

1

Abstract—There is often a need to mark or patrol marine areas

in order to prevent boat traffic from approaching critical regions,

such as the location of a high-value vessel, a dive site, or a fragile

marine ecosystem. In this paper we describe the use of a fleet of

robotic kayaks that provides such a function: the fleet

circumnavigates the critical area until a threatening boat

approaches, at which point the fleet establishes a barrier between

the ship and the protected area. Coordinated formation control

of the fleet is implemented through the use of the cluster space

control architecture, which is a full-order controller that treats

the fleet as a virtual, articulating, kinematic mechanism. An

application-specific layer interacts with the cluster space

controller in order for an operator to directly specify and

monitor guarding-related parameters such as the spacing

between boats. This system has been experimentally verified in

the field with a fleet of robotic kayaks. This paper describes the

control architecture used to establish the guarding behavior,

reviews the design of the robotic kayaks, and presents

experimental data regarding the functionality and performance

of the system.

Index Terms—Multi-robot systems, formation control,

collaborative control, robot teams, cluster space.

I. INTRODUCTION

echatronic systems provide benefits in a wide range

of applications given their strength, speed, precision,

and ability to withstand extreme environments. In the marine

environment, such systems include remote sensor nodes,

energy harvesting systems, manned ships and their support

equipment, and unmanned vehicles operating under water and

on the surface of the sea.

Unmanned Surface Vessels (USVs) have been used for

nearly 70 years in order to reduce the risks and costs

associated with activities ranging from military operations to

scientific characterization [1]. Early USV systems were

remotely piloted and used for applications such as serving as

Manuscript received April 15, 2010. This work was supported in part by

the National Science Foundation under Grant CNS0619940, and by financial
support from NASA, and Santa Clara University; any opinions, findings, and

conclusions or recommendations expressed in this material are those of the

author and do not necessarily reflect the views of the National Science
Foundation, NASA, or Santa Clara University.

P. Mahacek, C. A. Kitts, and I. Mas are all with the Robotic Systems

Laboratory, Santa Clara University, Santa Clara CA 95053 USA.
Phone:408.554.4382; fax: 408.554.5474; e-mail: PMahacek@scu.edu.

gunnery targets or mine countermeasure drones [2]. Over the

past two decades, advances in GPS-based position sensing,

wireless communication, navigation, and automation

technologies have enabled a variety of new USV applications

such as towing objects, mine-sweeping, exploration, and

serving as communication relays between underwater assets

and remote control nodes. Excellent reviews of the many

USV systems that have been developed for such applications

are provided in [3-5].

Recent advances in multi-robot control techniques have led

to the development of several multi-USV systems. Potential

advantages of multi-USV systems include redundancy,

increased coverage and throughput, flexible reconfigurability,

spatially diverse functionality, and the fusing of physically

distributed sensors and actuators; applications capable of

exploiting such features range from remote and in situ sensing

to the physical manipulation of objects [6].

One of the first implemented multi-USV systems was the

Massachusetts Institute of Technology‘s SCOUT system,

comprised of several robotic kayaks [7]. In addition to serving

as a multi-USV navigation testbed, fleets of 2-4 SCOUT

vehicles have been used to explore support applications for

autonomous underwater vehicles, such as serving as a

communications relay and providing long-baseline navigation

services [8]. Researchers at Carnegie-Mellon University have

networked two of their OASIS USVs to explore telesupervised

aquatic sensing; this system has been demonstrated

experimentally with field studies detecting and characterizing

simulated harmful algae blooms [9]. Work at the U.S. Naval

Academy (USNA) has focused on using multiple tugboats to

cooperatively manipulate and propel other ocean vehicles

through the use of swarm navigation techniques [10]. In a

2009 demonstration during the Navy‘s Trident Warrior

exercise, the CARACaS (Control Architecture for Robotic

agent Command and Sensing) autonomy architecture was used

on several USVs in order to verify the use of this behavior-

based control system for asset protection and riverine survey

applications [11]. Other concepts include the fleet of small-

scale Drosobots developed for sampling applications [12], and

the open source Protei development effort to field a fleet of

sailing drones for oil and pollution clean-up services [13].

The work presented in this paper aligns with many of the

themes presented in [14], which discussed the use of USVs as

Dynamic Guarding of Marine Assets through

Cluster Control of Automated Surface Vessel

Fleets

Paul Mahacek, Student Member, IEEE, Christopher A. Kitts, Senior Member, IEEE, Ignacio Mas,

Student Member, IEEE

M

tel:408.554.4382
tel:408.554.5474
mailto:PMahacek@scu.edu

2

automated buoys, such as those used by the Naval Undersea

Warfare Center [15]. In particular, this work envisioned

multi-USV buoy systems for a variety of marine applications

ranging from marine traffic management to distributed

sensing. Potential benefits identified for such a system

included the ability to rapidly deploy a buoy line, the ability to

dynamically reposition the buoys, and reduced deployment

and maintenance costs.

 There are many challenges to fielding multi-USV systems,

to include providing robust communications, the incorporation

and fusion of distributed sensing and actuation capabilities, the

human-machine interfaces to enable efficient monitoring and

specification of tasks, and achieving cost-effective production

and operation. One particularly challenging issue is the

navigation strategy used to guide the absolute and relative

motions of the fleet. A wide variety of techniques have been

and continue to be explored for this capability for multi-robot

systems in general. When limited information exchange is a

primary constraint (due to physical distribution or constrained

bandwidth), decentralized control approaches are often

pursued [16]-[17]. Behavioral, biologically inspired, and

potential field techniques have been successfully demonstrated

[18]-[20], although they often lack mathematical formality.

