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Finite cycle Gibbs measures on permutations ofZ
d

Inés Armend́ariz∗, Pablo A. Ferrari†, Pablo Groisman‡, Florencia Leonardi§

Abstract

We consider Gibbs distributions on the set of permutations of Zd associated to the Hamil-
tonianH(σ) :=

∑

x V (σ(x) − x), whereσ is a permutation andV : Zd → R is a strictly
convex potential. Call finite-cycle those permutations composed by finite cycles only. We
give conditions onV ensuring that for large enough temperatureα > 0 there exists a unique
infinite volume ergodic Gibbs measureµα concentrating mass on finite-cycle permutations;
this measure is equal to the thermodynamic limit of the specifications with identity bound-
ary conditions. We constructµα as the unique invariant measure of a Markov process on the
set of finite-cycle permutations that can be seen as a loss-network, a continuous-time birth
and death process of cycles interacting by exclusion, an approach proposed by Fernández,
Ferrari and Garcia. Defineτv as the shift permutationτv(x) = x+ v. In the Gaussian case
V = ‖ · ‖2, we show that for eachv ∈ Z

d, µα
v given byµα

v (f) = µα[f(τv·)] is an ergodic
Gibbs measure equal to the thermodynamic limit of the specifications withτv boundary
conditions. For a general potentialV , we prove the existence of Gibbs measuresµα

v when
α is bigger than somev-dependent value.

1 Introduction

The Feynman-Kac representation of the Bose gas consists of trajectories of interacting Brown-
ian motions in a fixed time interval, which start and finish at the points of a spatial point process
[5] . In order to attempt a rigorous analysis of the model, several simplifications have been
proposed over the years [5, 6, 12, 13]. In the resulting model, the starting and ending points
belong to thed-dimensional lattice, and the interaction is reduced to an exclusion condition on
the paths at the beginning and the end of the time interval. The state space is therefore the set
of permutations or bijectionsσ : Zd → Z

d.

For a finite setΛ ⊂ Z
d, denote bySΛ the set of permutationsσ that reduce to the identity

outsideΛ, i.e.,

SΛ := {σ ∈ S : σ(x) = x if x /∈ Λ}. (1.1)

∗Departamento de Matemática, Universidad de Buenos Aires,Argentina. iarmend@dm.uba.ar
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A functionV : Zd → R
+ ∪ {+∞} such thatV (~0) = 0 is called apotential. We assumeV is

strictly convex and define the Hamiltonian

HΛ(σ) :=
∑

x∈Λ

V (σ(x)− x), σ ∈ SΛ, (1.2)

and associated measureGΛ,

GΛ(σ) :=
1

ZΛ
e−αHΛ(σ), (1.3)

whereZΛ is a normalizing constant. The nonnegative parameterα is called the temperature; we
omit the dependence ofGΛ onα. We refer to the conditionσ(x) = x if x /∈ Λ as anidentity
boundary condition, and the finite volume measureGΛ associated to a finite setΛ ⊂ Z

d is called
aspecification.

When the potential is Gaussian,V (x) = ‖x‖2, the valuee−α‖σ(x)−x‖2 is proportional to the
density at the siteσ(x) of a Gaussian distribution with meanx and variance1/(2α). Hence,GΛ

is proportional to the joint density of the arrival points attime1/(2α) of a family of independent
Brownian motions started at each point inΛ, which are conditioned to arrive at distinct points
of Λ at that time. This is the case arising from the Feynmann-Kac representation of the Bose
gas.

Given permutationsτ, σ, define the composed permutationτσ by (τσ)(x) := τ(σ(x)) and
let µτ be the law ofτσ whenσ is distributed according toµ, that is

(µτ)f =

∫

µ(dσ)f(τσ), (1.4)

for continuous real functionsf . For any vectorv ∈ Z
d denote byτv the shift permutation given

by

τv(x) := x+ v . (1.5)

A permutationτ is called aground stateif τ is a local minimum of the HamiltonianHZd. Since
V is strictly convex, the shift permutationτv is a ground state for any vectorv ∈ Z

d.

Results Our main results are the following.

Identity boundary conditions.In Theorem 2.1 we define a functionα∗(V ) such that when
it is finite, for anyα > α∗(V ), there exists an ergodic Gibbs measureµ equal to the thermo-
dynamic limit of the specifications with identity boundary conditions at temperatureα. The
measureµ concentrates on finite-cycle permutations.

Shift boundary conditions.In Theorem 2.3 we fixv ∈ Z
d and extend the results of Theorem

2.1 toτv-boundary conditions. That is, we defineα∗
v(V ), and assuming that it is finite, we show

that for any temperatureα > α∗
v(V ) there exists an ergodic Gibbs measureµv associated toτv

boundary conditions such thatµvτ−v concentrates on finite-cycle permutations.

Gaussian potential.The physically relevant Gaussian potentialV (x) = ‖x‖2 is covered
by Theorem 2.1; in this case the results forτv-boundary conditions follow directly from the
observation that the specificationsGΛ|τv matchingτv at the boundary satisfyGΛ|τv = GΛτv, a
relation that extends to the limitµv = µτv. In particular, hereα∗

v(V ) is the same for allv ∈ Z
d,

α∗
v(V ) = α∗(V ).
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The statements of these results establish the existence of Gibbs measuresµ as a weak limit
of specifications. In fact, we obtain pointwise limits. For instance, in the proof of Theorem
2.1 we construct a coupled family of permutations(ζΛ, Λ ⊆ Z

d), eachζΛ distributed according
to GΛ (GZd = µ), such that forx ∈ Z

d the random variablesζΛ(x) converge almost surely to
ζZd(x), asΛ ր Z

d.

In Section 5 we compute bounds forα∗(V ). In the Gaussian case these computations yield
explicit bounds, see (5.8).

Approach The proofs follow the approach of Fernández, Ferrari and Garcia [4], relying on
the fact that the Peierls-contour representation of the lowtemperature Gibbs measure for the
Ising model is reversible for a loss network of contours interacting by exclusion. In the case
of identity boundary conditions, instead of contours, we consider the finite cycles that compose
a permutation. LetΓ be the set of finite cycles onZd with length larger than 1. A finite-
cycle permutation is represented as a “gas” of finite cycles in Γ, and the Gibbs measure can
be described as a product of independent Poisson random variables in the space{0, 1, . . . }Γ,
conditioned to non overlapping of cycles, that is, each sitex ∈ Z

d belongs to at most one cycle.
This is automatically well defined in finite volume. We explicitly construct an infinite volume
random configurationη ∈ {0, 1}Γ with non overlapping cycles,η(γ) = 1 means that the cycleγ
is present in the configurationη. This configuration is naturally associated to the permutationσ
composed by the cycles indicated byη. We then show thatσ is the almost sure limit asΛ ր ∞
of permutations inSΛ distributed according to the specificationsGΛ.

The loss network is a continuous-time Markov processηt ∈ {0, 1}Γ, having as unique in-
variant measure the target Gibbs measure. In this process, each cycleγ attempts to appear
independently at a ratew(γ) defined later in (2.4), andγ is allowed to join the existing configu-
ration only if it does not overlap with the already present cycles. Cycles also die, independently,
at rate 1. Ifα is sufficiently large this process is well defined in infinite volume, and a realization
of the stationary process running for allt ∈ R can be constructed as a function of a family of
space-time Poisson processes, the usually called Harris graphical construction. The condition
for the existence of the stationary process is related to theabsence of oriented percolation of cy-
cles in the space–time realization of afree processin {0, 1, . . . }Γ, where all cycles are allowed
to be born, regardless whether they overlap with pre-existing cycles or not. The no-percolation
condition follows from dominating the percolation clusterby a subcritical multitype branching
process, a standard technique, see for instance [9]. The subcriticality condition for the branch-
ing process leads to the conditionα > α∗.

