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Abstract We use the inflation-restriction sequence and a result of Etingof and Graña on
the rack cohomology to give a explicit description of 2-cocycles of finite indecomposable
quandles with values in an abelian group. Several applications are given.

1 Introduction and main results

1.1.Quandles are non-associative algebraic structures introduced independently by Joyce [17]
and Matveev [20] in connection with knot theory. They produce powerful invariants similar
to those obtained by coloring [6,22]. Quandles turned out to be useful in different branches
of algebra, topology and geometry since they have connections to several different topics
such as permutation groups [16], quasigroups [24], symmetric spaces [25], Hopf algebras
[2], etc.

Quandles have a very interesting cohomology theory that first appeared in [4] and inde-
pendently in [12]. This theory is somewhat based on the rack cohomology introduced in Fenn
et al. [11]. As in the case of groups, 2nd quandle cohomology groups can be used to produce
new quandles by means of extensions.
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The explicit computation of quandle cohomology groups is an important problem relevant
to different areas of current research. The 2nd quandle cohomology group is particularly
important since it has many applications going from knot theory to Hopf algebras.

In Carter et al. [4], used quandle cohomology classes to produce powerful invariants
of classical links and their higher dimensional analogs. The invariants based on quandle 2-
cocycles improve the effectiveness of the quandle-coloring invariants since, for example, they
distinguish knots from their mirror images. These invariants require an explicit description
of 2-cocycles.

In the Hopf algebra context, quandles and their cohomology parametrize Yetter–Drinfeld
modules. In turn these modules are crucial ingredients in the classification problem of finite-
dimensionalHopf algebraswith non-abelian coradical. Indeed, an important step of the lifting
method proposed by Andruskiewitsch and Schneider to solve this classification problem is
the explicit computation of the 2nd cohomology of finite quandles, see [1].

1.2. In this work we give an explicit description of the second cohomology group of a finite
indecomposable quandle. Our presentation is made by means of the characters of a certain
finite group. This reduces the problem of computing 2-cocycles of a quandle to an easy
manipulation involving cosets in a finite group. Our method is based on a result of Etingof
and Graña [9] which relates the 2nd cohomology of a quandle and the first cohomology of
an infinite group.

1.3. We now review the basics of our construction. Let X be a finite quandle. Recall that the
enveloping group of X is the group

GX = 〈x ∈ X : xy = (x � y)x〉. (1.1)

Assume that X is indecomposable and fix x0 ∈ X . Under the identification 〈x0〉 � Z we
show in Lemma 2.3 that GX � NX � Z, where NX is the commutator group [GX ,GX ] of
GX . The group GX acts transitively on X in a natural way, hence so does NX , see Corollary
2.4. We denote by N0 the stabilizer of NX on x0: this is a finite group cf. Lemma 2.1.

Fix an abelian group A and let M = Fun(X, A) be the right GX -module of functions
X → A, i.e. ( f · x)(y) = f (x � y) for x, y ∈ X and f ∈ M .

We prove that there is a commutative diagram with exact columns

0 0

H1(Z, MN )
∼

inf

A

ι

H2(X, A)
∼

H1(GX , M)

res

A × H1(NX , M)

π

H1(NX , M)Z H1(NX , M)
∼

Hom(N0, A)

0 0
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where the isomorphism

H2(X, A) � H1(GX , M), q 	−→ fq , (1.2)

is [9, Corollary 5.4], see also (2.3); inf and res denote the inflation-restriction maps and ι and
π denote the canonical inclusion and projection.

See Lemmas 3.1, 3.4 and Proposition 3.7 for a proof of the isomorphisms and the equality
in the rows of the diagram. The exactness of the first column is a well-known fact cf. Lemma
2.9. We show that it splits in Lemma 2.10.

By diagram chasing, we derive an isomorphism

H2(X, A) � A × Hom(N0, A).

From this isomorphismwe obtain an explicit description of rack and quandle 2-cocycles with
values in any abelian group A, see Theorem 1.1.

