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Abstract—There is often a need to mark or patrol marine areas 

in order to prevent boat traffic from approaching critical regions, 

such as the location of a high-value vessel, a dive site, or a fragile 

marine ecosystem.  In this paper we describe the use of a fleet of 

robotic kayaks that provides such a function: the fleet 

circumnavigates the critical area until a threatening boat 

approaches, at which point the fleet establishes a barrier between 

the ship and the protected area.  Coordinated formation control 

of the fleet is implemented through the use of the cluster space 

control architecture, which is a full-order controller that treats 

the fleet as a virtual, articulating, kinematic mechanism.  An 

application-specific layer interacts with the cluster space 

controller in order for an operator to directly specify and 

monitor guarding-related parameters such as the spacing 

between boats.  This system has been experimentally verified in 

the field with a fleet of robotic kayaks.  This paper describes the 

control architecture used to establish the guarding behavior, 

reviews the design of the robotic kayaks, and presents 

experimental data regarding the functionality and performance 

of the system. 

 
Index Terms—Multi-robot systems, formation control, 

collaborative control, robot teams, cluster space. 

I. INTRODUCTION 

echatronic systems provide benefits in a wide range 

of applications given their strength, speed, precision, 

and ability to withstand extreme environments.  In the marine 

environment, such systems include remote sensor nodes, 

energy harvesting systems, manned ships and their support 

equipment, and unmanned vehicles operating under water and 

on the surface of the sea. 

Unmanned Surface Vessels (USVs) have been used for 

nearly 70 years in order to reduce the risks and costs 

associated with activities ranging from military operations to 

scientific characterization [1].  Early USV systems were 

remotely piloted and used for applications such as  serving  as  
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gunnery targets or mine countermeasure drones [2].  Over the 

past two decades, advances in GPS-based position sensing, 

wireless communication, navigation, and automation 

technologies have enabled a variety of new USV applications 

such as towing objects, mine-sweeping, exploration, and 

serving as communication relays between underwater assets 

and remote control nodes.  Excellent reviews of the many 

USV systems that have been developed for such applications 

are provided in [3-5]. 

Recent advances in multi-robot control techniques have led 

to the development of several multi-USV systems.  Potential 

advantages of multi-USV systems include redundancy, 

increased coverage and throughput, flexible reconfigurability, 

spatially diverse functionality, and the fusing of physically 

distributed sensors and actuators; applications capable of 

exploiting such features range from remote and in situ sensing 

to the physical manipulation of objects [6]. 

One of the first implemented multi-USV systems was the 

Massachusetts Institute of Technology‘s SCOUT system, 

comprised of several robotic kayaks [7].  In addition to serving 

as a multi-USV navigation testbed, fleets of 2-4 SCOUT 

vehicles have been used to explore support applications for 

autonomous underwater vehicles, such as serving as a 

communications relay and providing long-baseline navigation 

services [8].  Researchers at Carnegie-Mellon University have 

networked two of their OASIS USVs to explore telesupervised 

aquatic sensing; this system has been demonstrated 

experimentally with field studies detecting and characterizing 

simulated harmful algae blooms [9].  Work at the U.S. Naval 

Academy (USNA) has focused on using multiple tugboats to 

cooperatively manipulate and propel other ocean vehicles 

through the use of swarm navigation techniques [10].  In a 

2009 demonstration during the Navy‘s Trident Warrior 

exercise, the CARACaS (Control Architecture for Robotic 

agent Command and Sensing) autonomy architecture was used 

on several USVs in order to verify the use of this behavior-

based control system for asset protection and riverine survey 

applications [11].  Other concepts include the fleet of small-

scale Drosobots developed for sampling applications [12], and 

the open source Protei development effort to field a fleet of 

sailing drones for oil and pollution clean-up services [13].   

The work presented in this paper aligns with many of the 

themes presented in [14], which discussed the use of USVs as 
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automated buoys, such as those used by the Naval Undersea 

Warfare Center [15].  In particular, this work envisioned 

multi-USV buoy systems for a variety of marine applications 

ranging from marine traffic management to distributed 

sensing.  Potential benefits identified for such a system 

included the ability to rapidly deploy a buoy line, the ability to 

dynamically reposition the buoys, and reduced deployment 

and maintenance costs. 