Centralized approaches exploiting global information exist,

but they are often not preferred due to limited scalability;

however, they may be ideal when tight robot interaction is

required by applications such as the realtime fusing of sensors

or actuators [21]-[22].

 Specific to the multi-USV systems previously cited, several

systems use a very loose form of coordinated navigation in

which each USV blindly follows its own trajectory, but the

trajectories are spatially (as with the Drosobots) or temporally

(as with OASIS) offset in order to divide and conquer the task

at hand. The USNA tugboat fleet, however, employs a much

tighter coordination strategy in order to achieve manipulation

tasks.

The work presented in this article employs a specific

coordinated navigation control approach known as Cluster

Space control [23], which we have previously demonstrated

experimentally on land rover, aerial robot and surface ship

systems. We have developed this controller in order to enable

benefits such as natural specification and monitoring of

formation performance and the ability to achieve highly

connected and full-order control. Our current work introduces

an application-layer above the centralized formation

controller, transforming application-specific specifications

into cluster space control specifications; these are used to

implement the realtime cluster controller, which in turn

determines the drive commands for each individual robot in

the fleet. Section II of this paper reviews the cluster space

control approach and its integration with a specific

application, that of dynamically establishing a barrier between

threatening marine traffic and an asset that must be protected.

Section III reviews the design of the multi-USV system.

Section IV presents experimental field data, and Section V

discusses future work and draws conclusions about the

significance of this work.

II. THE CLUSTER SPACE CONTROLLER

Our research in Cluster Space Control is motivated by

our vision of a specific class of multi-robot applications

that require complete degree-of-freedom control of the

spatial and motion characteristics of a locally distributed

mobile multi-robot system that tightly interacts in realtime.

At the same time, we desire transparency for the

formation‘s degrees-of-freedom in order for a realtime

human pilot or supervisory controller to specify, control

and/or monitor performance.

Because the cluster space technique allows direct

specification of any spatial state variables of interest, it avoids

potential drawbacks of other well-known multi-robot control

strategies. For example, compared to virtual bodies and

artificial potentials approach [20], there is no need to

iteratively tune potential fields or to select artificial leader

positions in order to achieve the motion characteristics of

interest. Compared to leader-follower techniques [24],

specification is not limited to the distance and/or angle

between leader-follower pairs within the formation. In

contrast to virtual body techniques [25], all pose degrees-of-

freedom may be continuously articulated. Some of these

advantages come at the cost of increased computation within

the realtime control loop; however, the cluster space approach

can be implemented with varying levels of (de)centralization

[25], and we have had success exploring strategies such as

multi-rate control [26]; these strategies are both suitable for

dramatically reducing computational load and the need for

information sharing throughout the cluster.

A. The Cluster Space Control Approach

Central to the cluster space strategy are the concepts of

considering the n-robot system as a single entity, a

―cluster,‖ and of specifying motions with respect to

cluster attributes, such as position, orientation, and

geometry; we note that all of these attributes may be

easily varied such that a reasonable analogy is that a

cluster of mobile robots moves like a virtual kinematic

mechanism. Our approach is to use the cluster attributes to

guide the selection of a set of independent system state

variables suitable for specification, control, and

monitoring. This collection of state variables constitutes

the system‘s cluster space and can be related to robot-

specific state variables through a formal set of kinematic

transforms. A supervisory operator or realtime pilot

specifies and monitors cluster motion, and control

computations are executed with respect to the cluster

space variables, (which leads to well-behaved motions in

the cluster space). Kinematic transforms allow

compensation commands to be derived for each individual

robot, and they also allow data from a variety of sensor

packages to be converted to cluster space state estimates.

As an example of this, consider the case of a simple,

planar two-robot cluster, which is detailed in [23] and

shown in Fig. 1. A conventional robot space definition

of the pose of this system would include the position and

orientation of each robot as measured in the global frame:

3

TG yxyxR),,,,,(222111


. To consider the cluster

perspective, assume that a cluster frame is placed at the

midpoint between the two robots and oriented towards

Robot 1. A reasonable cluster space description of the

cluster‘s pose would include the location and orientation

of the cluster frame, a single variable representing the

cluster geometry (in this case, we use the distance to each

robot from the cluster origin), and the relative

orientations of each robot with respect to the cluster

frame; this results in a cluster pose vector of
T

CCC dyxC),,,,,(21


.

Fig. 1 – Representing the pose of a two-robot system using a cluster space

description.

Mathematical relationships that relate these robot and

cluster space variables constitute the position kinematic

functions; for example, the cluster‘s x and y location is

the average of the x and y locations of the two robots.