We denote by f 	→ f0 the map H1(GX , M) → Hom(N0, A) deduced from the diagram
above.

Our first main result reads as follows, see Sect. 3 for a proof.

Theorem 1.1 Let X be a finite indecomposable quandle, x0 ∈ X and A an abelian group
with trivial GX -action. Then

H2(X, A) � A × Hom(N0, A), q 	→ (qx0,x0 , ( fq)0). (1.3)

In particular this shows that the non-constant 2-cocycles on X are controlled by a finite group.

1.4. Our second main result is a precise recipe to reconstruct a cocycle q ∈ H2(X, A) from a
datum (a, g) ∈ A×Hom(N0, A). That is, we give a converse to the map in (1.3) to build all
explicit 2-cocycles of a given quandle. To do this, we need to introduce some extra notation.

First, we fix a good coset decomposition

NX =
k⊔

i=0

σi N0,

into N0-cosets, i.e. the representatives σ0, . . . , σk are chosen so that:

(1) σ0 = 1;
(2) for each i ∈ {0, . . . , k} there is j ∈ {0, . . . , k} such that x0 � σi = σ j ;
(3) for each x ∈ X there is j ∈ {0, . . . , k} such that σ j � x0 = x .

The existence of such a decomposition is given in Proposition 4.1, togetherwith a recursive
method for constructing it.

We define σ : N → {σ0, . . . , σk}, σ(n) = σi if n ∈ σi N0. We set, cf. (3.4),

c(n) = σ(n)−1n ∈ N0.

Given y ∈ X and j ∈ {0, . . . , k} such that σ j � x0 = y we write

σy := σ j .

Our second main result is the following, see sect. 4 for the proof.

Theorem 1.2 Let X be a finite indecomposable quandle, x0 ∈ X and A an abelian group
with trivial GX -action. Let NX = ⊔k

i=0 σi N0 be a good decomposition of NX into N0-cosets.
For each a ∈ A and g ∈ Hom(N0, A), the map q : X × X → A given by

qx,y = a + g(c(xσy x
−1
0 )) (1.4)

is a 2-cocycle of X with values in A.
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Combining Theorems 1.1, 1.2 and the isomorphism (1.2), namely

qx,y = fq(x)(y), q ∈ H2(X, A),

we immediately obtain the following corollary.

Corollary 1.3 Let X be a finite indecomposable quandle, x0 ∈ X and A an abelian group
with trivial GX -action. Let NX = ⊔k

i=0 σi N0 be a good decomposition of NX into N0-cosets
and let q ∈ H2(X, A). Then there exists a ∈ A and g ∈ Hom(N0, A) such that (1.4) holds
for all x, y ∈ X.

Corollary 1.3 has many applications and can be used for explicit calculations of rack
cohomology groups of quandles. In particular, if the commutator subgroup NX acts regularly
on X , then N0 = 1 and hence we obtain the following corollary.

Corollary 1.4 Let X be a finite indecomposable quandle. If the action of NX on X is regular,
then H2(X, C

×) � C
×.

1.5. The paper is organized as follows. Preliminaries on racks and quandles, cohomology
theory of groups, and cohomology theories of racks and quandles appear in Sect. 2. Our first
main result, Theorem 1.1, is proved in Sect. 3. Theorem 1.2 is proved in Sect. 4. Applications
of our theory are given in Sect. 5. These applications include the calculations of the 2nd rack
cohomology group of: (a) the quandle associated with the conjugacy class of transpositions,
see Theorem 5.5; (b) affine racks of size p and p2, where p is a prime number, see Proposi-
tions 5.8, 5.10, 5.11 and 5.12; and (c) another proof of Eisermann’s formula for computing
the 2nd quandle homology group of a quandle, see Theorem 5.6.