 There are many challenges to fielding multi-USV systems, 

to include providing robust communications, the incorporation 

and fusion of distributed sensing and actuation capabilities, the 

human-machine interfaces to enable efficient monitoring and 

specification of tasks, and achieving cost-effective production 

and operation.  One particularly challenging issue is the 

navigation strategy used to guide the absolute and relative 

motions of the fleet.  A wide variety of techniques have been 

and continue to be explored for this capability for multi-robot 

systems in general.  When limited information exchange is a 

primary constraint (due to physical distribution or constrained 

bandwidth), decentralized control approaches are often 

pursued [16]-[17].  Behavioral, biologically inspired, and 

potential field techniques have been successfully demonstrated 

[18]-[20], although they often lack mathematical formality.  

Centralized approaches exploiting global information exist, 

but they are often not preferred due to limited scalability; 

however, they may be ideal when tight robot interaction is 

required by applications such as the realtime fusing of sensors 

or actuators [21]-[22]. 

 Specific to the multi-USV systems previously cited, several 

systems use a very loose form of coordinated navigation in 

which each USV blindly follows its own trajectory, but the 

trajectories are spatially (as with the Drosobots) or temporally 

(as with OASIS) offset in order to divide and conquer the task 

at hand.  The USNA tugboat fleet, however, employs a much 

tighter coordination strategy in order to achieve manipulation 

tasks.   

The work presented in this article employs a specific 

coordinated navigation control approach known as Cluster 

Space control [23], which we have previously demonstrated 

experimentally on land rover, aerial robot and surface ship 

systems.  We have developed this controller in order to enable 

benefits such as natural specification and monitoring of 

formation performance and the ability to achieve highly 

connected and full-order control.  Our current work introduces 

an application-layer above the centralized formation 

controller, transforming application-specific specifications 

into cluster space control specifications; these are used to 

implement the realtime cluster controller, which in turn 

determines the drive commands for each individual robot in 

the fleet.  Section II of this paper reviews the cluster space 

control approach and its integration with a specific 

application, that of dynamically establishing a barrier between 

threatening marine traffic and an asset that must be protected.  

Section III reviews the design of the multi-USV system.  

Section IV presents experimental field data, and Section V 

discusses future work and draws conclusions about the 

significance of this work. 

II. THE CLUSTER SPACE CONTROLLER 

Our research in Cluster Space Control is motivated by 

our vision of a specific class of multi-robot applications 

that require complete degree-of-freedom control of the 

spatial and motion characteristics of a locally distributed 

mobile multi-robot system that tightly interacts in realtime.  

At the same time, we desire transparency for the 

formation‘s degrees-of-freedom in order for a realtime 

human pilot or supervisory controller to specify, control 

and/or monitor performance.   

Because the cluster space technique allows direct 

specification of any spatial state variables of interest, it avoids 

potential drawbacks of other well-known multi-robot control 

strategies.  For example, compared to virtual bodies and 

artificial potentials approach [20], there is no need to 

iteratively tune potential fields or to select artificial leader 

positions in order to achieve the motion characteristics of 

interest.  Compared to leader-follower techniques [24], 

specification is not limited to the distance and/or angle 

between leader-follower pairs within the formation.  In 

contrast to virtual body techniques [25], all pose degrees-of-

freedom may be continuously articulated.  Some of these 

advantages come at the cost of increased computation within 

the realtime control loop; however, the cluster space approach 

can be implemented with varying levels of (de)centralization 

[25], and we have had success exploring strategies such as 

multi-rate control [26]; these strategies are both suitable for 

dramatically reducing computational load and the need for 

information sharing throughout the cluster.  

A. The Cluster Space Control Approach 

Central to the cluster space strategy are the concepts of 

considering the n-robot system as a single entity, a 

―cluster,‖ and of specifying motions with respect to 

cluster attributes, such as position, orientation, and 

geometry; we note that all of these attributes may be 

easily varied such that a reasonable analogy is that a 

cluster of mobile robots moves like a virtual kinematic 

mechanism. Our approach is to use the cluster attributes to 

guide the selection of a set of independent system state 

variables suitable for specification, control, and 

monitoring.  This collection of state variables constitutes 

the system‘s cluster space and can be related to robot-

specific state variables through a formal set of kinematic 

transforms. A supervisory operator or realtime pilot 

specifies and monitors cluster motion, and control 

computations are executed with respect to the cluster 

space variables, (which leads to well-behaved motions in 

the cluster space).  Kinematic transforms allow 

compensation commands to be derived for each individual 

robot, and they also allow data from a variety of sensor 

packages to be converted to cluster space state estimates.   