Furthermore, the robot and cluster space velocities, RG 

and C


, can also be formally related to each other. For

example, computing the partial derivatives of the cluster

space pose variables allows the development of a Jacobian

matrix, J , that maps robot velocities to cluster velocities in

the form of a time-varying linear function:

mn

mn

mnmnmn

mn

mn

GGG

mn r

r

r

r

g

r

g

r

g

r

g

r

g

r

g

r

g

r

g

r

g

RRJ

c

c

c

C



























 2

1

21

2

2

2

1

2

1

2

1

1

1

2

1

)(

 (1)

The controller itself can take on several forms given

the needs of the system and application. For example, a

simple form would consist of a linear PID controller that

computes compensations in the form of instantaneous

cluster velocity set-points, which are then transformed to

individual instantaneous robot velocity set-points through

the use of an inverse Jacobian transform; this is a

kinematic, resolved-rate controller appropriate for robots

with their own velocity-control capabilities. This style of

controller is depicted in Fig. 2, and it is the architecture

employed for the work reported on in this article. We

have also developed and implemented more sophisticated

nonlinear dynamic controllers. Such a controller uses a

partitioned model-based strategy and computes

compensations in the form of the abstracted cluster space

forces and torques necessary to manipulate the virtual

kinematic mechanism; these compensations are converted

by a Jacobian transpose transform to individual robot-

level control forces/torques for dynamic control of the

individual vehicles [27].

Fig. 2 – Inverse Jacobian Cluster Space Control Architecture for a Mobile

Multi-Robot System.

To date, we have successfully implemented cluster

space control in experiments with clusters of up to 6

vehicles, for both holonomic and nonholonomic robots, for

robots negotiating obstacle fields, for piloted and

supervisory control modes, and for a variety of

relative/absolute positioning and tracking pose sensing

systems. The guarding/shielding application reported here

is an extension of our previous work in escorting/patrolling

[28]-[30]. In addition, we are applying the control strategy

to other applications such as gradient-based environmental

sensing [31]-[32] and reconfigurable sparse array

communication systems [33].

B. Cluster Space Kinematic Transforms for the Dynamic

Guarding Application

In exploring the dynamic guarding application, we have

applied the cluster space control framework in numerous

ways, each varying the selection of pose variables. For the

experiments presented in Section IV, the selection of these

variables was driven by the guarding application. This

application involves the creation of a ―fence‖ that becomes

denser as a threat approaches and which is positioned between

the threat and the asset being guarded. From this perspective,

the position of the asset being protected and the location of the

threat (its bearing from the asset and its proximity) dictate the

deployment of the robots in the creation of a fence that is

properly positioned with an appropriately dense ―fence

spacing.‖

Fig. 3 depicts the relevant reference frames and geometric

layout for a planar 5-USV cluster. To complement the sensor

4

data used in experimentation, the global frame was defined

with XG pointing East and YG pointing North. The robot

space pose vector is

RG


 =(X0, Y0, 0, …, X5, Y5, φ5)
T

where (X0, Y0, φ0) is the pose of the protected object and (Xi,

Yi, φi) is the pose of each of the robots where i=(1,2,3,4,5).

We note that we are treating the protected asset as an element

of the cluster, although it is not directly controlled by the

cluster space dynamic guarding policy. We also note that for

this application, robot orientation is not critical in establishing

a fence; in fact, given the non-holonomic constraints of the

boats used in the application, they are not independently

specified. For this reason, and to simplify the presentation of

the underlying mathematics, we drop them from consideration

in independently specifying the pose of the fleet. This leaves

us with two degrees-of-freedom for each of the six fleet

entities (five boats and the protected asset), yielding a total of

12 linear degrees-of-freedom for the robot group.

Fig. 3 – 5-USV Cluster Geometry.

From the cluster perspective, we place the cluster frame

origin, denoted by (Xc, Yc), at the location of the protected

object, and we orient the frame such that the cluster heading,

θc, points the frame towards the location of robot 1. The

locations of robots 1 - 5 are specified in part by the radial

distances, R1 - R5, from the asset being protected to each

individual robot. In addition, the positions of robots 2 and 3

are defined by a spacing from robot 1 given as F2 and F3.

Similarly, robots 4 and 5 are each positioned by a spacing F4

and F5 from robots 2 and 3, respectively. Further expansion of

the cluster can be achieved by adding robots to either end of

the cluster using this even-odd convention.

The cluster space pose vector is therefore

C


=(Xc,Yc,θc,R1,R2,R3,R4,R5,F2,F3,F4,F5,φ1, 2, 3, 4,, 5)
 T

.

where each i is the relative rotation of each robot with respect

to the cluster frame, for i=1-5. As previously stated, given

that the kayaks are non-holonomic vehicles, robot orientations

are removed as freely specified variables, and the

mathematical development that follows is independent of

these variables. The controller used for this study uses an

inner loop heading controller to orient each vehicle in the

direction of desired motions. We have also developed a

formally constructed non-holonomic controller for use in

systems of this type [34]. Removing the i angles from

consideration leaves us with 12 cluster degrees-of-freedom,

matching the 12 linear degrees-of-freedom in robot space.

Given RG


 and C


, the set of forward position kinematic

equations,)(RKINC G


, is given by Eqs (2)-(7):

Xc=X0 (2)

Yc=Y0 (3)

Rn=((Xn-X0)
2
+(Yn-Y0)

2
)
1/2

 for n=1,2,3,4,5

(4)

θ1=Atan2((X1-X0),(Y1-Y0))

(5)

F2=((X2-X1)
2
+(Y2-Y1)

2
)
1/2

(6)

Fm=((Xm-Xm-2)
2
+(Ym-Ym-2)

2
)

 1/2
 for

m=3,4,5 (7)

Inversely, the set of inverse position kinematic equations,

)(CINVKINRG


, is given by Eqs (8)-(15):

X0=Xc (8)

Y0=Yc (9)

X1=Xc+R1* Sin(θ1) (10)