Background and further prospects The existence of a Gibbs measure concentrating on
finite-cycle permutations ofZd was first obtained by Gandolfo, Ruiz and Ueltschi [7] in the
large temperature regime for the Gaussian potential. Recently, Betz [1] gave a condition yield-
ing tightness of the specifications for a more general familyof potentials, for any value ofα,
his results imply that thermodynamic limits of specifications with identity boundary conditions
exist for anyα > 0 and dimensiond. However, the problem of identifying these limits and their
typical cycle length remains open.

Biskup and Richthammer [3] consider the one dimensional case and strictly convex poten-
tials satisfying some additional growth conditions. They prove that the set of all ground states
associated toH in (1.2) is{τv : v ∈ Z}, τv(x) = x + v as in (1.5), and that for each ground

3



ground stateξ permutationσ : GΛ|ξ(σ) > 0

Figure 1: A dot at sitex means thatξ(x) = x while an arrow fromx to y means thatξ(x) = y. The left
picture represents the ground stateξ described in (1.6). On the right we see a permutation with positive
probability according toGΛ|ξ defined in (2.2). The square represents the boxΛ.

stateτv and temperatureα > 0 there is a Gibbs measureµα
v . Furthermore, they show that the

set of extremal Gibbs measures isGα,e = {µα
v , v ∈ Z}, that is, each extremal Gibbs measure is

associated to a ground state. The measureµα
v is translation invariant and supported on config-

urations having exactlyn infinite cycles. They also prove that for anyα > 0, the measureµα
v

has a regeneration property, which in the casev = 0 entails the convergence asΛ ր Z of the
specificationsGΛ with identity boundary conditions toµα

0 . In particular, this implies that for
d = 1, identity boundary conditions lead to finite cycles, for alltemperatures.

Infinite cycles. In d–dimensions our results say that under identity boundary conditions,
for α large enough, the Gibbs measures concentrate on finite-cycle permutations. On the other
hand, for the Gaussian potential and smallα, Gandolfo, Ruiz and Ueltschi [7] performed nu-
merical simulations of the 3-dimension specification associated to a boxΛ yielding cycles with
macroscopiclength, i.e., length that grows proportionally to the size of Λ. More recent numer-
ical results by Grosskinsky, Lovisolo and Ueltschi [10] suggest that the scaled down size of
these macroscopic cycles converges to a Poisson-Dirichletdistribution. See also Goldschmidt,
Ueltschi and Windridge [8] for a discussion relating cycle representations and fragmentation-
coagulation models, where the Poisson-Dirichlet distributions appear naturally. The authors
in [10] argue that the situation should be similar in higher dimensions, in contrast to the case
d = 2. In 2–dimensions it is expected that the size of the cycles grows asΛ ր Z

2, but in
this case the length would not be macroscopic, a conjecture that is supported by numerical sim-
ulations in [1, 7]. The question remains whether a positive fraction of sites belongs to these
mesoscopic cycles. Betz [1] provides numerical evidence that ford = 2 long cycles are fractals
in the thermodynamic limit, and conjectures a connection toSchramm-Loewner evolution.

Domain of attraction of Gibbs measures.Let x = (x1, . . . , xd) ∈ Z
d ande1 = (1, 0, . . . , 0)

denote the first vector in the canonical basis. In a forthcoming paper, Yuhjtman considers the
Gaussian potential with ground stateξ defined by

ξ(x) =

{

x+ e1 if x2 = · · · = xd = 0,
x otherwise,

(1.6)
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ground stateξ permutationσ : GΛ|ξ(σ) > 0

ground stateξ′ permutationσ : GΛ|ξ′(σ) > 0

Figure 2: The ground statesξ andξ′ and permutations with positive probability for the specifications
with ξ andξ′ boundary conditions respectively.

(see Figure 1) and shows that the thermodynamic limit ofGΛ|ξ, the specifications with boundary
conditions given byξ, is equal to the measureµ associated to identity boundary conditions. In
particular, in dimensions higher than 1, the one-to-one correspondence between ground states
and extremal Gibbs measures fails to hold. It would be interesting to find the domain of attrac-
tion of each Gibbs state. That is, ifµ is a Gibbs measure, one would like to characterize the set
{

ξ : limΛրZd GΛ|ξ = µ
}

.

Further translation invariant Gibbs measures.Setd ≥ 2 and consider the ground states
ξ, ξ′ : Zd → Z

d given by

ξ(x) =

{

x if xd ≥ 0,
x+ e1 if xd < 0

, ξ′(x) =

{

x if xd is even,
x+ e1 if xd is odd.

(1.7)

Our approach requires translation invariance of the boundary conditions, which are satisfied
neither byξ nor by ξ′ (see Figure 2). The conjecture is that the thermodynamic limit arising
from any of these boundary conditions should lead to a Gibbs measure with1

2
- density of paths

crossing the hyperplanex1 = 0 from left to right. In connection to these ground states, it would
be interesting to describe the macroscopic shape determined by these left-right crossing paths.
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Permutations of point processes.When the points are distributed according to a point
process there are two possibilities. In the quenched case one studies the random permutation of
a fixed point configuration. In this case we expect that our approach would be useful to show
that for almost all point configuration there is a unique Gibbs measure when the temperature
is high enough in relation to the point densityρ. The 1–dimensional quenched case is studied
by Biskup and Richthammer [3], who prove that there are no infinite cycles for any value of
the temperature. Süto [14, 15] investigates the annealed case, where one jointly averages point
positions and permutations. By integrating over the former, it is then possible to explicitly
identify the temperatureα0 below which infinite cycles appear, Süto points out that this is
equivalent to Bose-Einstein condensation in the Bose gas. These results are generalized by
Betz and Ueltschi in [2].

Organization of the article We introduce notation and describe rigorously the results in Sec-
tion 2, we then sketch the techniques in Subsection 2.1. We construct the loss network approach
of [4] in Section 3, and prove the main results in Section 4. Section 5 contains bounds forα∗(V ).

2 Notation and Results

Denote byS the set of permutations ofZd, that is

S := {σ : Zd → Z
d, σ bijective} ,

equipped with the product topology generated by the sets{σ ∈ S : σ(x) = y}, x, y ∈ Z
d, and

the associated Borel sigma-algebraB. Given a permutationξ ∈ S and a finite setΛ ⊆ Z
d, let

SΛ|ξ := {σ ∈ S : σ(x) = ξ(x), x ∈ Λc}, (2.1)

be the set of permutations that matchξ outside ofΛ. Let I be the identity permutation,I(x) = x
for all x ∈ Z

d, and denoteSΛ := SΛ|I. LetV : Zd → R
+ ∪{+∞} be a strictly convex potential

with V (~0) = 0 and recall the definition (1.2) of the HamiltonianHΛ : S → R.

Fix α > 0. The Hamiltonian determines a family of probability measures called specifica-
tions, indexed by the set of finiteΛ ⊂ Z

d and permutationsξ, defined by

GΛ|ξ(σ) :=
1

ZΛ|ξ
exp(−αHΛ(σ)) , σ ∈ SΛ|ξ, (2.2)

whereZΛ|ξ is the normalizing constantZΛ|ξ :=
∑

σ∈SΛ|ξ
exp(−αHΛ(σ)). DenoteGΛ := GΛ|I.