As an example of this, consider the case of a simple, 

planar two-robot cluster, which is detailed in [23] and 

shown in Fig. 1.  A conventional robot space definition 

of the pose of this system would include the position and 

orientation of each robot as measured in the global frame: 
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
.  To consider the cluster 

perspective, assume that a cluster frame is placed at the 

midpoint between the two robots and oriented towards 

Robot 1.  A reasonable cluster space description of the 

cluster‘s pose would include the location and orientation 

of the cluster frame, a single variable representing the 

cluster geometry (in this case, we use the distance to each 

robot from the cluster origin), and the relative 

orientations of each robot with respect to the cluster 

frame; this results in a cluster pose vector of 
T

CCC dyxC ),,,,,( 21


.   

 

 
Fig. 1 – Representing the pose of a two-robot system using a cluster space 

description.   
 

Mathematical relationships that relate these robot and 

cluster space variables constitute the position kinematic 

functions; for example, the cluster‘s x and y location is 

the average of the x and y locations of the two robots.  

Furthermore, the robot and cluster space velocities, RG 
 

and C


, can also be formally related to each other.  For 

example, computing the partial derivatives of the cluster 

space pose variables allows the development of a Jacobian 

matrix, J , that maps robot velocities to cluster velocities in 

the form of a time-varying linear function: 
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The controller itself can take on several forms given 

the needs of the system and application.  For example, a 

simple form would consist of a linear PID controller that 

computes compensations in the form of instantaneous 

cluster velocity set-points, which are then transformed to 

individual instantaneous robot velocity set-points through 

the use of an inverse Jacobian transform; this is a 

kinematic, resolved-rate controller appropriate for robots 

with their own velocity-control capabilities.  This style of 

controller is depicted in Fig. 2, and it is the architecture 

employed for the work reported on in this article.  We 

have also developed and implemented more sophisticated 

nonlinear dynamic controllers.  Such a controller uses a 

partitioned model-based strategy and computes 

compensations in the form of the abstracted cluster space 

forces and torques necessary to manipulate the virtual 

kinematic mechanism; these compensations are converted 

by a Jacobian transpose transform to individual robot-

level control forces/torques for dynamic control of the 

individual vehicles [27].   

 

 
Fig. 2 – Inverse Jacobian Cluster Space Control Architecture for a Mobile 

Multi-Robot System.   
 

To date, we have successfully implemented cluster 

space control in experiments with clusters of up to 6 

vehicles, for both holonomic and nonholonomic robots, for 

robots negotiating obstacle fields, for piloted and 

supervisory control modes, and for a variety of 

relative/absolute positioning and tracking pose sensing 

systems.  The guarding/shielding application reported here 

is an extension of our previous work in escorting/patrolling 

[28]-[30].  In addition, we are applying the control strategy 

to other applications such as gradient-based environmental 

sensing [31]-[32] and reconfigurable sparse array 

communication systems [33].   

B. Cluster Space Kinematic Transforms for the Dynamic 

Guarding Application 

In exploring the dynamic guarding application, we have 

applied the cluster space control framework in numerous 

ways, each varying the selection of pose variables.  For the 

experiments presented in Section IV, the selection of these 

variables was driven by the guarding application.  This 

application involves the creation of a ―fence‖ that becomes 

denser as a threat approaches and which is positioned between 

the threat and the asset being guarded.  From this perspective, 

the position of the asset being protected and the location of the 

threat (its bearing from the asset and its proximity) dictate the 

deployment of the robots in the creation of a fence that is 

properly positioned with an appropriately dense ―fence 

spacing.‖ 

Fig. 3 depicts the relevant reference frames and geometric 

layout for a planar 5-USV cluster.  To complement the sensor 
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data used in experimentation, the global frame was defined 

with XG pointing East and YG pointing North.  The robot 

space pose vector is 

 

RG


 =(X0, Y0, 0, …, X5, Y5, φ5)
T
 

 

where (X0, Y0, φ0) is the pose of the protected object and (Xi, 

Yi, φi)  is the pose of each of the robots where i=(1,2,3,4,5).  

