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(Communicated by Alexander Iosevich)

Abstract. A quantitative two weight theorem for the Hardy-Littlewood max-
imal operator is proved, improving the known ones. As a consequence, a
new proof of the main results in papers by Hytönen and the first author and
Hytönen, the first author and Rela is obtained which avoids the use of the
sharp quantitative reverse Holder inequality for A∞ proved in those papers.
Our results are valid within the context of spaces of homogeneous type without

imposing the non-empty annuli condition.

1. Introduction and main results

1.1. Introduction. The purpose of this note is to present a quantitative two weight
theorem for the Hardy-Littlewood maximal operator when the underlying space is
a space of homogeneous type S (SHT in the sequel), endowed with a quasimetric ρ
and a doubling measure μ (see Section 2.1 for the precise definitions). We briefly
recall some background on this problem in the euclidean or classical setting, when
we are working in R

n and we consider Lebesgue measure and euclidean metric. We
also assume that in this classical setting all the maximal operators involved and
Ap classes of weights are defined over cubes. Let M stand for the usual uncentered
Hardy-Littlewood maximal operator:

Mf(x) = sup
Q�x

1

|Q|

∫
Q

|f | dx.

The problem of characterizing the pair of weights for which the maximal operator
is bounded between weighted Lebesgue spaces was solved by Sawyer [Saw82]: To
be more precise, if 1 < p < ∞ we define for any pair of weights w, σ, the (two
weight) norm,

(1.1) ‖M(·σ)‖Lp(w) := sup
f∈Lp(σ)

‖M(fσ)‖Lp(w)

‖f‖Lp(σ)
,

then Sawyer showed that ‖M(·σ)‖Lp(w) is finite if and only if

sup
Q

∫
Q
(M(χQσ)

p wdx

σ(Q)
< ∞,
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c©2014 American Mathematical Society
Reverts to public domain 28 years from publication

641

http://www.ams.org/proc/
http://www.ams.org/proc/
http://www.ams.org/jourcgi/jour-getitem?pii=S0002-9939-2014-12353-7


This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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where the supremum is taken over all the cubes in R
n. A quantitative precise

version of this result is the following: if we define

[w, σ]Sp
:=

(
1

σ(Q)

∫
Q

M(σχQ)
pw dx

)1/p

,

then

(1.2) ‖M(·σ)‖Lp(w) ∼ p′[w, σ]Sp
,

where 1
p + 1

p′ = 1. This result is due to K. Moen and can be found in [Moe09].

However, it is still an open problem to find a characterization more closely related
to the Ap condition of Muckenhoupt which is easier to use in applications. Indeed,
recall that the two weight Ap condition:

sup
Q

(
−
∫
Q

w dx

) (
−
∫
Q

v−
1

p−1 dx

)p−1

< ∞

is necessary for the boundedness of M from Lp(v) into Lp(w) (which is clearly

equivalent, setting σ = v1−p′
, to the two weight problem), but it is not sufficient.

Therefore, the general idea is to strengthen the Ap condition to make it sufficient.
The first result in this direction is due to Neugebauer [Neu83], proving that, for any
r > 1, it is sufficient to consider the following “power bump” for the Ap condition:

(1.3) sup
Q

(
−
∫
Q

wr dx

) 1
r

(
−
∫
Q

v−
r

p−1 dx

)(p−1)r

< ∞.

Later, the first author improved this result in [Pér95] by considering a different
approach which allowed consideration of much larger classes weights. The new idea

is to replace only the average norm associated to the weight v−
1

p−1 in (1.3) by a
“stronger” norm which is often called a “bump”. This norm is defined in terms of
an appropriate Banach function X space satisfying certain special property. This
property is related to the Lp boundedness of a natural maximal function related to
the space. More precisely, for a given Banach function space X, the local X-average
of a measurable function f associated to the cube Q is defined as

‖f‖X,Q =
∥∥τ�(Q)(fχQ)

∥∥
X
,

where τδ is the dilation operator τδf(x) = f(δx), δ > 0 and �(Q) stands for the
sidelength of the cube Q. The natural maximal operator associated to the space X
is defined as

MXf(x) = sup
Q:x∈Q

‖f‖X,Q

and the key property is that the maximal operator MX′ is bounded on Lp(Rn)
where X ′ is the associate space to X (see (1.5) below).