A measureµ onS is said to be Gibbs at temperatureα for the family of specifications(GΛ|ξ)
if the conditional distribution ofµ onΛ givenξ outsideΛ coincides with the specificationGΛ|ξ.
That is, for finiteΛ ⊆ Z

d andξ ∈ S,

µ
(

· | σ(x) = ξ(x), x ∈ Λc
)

= GΛ|ξ for µ-almost allξ ∈ S.

We denote the set of Gibbs measures at temperatureα by Gα, and letG = ∪α>0Gα.

Taken ≥ 2. A finite cycleγ of length|γ| = n associated to the set of distinct sitesx1, . . . , xn

is a permutationγ ∈ S such thatγ(x) = x for all x /∈ {x1, . . . , xn}, xi+1 = γ(xi) for all
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i ∈ {1, . . . , n}, with the conventionxn+1 = x1. An infinite cycleγ associated to a doubly
infinite sequence of distinct sites. . . , x−1, x0, x1, . . . is a permutation such thatγ(x) = x if
x 6= xi for anyi andxi+1 = γ(xi) for all i. The support of a cycleγ associated tox1, . . . , xn is
{γ} = {x1, . . . , xn}. Denote the set of finite cycles by

Γ := {γ ∈ S : γ is a cycle with{γ} finite} and ΓΛ := {γ ∈ Γ : {γ} ⊂ Λ}, (2.3)

the set of cycles with support contained inΛ. We say that two permutations aredisjoint if their
supports are so.

Denoteσσ′ the composition of the permutationsσ, σ′:

(σσ′)(x) := σ(σ′(x)).

Any permutationσ 6= I can be written as a finite or countable composition of disjoint cycles:

σ = . . . γ2γ1, {γi} ∩ {γj} = ∅, for all i 6= j ,

note that the order of the cycles in this composition does notmatter. The identity has no cycle
decomposition. A permutationσ is calledfinite-cycleif all cycles in its decomposition are finite.
In this case we identifyσ 6= I with the “gas of cycles”{γ1, . . . , γk}, k = k(σ) ∈ N ∪ {+∞},
while the identityI is identified with the empty set. We denoteγ ∈ σ whenγ is one of the
cycles in the decomposition ofσ.

For a finite cycleγ ∈ Γ, define theweightof γ by

w(γ) := exp
{

−α
∑

x∈{γ}

V
(

γ(x)− x
)

}

. (2.4)

Sinceγ is a cycle andV is strictly convex, the sum in (2.4) is strictly positive, which in turn
impliesw(γ) ∈ (0, 1) for all α > 0. Define

β(V, α) :=
∑

γ∈Γ,{γ}∋~0

|γ|w(γ). (2.5)

If β(V, α) is finite for someα, thenβ(V, α) is decreasing inα andβ(V, α) < 1 for all α > α∗

defined by

α∗(V ) := inf{α : β(V, α) < 1}. (2.6)

If β(V, α) = ∞ for all α we setα∗ = ∞.

In our first theorem we give sufficient conditions onα for the existence of a Gibbs mea-
sure as limit of specifications with identity boundary conditions. The proof follows the lines
proposed in [4] to construct the infinite volume limit of the contour representation for the Ising
model at low temperature. We include the proof for the convenience of the reader.

Theorem 2.1. Identity boundary conditions.

Fix a strictly convex potentialV : Zd → R
+∪{+∞} satisfyingV (~0) = 0. Assumeα∗(V ) < ∞.

Then, for eachα > α∗(V ) there exists a random process(ζΛ, Λ ⊆ Z
d) on (SΛ, Λ ⊆ Z

d) such
that

7



I γ

τv, v = (1, 1) τvγ

Figure 3: Local perturbationτvγ of τv, v = (1, 1), introduced by the cycleγ.

(i) for finite Λ, ζΛ is distributed according toGΛ, the specification with identity boundary con-
ditions,

(ii) limΛրZd ζΛ(x) = ζZd(x) almost surely, for eachx ∈ Z
d. Call µ the distribution ofζZd.

Then,limΛրZd GΛ = µ weakly.

(iii) µ is an ergodic Gibbs measure at temperatureα with mean jump~0.

(iv) µ is the unique Gibbs measure for the specificationsGΛ, supported on the set of finite-cycle
permutations ofZd.

We next consider more general boundary conditions.

We will say that the permutationσ′ is a local perturbationof σ if the set{x ∈ Z : σ′(x) 6=
σ(x)} is finite; in this case, the energy difference betweenσ′ andσ is defined by

H(σ′)−H(σ) :=
∑

x:σ(x)6=σ′(x)

(

V (σ′(x)− x)− V (σ(x)− x)
)

.

A ground stateis a permutationξ ∈ S such that for any local perturbationξ′ of ξ, H(ξ′) −
H(ξ) ≥ 0. Forv ∈ Z

d, the shift permutationτv ∈ S defined in (1.5) is a ground state: given a
finite cycleγ, the permutationτvγ is a local perturbation ofτv with energy difference

H(τvγ)−H(τv) =
∑

x∈{γ}

[

V (γ(x) + v − x)− V (v)
]

> 0, (2.7)

by the strict convexity ofV .
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The next lemma says that a local perturbation ofτv is a composition of a finite number of
finite cycles withτv. We leave the proof to the reader. See Figure 3.

Lemma 2.2. If τ ′v is a local perturbation ofτv, then there exist disjoint finite cyclesγ1, . . . , γn
in Γ such thatτ ′v = τvγ1 . . . γn. If V is strictly convex, thenH(τ ′v)−H(τv) > 0.

In the following theorem we establish conditions onα that allow to extend the results of
Theorem 2.1 toτv-boundary conditions. For a finite cycleγ ∈ Γ, denote thev-weightof γ by

wv(γ) := exp
{

−α
∑

x∈{γ}

(

V (γ(x) + v − x
)

− V (v)
)

}

. (2.8)

Given a measureµ and a permutationξ recall the definition of the shifted measureµξ from
(1.4). In order to obtain the result, we first consider the composition of a configuration withτv
boundary conditions with the permutationτ−v to produce a finite cycle permutation with cycles
weighted bywv. We then apply Theorem 2.1 to this random permutation, take limits inΛ ր Z

d,
and as a last step compose the resulting measure with the permutationτv to recover the initial
boundary conditions.

Let

α∗
v(V ) := inf{α : βv(V, α) < 1}, where βv(V, α) :=

∑

γ∈Γ,{γ}∋~0

|γ|wv(γ). (2.9)

Theorem 2.3. τv boundary conditions.

Fix a vectorv ∈ Z
d and a strictly convex potentialV : Zd → R

+ ∪ {+∞} such thatV (~0) = 0.
If α∗

v(V ) is finite, then for anyα > α∗
v(V ) there exists a random process(ζΛ,v, Λ ⊆ Z

d) on
(SΛ, Λ ⊆ Z

d) such that

(i) For finite Λ, τvζΛ,v is distributed according toGΛ|τv , the specification withτv boundary
conditions.

(ii) limΛրZd τvζΛ,v(x) = τvζZd,v(x) almost surely, for allx ∈ Z
d. Callingµv the law ofτvζZd,v,

we getlimΛրZd GΛ|τv = µv weakly.

(iii) µv is an ergodic Gibbs measure at temperatureα with mean jumpv.

(iv) µvτ−v is the only measure with cycle weightswv supported on the set of finite-cycle permu-
tations ofZd.