We note that we are treating the protected asset as an element 

of the cluster, although it is not directly controlled by the 

cluster space dynamic guarding policy.  We also note that for 

this application, robot orientation is not critical in establishing 

a fence; in fact, given the non-holonomic constraints of the 

boats used in the application, they are not independently 

specified.  For this reason, and to simplify the presentation of 

the underlying mathematics, we drop them from consideration 

in independently specifying the pose of the fleet.  This leaves 

us with two degrees-of-freedom for each of the six fleet 

entities (five boats and the protected asset), yielding a total of 

12 linear degrees-of-freedom for the robot group. 

 

 
Fig. 3 – 5-USV Cluster Geometry. 

 

From the cluster perspective, we place the cluster frame 

origin, denoted by (Xc, Yc), at the location of the protected 

object, and we orient the frame such that the cluster heading, 

θc, points the frame towards the location of robot 1.  The 

locations of robots 1 - 5 are specified in part by the radial 

distances, R1 - R5, from the asset being protected to each 

individual robot.  In addition, the positions of robots 2 and 3 

are defined by a spacing from robot 1 given as F2 and F3.  

Similarly, robots 4 and 5 are each positioned by a spacing F4 

and F5 from robots 2 and 3, respectively.  Further expansion of 

the cluster can be achieved by adding robots to either end of 

the cluster using this even-odd convention. 

The cluster space pose vector is therefore 

 

C


=(Xc,Yc,θc,R1,R2,R3,R4,R5,F2,F3,F4,F5,φ1, 2, 3, 4,, 5)
 T

. 

 

where each i is the relative rotation of each robot with respect 

to the cluster frame, for i=1-5.  As previously stated, given 

that the kayaks are non-holonomic vehicles, robot orientations 

are removed as freely specified variables, and the 

mathematical development that follows is independent of 

these variables.  The controller used for this study uses an 

inner loop heading controller to orient each vehicle in the 

direction of desired motions.  We have also developed a 

formally constructed non-holonomic controller for use in 

systems of this type [34].  Removing the i angles from 

consideration leaves us with 12 cluster degrees-of-freedom, 

matching the 12 linear degrees-of-freedom in robot space. 

Given RG


 and C


, the set of forward position kinematic 

equations, )( RKINC G


, is given by Eqs (2)-(7): 

 

Xc=X0                       (2) 

Yc=Y0                         (3) 

Rn=((Xn-X0)
2
+(Yn-Y0)

2
)
1/2

  for n=1,2,3,4,5
           

(4)      

θ1=Atan2((X1-X0),(Y1-Y0))
                      

(5) 

F2=((X2-X1)
2
+(Y2-Y1)

2
)
1/2                      

(6) 

Fm=((Xm-Xm-2)
2
+(Ym-Ym-2)

2
)

 1/2
  for 

 
m=3,4,5      (7) 

Inversely, the set of inverse position kinematic equations, 

)(CINVKINRG


, is given by Eqs (8)-(15): 

 

X0=Xc                     (8) 

Y0=Yc                     (9) 

X1=Xc+R1* Sin(θ1)                       (10) 

Y1=Yc+R1* Cos(θ1)                              (11) 

Xi=Xc+Ri*Sin(θ1+acos((R1
2
+ Ri

2
- Fi

2
)/(2* R1* Ri)))           (12) 

 for i=2,3 

Yi=Yc+Ri* Cos(θ1+acos((R1
2
+ Ri

2
- Fi

2
)/2* R1* Ri)))          (13)  

 for i=2,3 

Xj=Xc+Rj*Sin(θ1+acos((R1
2
+ Rj-2

2
- Fj

2
)/2* R1* Rj-2)) 

+acos((Rj
2
+ Rj-2

2
- Fj

2
)/2* Rj* Rj-2)))   for j=4,5        (14) 

Yj=Yc+Rj* Cos(θ1+acos((R1
2
+ Rj-2

2
- Fj-2

2
)/2* R1* Rj-2)) 

+acos((Rj
2
+ Rj-2

2
- Fj

2
)/2* Rj* Rj-2)))   for j=4,5         (15) 

The forward and inverse velocity kinematics provide the 

formal relationship between the robot and cluster space 

velocities, RG 
 and C


.  From (2)-(3), we may compute the 

partial derivatives of the cluster space pose variables, ci, and 
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develop a Jacobian matrix, J , that maps robot velocities to 

cluster velocities in the form of a time-varying linear function: 
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In a similar manner, we may develop the inverse Jacobian, 

)(1 RJ GG


, which maps cluster velocities to robot velocities.  

Space prohibits the complete listing of J and 
1J . 