As a corollary of our main result, Theorem 1.3, we will give a quantitative version
of the main result from [Pér95] regarding sufficient conditions for the two weight
inequality to hold:

Theorem 1.1. Let w and σ be a pair of weights that satisfies the condition

(1.4) sup

(
−
∫
Q

w dx

)
‖σ1/p′‖pX,Q < ∞.



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

QUANTITATIVE TWO WEIGHT THEOREM 643

Suppose, in addition, that the maximal operator associated to the associate space is
bounded on Lp(Rn):

(1.5) MX′ : Lp(Rn) → Lp(Rn).

Then there is a finite positive constant C such that:

‖M(·σ)‖Lp(w) ≤ C.

In this note we give a different result of this type with the hope that it may lead
to different, possibly better, conditions for the two weight problem for Singular
Integral Operators.

Most of the interesting examples are obtained when X is an Orlicz space LΦ

defined in terms of the Young function Φ (see Section 2.1 for the precise definitions).
In this case, the local average with respect to Φ over a cube Q is

‖f‖Φ,Q = ‖f‖Φ,Q,μ = inf

{
λ > 0 :

1

μ(Q)

∫
Q

Φ

(
|f |
λ

)
dx ≤ 1

}

where here μ is the Lebesgue measure. The corresponding maximal function is

(1.6) MΦf(x) = sup
Q:x∈Q

‖f‖Φ,Q.

Related to condition (1.4) here we introduce the following quantities.

Definition 1.2. Let (S, dμ) be an SHT. Given a ball B ⊂ S, a Young function Φ
and two weights w and σ, we define the quantity

(1.7) Ap(w, σ,B,Φ) :=

(
−
∫
B

w dμ

)
‖σ1/p′‖pΦ,B

and we say that a pair of weights belongs to the Ap,Φ class if

[w, σ,Φ]Ap
:= sup

B
Ap(w, σ,B,Φ) < ∞,

where the sup is taken over all balls in the space. In the particular case of Φ(t) = tp
′
,

this condition corresponds to the classical Ap condition and we use the notation

[w, σ]Ap
:= sup

B

(
−
∫
B

w dμ

) (
−
∫
B

σ dμ

)p−1

.

Now we define a generalization of the Fuji-Wilson constant of an A∞ weight σ
as introduced in [HP] by means of a Young function Φ:

[σ,Φ]Wp
:= sup

B

1

σ(B)

∫
B

MΦ

(
σ1/pχB

)p

dμ.

Note that the particular choice of Φp(t) := tp reduces to the A∞ constant (see
(2.5) from Section 2.1):

(1.8) [σ,Φp]Wp
= sup

B

1

σ(B)

∫
B

M (σχB) dμ = [σ]A∞ .
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1.2. Main results. Our main purpose in the present note is to address the problem
mentioned above within the context of spaces of homogeneous type. In this context,
the Hardy–Littlewood maximal operator M is defined over balls:

(1.9) Mf(x) = sup
B�x

1

μ(B)

∫
B

|f | dμ.

The Orlicz type maximal operators are defined also with balls and with respect
to the measure μ in the natural way.

Our main result is the following theorem.

Theorem 1.3. Let 1 < p < ∞ and let Φ be any Young function with conjugate
function Φ̄. Then, for any pair of weights w, σ, there exists a structural constant
C > 0 such that the (two weight) norm defined in (1.1) satisfies

(1.10) ‖M(·σ)‖Lp(w) ≤ Cp′
(
[w, σ,Φ]Ap

[σ, Φ̄]Wp

)1/p
.

We emphasize that (1.10), which is even new in the usual context of Euclidean
Spaces, fits into the spirit of the Ap − A∞ theorem derived in [HP] and [HPR12].
The main point here is that we have a two weight result with a better condition and
with a proof that avoids completely the use of the sharp quantitative reverse Hölder
inequality for A∞ weights proved in these papers. This property is, of course, of
independent interest but it is not used in our results.

From this theorem, we derive several corollaries. First, we have a direct proof
of the two weight result derived in [HP] using the [w]A∞ constant of Fujii-Wilson
(2.5).

Corollary 1.4. Under the same hypothesis of Theorem 1.3, we have that there
exists a structural constant C > 0 such that

(1.11) ‖M(·σ)‖Lp(w) ≤ Cp′
(
[w, σ]Ap

[σ]A∞

)1/p
.