We finally consider separately the Gaussian potential. Although it is in principle covered
by the previous results, it is worth pointing out that in thiscase the associatedv-weights do not
actually depend onv,wv(γ) = w(γ) for all γ ∈ Γ, with the consequence that the shift boundary
condition measures are just the composition of the identityboundary conditions Gibbs measure
µ with τv, µv = µτv, and the value ofα∗ is the same for allv ∈ Z

d, α∗
v = α∗

~0
. We also compute

an explicit bound onα∗.

Theorem 2.4.The Gaussian case.

LetV (x) = ‖x‖2, thenα∗(V ) ≤
(

1.445041/d − 1
)−2

.

Fix α > α∗(V ), let (ζΛ, Λ ⊆ Z
d) be the process constructed in Theorem 2.1, and letµ be the

distribution ofζZd. Then, for eachv ∈ Z
d,

9



(i) for finiteΛ, GΛτv = GΛ|τv , the specification withτv boundary conditions. In particular,τvζΛ
has distributionGΛ|τv .

(ii) limΛրZd τvζΛ(x) = τvζZd(x) almost surely, for allx ∈ Z
d. As a consequence

limΛրZd GΛ|τv = µτv weakly.

(iii) µτv is an ergodic Gibbs measure at temperatureα and mean jumpv.

2.1 Sketch of the proofs

Identity boundary conditions.Consider a finiteΛ ⊂ Z
d and recallSΛ = SΛ|I is the set of

permutations that equal the identity outside ofΛ.

A finite-cycle permutationσ ∈ S can be identified with the configurationη ∈ {0, 1}Γ

defined byη(γ) = 1{γ ∈ σ}. ThusSΛ can be described as a subset of{0, 1}ΓΛ:

SΛ =
{

η ∈ {0, 1}ΓΛ : η(γ)η(γ′) = 0 if {γ} ∩ {γ′} 6= ∅, for all γ, γ′ ∈ ΓΛ

}

. (2.10)

Recall the definition (2.4) of weight of a cycleγ. The specification inΛ with identity boundary
conditions (2.2) can now be written as

GΛ(η) =
1

ZΛ

∏

γ∈ΓΛ

w(γ)η(γ), η ∈ SΛ. (2.11)

We interpret the measureGΛ as the distribution of the gas of cycles with weightsw and
interacting by exclusion. This is the setup proposed in [4] to study the contour representation
of the low temperature Ising model.

Let nowSo = {0, 1, . . . }Γ. Note that inSo cycles may have intersecting support; indeed,
the same cycle may have multiplicity larger than 1. Given a configurationη ∈ So, η(γ) counts
the number of times the cycleγ is present inη. Let µo be the product measure onSo with
marginal Poisson(w(γ)) for eachγ ∈ Γ. If ηo has lawµo, then the random variableηo(γ) is
Poisson with meanw(γ), and the random variablesηo(γ), γ ∈ Γ are independent. For finiteΛ,
GΛ is just the lawµo conditioned toSΛ:

GΛ = µo(· |SΛ) . (2.12)

We claim that for large enoughα we can construct a Poisson measure onSo conditioned to
the event that each cycle is present at most once, and presentcycle supports are disjoint. That
is, the measure is supported on the set of configurations associated to finite-cycle permutations
of Zd. Since this set has zeroµo-probability, an argument is required to give a proper senseto
this notion. Forα large we constructµ as the invariant measure for a continuous-time birth and
death process of cycles interacting by exclusion, and show that it concentrates on finite-cycle
permutations. We also prove thatµ is the limit asΛ → ∞ of GΛ given by (2.12).

Given a cycleγ ∈ Γ, consider the rates of a continuous-time birth and death process on
{0, 1, . . .} defined by

birth rates:qγ(k, k + 1) := w(γ), death rates:qγ(k + 1, k) := k + 1, k ≥ 0. (2.13)

We construct birth and death processes with the above rates as a function of a Poisson
process. LetN be a Poisson process onΓ × R × R

+ with rate measurew(γ) × dt × e−sds.

10



If the point (γ, t′, s′) ∈ N , we say that a cycleγ is born at timet′ and lives untilt′ + s′.
Defineηo as the number of cyclesγ alive at timet. By construction(ηot (γ), t ∈ R) is a time-
stationary continuous-time birth and death process with ratesqγ given in (2.13); that is, at any
time a new copy of a cycleγ is born at ratew(γ), whereas existing copies die independently at
rate1. The marginal distribution ofηot (γ) is Poisson with meanw(γ), for eacht ∈ R. Letting
ηot := (ηot (γ) : γ ∈ Γ), the process(ηot , t ∈ R) is a family of stationary independent birth and
death processes with marginal distributionµo at any timet.

Our goal is to perform such a graphical construction for a birth and death
process with the same rates, subject to an exclusion rule as follows. Now

t →

s

γ

Figure 4: The represen-
tation of the pointϕ =
(γ, t, s). Time is going
down.

the point(γ, t, s) ∈ N represents a birth attempt of a cycleγ at timet
(see Figure 4), but the cycle will be effectively born only ifits support
{γ} does not intersect the support of any of the cycles already present
at that timet. When the process is restricted to a finite setΛ, the
points in{(γ, t, s) ∈ N , γ ∈ ΓΛ} can be ordered by their birth time
t. Since the free process is empty infinitely often:ηot (γ) = 0 for all
γ ∈ ΓΛ for infinitely many positive and negative times, it is possible
to iteratively decide for each(γ, t, s) if it actually produces a birth of
γ in the model with exclusion, or not. We so construct a stationary
birth and death process(ηΛt , t ∈ R) on ΓΛ with rates(qγ , γ ∈ ΓΛ)
subjected to the exclusion condition on cycles inΛ. The marginal
distribution ofηΛt isGΛ.

In infinite volume the above argument does not work because the
configuration is never empty. Instead, for each point(γ, t, s) ∈ N
one can look for the points ofN born prior tot that could interfere with the birth of the cycle
γ at timet. This set is called theclan of ancestorsof (γ, t, s) ∈ Γ × R × R

+. If the clan of
ancestors of any point is finite with probability one, then itis possible to construct the stationary
loss network of finite cycles inZd. We call(ηt, t ∈ R) the resulting Markov process, obtained
as a deterministic function ofN . Let us suggestively denote byµ, the notation previously used
to name the Gibbs measure, the distribution of the permutation with cyclesηt for a given timet.
Since the construction is time-stationary, the measureµ does not depend ont: it is an invariant
measure for the process. In fact one can check thatµ is reversible for the process. We show that
µ is the thermodynamic limit ofGΛ and the unique invariant measure for the process(ηt).

In order to prove thatµ is the thermodynamic limit ofGΛ, we construct a stationary family
of processes(ηΛt , t ∈ R) for anyΛ ⊂ Z

d as a function of a unique realizationN of the Poisson
process; a coupling. For finiteΛ, the marginal distribution ofηΛt isGΛ. We use the finiteness of
the clan of ancestors to show that for each finite-cycleγ, ηΛt (γ) converges toηt(γ) asΛ ր Z

d,
for almost all realizations of the point processN . In particular, this proves thatGΛ converges
weakly toµ and yields several properties of the limit.

To show that the clan of ancestors of a point(γ, t, s) is finite we dominate it by a multitype
branching process and then show that the conditionβ(V, α) < 1 is a sufficient condition for the
branching process to die out. We give more details of these processes in Section 3.