C. Control Framework for the Dynamic Guarding 

Application 

The general control architecture depicted in Fig. 2 is used 

for this application, with two modifications as shown in Fig. 3.   

First, a basic robot-level obstacle avoidance function is 

added to protect the individual robots from colliding with each 

other, the object being protected, and the threatening object.  

When this occurs, the threatened USV negotiates the obstacle 

in an independent fashion, momentarily breaking away from 

the formation.  Once the obstacle has been avoided, the USV 

returns to the cluster.  As is common for collision avoidance, 

the avoidance force is a repulsive function that is summed 

with other control forces.  For each USV, the detection radius 

and the avoidance potential can be independently specified; 

circular fields are typically used, but an elongated oval can be 

defined to better model the outer edge of the vessel.  It is 

interesting to note that we have developed a cluster-level 

obstacle avoidance algorithm, which allows for the entire 

cluster to move in unison, maintaining the cluster shape while 

avoiding a collision [34]; this approach, however, was deemed 

inappropriate for the guarding application since it would too 

easily allow the threat to simply ―push‖ the entire barrier out 

of the way. 

 

 
Fig. 4. – Cluster Space Control Architecture for an n-Robot system. 

 

The second modification is the augmentation of the input to 

the controller with an application-space-to-cluster-space 

function that transforms user-specified application space 

variables to desired cluster variables.  For the implemented 

guarding application, Fig. 5 indicates the spatial quantities of 

interest.  The overall concept of operation is as follows.  The 

object being protected is at a location (Xobj, Yobj).  With no 

threat, the USVs patrol about the object being protected at a 

minimum specified radius, Rmin, and evenly spaced in a circle.  

As a threat approaches from an observed bearing, T, and with 

a distance, DT, the USV formation shifts in three ways.  First, 

the USVs rotate about the circumference of the protected 

region in order to align themselves between the threat and the 

protected object.  Second, the USVs move closer together to 

form a denser barrier, with some minimum specified spacing, 

Fmin.  Third, they may also move out towards the threat in 

order to meet it at a maximum radius of Rmax.   

 

 
Fig. 5 – Application layer variables showing two cases where the threat is  

either far away or not detected at all (left), or where the threat is close and the 
USVs have shifted to guard the protected object or area (right). 

 

Given these specifications, the instantaneous specification 

for the cluster space controller can be derived from an 

appropriate set of application-space-to-cluster-space 

transforms.  These transforms convert the application-relevant 

information, (Xobj,Yobj,Rmin,Rmax,DT, T,Fmin), to cluster space 

variable inputs. For the guarding application, these transforms 

are of the form represented in Eqs (17)-(21) assuming 

DT>Rmax: 

 

Xc=Xobj                         (17) 

Yc=Yobj                         (18) 

θC= θT                       (19) 

 

Rn=Rmin + (Rmax-Rmin)/(DT - Rmax+1) for n=1,2,3,4,5   (20) 

 

Fn=Fmax – (Fmax-Fmin)/(DT – Rmax+1) for n=2,3,4,5    (21) 

 

where Fmax= 2*Rn*sin( /m) for m=5 (the number of robots) ; 

Fmax is the distance between robots when evenly spaced in a 

pentagon around the protected asset.  

 In Fig. 4, this set of application layer transforms operate on 

the specifications provided by the supervisory operator and 

provide the resulting cluster space desired values to the cluster 

control loop.  The application transforms essentially act as a 

set of inverse position kinematics between these two spaces.   

There are two critical observations to be made about this 

architecture.  First, realtime control computations are still 

being performed in the cluster space (e.g., realtime errors and 

controller compensation commands are cluster space 

variables).  Second, the application space specification of the 
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task is independent of the number of robots.  This means that 

the multi-USV cluster will behave as desired no matter how 

many USVs are in the fleet.  This is particularly important in 

order to ensure graceful constitution and degradation of the 

cluster as the fleet is incrementally fielded and when 

anomalies occur. 

III. HARDWARE 

Several iterations of design have occurred to bring the USV 

system to its present design.  The design of the vessels 

emphasizes versatility, ease of operation, and low cost in all 

design segments.  The use of a common bus architecture 

across all Robotic Systems Lab cluster vehicles enables a 

rapidly reproducible control system capable of transparently 

controlling multiple platforms, including several different 

types of land rovers, an aerial vehicle, and two different types 

of USVs.  Off-the-shelf components and an adjustable 

structure facilitate both ease of integration and quick 

replacement in the case of a malfunctioning component.  