Note that the result in Theorem 1.3 involves two suprema as in Corollary 1.4.
It would be interesting to find out if there is a version of this result involving only
one supremum. There is some evidence that it could be the case; see for example
[HP], Theorem 4.3. See also the recent work [LM].

As a second consequence of Theorem 1.3, we have the announced quantitative
version of Theorem 1.1:

Corollary 1.5. Under the same hypothesis of Theorem 1.3, we have that there
exists a structural constant C > 0 such that

‖M(·σ)‖Lp(w) ≤ Cp′[w, σ,Φ]
1/p
Ap

‖MΦ̄‖Lp(Rn).

We remark that this approach produces a non-optimal dependence on p, since
we have to pay with one p′ for using Sawyer’s theorem. However, the ideas from the
proof of Theorem 1.3 can be used to derive a direct proof of Corollary 1.5 without
the p′ factor. We include the proof in the appendix.

Finally, for the one weight problem, we recover the known mixed bound.

Corollary 1.6. For any Ap weight w the following mixed bound holds:

‖M‖Lp(w) ≤ Cp′
(
[w]Ap

[σ]A∞

)1/p
where C is a structural constant and as usual σ = w1−p′

is the dual weight.
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Remark 1.7. To be able to extend the proofs to this general scenario, we need to use
(and prove) suitable versions of classical tools on this subject, such as Calderón–
Zygmund decompositions. We remark that in previous works ([PW01], [SW92])
most of the results are proved under the assumption that the space has non-empty
annuli. The main consequence of this property is that in that case the measure
μ enjoys a reverse doubling property, which is crucial in the proof of Calderón–
Zygmund type lemmas. However, this assumption implies, for instance, that the
space has infinite measure and no atoms (i.e. points with positive measure) and
therefore constraints the family of spaces under study. Recently, some of those
results were proven without this hypothesis; see for example [PS04]. Here we choose
to work without the annuli property and therefore we need to adapt the proofs from
[PW01]. Hence, we will need to consider separately the cases when the space has
finite or infinite measure. An important and useful result on this matter is the
following:

Lemma 1.8 ([GGKK98]). Let (S, ρ, μ) be a space of homogeneous type. Then S
is bounded if and only if μ(S) < ∞.

1.3. Outline. The article is organized as follows. In Section 2 we summarize some
basic needed results on spaces of homogeneous type and Orlicz spaces. We also
include a Calderón–Zygmund type decomposition lemma. In Section 3 we present
the proofs of our results. Finally, we include in Section 4 an Appendix with a direct
proof of a slightly better result than Corollary 1.4.

2. Preliminaries

In this section we first summarize some basic aspects regarding spaces of ho-
mogeneous type and Orlicz spaces. Then, we include a Calderón–Zygmund (C–Z)
decomposition lemma adapted to our purposes.

2.1. Spaces of homogeneous type. A quasimetric d on a set S is a function
d : S × S → [0,∞) which satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y;
(3) there exists a finite constant κ ≥ 1 such that, for all x, y, z ∈ S,

d(x, y) ≤ κ(d(x, z) + d(z, y)).

Given x ∈ S and r > 0, we define the ball with center x and radius r, B(x, r) :=
{y ∈ S : d(x, y) < r} and we denote its radius r by r(B) and its center x by xB . A
space of homogeneous type (S, d, μ) is a set S endowed with a quasimetric d and a
doubling non-negative Borel measure μ such that

(2.1) μ(B(x, 2r)) ≤ Cμ(B(x, r)).

Let Cμ be the smallest constant satisfying (2.1). Then Dμ = log2 Cμ is called
the doubling order of μ. It follows that

(2.2)
μ(B)

μ(B̃)
≤ C2+log2 κ

μ

(
r(B)

r(B̃)

)Dμ

for all balls B̃ ⊂ B.

In particular for λ > 1 and B a ball, we have that

(2.3) μ(λB) ≤ (2λ)Dμμ(B).
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Here, as usual, λB stands for the dilation of a ball B(x, λr) with λ > 0. Throughout
this paper, we will say that a constant c = c(κ, μ) > 0 is a structural constant if it
depends only on the quasimetric constant κ and the doubling constant Cμ.