For any fixedt ∈ R, the process(ηΛt : Λ ⊆ Z
d) satisfies the properties attributed to the

process(ζΛ, Λ ⊆ Z
d) in Theorem 2.1.
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v-jump boundary conditions.The specifications associated to the potential

Vv(y) := V (y + v)− V (y) (2.14)

with identity boundary conditions are given byGΛ|τvτ−v on SΛ, for any finiteΛ ⊆ Z
d. We

prove that forα∗
v(V ) < ∞, Vv satisfies the conditions of Theorem 2.1 to obtain a process

(ζΛ,v, Λ ⊂ Z
d) on (SΛ, Λ ⊆ Z

d) with the properties stated in that theorem. We then use the
fact thatτvζΛ,v has lawGΛ|τv to obtain Theorem 2.3.

v-jump boundary conditions for the Gaussian potential.When the potential is Gaussian,
V = ‖ · ‖2, we haveGΛ|τv = GΛτv, a fact proven in Section 4. This is the key to the proof of
Theorem 2.4.

3 Loss networks of finite cycles

We here construct the invariant measure of a loss network of cycles and show that it is the Gibbs
measure related to the specificationsGΛ with identity boundary conditions. The section consists
of a review of [4] described in terms of cycles instead of contours.

Loss network Take a potentialV and a setΛ ⊂ Z
d. Recall the definition (2.10) of

SΛ ⊂ {0, 1}ΓΛ. We introduce a continuous-time Markov process inSΛ called loss network
of finite cycles. We say that two cycles arecompatibleif their supports are disjoint. Given a
configurationη ∈ SΛ of the process, we add a new cycleγ at ratew(γ), if it is compatible with
η, that is, ifγ is compatible with all cyclesγ′ with η(γ′) = 1. If γ andη are not compatible, then
the cycle is not added and the attempt is lost, hence the name loss network. Finally, any cycle in
η is deleted at rate one. Loss networks were introduced as stochastic models of a telecommuni-
cation network in which calls are routed between nodes around a network. In our case the nodes
are thed-dimensional integers and a call uses the nodes in the support of a non-identity cycle.
Each node has capacity to support at most one call and hence arriving calls that would occupy
an already busy node are lost. An account of the properties ofloss networks can be found in
Kelly [11].

Denoteγ ∼ η if γ is compatible withη; in particularγ ∼ η impliesη(γ) = 0. The loss
network process onSΛ ⊂ {0, 1}ΓΛ has formal generator

LΛf(η) =
∑

γ∈ΓΛ

w(γ)1{γ∼η} [f(η + δγ)− f(η)] +
∑

γ∈ΓΛ

[f(η − δγ)− f(η)], (3.1)

wheref is a test function, andδγ(γ′) = 1 if and only if γ′ = γ. WhenΛ is finite, the loss
network is a well defined, irreducible Markov process on a finite state space, with a unique
invariant measure.

The next lemma shows thatGΛ defined in (2.11) is reversible for the loss networkηΛt ; the
proof is left to the reader.

Lemma 3.1. LetΛ be finite. The measureGΛ is reversible for the dynamics(3.1). In particular,
this is the unique invariant measure, and the weak limit of the distribution of the process starting
from any initial permutation ast → ∞.

12



In the following we show that whenα > α∗(V ) given in (2.6) there exists a stationary
process with generator (3.1) for anyΛ ⊆ Z

d. The proof relies on a coupling argument applying
the Harris graphical construction of the process: to each configuration of an appropriate Poisson
processN we associate a realization of the loss network,N 7→ (ηΛt ), for anyΛ ⊆ Z

d. We now
introduce the basic elements of the argument.

The Poisson process.Let N be a Poisson process onΓ× R× R
+ with intensity measure

d(γ, t, s) = w(γ) dt e−sds .

This process can be thought of as a product of independent Poisson processes onR × R
+,

indexed byγ ∈ Γ.

The free process. Given the Poisson processN , define thefree process(ηot , t ∈ R) on
{0, 1, . . .}Γ by

ηot (γ) :=
∑

(γ,t′,s′)∈N

1{t′ ≤ t < t′ + s′} . (3.2)

If a point (γ, t, s) ∈ N , we say that a cycleγ is born at timet and livess time units. We
represent it as a cylinder with baseγ, heights with its higher point located att. See Figure 4
where the basis is represented by a segment.

The construction implies that cycles of typeγ are born independently at ratew(γ), and each
of them lives for an exponential time of parameter 1; there may be more than one cycle of typeγ
present at any given time. The processηot is thus obtained as the product of independent birth
and death processes

(

ηot (γ) : γ ∈ Γ
)

, with birth ratesw(γ) and death rate 1. The generator of
ηot is given by

Lof(η) =
∑

γ∈Γ

w(γ) [f(η + δγ)− f(η)] +
∑

γ∈Γ

η(γ) [f(η − δγ)− f(η)] ,

wheref : {0, 1, . . . }Γ → R is any local test function in the domain ofLo. It is easy to see that
the product measureµo on{0, 1, . . . }Γ with Poisson marginals

µo(η : η(γ) = k) =
e−w(γ)(w(γ))k

k!

is reversible for the free process. Indeed, this is the law ofthe configurationηot defined in (3.2),
for any fixedt ∈ R.

The clan of ancestors.We will construct a stationary version of the loss network ininfinite
volume starting from the stationary free process, by simplyerasing those cycles that violate the
exclusion condition at birth. In order to make sense of this construction we need to consider the
clan of ancestors of each point(γ, t, s) ∈ Γ× R× R

+, as follows.

The first generation of ancestors ofϕ = (γ, t, s) is the subset ofN defined by

Aϕ
1 := {(γ′, t′, s′) ∈ N : γ′ 6∼ γ, t′ < t < t′ + s′}.

where, as before, two cyclesγ andγ′ are incompatible,γ 6∼ γ′, if their supports have non
empty intersection; in particular, a cycle is incompatiblewith itself: γ 6∼ γ. Iteratively, the

13



time= 0

time

ϕ

✗

ϕ1

✗

ϕ2

✓

ϕ3

✓

ϕ ∈ D

time= 0

time

ϕ

✓

ϕ3

✗

ϕ1

✗

ϕ4

✓

ϕ5

✓

ϕ ∈ K

ϕ2 ✗

Figure 5: The clan of ancestors of the pointϕ = (γ, t, s) in two scenarios. On the leftϕ is deleted,
while on the right it is kept.

(n + 1)-th generation of ancestors ofϕ is the union of the first generation of ancestors of the
points belonging to then-th generation of ancestors ofϕ, that is,

Aϕ
n+1 :=

⋃

ϕ′∈Aϕ
n

Aϕ′

1 .

Theclan of ancestorsof ϕ is the union of all generations of ancestors:

Aϕ := ∪n≥1A
ϕ
n. (3.3)

See Figure 5 with two scenarios. On the leftAϕ
1 = {ϕ1, ϕ2} andAϕ

2 = {ϕ3}. On the right
Aϕ

1 = {ϕ1, ϕ2, ϕ3}, Aϕ
2 = {ϕ2, ϕ3, ϕ4, ϕ5}, Aϕ

3 = {ϕ3, ϕ4, ϕ5} andAϕ
4 = {ϕ5}.

Kept and deleted points.AssumeAϕ finite for allϕ ∈ Γ×R×R
+, for almost all realizations

of N . Fix D0 = ∅, and forn ≥ 1 let

Kn := {ϕ ∈ N : Aϕ
1 \ Dn−1 = ∅}, Dn := {ϕ ∈ N : Aϕ

1 ∩ Kn 6= ∅}.