 

 
Fig. 6 – One of the robotic kayaks. 
 

A. Electronics Hardware and Protocol 

The common bus architecture includes all communication 

and navigation components for each robot in the cluster.  The 

computing stack is made up of two BasicX microcontroller 

boards.  One board accepts drive commands and controls the 

motor driver boards accordingly in order to run the boat's 

thrusters.  The other board collects position data and interfaces 

with the wireless communication system.  A digital Devantech 

compass provides heading data, and a Garmin 18 differential 

GPS unit determines the position and translational velocities; 

these are low-cost sensors with accuracies on the order of 3  

and 3 meters).  The modem is a Metricom Ricochet 128Kbits/s 

unit, which is capable of relatively long range (2+ miles) 

communication, handles multiple users well, and has 

frequency hopping for security, noise rejection and utilization 

of unlicensed frequencies. 

B. Propulsion, Power, and Structure 

Propulsion is achieved through the use of two Minn Kota 

Endura 30 thrusters, configured on each side for differential 

drive.  The motor controller is a Roboteq AX1500 interfaced 

via an RS 232 connection.  A standard marine deep-cycle 

battery is centrally mounted as shown in Fig. 6.  This gives the 

USV more than a three-hour run time at normal operations 

with a top speed of five knots.  The mounting structure is 

made from 6061 aluminum tubing with a UHMW 

polyethylene motor mounting plate.  Several different sit-on-

top style kayaks are currently in use and were selected for 

their short, wide hulls, which provide greater stability and 

more agile turning over longer, narrower models.  The wiring 

harness utilizes an automotive-type connector designed for 

high-current low DC voltage.  Though it is not rated to be 

submersible, it is waterproof and has been proven to handle 

brief submersions at shallow depths.   

C. Base station 

The key element of the base station hardware is the 

workstation.  Several computers have been used over the 

course of the research and it has been proven on desktops, 

laptops and even netbooks.  Two Metricom Ricochet modems 

facilitate radio communications.  Several pieces of software 

including DataTurbine (a ring buffered network bus), Matlab, 

Simulink, and a VRML simulator (shown in Fig. 7 below), 

work together to retrieve, process, display and redistribute 

sensor data, system information and robot commands.   

Threat detection is handled as a function of the base station, 

where the threats are manually tracked from shore or onboard 

the protected vessel.  The threats can easily be specified in the 

observer‘s local reference frame and appropriate frame 

transformations are handled in the application layer. 

 

 
Fig. 7 – The VRML model is capable of replaying simulated cluster 

formations and trajectories as well as visualizing real-time robot positioning. 

IV. TESTING AND RESULTS 

The main objective of this research was to apply the cluster 

space control architecture to a larger multi-USV system with 

obstacle avoidance while determining the viability of a new 

shielding technique applied in application space.  Four main 

test cases were run over the course of a multi-day deployment 

at Lake Del Valle near Livermore, CA (Fig. 8).  The first three 

cases (basic shielding, varying shield size, and threat 

detection) were run with five robotic kayaks  and  a  simulated  

 

 
Fig. 8 – Testing in Lake Del Valle near Livermore, CA provided variable 

winds up to 20 knots, low currents, and boat wakes for an excellent dynamic 

environment.  Kayaks showing standard shielding. 
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Fig. 9 – Standard shielding, constant radius, no threat.  RMSE in table. 

 

 

 

 
Fig. 10 – Standard shielding, constant radius, no threat (overhead view of 

same run as Fig. 9.)  Looping trail patterns are a function of non-optimized 
velocity gains, as well as lacking a dead-band around the desired position. 

Differences in trail patterns can be attributed to various kayak hulls used and 

the number of service hours on individual thrusters.  Further optimization will 
be attempted in future work. 

 
TABLE A – BASIC SHIELDING: RMS ERROR VALUES FOR THE CLUSTER 

RADIUS AND FENCE SPACING VARIABLES 

Cluster 

Radii 

RMS Error 

(m) 

 Cluster Fence 

Spacings 

RMS Errors 

(m) 

R1 1.57  -- -- 

R2 2.15  F2 2.62 

R3 1.57  F3 2.22 

R4 3.44  F4 3.46 

R5 1.48  F5 2.44 

 

boat being protected.  The fourth case is of threat detection 

using four kayaks to protect a SWATH mapping vessel. 