An elementary but important property of the quasimetric is the following. Sup-
pose that we have two balls B1 = B(x1, r1) and B2 = B(x2, r2) with non-empty
intersection. Then,

(2.4) r1 ≤ r2 =⇒ B1 ⊂ κ(2κ+ 1)B2.

This is usually known as the “engulfing” property and follows directly from the
quasitriangular property of the quasimetric.

In a general space of homogeneous type, the balls B(x, r) are not necessarily
open, but by a theorem of Macias and Segovia [MS79], there is a continuous quasi-
metric d′ which is equivalent to d (i.e., there are positive constants c1 and c2 such
that c1d

′(x, y) ≤ d(x, y) ≤ c2d
′(x, y) for all x, y ∈ S) for which every ball is open.

We always assume that the quasimetric d is continuous and that balls are open.
We will adopt the usual notation: if ν is a measure and E is a measurable set,

ν(E) denotes the ν-measure of E. Also, if f is a measurable function on (S, d, μ)
and E is a measurable set, we will use the notation f(E) :=

∫
E
f(x) dμ. We also

will denote the μ-average of f over a ball B as fB = −
∫
B
fdμ. We recall that a weight

w (any non-negative measurable function) satisfies the Ap condition for 1 < p < ∞
if

[w]Ap
:= sup

B

(
−
∫
B

w dμ

) (
−
∫
B

w− 1
p−1 dμ

)p−1

,

where the supremum is taken over all the balls in S. The A∞ class is defined in
the natural way by A∞ :=

⋃
p>1 Ap.

This class of weights can also be characterized by means of an appropriate con-
stant. In fact, there are various different definitions of this constant, all of them
equivalent in the sense that they define the same class of weights. Perhaps the
more classical and known definition is the following due to Hruščev [Hru84] (see
also [GCRdF85]):

[w]expA∞
:= sup

B

(
−
∫
B

w dμ

)
exp

(
−
∫
B

logw−1 dμ

)
.

However, in [HP] the authors use a “new” A∞ constant (which was originally
introduced implicitly by Fujii in [Fuj78] and later by Wilson in [Wil87]), which
seems to be better suited. For any w ∈ A∞, we define

(2.5) [w]A∞ := [w]WA∞ := sup
B

1

w(B)

∫
B

M(wχB) dμ,

where M is the usual Hardy–Littlewood maximal operator. When the underlying
space is Rd, it is easy to see that [w]A∞ ≤ c[w]expA∞

for some structural c > 0. In fact,
it is shown in [HP] that there are examples showing that [w]A∞ is much smaller
than [w]expA∞

. The same line of ideas yields the inequality in this wider scenario. See
the recent work of Beznosova and Reznikov [BR] for a comprehensive and thorough
study of these different A∞ constants. We also refer the reader to the forthcoming
work of Duoandikoetxea, Martin-Reyes and Ombrosi [DMRO13] for a discussion
regarding different definitions of A∞ classes.
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2.2. Orlicz spaces. Here we recall some basic definitions and facts about Orlicz
spaces.

A function Φ : [0,∞) → [0,∞) is called a Young function if it is continuous,
convex, increasing and satisfies Φ(0) = 0 and Φ(t) → ∞ as t → ∞. For Orlicz
spaces, we are usually only concerned about the behavior of Young functions for t
large. The space LΦ is a Banach function space with the Luxemburg norm

‖f‖Φ = ‖f‖Φ,μ = inf

{
λ > 0 :

∫
S
Φ(

|f |
λ
) dμ ≤ 1

}
.

Each Young function Φ has an associated complementary Young function Φ̄ satis-
fying

t ≤ Φ−1(t)Φ̄−1(t) ≤ 2t

for all t > 0. The function Φ̄ is called the conjugate of Φ, and the space LΦ̄ is
called the conjugate space of LΦ. For example, if Φ(t) = tp for 1 < p < ∞, then

Φ̄(t) = tp
′
, p′ = p/(p− 1), and the conjugate space of Lp(μ) is Lp′

(μ).
A very important property of Orlicz spaces is the generalized Hölder inequality

(2.6)

∫
S
|fg| dμ ≤ 2‖f‖Φ‖g‖Φ̄.

Now we introduce local versions of Luxemburg norms. If Φ is a Young function, let

‖f‖Φ,B = ‖f‖Φ,B,μ = inf

{
λ > 0 :

1

μ(B)

∫
B

Φ

(
|f |
λ

)
dμ ≤ 1

}
.