Y1=Yc+R1* Cos(θ1) (11)

Xi=Xc+Ri*Sin(θ1+acos((R1
2
+ Ri

2
- Fi

2
)/(2* R1* Ri))) (12)

 for i=2,3

Yi=Yc+Ri* Cos(θ1+acos((R1
2
+ Ri

2
- Fi

2
)/2* R1* Ri))) (13)

 for i=2,3

Xj=Xc+Rj*Sin(θ1+acos((R1
2
+ Rj-2

2
- Fj

2
)/2* R1* Rj-2))

+acos((Rj
2
+ Rj-2

2
- Fj

2
)/2* Rj* Rj-2))) for j=4,5 (14)

Yj=Yc+Rj* Cos(θ1+acos((R1
2
+ Rj-2

2
- Fj-2

2
)/2* R1* Rj-2))

+acos((Rj
2
+ Rj-2

2
- Fj

2
)/2* Rj* Rj-2))) for j=4,5 (15)

The forward and inverse velocity kinematics provide the

formal relationship between the robot and cluster space

velocities, RG 
 and C


. From (2)-(3), we may compute the

partial derivatives of the cluster space pose variables, ci, and

5

develop a Jacobian matrix, J , that maps robot velocities to

cluster velocities in the form of a time-varying linear function:

mn

mn

mnmnmn

mn

mn

GGG

mn r

r

r

r

g

r

g

r

g

r

g

r

g

r

g

r

g

r

g

r

g

RRJ

c

c

c

C



























 2

1

21

2

2

2

1

2

1

2

1

1

1

2

1

)(

 (16)

In a similar manner, we may develop the inverse Jacobian,

)(1 RJ GG


, which maps cluster velocities to robot velocities.

Space prohibits the complete listing of J and
1J .

C. Control Framework for the Dynamic Guarding

Application

The general control architecture depicted in Fig. 2 is used

for this application, with two modifications as shown in Fig. 3.

First, a basic robot-level obstacle avoidance function is

added to protect the individual robots from colliding with each

other, the object being protected, and the threatening object.

When this occurs, the threatened USV negotiates the obstacle

in an independent fashion, momentarily breaking away from

the formation. Once the obstacle has been avoided, the USV

returns to the cluster. As is common for collision avoidance,

the avoidance force is a repulsive function that is summed

with other control forces. For each USV, the detection radius

and the avoidance potential can be independently specified;

circular fields are typically used, but an elongated oval can be

defined to better model the outer edge of the vessel. It is

interesting to note that we have developed a cluster-level

obstacle avoidance algorithm, which allows for the entire

cluster to move in unison, maintaining the cluster shape while

avoiding a collision [34]; this approach, however, was deemed

inappropriate for the guarding application since it would too

easily allow the threat to simply ―push‖ the entire barrier out

of the way.

Fig. 4. – Cluster Space Control Architecture for an n-Robot system.

The second modification is the augmentation of the input to

the controller with an application-space-to-cluster-space

function that transforms user-specified application space

variables to desired cluster variables. For the implemented

guarding application, Fig. 5 indicates the spatial quantities of

interest. The overall concept of operation is as follows. The

object being protected is at a location (Xobj, Yobj). With no

threat, the USVs patrol about the object being protected at a

minimum specified radius, Rmin, and evenly spaced in a circle.

As a threat approaches from an observed bearing, T, and with

a distance, DT, the USV formation shifts in three ways. First,

the USVs rotate about the circumference of the protected

region in order to align themselves between the threat and the

protected object. Second, the USVs move closer together to

form a denser barrier, with some minimum specified spacing,

Fmin. Third, they may also move out towards the threat in

order to meet it at a maximum radius of Rmax.

Fig. 5 – Application layer variables showing two cases where the threat is

either far away or not detected at all (left), or where the threat is close and the
USVs have shifted to guard the protected object or area (right).

Given these specifications, the instantaneous specification

for the cluster space controller can be derived from an

appropriate set of application-space-to-cluster-space

transforms. These transforms convert the application-relevant

information, (Xobj,Yobj,Rmin,Rmax,DT, T,Fmin), to cluster space

variable inputs. For the guarding application, these transforms

are of the form represented in Eqs (17)-(21) assuming

DT>Rmax:

Xc=Xobj (17)

Yc=Yobj (18)

θC= θT (19)

Rn=Rmin + (Rmax-Rmin)/(DT - Rmax+1) for n=1,2,3,4,5 (20)

Fn=Fmax – (Fmax-Fmin)/(DT – Rmax+1) for n=2,3,4,5 (21)

where Fmax= 2*Rn*sin(/m) for m=5 (the number of robots) ;

Fmax is the distance between robots when evenly spaced in a

pentagon around the protected asset.

 In Fig. 4, this set of application layer transforms operate on

the specifications provided by the supervisory operator and

provide the resulting cluster space desired values to the cluster

control loop. The application transforms essentially act as a

set of inverse position kinematics between these two spaces.

There are two critical observations to be made about this

architecture. First, realtime control computations are still

being performed in the cluster space (e.g., realtime errors and

controller compensation commands are cluster space

variables). Second, the application space specification of the

6

task is independent of the number of robots. This means that

the multi-USV cluster will behave as desired no matter how

many USVs are in the fleet. This is particularly important in

order to ensure graceful constitution and degradation of the

cluster as the fleet is incrementally fielded and when

anomalies occur.