2 Preliminaries

2.1 Notation

For a set X we denote by SX the group of permutations X → X . If X is finite of cardinal
|X | ∈ N, then we identify S|X | = SX . For any group G we denote by [G,G] its commutator
subgroup and Gab its abelianization, i.e. Gab = G/[G,G]. In addition, Z(G) is the center
of G and GG(g) = {h ∈ G : hg = gh} for g ∈ G. We denote by Aut(G) the group of
automorphisms G → G; if γ ∈ Aut(G), then ord(γ ) is the order of γ .

Let M be an abelian group equipped with a G-action. We denote by Hn(G, M), n ≥ 0,
the nth cohomology group of G with coefficients on M . We denote by Zn(G, M), resp.
Bn(G, M), the groups of cocycles, resp. cobordisms, of G with values on M . We refer the
reader to [3] for unexplained notation and terminology.

2.2 Racks

A rack is a non-empty set X together with a binary operation � : X × X → X such
that the maps ϕx = x � − : X → X , y 	→ x � y, are bijective for each x ∈ X , and
x � (y � z) = (x � y) � (x � z) for all x, y, z ∈ X . A quandle is a rack that further satisfies
x � x = x for all x ∈ X . A prototypical example of a rack is a group G with � given by
conjugation. A rack is indecomposable if the inner group Inn(X) = 〈ϕx : x ∈ X〉 ≤ SX acts
transitively on X .
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The enveloping group GX cf. (1.1) also acts on X , and this action is readily seen to be
transitive when X is indecomposable. The group GX is infinite. There is a finite analogue of
this group, which is constructed as follows: For each x , let nx = ord ϕx . Then the subgroup
ZX = 〈xnx , x ∈ X〉 ≤ GX is normal and the quotient FX = GX/ZX is finite, see [14, §2].
We write NX = [GX ,GX ] to denote the commutator subgroup of GX .

Lemma 2.1 [15, Lemma 1.10] Let X be an indecomposable quandle. Then NX � [FX , FX ].
In particular, NX is finite.

The last claim of Lemma 2.1 also follows from the following result and a theorem of
Schur, see for example [23, Theorem 5.32].

Lemma 2.2 Let X be a finite indecomposable quandle. Then all conjugacy classes of GX

are finite.

Proof Since GX acts transitively on X and the center Z(GX ) is the kernel of this action, it
follows that the index [GX : Z(GX )] is finite. This implies that all conjugacy classes of GX

are finite as

[GX : CGX (g)] ≤ [GX : Z(GX )],
where CGX (g) denotes the centralizer of g in GX . �

We consider the unique surjective group homomorphism

d : GX → Z (2.1)

satisfying d(x) = 1 for all x ∈ X . In particular, this homomorphism shows thatGX is infinite
and induces a notion of degree on GX .

Lemma 2.3 Let X be an indecomposable finite quandle and x0 ∈ X. Then the following
hold:

(1) GX = ker d � 〈x0〉.
(2) ker d = NX if X is indecomposable.

Proof Since ker d is a normal subgroup of GX , ker d〈x0〉 is a subgroup of GX . It is clear that
ker d∩〈x0〉 = 1 comparing degrees. FinallyGX = ker d〈x0〉 since x = (xx−1

0 )x0 ∈ ker d〈x0〉
for all x ∈ X .

It is clear that NX ⊆ ker d. Next we prove the equality when X is indecomposable. Let
� : GX → Z be defined as �(g) = n, if g = xε1

i1
. . . xεn

in
, εi ∈ {±1}, i ∈ {1, . . . , n}, is

a a reduced expression of g in terms of the generators of GX . We show that ker d ⊆ NX

by induction on �(g), g ∈ ker d. If �(g) = 2, then g = x±1
i x∓1

j . So we may assume that

g = xi x
−1
j (if not, take inverses). Now, as X is indecomposable, there is h ∈ GX such

that h · x j = xi . Hence g = hx j h−1x−1
j ∈ NX . Now, if �(g) > 2, then there is a reduced

expression of g (or g−1) in which g = g1xi x
−1
j g2, xi , x j ∈ X and g1, g2 ∈ GX . Now, on

the one hand, 0 = d(g) = d(g1) + d(g2) and thus g1g2 ∈ NX as �(g1g2) < �(g). On the
other, g = (g1xi x

−1
j g−1

1 )(g1g2) and therefore g ∈ NX . �
Corollary 2.4 The restriction of the action of GX on X to NX is transitive.