Furthermore, the local version of the generalized Hölder inequality (2.6) is

(2.7)
1

μ(B)

∫
B

fg dμ ≤ 2‖f‖Φ,B‖g‖Φ̄,B .

Recall the definition of the maximal type operators MΦ from (1.6):

(2.8) MΦf(x) = sup
B:x∈B

‖f‖Φ,B .

An important fact related to this sort of operator is that its boundedness is related
to the so-called Bp condition. For any positive function Φ (not necessarily a Young
function), we have that

‖MΦ‖pLp(S) ≤ cμ,κ αp(Φ),

where αp(Φ) is the following tail condition:

(2.9) αp(Φ) =

∫ ∞

1

Φ(t)

tp
dt

t
< ∞.

It is worth noting that in the recent article [LL] the authors define the appropri-
ate analogue of the Bp condition in order to characterize the boundedness of the
strong Orlicz-type maximal function defined over rectangles both in the linear and
multilinear cases. Recent developments and improvements can also be found in
[MP], where the authors addressed the problem of studying the maximal operator
between Banach function spaces.
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2.3. Calderón–Zygmund decomposition for spaces of homogeneous type.
The following lemma is a classical result in the theory, regarding a decomposition
of a generic level set of the Hardy–Littlewood maximal function M . Some variants
can be found in [AM84] for M and in [Aim85] for the centered maximal function
M c . In this latter case, the proof is straightforward. Here we include a detailed
proof for the general case of M where some extra subtleties are needed.

Lemma 2.1 (Calderón–Zygmund decomposition). Let B be a fixed ball and let f
be a bounded non-negative measurable function. Let M be the usual non-centered
Hardy–Littlewood maximal function. Define the set Ωλ as

(2.10) Ωλ = {x ∈ B : Mf(x) > λ}.
Let λ > 0 be such that λ ≥ −

∫
B
f dμ. If Ωλ is non-empty, then given η > 1, there

exists a countable family {Bi} of pairwise disjoint balls such that, for θ = 4κ2 + κ,

i)
⋃

i Bi ⊂ Ωλ ⊂
⋃

i θBi.
ii) For all i,

λ <
1

μ(Bi)

∫
Bi

fdμ.

iii) If B is any ball such that Bi ⊂ B for some i and r(B) ≥ ηr(Bi), we have
that

(2.11)
1

μ(B)

∫
B

fdμ ≤ λ.

Proof. Define, for each x ∈ Ωλ, the following set:

Rλ
x =

{
r > 0 : −

∫
B

f dμ > λ, x ∈ B = B(y, r)

}
,

which is clearly non-empty. The key here is to prove that Rλ
x is bounded. If the

whole space is bounded, there is nothing to prove. In the case of unbounded spaces,
we argue as follows. Since the space is of infinite measure (recall Lemma 1.8), and
clearly S =

⋃
r>0 B(x, r), we have that μ(B(x, r)) goes to +∞ when r → ∞ for

any x ∈ S. Therefore, for K = κ(2κ + 1), we can choose r1 such that the ball
B1 = B(x, r1) satisfies the inequality

μ(B1) ≥
2(2K)Dμ‖f‖L1

λ
.

Suppose now that supRλ
x = +∞. Then we can choose a ball B2 = B(y, r2) for

some y such that x ∈ B2, −
∫
B2

f dμ > λ and r2 > r1. Now, by the engulfing property

(2.4), we obtain that B1 ⊂ KB2. The doubling condition (2.3) yields

μ(B1) ≤ μ(KB2) ≤ (2k)Dμμ(B2).

Then we obtain that
2‖f‖L1

λ
≤ μ(B2) <

‖f‖L1

λ
which is a contradiction. We conclude that, in any case, for any x ∈ Ωλ, we have
that supRλ

x < ∞.
Now fix η > 1. If x ∈ Ωλ, there is a ball Bx containing x, whose radius r(Bx)

satisfies
supRλ

x

η < r(Bx) ≤ supRλ
x, and for which −

∫
Bx

f dμ > λ. Thus the ball Bx

satisfies ii) and iii). Also note that Ωλ =
⋃

x∈Ωλ
Bx. Picking a Vitali type subcover
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of {Bx}x∈Ωλ
as in [SW92], Lemma 3.3, we obtain a family of pairwise disjoint balls

{Bi} ⊂ {Bx}x∈Ωλ
satisfying i). Therefore {Bi} satisfies i), ii) and iii). �

We will need another important lemma, in order to handle simultaneously de-
compositions of level sets at different scales.