III. HARDWARE

Several iterations of design have occurred to bring the USV

system to its present design. The design of the vessels

emphasizes versatility, ease of operation, and low cost in all

design segments. The use of a common bus architecture

across all Robotic Systems Lab cluster vehicles enables a

rapidly reproducible control system capable of transparently

controlling multiple platforms, including several different

types of land rovers, an aerial vehicle, and two different types

of USVs. Off-the-shelf components and an adjustable

structure facilitate both ease of integration and quick

replacement in the case of a malfunctioning component.

Fig. 6 – One of the robotic kayaks.

A. Electronics Hardware and Protocol

The common bus architecture includes all communication

and navigation components for each robot in the cluster. The

computing stack is made up of two BasicX microcontroller

boards. One board accepts drive commands and controls the

motor driver boards accordingly in order to run the boat's

thrusters. The other board collects position data and interfaces

with the wireless communication system. A digital Devantech

compass provides heading data, and a Garmin 18 differential

GPS unit determines the position and translational velocities;

these are low-cost sensors with accuracies on the order of 3

and 3 meters). The modem is a Metricom Ricochet 128Kbits/s

unit, which is capable of relatively long range (2+ miles)

communication, handles multiple users well, and has

frequency hopping for security, noise rejection and utilization

of unlicensed frequencies.

B. Propulsion, Power, and Structure

Propulsion is achieved through the use of two Minn Kota

Endura 30 thrusters, configured on each side for differential

drive. The motor controller is a Roboteq AX1500 interfaced

via an RS 232 connection. A standard marine deep-cycle

battery is centrally mounted as shown in Fig. 6. This gives the

USV more than a three-hour run time at normal operations

with a top speed of five knots. The mounting structure is

made from 6061 aluminum tubing with a UHMW

polyethylene motor mounting plate. Several different sit-on-

top style kayaks are currently in use and were selected for

their short, wide hulls, which provide greater stability and

more agile turning over longer, narrower models. The wiring

harness utilizes an automotive-type connector designed for

high-current low DC voltage. Though it is not rated to be

submersible, it is waterproof and has been proven to handle

brief submersions at shallow depths.

C. Base station

The key element of the base station hardware is the

workstation. Several computers have been used over the

course of the research and it has been proven on desktops,

laptops and even netbooks. Two Metricom Ricochet modems

facilitate radio communications. Several pieces of software

including DataTurbine (a ring buffered network bus), Matlab,

Simulink, and a VRML simulator (shown in Fig. 7 below),

work together to retrieve, process, display and redistribute

sensor data, system information and robot commands.

Threat detection is handled as a function of the base station,

where the threats are manually tracked from shore or onboard

the protected vessel. The threats can easily be specified in the

observer‘s local reference frame and appropriate frame

transformations are handled in the application layer.

Fig. 7 – The VRML model is capable of replaying simulated cluster

formations and trajectories as well as visualizing real-time robot positioning.

IV. TESTING AND RESULTS

The main objective of this research was to apply the cluster

space control architecture to a larger multi-USV system with

obstacle avoidance while determining the viability of a new

shielding technique applied in application space. Four main

test cases were run over the course of a multi-day deployment

at Lake Del Valle near Livermore, CA (Fig. 8). The first three

cases (basic shielding, varying shield size, and threat

detection) were run with five robotic kayaks and a simulated

Fig. 8 – Testing in Lake Del Valle near Livermore, CA provided variable

winds up to 20 knots, low currents, and boat wakes for an excellent dynamic

environment. Kayaks showing standard shielding.

7

Fig. 9 – Standard shielding, constant radius, no threat. RMSE in table.

Fig. 10 – Standard shielding, constant radius, no threat (overhead view of

same run as Fig. 9.) Looping trail patterns are a function of non-optimized
velocity gains, as well as lacking a dead-band around the desired position.

Differences in trail patterns can be attributed to various kayak hulls used and

the number of service hours on individual thrusters. Further optimization will
be attempted in future work.

TABLE A – BASIC SHIELDING: RMS ERROR VALUES FOR THE CLUSTER

RADIUS AND FENCE SPACING VARIABLES

Cluster

Radii

RMS Error

(m)

 Cluster Fence

Spacings

RMS Errors

(m)

R1 1.57 -- --

R2 2.15 F2 2.62

R3 1.57 F3 2.22

R4 3.44 F4 3.46

R5 1.48 F5 2.44

boat being protected. The fourth case is of threat detection

using four kayaks to protect a SWATH mapping vessel.

A. Basic Shielding

In the case of the basic shielding technique we are applying

it to a simulated boat requiring protection. Using the

application space, the operator can set the standard shield

radius, the maximum approach and the minimum fence

spacing. In this first instance the standard shield radius is set

to 17m, and the minimum fence spacing and approach are

disregarded, as there is no threat. When there is no threat, the

application space automatically sets the USV fleet into an

evenly spaced circular formation and rotates them about the

centroid at a constant rate.

The response of each parameter in the cluster space for the

run is shown in Fig. 9 and an overhead view is shown in Fig.

10, with initial positions marked by small shapes and the final

positions marked by larger shapes. In all overhead view

figures shown in this work, the positions of the kayaks are

displayed relative to the cluster centroid. This removes any

confusion caused in history trails by the cluster translating in

the global frame. It can be seen from the graphs that the

controller is capable of compensating for dynamics added by

the environment including wind, currents, and boat wakes.