Let K := ∪nKn ⊆ N be the set ofkeptpoints, andD := ∪nDn ⊆ N be the set ofdeleted
points. As a consequence of the finiteness of the clans of ancestors, every point is either kept
or deleted. Indeed, to determine whether a pointϕ is in K orD, it suffices to inspect its clan of
ancestorsAϕ. In Figure 5 we have checked the kept points and crossed the deleted ones.

Stationary loss network.AssumeAϕ finite for allϕ ∈ Γ×R×R
+, for almost all realizations

of N . Define thestationary loss network(ηt, t ∈ R) by

ηt(γ) :=
∑

(t′,s′):(γ,t′,s′)∈N

1{t′ ≤ t < t′ + s′} 1{(γ, t′, s′) ∈ K}. (3.4)

This is the set of cycles associated to kept points alive at timet. Note thatηt(γ) ∈ {0, 1}. The
process(ηt, t ∈ R) is stationary by construction, let us callµ its stationary distribution,

µ := law of ηt, for anyt ∈ R. (3.5)

The reader can prove the following result.
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Proposition 3.2. AssumeAϕ finite for all ϕ ∈ Γ × R × R
+, for almost all realizations ofN .

Then, the process(ηt, t ∈ R) defined in(3.4) is Markov with generator(3.1) and invariant
measureµ as in(3.5).

Thermodynamic limit.The set of kept points is a deterministic function ofN : K = K(N ).
Since the process(ηt, t ∈ R) is a function of the kept points, it is also a function ofN : (ηt) =
(ηt)(N ). GivenΛ ⊂ Z

d define the Poisson process associated to the cycles inΓΛ,

N Λ := {(γ, t, s) ∈ N : {γ} ⊂ Λ},

the corresponding set of kept pointsKΛ := K(N Λ), and the loss network of cycles inΛ

(ηΛt ) := (ηt)(N
Λ). (3.6)

ClearlyN Λ is a function ofN . When the clan of ancestors of any point is finite for almost all
realizations ofN , we have managed to define all processes(ηΛt , t ∈ R), Λ ⊆ Z

d, as a function
of the same realizationN of the point process. In particular notice thatηZ

d

t = ηt.

WhenΛ is finite, the finiteness of the clan of ancestors is guaranteed and in this case(ηΛt ) is
an irreducible Markov process in the finite state spaceSΛ ⊂ {0, 1}ΓΛ with generatorLΛ given
by (3.1). By Lemma 3.1, the distribution ofηΛt is the measureGΛ, which is reversible for the
process, for anyt ∈ R.

We now state and prove the thermodynamic limit.

Theorem 3.3.Existence of almost sure thermodynamic limit.

AssumeAϕ, the clan of ancestors ofϕ, is finite for allϕ for almost all realizations ofN . Then
for any fixedt ∈ R andγ ∈ Γ, limΛրZd ηΛt (γ) = ηt(γ) almost surely. In particular, asΛ ր Z

d,
GΛ converges weakly toµ, the stationary law ofηt in (3.5).

Proof. Take a realizationN such thatAϕ is finite for allϕ ∈ Γ× R× R
+. It suffices to show

that for anyγ ∈ Γ andt ∈ R, there exists a setΛt(N , γ) such that ifΛ containsΛt(N , γ), then
ηΛt (γ) = ηt(γ). Take the point(γ, t, s) (s is irrelevant here) and define

Λt(N , γ) :=
⋃

(γ′,t′,s′)∈A(γ,t,s)

{γ′}, (3.7)

the union of the supports of the cyclesγ′ present in the clan of ancestors of(γ, t, s). Now if Λ
containsΛt(N , γ), then the clan of ancestors restricted toΛ is the same as the non-restricted
clan:A(γ,t,s)(N Λ) = A(γ,t,s)(N ). This impliesηΛt (γ) = ηt(γ) for all Λ ⊃ Λt(N , γ).

Theorem 3.4.Uniqueness.

AssumeAϕ is finite for any pointϕ = (γ, t, s), for almost all realizations ofN . Let ν be
an invariant measure for the loss network dynamics defined by(3.1) supported on finite-cycle
configurations. Thenν = µ, the law of the stationary processηt at any fixed timet.

Proof. Let (ηt)t∈R denote the stationary loss network. Consider a family(s(θ) : θ ∈ Γ) of iid
random variables with exponential distribution of rate1. For anyη′ ∈ {0, 1}Γ define

Iη′(u) := {(θ, u, s(θ)) : η′(θ) = 1}. (3.8)
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and the set ofN -points born afteru,

N[u,∞) = {(γ, t′, s) ∈ N : t′ ≥ u}. (3.9)

Let (η′[u,t] : t ≥ u) be the coupled loss network with initial configurationη′u = η′ that updates
using the points inN[u,∞), and such that each initial cycleθ ∈ η′ dies at timeu+ s(θ). Then

(η′[u,t], t ≥ u) := (ηt, t ≥ u)(Iη′(u) ∪ N[u,∞)) . (3.10)

Note that the distribution ofη′[−t,0] is the same asη′[0,t].

We can compare the latter process with the stationary process at time 0: for anyγ ∈ Γ

∣

∣η0(γ)− η′[−t,0](γ)
∣

∣ ≤ 1{A(γ,0,s) 6⊂ N[−t,∞)}+ 1{A(γ,0,s) 6∼ Iη′(−t)}, (3.11)

where the death times ∈ (γ, 0, s) is in fact irrelevant to the computation. Equation (3.11) says
that if each point in the clan of ancestors of(γ, 0, s) is born after time−t, and it is compatible
with all points associated to the cyclesθ in the initial configurationη′, then the cycleγ belongs
to both configurations or to none of them. Since the clan of ancestors is finite, for any cycleγ:

lim
t→∞

∣

∣η0(γ)− η′[−t,0](γ)
∣

∣ = 0 a.s.. (3.12)

Sample a randomη′ distributed according to the invariant measureν, thenη′[−t,0] has lawν for
all t andη′[−t,0](γ) → η0(γ) almost surely for all finite cycleγ. If f : {0, 1}Γ → R is a bounded
cylindrical function this impliesf(η′[−t,0]) →t→∞ f(η0) almost surely and

νf =

∫

ν(dη′)f(η′[−t,0]) −→
t→∞

Ef(η0) = µf , (3.13)

i.e.,ν = µ.

Conditions for the clan of ancestors to be finite The results of this section depend crucially
on the hypothesis that the clan of ancestors of any pointϕ ∈ Γ × R × R

+ be finite for almost
all realizations ofN .

Fix ϕ = (γ, t, s). For eachθ ∈ Γ andn ≥ 1, define

An(γ, θ) :=
∣

∣

{

(t′, s′) : (θ, t′, s′) ∈ A(γ,t,s)
n

}
∣

∣,

the number ofθ-points∈ N that belong to then-th generation of ancestors of(γ, t, s), and
denote the number ofθ-points in the clan of ancestors of(γ, t, s) by

A(γ, θ) :=
∑

n≥0

An(γ, θ). (3.14)

The total size of the clan of ancestors is|A(γ,t,s)| =
∑

θ∈Λ A(γ, θ). We set conditions onV and
α that ensure this sum is finite.

Subcritical multitype branching process.We dominate the number of points in the clan of
ancestors by a branching process. Ancestors in the clan become descendants for the branching
process, hence time runs backwards for the branching process.
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Let Bn be a discrete time multitype branching process with type-spaceΓ and offspring
distributionA1(γ, θ). The number of children of typeθ in the n-th generation is defined by
B0(γ, θ) = 1{θ = γ}, and forn ≥ 0,

Bn+1(γ, θ) =
∑

γ′∈Γ

Bn(γ,γ′)
∑

i=1

A1,n+1,i(γ
′, θ)

whereA1,n,i(γ, θ) are independent random variables with the same distribution asA1(γ, θ). Let
B(γ, θ) :=

∑

nBn(γ, θ) be the total number of descendants of typeθ of a cycleγ.

