT/.LV= F/.LpFVp - Zg,uVF)\pF)\p- (36)

Only real fields should be considered, and thus we have to
average products of trigonometric functions. We have that
(sin?(Q))=1/2=(cos?(Q¢)) and {sin(Qr)cos(Q¢))=0. Thus
we obtain
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MO(Tt’z’> = gxx<Ft'sz'x> +gyy<Ft Tytig! y>
=— vV V|V (37)

(Note that the Lorentz boost does not change the components
of the metric tensor.) Result (37) is shared by TM and TE
modes (although it is more difficult to obtain it for TE
modes).

The energy per unit of time and area going through the
waveguide cross-section at z’ is AT’ =-T,/,,. The transmit-
ted power results from integrating this quantity over the area
S of the cross-section. Because ¢ vanishes on the boundary
of the cross-section (its normal derivative vanishes at the
boundary for TE modes), Green’s first identity implies that'®

JV¢~V¢dS=—J¢<2>A¢dS (38)

(for both TM and for TE modes). If we use Eq. (25), we
obtain

f |Vil?ds = f c20%yAds. (39)

Therefore the transmitted power is

P = f AT dSs = J Y2,dS. (40)
This result can be written in terms of the frequency w and the
wavenumber k_,. The transformation of the coordinate ¢ im-
plies that the phase of the wave becomes

Qr=Qy(V)(t' = Ve 2). (41)
Hence,
w=yV)Q, k;,=yVQVc?, (42)

which leads to the dispersion relation
= \/czkf, +0? (43)

(€),,,, is the cut-off frequency for each mode). Thus the en-
ergy velocity V written in terms of w and &/ is

Czkzr Jw
w - 8er

(44)

As expected, the energy velocity coincides with the group
velocity dw/ dk,r.

From Eq. (42) wk,: equals the expression contained in the
transmitted power in Eq. (40). Thus,

wmnkzr
Pmn = ¢m'1dS (45)
2o

If the waveguide is filled with a homogeneous linear me-
dium, then Eq. (45) for the transmitted power can be used in
the frame where the medium is at rest by replacing u by the
permeability u (the constitutive relations are only valid in
the media proper frames).

To finish the study of the energy transmission we calculate

the time-averaged energy density T’ =c"2T,,». The results
are common to TM and TE modes, but it will be easier to
calculate them for TM modes. We start from
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IU’O<TIZ> g <leth>+g V<Ftny \>+<Ft’ ’F’ ’>
C
+ Z(FMFM’}. (46)

The invariant (F),F) can be calculated with the compo-
nents of the stationary field (it is invariant under a Lorentz
boost). The field of stationary TM modes has only three in-
dependent components. The real fields are

th == anlﬂmn Sin(ant)7 (4721)
F..= 3., cos(,,,1), (47b)
Fy, = 0y, cos(Qyt). (47¢)

Therefore, the time-averaged scalar invariant (F' W APy s

(F\,F)=2(F F*+F F*+F, F~) (48a)
== 20+ 8 Ole) + 8% (0 )

(48b)

== 200 U+ [Vl (48¢)

Then

1 1 1 2
polTyrp) = Eﬂy(V)2V2|V¢|2 + Eﬂzlﬂz - Zﬂzlﬁz - Z|V¢|2

(49a)
V2
1 + —2

——QW 2 Vi, (49b)
T

By performing the integral in the waveguide cross-section,
we obtain the energy per unit length,

Upin = f AT ds =

4ILL0C2

VZ

1+ -

C
x f Qo+ =5V (S (500)

1__

C2

V)2Q?2
YW [ e (50b)
ZMOCZ mn

where we have used Eq. (39). By comparing with Eq. (45),
we obtain

Py =VUpp. (51)

Again we find the velocity V in the expected role of the
energy velocity: In this case it is the ratio of transmltted
power to energy per unit length as is usually defined.® Note

that "' is the density of the z’'-component of the momen-
tum. Therefore, because the energy-momentum tensor is
symmetric, Eq. (51) can also be interpreted as that the mo-
mentum per unit length is equal to the energy per unit length
over c? times the energy velocity (the usual relativistic rela-
tion for massive particles). Even though the electromagnetic
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field is massless, its energy in the waveguide behaves like
that of a massive field as a consequence of the boundary
conditions imposed by the waveguide. The same feature
emerges in theories with compactified dimensions, which im-
pose periodic boundary conditions to the (otherwise mass-
less) fields."”

APPENDIX: GREEN’S FIRST IDENTITY AND THE
PROOF OF EQ. (39)

Let ¢, be two differentiable functions (0-forms). We
have the following identity among volumes (n-forms):

dpn *dip+ ¢d* dip=d(P* dip), (A1)

which can be integrated to become
J(d¢/\ *di+ ¢>d*d¢//)=f ¢xdy. (A2)
s as

(Stokes theorem'™ has been used on the right-hand side.)
The n-form d*dys is connected with Ay=—*d*dis. Accord-
ing to Eq. (11), *Ayy=—d*dy whenever ¢ is a O-form, and
the space has signature o=n. Thus we obtain Green’s first
identity

f(d¢/\ *dlﬂ—¢*A¢)=J b di. (A3)
s o

To prove Eq. (39) we apply Green’s first identity to the
case ¢= in the waveguide cross-section, which is a two-
dimensional manifold with coordinates x,y and signature o
=2. For any differentiable function (O-form) ¢, we have

dip= 0, pdx + d, iy, (Ada)
*dlﬂ= \“”gxxgyygyyay lﬂdx - gxxaxlpdy (A4b)

dn # dif=—g,.8, (g™ (0. + 7 (3,¥h)P)dx A dy.
(Adc)

The 2-form diyA *#di is a volume in the two-dimensional

surface § and contains the surface element dS=g,.g,,dxdy.
The integral in Eq. (39) becomes

J|V¢|2dS=—J dipn = di. (A5)
N

Thus, we can calculate it by using Eq. (A3) for ¢= . We are
interested in functions ¢ such that they vanish on the bound-
ary (TM modes), or their normal derivatives vanish on the
boundary (TE modes) (that is, *d restricted to the boundary
is zero; see Eq. (30)). Therefore, the right-hand side of Egq.
(A3) is zero in these cases. In addition, *1=\g,.g,dxAdy,
which will be used to calculate the Hodge star of the O-form
Ay Moreover, we are working with functions that are solu-
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tions to the eigenvalue equation A¢y=—0%c"2y, and thus
*Ay=—0cYng,,8,,dx rdy. The result is

f|v¢|2ds=—f dya *dzﬁ:—f ENNY, (A6a)
S S

= f c‘zﬂzlﬁz\e’gxxgyydx/\dy= f c20%yPds.
s

(AGb)

We emphasize that expressions such as the ones in Egs.
(A4a)—(Ad4c) depend only on the normalized basis of forms
and vectors,

¢ S
e =\g.dx, & =1\g,dy, (A7)
e VgL, em g (A8)
* ox> 7 dy
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