Table A summarizes the rms errors for the controlled radial

and inter-robot spacing parameters; all rms errors are under 4

meters, which we consider to be outstanding given the limited

sensor performance and disturbance environment.

B. Shielding while changing size

Similar to the first case, in this scenario the fleet of USVs is

rotating at a constant rate around a simulated protected object.

Due to changing conditions or in the case of protecting

multiple objects, it may be desirable to modify the size of the

cluster. In Fig. 11, the cluster variables show the constant

rotation and varying radius. Note that the fence spacing is

automatically controlled by the application layer to maintain a

uniform distribution around the protected object when no

threat is present, as this case specifies. Fig. 12 shows an

overhead view of the outward spiral maneuver, which is a

portion of the test run shown in the preceding figure. Table B

summarizes the rms errors of the controlled radius and spacing

parameters; again, excellent results are shown, with all rms

errors under 3 meters.

C. Threat detection

The third experimental run demonstrates a case of shielding

upon detection of a threat. In this instance the standard radius

is set to 17m, the maximum approach is 25m, and the

minimum fence spacing is set to 10m.

The overhead view in Fig. 13 shows the threat approaching

the protected vessel. As the threat is identified, the cluster

begins to rotate between the threat and the vessel. As the

threat nears the fence spacing closes further. At this point the

threat has been deterred and decided to turn around. In Fig.

14, the individual cluster space variables are shown for a

longer portion of this scenario. The later part of the

experiment shows the kayaks returning to an evenly spaced

rotation about the protected asset as the threat disappears.

Table C shows the rms errors to be less than 4 meters.

8

Fig. 11 – Basic shielding cluster variables. Note that the jump in the top plot

is caused as the heading wraps from –pi to pi at 180 degrees, and is not an

actual discontinuity. RMSE shown in table

Fig. 12 – Overhead view of a change in shielding radius.

TABLE B – SHIELDING WHILE CHANGING SIZE: RMS ERROR VALUES FOR THE

CLUSTER RADIUS AND FENCE SPACING VARIABLES

Cluster

Radii

RMS Error

(m)

 Cluster Fence

Spacings

RMS Errors

(m)

R1 2.02 -- --

R2 1.84 F2 2.60

R3 1.79 F3 2.25

R4 2.07 F4 2.88

R5 1.55 F5 2.82

Fig. 13 – Overhead view of shielding technique with threat detection.

Fig. 14 – Shielding with threat detection cluster space variable. Table
showing RMSE does not include the initialization time from 0-20

TABLE C – THREAT DETECTION: RMS ERROR VALUES FOR THE CLUSTER

RADIUS AND FENCE SPACING VARIABLES

Cluster

Radii

RMS Error

(m)

 Cluster Fence

Spacings

RMS Errors

(m)

R1 1.32 -- --

R2 1.32 F2 2.64

R3 1.79 F3 2.48

R4 1.81 F4 3.70

R5 1.64 F5 2.97

9

D. Shielding a mapping vessel

While the previous cases have relied on a simulated cluster

centroid, the fourth case uses an actual vessel to demonstrate

shielding with threat detection (Fig. 15). The protected vessel

is another autonomous surface vessel, a SWATH (small

waterplane area twin hull) boat, equipped with a multibeam

sonar, AHRS, GPS, and heave sensors designed for shallow

water bathymetry. Standard operation typically involves

following a preset path (mowing the lawn) to map the desired

area. More information can be found in [35]. This case uses

four robots for the shielding fleet, using an appropriately

modified set of kinematic transforms. We note that the

application specifications remain the same, independent of the

fact that only four robots are now being used.

Fig. 15 – Shielding with threat detection of a mapping vessel

The application variables for this case are set with the

standard radius at 12 m, the maximum approach at 20 m, and

the minimum fence spacing at 10 m.

The overhead view, shown in Fig. 16, is broken down into

four time steps. In the first step the fleet of four USVs have

identified a threat (out of frame to the northeast) and the

cluster has rotated to face it. For this four USV case, the

cluster heading is aligned between robots 1 and 2. The fleet

has not yet adjusted fence spacing or radius since the threat is

still far away.

In step 2, the threat approaches the protected vessel. The

kayaks begin to noticeably decrease the fence spacing. At step

3 the threat has continued to approach. The USVs are still

tracking along the heading, have come further out and are

narrowing the fence spacing.

At step 4 the threat has almost reached the max approach

and the USVs have set the fence spacing near the minimum

value as set in the application space. The kayaks loiter in

these locations, tracking the heading and distance of the threat

until it vacates the area.

The individual measured cluster variables are shown in Fig.

17. Table D shows the rms errors for the controlled

parameters; as before, all errors are under 4 meters.

V. ONGOING AND FUTURE WORK

Ongoing work on this project includes a significant level of

Matlab/Simulink-based simulation in order to explore

alternate implementations of the cluster space controller, using

different shape variables. It is worth noting that the version

reported on here fits within the leader-follower paradigm;

other versions being explored clearly do not, such as defining

a fleet centroid and using this as a reference for the center of

the barrier. We are also preparing to use a version of this

controller during a real-world Summer 2011 mission involving

protection of an underwater robot dive area in Lake Tahoe;

recreational boaters pose an extreme hazard to these

operations given the ability of a boat to catch the high-voltage

tether running from the tender boat to the robot.