Lemma 3.5.A(γ, ·) is stochastically dominated byB(γ, ·).

Proof. The branching processBn+1 counts twice or more times those cyclesθ in the(n+1)-th
generation that intersect more than oneγ′ on then-th generation, whileAn+1 counts them only
once. For details see [9] and [4].

We conclude that if the branching process is subcritical then the clan of ancestors is finite
almost surely.

Mean number of ancestors.Let

m(γ, θ) := E
[

A1(γ, θ)
]

.

By stationarity, the law ofA1(γ, θ) does not depend ont. Also, the property of being an ancestor
of (γ, t, s) is determined by the typeγ and its birth timet: A1(γ, θ) does not depend ons. The
random variableA1(γ, θ) has Poisson distribution with meanm(γ, θ).

A point (θ, t′, s′) in the first generation of ancestors of(γ, t, s) must satisfyθ 6∼ γ, t′ < t
ands′ ≥ t− t′. Hence,

m(γ, θ) = w(θ)1{γ 6∼ θ}

∫ t

−∞

dt′
∫ ∞

t−t′
ds′ e−s′ = w(θ)1{γ 6∼ θ}. (3.15)

SinceB1(γ, θ) has the same law asA1(γ, θ), the mean matrix of the branching process is
given bym and the mean number of descendants of typeθ from an individual of typeγ aftern
branchings is given by

E
[

Bn(γ, θ)
]

= mn(γ, θ). (3.16)

Lemma 3.6. For fixedγ ∈ Γ andn ≥ 1 the following inequality holds
∑

n≥1

∑

θ∈Γ

mn(γ, θ) ≤
∑

n≥1

|γ|βn, (3.17)

whereβ = β(V, α) was defined in(2.5). In particular β(V, α) < 1 implies that the expected
number of descendants of a finite cycleγ is finite.

Proof. Recallm(γ, θ) = 1{θ 6∼ γ}w(θ), and bound
∑

θ∈Γ

mn(γ, θ) ≤
∑

θ∈Γ

|θ|mn(γ, θ)

= |γ|
∑

γ1 6∼γ

|γ1|

|γ|
w(γ1)

∑

γ2 6∼γ1

|γ2|

|γ1|
w(γ2) · · ·

∑

θ 6∼γn−1

|θ|

|γn−1|
w(θ)

≤ |γ|
(

∑

θ∋~0

|θ|w(θ)
)n

= |γ|βn, (3.18)
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where the inequality in (3.18) follows from
∑

γ′:γ′ 6∼γ

|γ′|w(γ′) ≤ |γ|
∑

γ′∋~0

|γ′|w(γ′).

Corollary 3.7. If α > α∗(V ), as defined in(2.6), then the clan of ancestors of any point(γ, t, s)
is finite for almost all realizations ofN .

Proof. By Lemma 3.5 the size of the clan of ancestors is dominated by the total population of
the branching process. This population is finite ifβ(α) < 1 by Lemma 3.6.

4 Proofs of the main theorems

Proof of Theorem 2.1.

Let ηΛt andηt = ηZ
d

t be the stationary processes defined in (3.6) and (3.4). Fix anarbitrary
time t ∈ R and consider thet marginal of the processηΛt . DefineζΛ ∈ SΛ as the permutation
with cycles indicated byηΛt ∈ {0, 1}ΓΛ, for eachΛ ⊆ Z

d. That is,γ ∈ ζΛ if and only if
ηΛt (γ) = 1.

(i) For finite Λ the marginal distribution of the processηΛt at each fixedt ∈ R is GΛ, as
discussed following (3.6).

(ii) Thermodynamic limit: Under the conditionα > α∗(V ), Corollary 3.7 implies that the
clan of ancestors of any point inN is finite with probability one. Then Theorem 3.3 implies the
almost sure thermodynamic limitζΛ(x) → ζZd(x), asΛ ր Z

d, and henceGΛ → µ, the law of
ηZ

d

t .

(iii) By item (ii) µ is a weak limit of specifications, hence a Gibbs measure. Since ηZ
d

t is a
space-time translation invariant function of the Poisson processN , the ergodicity ofN implies
the spatial ergodicity of the law ofηZ

d

t .

(iv) Uniqueness follows from Theorem 3.4.

τv boundary conditions. Proof of Theorem 2.3. Fix v ∈ Z
d andα > α∗

v(V ) and define
the potentialVv as in (2.14). ThenVv(0) = 0 andVv is strictly convex becauseV is. Also,
α∗(Vv) = α∗

v(V ) < ∞ by hypothesis. HenceVv satisfies the hypothesis of Theorem 2.1 and
there exist a process(ζΛ,v,Λ ⊆ Z

d), ζΛ,v ∈ SΛ, such that (i) to (iv) of that theorem hold.

(i) If Λ is finite andσ ∈ SΛ,

P (τvζΛ,v = τvσ) = P (ζΛ,v = σ)

=
1

ZΛ,v

∏

γ∈σ

exp
{

∑

x∈{γ}

Vv(γ(x)− x)
}

=
1

ZΛ,v

∏

γ∈σ

exp
{

∑

x∈{γ}

[

V (γ(x) + v − x)− V (v)
]

}

= GΛ|τv(τvσ). (4.1)

The remaining items follow from (i) and the statements (ii) to (iv) of Theorem 2.1.
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The Gaussian potential. Proof of Theorem 2.4. AssumeV is the Gaussian potential
V (x) = ‖x‖2 in Z

d. Let ρ0 as in (5.5) andα > 0 such that
∑

x∈Zd\{~0} exp(−α‖x‖2) < ρ0. By
Lemma 5.1 below this impliesα∗(‖ · ‖2) < ∞. We compute the explicit bound forα∗(‖ · ‖2)
later in (5.8).

Fix v ∈ Z
d.

(i) Any permutationξ ∈ SΛ|τv is a finite perturbation ofτv and by Lemma 2.2,τ−vξ =
γ1 . . . γn, a composition of disjoint finite cycles inSΛ. We can then write

GΛ|τv(ξ) =
1

Zv,Λ

exp
{

−α
∑

γ∈τ−vξ

∑

x∈{γ}

(‖γ(x) + v − x‖2 − ‖v‖2)− α
∑

x∈Λ

‖v‖2
}

(4.2)

=
1

Z ′
v,Λ

∏

γ∈τ−vξ

wv(γ), (4.3)

whereZ ′
v,Λ = Zv,Λ exp{α

∑

x∈Λ ‖v‖
2} andwv is defined in (2.4). Ifγ is a cycle with support

in Λ
∑

x∈{γ}

(

‖γ(x) + v − x)‖2 − ‖v‖2
)

=
∑

x∈{γ}

‖x− γ(x)‖2 + 2v ·
∑

x∈{γ}

(x− γ(x))

=
∑

x∈{γ}

‖x− γ(x)‖2 (4.4)

as
∑

x∈{γ} x−γ(x) = 0. This implieswv(γ) = w(γ) defined in (2.4), andGΛ|τv(ξ) = GΛ(τ−vξ)
for ξ ∈ SΛ|τv . But this is equivalent toGΛ|τv = GΛτv.