A. Basic Shielding 

In the case of the basic shielding technique we are applying 

it to a simulated boat requiring protection.  Using the 

application space, the operator can set the standard shield 

radius, the maximum approach and the minimum fence 

spacing.  In this first instance the standard shield radius is set 

to 17m, and the minimum fence spacing and approach are 

disregarded, as there is no threat.  When there is no threat, the 

application space automatically sets the USV fleet into an 

evenly spaced circular formation and rotates them about the 

centroid at a constant rate. 

The response of each parameter in the cluster space for the 

run is shown in Fig. 9 and an overhead view is shown in Fig. 

10, with initial positions marked by small shapes and the final 

positions marked by larger shapes.  In all overhead view 

figures shown in this work, the positions of the kayaks are 

displayed relative to the cluster centroid.  This removes any 

confusion caused in history trails by the cluster translating in 

the global frame.  It can be seen from the graphs that the 

controller is capable of compensating for dynamics added by 

the environment including wind, currents, and boat wakes. 

Table A summarizes the rms errors for the controlled radial 

and inter-robot spacing parameters; all rms errors are under 4 

meters, which we consider to be outstanding given the limited 

sensor performance and disturbance environment. 

B. Shielding while changing size 

Similar to the first case, in this scenario the fleet of USVs is 

rotating at a constant rate around a simulated protected object.  

Due to changing conditions or in the case of protecting 

multiple objects, it may be desirable to modify the size of the 

cluster.  In Fig. 11, the cluster variables show the constant 

rotation and varying radius.  Note that the fence spacing is 

automatically controlled by the application layer to maintain a 

uniform distribution around the protected object when no 

threat is present, as this case specifies.  Fig. 12 shows an 

overhead view of the outward spiral maneuver, which is a 

portion of the test run shown in the preceding figure.  Table B 

summarizes the rms errors of the controlled radius and spacing 

parameters; again, excellent results are shown, with all rms 

errors under 3 meters. 

C. Threat detection 

The third experimental run demonstrates a case of shielding 

upon detection of a threat. In this instance the standard radius 

is set to 17m, the maximum approach is 25m, and the 

minimum fence spacing is set to 10m.   

The overhead view in Fig. 13 shows the threat approaching 

the protected vessel.  As the threat is identified, the cluster 

begins to rotate between the threat and the vessel.  As the 

threat nears the fence spacing closes further.  At this point the 

threat has been deterred and decided to turn around.  In Fig. 

14, the individual cluster space variables are shown for a 

longer portion of this scenario.  The later part of the 

experiment shows the kayaks returning to an evenly spaced 

rotation about the protected asset as the threat disappears.  

Table C shows the rms errors to be less than 4 meters. 
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Fig. 11 – Basic shielding cluster variables. Note that the jump in the top plot 

is caused as the heading wraps from –pi to pi at 180 degrees, and is not an 

actual discontinuity.  RMSE shown in table 
 

 

 

Fig. 12 – Overhead view of a change in shielding radius. 

 

 
TABLE B – SHIELDING WHILE CHANGING SIZE: RMS ERROR VALUES FOR THE 

CLUSTER RADIUS AND FENCE SPACING VARIABLES 

Cluster 

Radii 

RMS Error 

(m) 

 Cluster Fence 

Spacings 

RMS Errors 

(m) 

R1 2.02  -- -- 

R2 1.84  F2 2.60 

R3 1.79  F3 2.25 

R4 2.07  F4 2.88 

R5 1.55  F5 2.82 

 

 
Fig. 13 – Overhead view of shielding technique with threat detection. 

 

 

 
Fig. 14 – Shielding with threat detection cluster space variable.  Table 
showing RMSE does not include the initialization time from 0-20 

 

 
TABLE C – THREAT DETECTION: RMS ERROR VALUES FOR THE CLUSTER 

RADIUS AND FENCE SPACING VARIABLES 

Cluster 

Radii 

RMS Error 

(m) 

 Cluster Fence 

Spacings 

RMS Errors 

(m) 

R1 1.32  -- -- 

R2 1.32  F2 2.64 

R3 1.79  F3 2.48 

R4 1.81  F4 3.70 

R5 1.64  F5 2.97 
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D. Shielding a mapping vessel 

While the previous cases have relied on a simulated cluster 

centroid, the fourth case uses an actual vessel to demonstrate 

shielding with threat detection (Fig. 15).  The protected vessel 

is another autonomous surface vessel, a SWATH (small 

waterplane area twin hull) boat, equipped with a multibeam 

sonar, AHRS, GPS, and heave sensors designed for shallow 

water bathymetry.  Standard operation typically involves 

following a preset path (mowing the lawn) to map the desired 

area.  More information can be found in [35].  This case uses 

four robots for the shielding fleet, using an appropriately 

modified set of kinematic transforms.  We note that the 

application specifications remain the same, independent of the 

fact that only four robots are now being used. 