In general, we continue to apply the cluster space control

approach to systems with more robots and additional degrees-

of-freedom in order to explore scalability issues. We are also

working to generalize the application-space-to-cluster-space

Fig. 16 – Overhead view of shielding technique with threat detection around

mapping vessel.

Fig. 17 – Cluster variables shielding with threat detection of a mapping vessel

TABLE D – SHIELDING A MAPPING VESSEL: RMS ERROR VALUES FOR THE

CLUSTER RADIUS AND FENCE SPACING VARIABLES

Cluster

Radii

RMS Error

(m)

 Cluster Fence

Spacings

RMS Errors

(m)

R1 1.58 -- --

R2 2.21 F2 2.33

R3 1.80 F3 2.56

R4 1.90 F4 3.99

10

transform architecture by using this specification approach

with other applications. Related to this, we plan to integrate

our anomaly management algorithms [36] in to the overall

multi-robot control system so that the system seamlessly

adapts itself in the event of robot faults. Finally, we continue

to apply the cluster space control framework to real-world

applications, such as our previously mentioned work in

gradient-based environmental sensing and reconfigurable

sparse communication antenna arrays.

VI. SUMMARY AND CONCLUSIONS

In this paper we described the use of a fleet of robotic

marine vessels capable of guarding critical assets from threats.

Coordinated formation control of the fleet was implemented

through the use of the cluster space control architecture. An

application-specific layer was integrated with the cluster space

controller, allowing an operator to directly specify and

monitor guarding-related parameters.

 This system has been experimentally verified in the field

with a fleet of robotic kayaks. The control architecture used to

establish the guarding behavior and the design of the robotic

kayaks were reviewed, and experimental data regarding the

functionality and performance of the system was presented. As

a result, the five-robot cluster space definition and control

architecture was validated and functionality was proven for

this application.

ACKNOWLEDGMENT

The authors thank student researchers who assisted with

performing experiments and who have contributed to the

development of the cluster space approach, to include authors

listed in [29]-[36]. This work has benefited greatly through

the feedback of numerous colleagues; the authors are

particularly indebted to Thomas Ademek, Ketan Rasal and the

RSL graduate research team for their time and effort which

were critical to this work.

REFERENCES

[1] S.J. Corfield and J.M.Young. Unmanned surface vehicles – game

changing technology for naval operations. In Advances in unmanned

marine systems. Ed. G.N. Roberts and R. Sutton. IEEE, Hertfordshire,
2006, pp. 311-328.

[2] S. Saunders, Ed. Mine warfare forces. In Janes Fighting Ships, IHS,

London, 2004, pp. 177-18.
[3] V. Bertram, Unmanned surface vehicles - A survey. In Skibsteknisk

Selskab, Copenhagen, Denmark, 2008.
[4] J. Manley, "Unmanned surface vehicles, 15 years of development,"

Proceedings of MTS/IEEE OCEANS, Kobe, Japan, September 2008,

pp.1-4.
[5] M. Caccia, ―Autonomous Surface Craft: prototypes and basic research

issues.‖ 14th Mediterranean Conf on Control and Automation, Ancona,

June 2006, pp. 1-6.
[6] C. Kitts and M. Egerstedt, ―Design, Control and Applications of Real-

World Multirobot Systems.‖ IEEE Robotics and Automation Magazine,

v 15, n 1, March 2008, p. 8.
[7] J. Curcio, J. Leonard, and A. Patrikalakis. "SCOUT - a low cost

autonomous surface platform for research in cooperative autonomy,"

Proceedings of MTS/IEEE OCEANS, vol 1, 2005, pp. 725- 729.
[8] J. Curcio, J. Leonard, J. Vaganay, A. Patrikalakis, A. Bahr, D. Battle,

H. Schmidt, M. Grund, ―Experiments in Moving Baseline Navigation

using Autonomous Surface Craft‖, Proceedings of MTS/IEEE Oceans,
vol 1, 2005, pp. 730-735.

[9] J. Dolan, G. Podnar, S. Stancliff, K. Low, A. Elfes, J. Higinbotham, J.

Hosler, T. Moisan, J. Moisan. ―Cooperative aquatic sensing using the
telesupervised ocean sensor fleet.‖ Proceedings of Remote Sensing of the

Ocean, Sea Ice, and Large Water Regions, vol 7473, 2009, pp. 1-12.

[10] J. Esposito, M. Feemster, and E. Smith, "Cooperative manipulation on
the water using a swarm of autonomous tugboats," IEEE International

Conference on Robotics and Automation, May 2008, pp.1501-1506.

[11] L. Elkins, D. Sellers, and W.R. Monach. ―The Autonomous Maritime
Navigation (AMN) project: Field tests, autonomous and cooperative

behaviors, data fusion, sensors, and vehicles.‖ Journal of Field Robotics,

vol 27, 2010, pp. 790–818.
[12] Z.Z. Abidin, M. Arshad, U. Ngah, O. Ping; "Control of mini

autonomous surface vessel," Proceedings of MTS/IEEE OCEANS,

Sydney, May 2010, pp.1-4.
[13] Protei, Online at https://sites.google.com/a/opensailing.net/protei/

[14] J.A. Curcio, P. McGillivary, K. Fall, A. Maffei, K. Schwehr, B.