(ii) Take v ∈ Z
d andα > α∗(V ) and letζΛ be as constructed in Theorem 2.1. SinceζΛ has

law GΛ, by (i), τvζΛ has distributionGΛ|τv . The almost sure thermodynamic limit of item (ii),
Theorem 2.1 implies

lim
ΛրZd

τvζΛ(x) = τvζZd(x) a.s., for all x ∈ Z
d.

Now ζZd is distributed according toµ, then

lim
ΛրZd

GΛ|τv = µτv weakly.

(iii) The ergodicity ofµτv follows from the ergodicity ofµ proved in Theorem 2.1 (iii).

5 Bounds onα∗(V )

5.1 A general bound

We start with a general bound. Following [7], define

ρ(V, α) :=
∑

x∈Zd\{~0}

e−αV (x) . (5.1)

The proof of the following lemma is taken from the proof of Theorem 2.1 in [7].
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Lemma 5.1. Call β = β(V, α) and letρ = ρ(V, α). Then,

β ≤
ρ

[

1− ρ
]2 − ρ. (5.2)

Proof. Compute

β =
∑

θ∋~0

|θ|w(θ) =
∑

n≥2

n
∑

θ∋~0; |θ|=n

w(θ) . (5.3)

The second sum, indexed byθ, on the right of (5.3) can be re-written as

∑

x1,..., xn+1∈Zd

1
{

x1 = xn+1 = 0; xi 6= xj , i, j ∈ {1, . . . , n}
}

n
∏

i=1

e−αV (xi+1−xi) . (5.4)

Dominate the indicator function in (5.4) by1
{

x1 = 0; xi 6= xi+1 , i ∈ {1, . . . , n}
}

, to
dominate (5.4) by

∑

y1,..., yn∈Zd\{~0}

n
∏

i=1

e−αV (yi) =
(

∑

x∈Zd\{~0}

e−αV (x)
)n

= ρn .

We conclude thatβ ≤
∑

n≥2 nρ
n which is equivalent to (5.2).

Let

ρ0 be the unique solutionr ∈ [0, 1] to
r

(1− r)2
− r = 1. (5.5)

Solving the equation one getsρ0 ≈ 0.44504.

Corollary 5.2. If ρ(V, α) < ρ0 thenβ(V, α) < 1. In particular,

α∗(V ) ≤ inf{α > 0 : ρ(V, α) ≤ ρ0} . (5.6)

5.2 Examples

The Gaussian potential In this case

ρ(‖ · ‖2, α) =
∑

z∈Zd\{~0}

e−α‖z‖2 =
(

∑

k∈Z

e−αk2
)d

− 1

≤
(

1 +

∫ ∞

−∞

e−αx2

dx
)d

− 1 =
(

1 +
√

π/α
)d

− 1, (5.7)

which implies the following explicit bound forα∗:

α∗(‖ · ‖2) ≤ π
(

(ρ0 + 1)1/d − 1
)−2

≈ π
(

1.445041/d − 1
)−2

. (5.8)

Ford = 2 this givesα∗ ≤ 76.9176; for d = 3, α∗ ≤ 184.305 .
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Differentiable, strictly convex potentials Let V : Rd → R
+ ∪ {+∞} be a potential such

that for eachv ∈ Z
d there exists a constantm(v) > 0 satisfying

V (y) ≥ V (x) +∇V (x)T · (y − x) +m(v)‖y − x‖2 for anyx, y ∈ R
d. (5.9)

Then, for any cycleγ ∈ Γ,
∑

x∈γ

V (γ(x) + v − x)− V (v) ≥ m(v)
∑

x∈γ

‖γ(x)− x‖2, (5.10)

andα∗
v(V ) ≤ 1

m(v)
α∗(‖ · ‖2).

In particular, ifV is a strongly convex potential then (5.9) holds with a constantm uniformly
in v ∈ Z

d, andα∗
v(V ) ≤ 1

m
α∗(‖ · ‖2). For instance, in1-dimension,x2 andex

2
are strongly

convex potentials.

Polynomial potentials Let V : Rd → R
+ be a strictly convex polynomial,V (~0) = 0, with a

positive definite Hessian at all points. Givenv ∈ Z
d, there existsb(v) > 0 such that

[

V (v + y)− V (v)−∇V (v) · y
]

1‖y‖≥b(v) ≥
1

2
V (y) 1‖y‖≥b(v) (5.11)

Let nowγ ∈ Γ, and write
∑

x∈{γ}

V (γ(x)− x+ v)− V (v)

=
∑

x∈{γ}

V (γ(x)− x+ v)− V (v)−∇V (v) · (γ(x)− x) = I1 + I2

with

I1 =
∑

x∈{γ}, ‖x−γ(x)‖<b(v)

V (γ(x)− x+ v)− V (v)−∇V (v) · (γ(x)− x)

I2 =
∑

x∈{γ}, ‖x−γ(x)‖≥b(v)

V (γ(x)− x+ v)− V (v)−∇V (v) · (γ(x)− x)

By (5.11)

I2 ≥
1

2

∑

x∈{γ}, ‖x−γ(x)‖≥b(v)

V (γ(x)− x). (5.12)

On the other hand, since the set{y ∈ Z
d, ‖y − v‖ < b(v)} is finite and the HessianHV =

(

∂2V
∂xi∂xj

)

1≤i,j≤d
is positive definite at all points, there existsm > 0 such that

V (γ(x)− x+ v)− V (v)−∇V (v) · (γ(x)− x) ≥ m ‖γ(x)− x‖2

for all ‖γ(x)− x‖ < b(v). As a result,

I1 ≥ m
∑

x∈{γ}, ‖x−γ(x)‖<b(v)

‖γ(x)− x‖2. (5.13)
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Finally, for any integer neighborhood of the origin that excludes the origin itself there exists
another constantm′ such thatm′V (x) ≤ ‖x‖2. Together with (5.12, 5.13), we obtain

∑

x∈{γ}

V (γ(x)− x+ v)− V (v) ≥ C(v)
∑

x∈{γ}

V (γ(x)− x)

for some constantC(v) > 0, andα∗
v(V ) ≥ 1

C(v)
α∗(V ), whereα∗(V ) can be bounded as in

Corollary 5.2.

Finally, note that some naturally arising polynomial potentials such asV (x) = x4 fail to
have a positive definite Hessian at all points. In this case the above argument still applies, pro-
vided the set of points where the Hessian is not positive definite does not affect the computation
leading to (5.13). In other words, one just needs to check that the Hessian appearing in the
remainder term of the 1st degree Taylor expansion ofV (z) aroundv is positive definite, for all
(finitely many) integer pointsz in the neighborhood‖z−v‖ < b(v). For instance, in the case of
V (x) = x4, or itsd-dimensional versionV (x) = ‖x‖4, the Hessian fails to be positive definite
only at the origin, and the argument works fine.

Finite-range potentials We say that a potentialV is finite-rangeif V (x) = ∞ for all but a
finite number ofx’s. Consider for instance the nearest neighbor potentialV : Z2 → {0, 1,∞}
defined byV (0) = 0, V (x) = 1 if ‖x‖ = 1 andV (x) = ∞ if ‖x‖ > 1. In d = 2 the
specifications for the permutations are very similar to the ones for the Peierls contours of the
Ising model. There are some differences between these models: (a) while contours may have
self intersections, cycles are not allowed to; (b) two-point cycles do not determine a contour,
and (c) given the set of at least 3 sites in the support of a cycle, there are two possible ways
of going through them, clockwise and counter clockwise. Other than these observations, the
approach works exactly as in the contour case studied in [4].
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