Lemma 2.2. Let B be a ball and let f be a bounded non-negative measurable
function. Let also a � 1 and, for each integer k such that ak > −

∫
B
f dμ, we define

Ωk as

(2.12) Ωk =
{
x ∈ B : Mf(x) > ak

}
.

Let {Ek
i }i,k be defined by Ek

i = Bk
i \ Ωk+1, where the family of balls {Bk

i }i,k is
obtained by applying Lemma 2.1 to each Ωk. Then, for θ = 4κ2 + κ as in the
previous lemma and η = κ2(4κ+ 3), the following inequality holds:

(2.13) μ(Bk
i ∩ Ωk+1) <

(4θη)Dμ

a
μ(Bk

i ).

Consequently, for sufficiently large a, we can obtain that

(2.14) μ(Bk
i ) ≤ 2μ(Ek

i ).

Proof. To prove the claim, we apply Lemma 2.1 with η = κ2(4κ + 3). Then, by
part i), we have that, for θ = 4κ2 + κ

Ωk+1 ⊂
⋃
m

θBk+1
m

and then

(2.15) μ(Bk
i ∩ Ωk+1) ≤

∑
m

μ(Bk
i ∩ θBk+1

m ).

Suppose now that Bk
i ∩ θBk+1

m 
= ∅. We claim that r(Bk+1
m ) ≤ r(Bk

i ). Suppose
the contrary; namely, r(Bk+1

m ) > r(Bk
i ). Then, by property (2.4), we can see that

Bk
i ⊂ κ2(4κ + 3)Bk+1

m = ηBk+1
m . For B = ηBk+1

m , part iii) from Lemma 2.1 gives
us that the average satisfies

(2.16)
1

μ(B)

∫
B

f dμ ≤ ak.

Now, by the properties of the family {Bk+1
m }m and the doubling condition of μ, we

have that, for a > (2η)Dμ ,

(2.17)
1

μ(ηBk+1
m )

∫
ηBk+1

m

f dμ >
ak+1

(2η)Dμ
> ak.

This last inequality contradicts (2.16). Then, whenever Bk
i ∩ θBk+1

m 
= ∅, we have
that r(Bk+1

m ) ≤ r(Bk
i ) and from that it follows that Bk+1

m ⊂ ηBk
i . The sum (2.15)

now becomes

μ(Bk
i ∩ Ωk+1) ≤

∑
m:Bk+1

m ⊂ηBk
i

μ(Bk
j ∩ θBk+1

m )

≤ (2θ)Dμ

∑
m:Bk+1

m ⊂ηBk
i

μ(Bk+1
m )

≤ (2θ)Dμ

ak+1

∫
ηBk

i

f dμ
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since the sets {Bk+1
m }m are pairwise disjoint. Finally, by part iii) of Lemma 2.1, we

obtain

μ(Bk
i ∩ Ωk+1) ≤

(4θη)Dμ

a
μ(Bk

i ),

which is inequality (2.13). �

3. Proofs of the main results

Here we present the proof of our main results. Our starting point is a version of
the sharp two weight inequality (1.2) valid for SHT from [Kai]:

Theorem 3.1 ([Kai]). Let (S, ρ, μ) be an SHT. Then the H–L maximal operator
M defined by (1.9) satisfies the bound

(3.1) ‖M(fσ)‖Lp(w) ≤ Cp′[w, σ]Sp
‖f‖Lp(σ),

where [w, σ]Sp
is the Sawyer’s condition with respect to balls:

(3.2) [w, σ]Sp
:= sup

B

(
1

σ(B)

∫
B

M(σχB)
pw dμ

)1/p

.

We now present the proof of the main result.

Proof of Theorem 1.3. By Theorem 3.1, we only need to prove that

[w, σ]Sp
≤ C[w, σ,Φ]

1/p
Ap

[σ, Φ̄]
1/p
Wp

for some constant C, for any Young function Φ, for any 1 < p < ∞. Let B be
a fixed ball B and consider the sets Ωk from (2.12) for the function σχB for any
k ∈ Z. Here we remark that in order to apply a C–Z decomposition of these sets,
we need the level of the decomposition to be larger than the average over the ball.
We proceed as follows. Take any a > 1 and consider k0 ∈ Z such that

(3.3) ak0−1 < −
∫
B

σ dμ ≤ ak0 .