Proof Let x, y ∈ X and let g ∈ GX such that g · x = y and let � = d(g). Then g′ = y−�g ∈
NX by Lemma 2.3 and g′ · x = y. �

123



A. García Iglesias, L. Vendramin

2.3 Rack cohomology

A cohomology theory for racks was introduced in [10] and independently in [12]. A coho-
mology theory for quandles was developed in [4]. These theories were further developed and
generalized for example in [2,18].

We briefly recall these cohomology theories next. Let X be a rack and let M be a right
GX -module. Set Cn = Cn(X, M) = Fun(Xn, M), n ≥ 0, the set of functions from Xn to
M . Consider the differential d : Cn → Cn+1

d f (x1, . . . , xn+1) =
n∑

i=1

(−1)i−1
(
f (x1, . . . , xi−1, xi+1, . . . , xn+1)

− f (x1, . . . , xi−1, xi � xi+1, . . . , xi � xn+1) · xi
)
.

The rack cohomology H•(X, M) of X with coefficients in M is the cohomology of the
complex (C•, d) [9, Definition 2.3]. The groups of cocycles resp. cobordisms, are denoted
by Zn(X, M), resp. Bn(G, M). When A is an abelian group and no reference to a GX -action
on A is specified, H•(X, A) stands for the cohomology of X with values in the trivial module
M = A. If q is a class in H2(X, A), we set qx,y := q(x, y). Hence q ∈ H2(X, A) if and
only if

qx�y,x�zqx,z = qx,y�zqy,z, ∀ x, y, z ∈ X (2.2)

and two classes q, q ′ ∈ H2(X, A) are equivalent if and only if there exists γ : X → A such
that q ′

x,y = qx,yγ (x � y)γ (y)−1 for all x, y ∈ X .
The rack homology H•(X, A)with values in an abelian group A is defined analogously, by

considering the free abelian group Fn(X) on Xn , n ≥ 0, and settingCn(X, A) := Fn(X)⊗A.
If X is a quandle, then the subgroup FD

n (X) ≤ Fn(X) generated by n-tuples (x1, . . . xn)with
xi = xi+1 for some i , defines a subcomplex CD• = CD• (X, A) of C•. The quandle homology
HQ• (X, A) of X is the homology of the quotient complex CQ• = (Cn/CD

n )n≥0.
In this work we give a description of the group H2(X, A) of 2-cocycles on X with values

in an abelian group A, which allows us to compute cocycles explicitly. We recall next some
identifications between the (co)homology theories described above that will be useful for our
goal.

Lemma 2.5 [5, Proposition 3.4] H2(X, A) � Hom(H2(X, Z), A), via

H2(X, A) � q 	→ ([x, y] 	→ qx,y
) ∈ Hom(H2(X, Z), A).

The following is a particular case of [19, Theorem 7].

Lemma 2.6 Assume X is an indecomposable quandle. Then

H2(X, Z) � HQ
2 (X, Z) × Z.

Explicitly, if (x, y) ∈ X2, then the isomorphism is induced by the map

(x, y) 	→
{

(x, y) × 0, if x �= y

0 × 1, if x = y.

Etingof andGraña found adeep relation betweengroup cohomology and rack cohomology.
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Theorem 2.7 [9, Corollary 5.4] Let X be a finite indecomposable rack and A an abelian
group with a trivial GX -action. Then

H1(GX ,Fun(X, A)) � H2(X, A).

This equivalence is given as follows:

(1) If f ∈ H1(G,Fun(X, A)) then a 2-cocycle q f ∈ H2(X, A) arises as

q f
x,y = f (x)(y), x, y ∈ X.