Twiggs, C. Kitts, P. Ballou. "Self-Positioning Smart Buoys, The "Un-
Buoy" Solution: Logistic Considerations using Autonomous Surface

Craft Technology and Improved Communications Infrastructure,"

Proceedings of MTS/IEEE OCEANS, September 2006, pp.1-5.
[15] ___ Survey of Portable Range Technologies, U.S. Army White Sands

Missile Range Special Report, 2005. Available at

http://www.jcte.jcs.mil/RCC

[16] E. Fiorelli, N. Leonard, P. Bhatta, D. Paley, R. Bachmayer, D.

Fratantoni. ―Multi-AUV control and adaptive sampling in Monterey

Bay,‖ IEEE Journal of Oceanic Engineering, v 31, n 4, October 2006,
pp. 935-948.

[17] Y. Tan and B. Bishop, ―Evaluation of robot swarm control methods for
underwater mine countermeasures,‖ Proceedings of the 2004 Annual

Southeastern Symposium on System Theory, v 36, pp. 294-298

[18] T. Balch and R. Arkin, ―Behavior-based formation control for
multirobot teams,‖ IEEE Transactions on Robotics and Automation,

vol14, no 6, December 1998, pp. 926-939.

[19] E. Flinn, ―Testing for the ‗boids‘,‖ Aerospace America, v 43, n 6, June,
2005, pp. 28-29.

[20] N. E. Leonard and E. Fiorelli, ―Virtual leaders, artificial potentials and

coordinated control of groups,‖ Proceedings IEEE Conf. Decision and
Control, 2001, pp. 2968–2973.

[21] K. Tan, and M. Lewis, ―Virtual Structures for High-Precision

Cooperative Mobile Robotic Control,‖ Proceedings IEEE/RSJ
International Conference on Intelligent Robots and Systems, 1996, pp.

132-139.

[22] C.P. Tang, R.M. Bhatt, M.Abou-Samah, and V. Krovi, ―Screw-theoretic
analysis framework for cooperative payload transport by mobile

manipulator collectives,‖ IEEE/ASME Transactions on Mechatronics,

vol 11, no 2, April 2006, pp. 169-178.
[23] C. A. Kitts and I. Mas, ―Cluster space specification and control of

mobile multirobot systems,‖ IEEE/ASME Transactions on

Mechatronics, vol. 14, no. 2, April 2009, pp. 207–218.
[24] G.L. Mariottini, F. Morbidi, D. Prattichizzo, N. Vander Valk, N.

Michael, G. Pappas, and K. Daniilidis. Vision-based localization for

leader-follower formation control. IEEE Transactions on Robotics, vol
25, no 6, December 2009, pp. 1431 -1438.

[25] I. Mas and C. Kitts. ―Centralized and decentralized multi-robot control

methods using the cluster space control framework.‖ Proceedings of the
IEEE/ASME International Conference on Advanced Intelligent

Mechatronics, Montreal, Canada, July 2010, pp. 1-8.

[26] M. Meserve. Multirate Control Applied to a Cluster Space Robot
Formation, Santa Clara University Dept. of Electrical Engineering

Masters Thesis, March 2011.

[27] I. Mas and C. Kitts. ―Model-Based Nonlinear Cluster Space Control of

Mobile Robot Formations.‖ Multi-Robot Systems, Trends and

Development, T. Yasuda (Ed), INTECH, Ch 4.

[28] I. Mas, S. Li, J. Acain, and C. Kitts. ―Entrapment/escorting and
patrolling missions in multi-robot cluster space control.‖ Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots and

Systems, St. Louis, MO, Oct 2009, pp. 5855-5861.
[29] P. Mahacek, I. Mas, O. Petrovic, J. Acain, and C. Kitts. ―Cluster space

control of autonomous surface vessels.‖ Marine Technology Society

Journal, v 43 n 1, 2009, pp. 13-20
[30] P. Mahacek, I. Mas, C. Kitts, "Cluster space control of autonomous

surface vessels utilizing obstacle avoidance and shielding techniques,"

Autonomous Underwater Vehicles (AUV), 2010 IEEE/OES , vol., no.,
pp.1-5, 1-3 Sept. 2010

11

[31] T. Adamek, Cluster Space Gradient Contour Tracking for Mobile Multi-

Robot Systems. Santa Clara University Dept. of Mechanical Engineering
Masters Thesis, January 2011.

[32] V. Howard, A Study of Gradient Climbing Techniques Using Cluster

Space Control of Multi-Robot Systems, Santa Clara University Dept. of
Mechanical Engineering Masters Thesis, March 2011.

[33] G. Okamoto, C. Chen, and C. Kitts. ―Beamforming Performance for a

Reconfigurable Sparse Array Smart Antenna System via Multi-Robot
Control.‖ Proceedings of the SPIE Defense, Security, and Sensing

Conference, Orlando FL, April 2010, pp. 1-11.

[34] I. Mas, Obstacle Avoidance Policies for Cluster Space Control of Non-
Holonomic Multi-Robot Systems. IEEE/ASME Transactions on

Mechatronics, In Press.

[35] E. Beck, W. Kirkwood, D. Caress, T. Berk, P. Mahacek, K. Brashem,
J. Acain, V. Reddy, C. Kitts, J. Skutnik, G. Wheat. ―SeaWASP: A

Small Waterplane Area Twin Hull Autonomous Platform for Shallow

Water Mapping.‖ Marine Technology Society Journal, vol 43 no 1,
2009, pp. 6-12.

[36] C. Kitts. ―Managing space system anomalies using first principles

reasoning.‖ IEEE Robotics Automation Magazine, vol 13 no 4,
December 2006, pp. 39 –50.