Now, let A be the set of the small values of the maximal function:

A =

{
x ∈ B : M(σχB) ≤ a−

∫
B

σ dμ

}
.

For any x ∈ B \A, we have that

M(σχB)(x) > a−
∫
B

σ dμ > ak0 ≥ −
∫
B

σ dμ.

Therefore,∫
B

M(σχB)
pw dμ =

∫
A

M(σχB)
pw dμ+

∫
B\A

M(σχB)
pw dμ

≤ apw(B)

(
−
∫
B

σ dμ

)p

+
∑
k≥k0

∫
Ωk\Ωk+1

M(σχB)
pw dμ

= I + II.
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The first term I can be bounded easily. By the general Hölder inequality (2.7),
we obtain

I ≤ 2ap
(
−
∫
B

w dμ

)
‖σ1/p′‖pΦ,B‖σ1/p‖p

Φ̄,B
μ(B)

≤ 2[w, σ,Φ]Ap

∫
B

MΦ̄(σ
1/pχB)

p dμ.

Now, for the second term II, we first note that

∫
B\A

M(σχB)
pw dμ =

∑
k≥k0

∫
Ωk\Ωk+1

M(σχB)
pw dμ

≤ ap
∑
k≥k0

akpw(Ωk).

By the choice of k0, we can apply Lemma 2.1 to perform a C–Z decomposition
at all levels k ≥ k0 and obtain a family of balls {Bk

i }i,k with the properties listed
in that lemma. Then,∫

B\A
M(σχB)

pw dμ ≤ ap
∑
k,i

(
−
∫
Bk

i

σχB dμ

)p

w(θBk
i )

≤ ap
∑
k,i

(
μ(θBk

i )

μ(Bk
i )

−
∫
θBk

i

σ
1
p σ

1
p′ χB dμ

)p

w(θBk
i ).

We now proceed as before, using the local generalized Hölder inequality (2.7) and
the doubling property (2.3) of the measure (twice). Then we obtain∫

B\A
M(σχB)

pwdμ ≤ 2ap(2θ)(p+1)Dμ [w, σ,Φ]Ap

∑
k,i

∥∥∥σ 1
pχB

∥∥∥p

Φ̄,θBk
i

μ(Bk
i ).

The key here is to use Lemma 2.2 to pass from the family {Bk
i } to the pairwise

disjoint family {Ek
i }. Then, for a ≥ 2(4θη)Dμ , we can bound the last sum as follows:∑

k,i

∥∥∥σ 1
pχB

∥∥∥p

Φ̄,θBk
i

μ(Bk
i ) ≤ 2

∑
k,i

∥∥∥σ 1
pχB

∥∥∥p

Φ̄,θBk
i

μ(Ek
i )

≤ 2
∑
k,i

∫
Ek

i

MΦ̄(σ
1
pχB)

p dμ

≤ 2

∫
B

MΦ̄(σ
1
pχB)

p dμ

since the sets {Ek,j} are pairwise disjoint. Collecting all previous estimates and
dividing by σ(B), we obtain the desired estimate

[w, σ]pSp
≤ 4ap(2θ)(p+1)Dμ [w, σ,Φ]Ap

[σ, Φ̄]Wp
,

and the proof of Theorem 1.3 is complete. �

It remains to prove Corollary 1.4. To that end, we need to consider the special
case of Φ(t) = tp

′
.
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Proof of Corollary 1.4. Considering then Φ(t) = tp
′
, the quantity (1.7) is

Ap(w, σ,B,Φ) =

(
−
∫
B

w dμ

)
‖σ1/p′‖pΦ,B

=

(
−
∫
B

w(y) dμ

) (
−
∫
B

σ dμ

)p−1

.

In addition, we have from (1.8) that [σ,Φp′ ]Wp
= [σ,Φp]Wp

= [σ]A∞ and therefore
we obtain (1.11). �

For the proof of Corollary 1.5, we simply use the boundedness of MΦ̄ on Lp(μ),

[σ, Φ̄]Wp
:= sup

B

1

σ(B)

∫
B

MΦ̄

(
σ1/pχB

)p

dμ ≤ ‖MΦ̄‖pLp .