 

 

Fig. 15 – Shielding with threat detection of a mapping vessel 

 

The application variables for this case are set with the 

standard radius at 12 m, the maximum approach at 20 m, and 

the minimum fence spacing at 10 m.   

The overhead view, shown in Fig. 16, is broken down into 

four time steps.  In the first step the fleet of four USVs have 

identified a threat (out of frame to the northeast) and the 

cluster has rotated to face it.  For this four USV case, the 

cluster heading is aligned between robots 1 and 2.  The fleet 

has not yet adjusted fence spacing or radius since the threat is 

still far away. 

In step 2, the threat approaches the protected vessel.  The 

kayaks begin to noticeably decrease the fence spacing.  At step 

3 the threat has continued to approach.  The USVs are still 

tracking along the heading, have come further out and are 

narrowing the fence spacing.   

At step 4 the threat has almost reached the max approach 

and the USVs have set the fence spacing near the minimum 

value as set in the application space.  The kayaks loiter in 

these locations, tracking the heading and distance of the threat 

until it vacates the area. 

The individual measured cluster variables are shown in Fig. 

17.  Table D shows the rms errors for the controlled 

parameters; as before, all errors are under 4 meters. 

V. ONGOING AND FUTURE WORK 

Ongoing work on this project includes a significant level of 

Matlab/Simulink-based simulation in order to explore 

alternate implementations of the cluster space controller, using 

different shape variables.  It is worth noting that the version 

reported on here fits within the leader-follower paradigm; 

other versions being explored clearly do not, such as defining 

a fleet centroid and using this as a reference for the center of 

the barrier.  We are also preparing to use a version of this 

controller during a real-world Summer 2011 mission involving 

protection of an underwater robot dive area in Lake Tahoe; 

recreational boaters pose an extreme hazard to these 

operations given the ability of a boat to catch the high-voltage 

tether running from the tender boat to the robot. 

In general, we continue to apply the cluster space control 

approach to systems with more robots and additional degrees-

of-freedom in order to explore scalability issues.  We are also 

working  to  generalize  the  application-space-to-cluster-space 

 

 
Fig. 16 – Overhead view of shielding technique with threat detection around 

mapping vessel. 

 

 
Fig. 17 – Cluster variables shielding with threat detection of a mapping vessel 

 

 
TABLE D – SHIELDING A MAPPING VESSEL: RMS ERROR VALUES FOR THE 

CLUSTER RADIUS AND FENCE SPACING VARIABLES 

Cluster 

Radii 

RMS Error 

(m) 

 Cluster Fence 

Spacings 

RMS Errors 

(m) 

R1 1.58  -- -- 

R2 2.21  F2 2.33 

R3 1.80  F3 2.56 

R4 1.90  F4 3.99 
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transform architecture by using this specification approach 

with other applications.  Related to this, we plan to integrate 

our anomaly management algorithms [36] in to the overall 

multi-robot control system so that the system seamlessly 

adapts itself in the event of robot faults.  Finally, we continue 

to apply the cluster space control framework to real-world 

applications, such as our previously mentioned work in 

gradient-based environmental sensing and reconfigurable 

sparse communication antenna arrays. 

VI. SUMMARY AND CONCLUSIONS 

In this paper we described the use of a fleet of robotic 

marine vessels capable of guarding critical assets from threats.  

Coordinated formation control of the fleet was implemented 

through the use of the cluster space control architecture. An 

application-specific layer was integrated with the cluster space 

controller, allowing an operator to directly specify and 

monitor guarding-related parameters. 

  This system has been experimentally verified in the field 

with a fleet of robotic kayaks.  The control architecture used to 

establish the guarding behavior and the design of the robotic 

kayaks were reviewed, and experimental data regarding the 

functionality and performance of the system was presented. As 

a result, the five-robot cluster space definition and control 

architecture was validated and functionality was proven for 

this application.   
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