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Abstract. We prove a conjecture of Adamaszek generalizing the seating couples prob-
lem to the case of 2n seats. Concretely, we prove that given a positive integer n and
d1, . . . , dn ∈ (Z/2n)× we can partition Z/2n into n pairs with differences d1, . . . , dn.

1. Introduction

Preissmann and Mischler [6] proved the following result, confirming a conjecture of
R. Bacher.

Theorem 1.1. Let p = 2n + 1 be an odd prime. Suppose we are given n elements
d1, . . . , dn ∈ (Z/p)×. Then there exists a partition of Z/p−{0} into pairs with differences
d1, . . . , dn.

We gave a simpler proof of this theorem using the Combinatorial Nullstellensatz [4].
Karasev and Petrov, independently, gave a proof of Theorem 1.1 along the same lines and
provided further generalizations [3]. In this work, they also conjectured two generalizations
of Theorem 1.1, replacing p by an arbitrary integer N . The conjecture in the case that N
is even is originally due to Adamaszek.

Conjecture 1.2 ( [3, Conjecture 1]). Let N = 2n + 1 be a positive integer. Suppose we
are given n elements d1, . . . , dn ∈ (Z/N)×. Then there exists a partition of Z/N − {0}
into pairs with differences d1, . . . , dn.

We will prove the conjecture when N is even:

Theorem 2.5 ( [3, Conjecture 2]). Let N = 2n be a positive integer. Suppose we are
given n elements d1, . . . , dn ∈ (Z/N)×. Then there exists a partition of Z/N into pairs
with differences d1, . . . , dn.

While finishing this paper we found out that, in his master’s thesis [5], T.R. Mezei
suggests a possible way to solve the conjecture that is similar to ours. Furthermore, he
shows that Theorem 2.5 holds whenever N = 2p for p a prime number.

Acknowledgments: We would like to thank the referee for the useful comments and
suggestions.

2. The even case

We recall the following version of the Cauchy-Davenport theorem.
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Theorem 2.1 ([1, Theorem 1]). If A and B are nonempty subsets of Z/N where 0 ∈ B,
and gcd(b,N) = 1 for all b ∈ B \ {0}, then

|A+B| ≥ min{N, |A|+ |B| − 1}.

Suppose that we have a partition as in Theorem 2.5. Since the di are odd numbers,
each pair contains exactly one even number. Therefore, if Theorem 2.5 holds there must
exist signs si such that

s1d1 + . . .+ sndn = 1− 2 + 3− . . .+ (2n− 1)− 2n = n mod N.

Theorem 2.2. Let N = 2n and let d1, . . . , dn ∈ (Z/N)×. Then there exists s1, . . . , sn ∈
{1,−1} such that

s1d1 + . . .+ sndn = n mod 2n.

Proof. It is enough to prove that there exists I ⊂ {1, . . . , n} such that∑
i∈I

2di = d1 + . . .+ dn + n mod 2n

Since di is odd for every i, d1 + . . .+ dn +n is even and therefore our task is equivalent to
finding I such that ∑

i∈I
di =

d1 + . . .+ dn + n

2
mod n.

Let Ai = {di, 0}. Applying Theorem 2.1 inductively, we see that

#(A1 + . . .+An) ≥ min
{
n,

∑
#Ai − (n− 1)

}
= n,

concluding the proof. �

Remark 2.3. Theorem 2.1 was stated in full strength for the benefit of the reader. However,
in the previous proof we only needed to use this result in the case |B| = 2, which follows
from the fact that A+ b = A and gcd(b,N) = 1 imply that A = Z/N .

The last ingredient is the following theorem due to Hall.

Theorem 2.4 ( [2]). Let A be an abelian group of order n and a1, . . . , an be a numbering
of the elements of A. Let d1, . . . , dn ∈ A be elements such that d1 + . . . + dn = 0. Then
there are permutations σ, τ ∈ Sn such that

ai − aσ(i) = dτ(i)

Theorem 2.5. Let N = 2n be a positive integer. Suppose we are given n elements
d1, . . . , dn ∈ (Z/N)×. Then there exists a partition of Z/N into pairs with differences
d1, . . . , dn.

Proof. First, using Theorem 2.2, we may assume that d1 + . . . + dn = n mod 2n. Now
it is enough to find a numbering a1, . . . , an of the odd numbers in Z/N and σ ∈ Sn
such that 2i − ai = dσ(i) mod 2n for every i ∈ {1, . . . , n}, for then the partition in pairs
{2, a1}, {4, a2}, . . . , {2n, an} works.

Equivalently, we need to find a numbering b1, . . . , bn of the even numbers in Z/N such
that 2i− bi = dσ(i) + 1 mod N for some σ ∈ Sn. Now since di + 1 is even for all i, this is
the same as finding a permutation c1, . . . , cn of {1, . . . , n} such that

i− ci =
dσ(i) + 1

2
mod n,
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for some σ ∈ Sn. If we verify that

d1 + 1

2
+ . . .+

dn + 1

2
= 0 mod n

this will follow from Theorem 2.4. But this holds, since d1 + . . . + dn = n mod 2n and
therefore (d1 + 1) + . . .+ (dn + 1) = 0 mod 2n, proving that

d1 + 1

2
+ . . .+

dn + 1

2
= 0 mod n.

�
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