The proof of Corollary 1.6 is trivial.

4. Appendix

Here we include a direct proof of a version of Corollary 1.5 which is better in
terms of the dependence on p. Precisely, we have the following proposition.

Proposition 4.1. Let 1 < p < ∞. For any pair of weights w, σ and any Young
function Φ, there exists a structural constant C > 0 such that

‖M(fσ)‖Lp(w) ≤ C[w, σ,Φ]
1/p
Ap

‖MΦ̄‖Lp‖f‖Lp(σ).

Proof of Proposition 4.1. By density it is enough to prove the inequality for each
non-negative bounded function with compact support f . We first consider the case
of unbounded S. In this case we have −

∫
S
fσ dμ = 0. Therefore, instead of the sets

from (2.12), we consider

Ωk =
{
x ∈ S : M(fσ)(x) > ak

}
,

for any a > 1 and any k ∈ Z. Then, we can write∫
S
M(fσ)pw dμ =

∑
k

∫
Ωk\Ωk+1

M(fσ)pw dμ.

Then, following the same line of ideas as in the proof of Theorem 1.3, we obtain∫
S
M(fσ)pwdμ ≤ 2ap(2θ)(p+1)Dμ [w, σ,Φ]Ap

∑
k,i

∥∥∥fσ 1
p

∥∥∥p

Φ̄,θBk
i

μ(Bk
i ).

By Lemma 2.2 we can replace the family {Bk
i } by the pairwise disjoint family {Ek

i }
to obtain the desired estimate:∫

S
M(fσ)pw dμ ≤ 4ap(2θ)(p+1)Dμ [w, σ,Φ]Ap

‖MΦ̄‖pLp

∫
S

fpσ dμ.

In the bounded case, the whole space is a ball and we can write S = B(x,R) for
any x and some R > 0. The problem here is to deal with the small values of λ,
since we cannot apply Lemma 2.2 for ak ≤ −

∫
S
fσ dμ. We then take any a > 1 and

consider k0 ∈ Z to verify (3.3):

ak0−1 < −
∫
S

fσ dμ ≤ ak0

and argue as in the proof of Theorem 1.3. �
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Now, from this last proposition, we can derive another proof of the mixed bound
(1.11) from Corollary 1.4. The disadvantage of this approach with respect to the
previous one is that we need a deep property of A∞ weights: the sharp Reverse
Hölder Inequality. In the whole generality of SHT, we only know a weak version of
this result from the recent paper [HPR12]:

Theorem 4.2 (Sharp weak Reverse Hölder Inequality, [HPR12]). Let w ∈ A∞.
Define the exponent r(w) = 1+ 1

τκμ[w]A∞
, where τκμ is a structural constant. Then,

(
−
∫
B

wr(w) dμ

)1/r(w)

≤ 2(4κ)Dμ−
∫
2κB

w dμ,

where B is any ball in S.

The other ingredient for the alternative proof of Corollary 1.4 is the known
estimate for the operator norm for M . For any 1 < q < ∞, we have that ‖M‖qLq ∼
q′.

Another proof of Corollary 1.4. Consider the particular choice of Φ(t) = tp
′r for

r > 1. Then quantity (1.7) is

Ap(w, σ,B,Φ) =

(
−
∫
B

w(y) dμ

) (
−
∫
B

σr dμ

)p/rp′

.

If we choose r from the sharp weak reverse Hölder property (Theorem 4.2), we
obtain that

Ap(w, σ,B,Φ) =

(
−
∫
B

w dμ

) (
2(4κ)Dμ−

∫
2κB

σ dμ

)p−1

≤ 2p−1(4κ)pDμ

(
−
∫
2κB

w dμ

) (
−
∫
2κB

σ dμ

)p−1

≤ 2p−1(4κ)pDμ [w, σ]Ap
.

Therefore the proof of Proposition 4.1 gives

‖M(fσ)‖Lp(w) ≤ C[w, σ]
1/p
Ap

‖MΦ̄‖Lp(S,dμ) ‖f‖Lp(σ).

We conclude with the proof by computing ‖MΦ̄‖Lp for Φ(t) = tp
′r. We use (2.9),

and then we obtain that ‖MΦ̄‖pLp ≤ cr′p′. But, by the choice of r, it follows that
r′ ∼ [σ]A∞ and we obtain (1.11). �
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