(2) Conversely, q ∈ H2(X, A) determines fq ∈ H1(G,Fun(X, A)) by extending q recur-
sively via

fq(xy)(z) = qx,y�z + qy,z, x, y, z ∈ X. (2.3)

Remark 2.8 Let G be a (non-abelian) group and fix Z2(X,G) ⊂ Fun(X2,G) as the subset
of all q : X2 → G satisfying (2.2). We say that q is equivalent to q ′, and we write q ∼ q ′,
in Z2(X,G) if and only if there is γ ∈ Fun(X,G) such that q ′

x,y = γ (x � y)qx,yγ (y)−1. If
H2(X,G) := Z2(X,G)/∼, then Theorem 2.7 holds, see [9, Remark 5.6].

2.4 Group cohomology

Let G be a group, N � G a normal subgroup and M a right G-module. Recall cf. [3, 3.8]
that there is a right G/N -action on H1(N , M), induced by

( f · g)(n) = f (gng−1) · g, g ∈ G, n ∈ N , f ∈ H1(N , M). (2.4)

Indeed, let f ∈ Z1(N , M). If g ∈ N , then

( f · g)(n) = f (gn) − f (g) = f (g) · n + f (n) − f (g)

by the cocycle condition. Hence

( f · g)(n) − f (n) = f (g) · n − f (g)

and thus f · g = f ∈ H1(N , M). The inflation-restriction sequence is

0 → H1(G/N , MN )
ι→ H1(G, M)

r→ H1(N , M)G/N

→ H2(G/N , MN ) → H2(G, M) (2.5)

where the inflation map ι(h), h ∈ H1(G/N , MN ), is the composition

G � G/N
h→ MN ↪→ M

and the restriction map r(g), g ∈ H1(G, M), is the composition

N ↪→ G
g→ M.

In the case where G/N � Z one obtains the following result, see loc.cit.

Lemma 2.9 Assume that G/N � Z. Then

(1) H2(G/N , MN ) = 0.
(2) H1(G/N , MN ) = MN /〈m · g − m〉, (class of) f 	→ (class of) f (1).
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In particular, the exact sequence (2.5) reduces to

0 → H1(G/N , MN )
inf→ H1(G, M)

res→ H1(N , M)G/N → 0. (2.6)

Lemma 2.10 Assume that N is finite and G/N � Z. Then (2.6) splits. A retraction for
inf : H1(G/N , MN ) → H1(G, M) is given by

j : H1(G, M) → H1(G/N , MN ), j ( f )(�) = 1

|N |
∑

n∈N

(
f
(
nx�

0

)
− f (n)

)
.

Proof We need to check that j is well-defined, that is:

(1) If f ∈ Z1(G, M), then j ( f )(G/N ) ⊆ MN .
(2) If f ∈ Z1(G, M), then j ( f ) ∈ Z1(G/N , MN ).
(3) If f ∈ B1(G, M), then j ( f ) ∈ B1(G/N , MN ).

Let f ∈ Z1(G, M) and set ϕ := j ( f ). For (1), using the cocycle condition,

ϕ(�) · n = 1

|N |
∑

m∈N

(
f
(
mx�

0

)
· n − f (m) · n

)

= 1

|N |
∑

m∈N

(
f
(
mx�

0n
)

− f (n) − f (mn) + f (n)
)

= 1

|N |
∑

m∈N

(
f
(
mx�

0nx
−�
0 x�

0

)
− f (mn)

)
.

By reordering the sum, ϕ(�) · n = ϕ(�) for all n ∈ N , � ∈ Z. Hence (1) holds.
In (2), we get

ϕ(� + r) = 1

|N |
∑

n∈N

(
f
(
nx�+r

0

)
− f (n)

)

= 1

|N |
∑

n∈N

(
f
(
nx�

0

)
· xr0 + f

(
xr0

) − f (n)
)

= 1

|N |
∑

n∈N

(
f
(
nx�

0

)
· xr0 − f (n) · xr0 + f (n) · xr0 + f

(
xr0

) − f (n)
)

= ϕ(�) · r + 1

|N |
∑

n∈N

(
f
(
nxr0

) − f
(
xr0

) + f
(
xr0

) − f (n)
)

= ϕ(�) · r + ϕ(r).

Thus (2) holds. If f ∈ B1(G, M), then there exists ψ ∈ M such that f (g) = ψ · g − ψ .
Hence,

j ( f )(�) = 1

|N |
∑

n∈N

(
ψ · nx�

0 − ψ − ψ · n + ψ
)

= 1

|N |
∑

n∈N

(
ψ · nx�

0 − ψ · n
)

and thus j ( f )(�) = γ · � − γ for

γ = 1

|N |
∑

n∈N
ψ · n ∈ MN .
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This shows (3). Finally we prove that j ◦ inf = id. For this, recall that if ϕ ∈ H1(G/N , MN )

and g ∈ G, then inf(ϕ)(g) = ϕ(ḡ), where ḡ is the class of g in G/N � Z. Then

( j ◦ inf)(ϕ)(�) = 1

|N |
∑

n∈N

(
inf(ϕ)

(
nx�

0

)
− inf(ϕ)(n)

)
= 1

|N |
∑

n∈N
ϕ(�) = ϕ(�)

for all � ∈ Z. This completes the proof. �

3 Proof of Theorem 1.1

Assume that X is a finite indecomposable rack.WewriteG = GX , N = [GX ,GX ]. Let A be
an abelian group with trivial G-action and set M = Fun(X, A). Fix x0 ∈ X and G � N � Z

as in Lemma 2.3. It follows from Lemma 2.10 that

0 → H1(G/N , MN )
inf−→ H1(G, M)

res−→ H1(N , M)G/N → 0

splits. We first identify the first term of this sequence.

Lemma 3.1 H1(Z, MN ) � A, via f 	→ f (1)(x0).

Proof Recall from Lemma 2.9(2) that H1(Z, MN ) � MN/F , where F is the submodule
generated by {ϕ · x p

0 − ϕ : p ∈ Z, ϕ ∈ MN }. Since X = N � {x0} by Corollary 2.4 and
n � x0 = x ∈ X for some n ∈ N ,

ϕ(x) = ϕ(n � x0) = (ϕ · n)(x0)

for all ϕ ∈ M . Hence, if ϕ ∈ MN , then ϕ(x) = ϕ(x0), x ∈ X . Consequently, F = {0} and
H1(Z, MN ) � MN . But MN � A as any ϕ ∈ MN is determined by its value ϕ(x0) ∈ A.
Hence the lemma follows. �

As for the third term, we will show in Proposition 3.7 that

H1(N , M)Z � Hom(N0, A). (3.1)

To do so, we first need several lemmas.

Lemma 3.2 The map
Z1(N , M) → Hom(N0, A), f 	→ f0, (3.2)

where f0(n0) = f (n0)(x0) for n0 ∈ N0, is well-defined and factors to a map H1(N , M) →
Hom(N0, A).

Proof We first prove that f0 is indeed a group homomorphism:

f0(n0n
′
0) = f (n0n

′
0)(x0) = ( f (n0) · n′

0)(x0) + f (n′
0)(x0)

= f (n0)(n
′
0 � x0) + f (n′

0)(x0)

= f (n0)(x0) + f (n′
0)(x0) = f0(n0) + f0(n

′
0), n0, n

′
0 ∈ N0.

We now show that the map factors to a map H1(N , M) → Hom(N0, A). Let f ∈
B1(N , M), that is f (n) = ϕ · n − ϕ for some ϕ ∈ M . Then

f0(n0) = f (n0)(x0) = (ϕ · n0)(x0) − ϕ(x0)

= ϕ(n0 � x0) − ϕ(x0) = ϕ(x0) − ϕ(x0) = 0.

This completes the proof. �
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Lemma 3.3 The map H1(N , M) → Hom(N0, A), f 	→ f0, is an injective group homo-
morphism.

Proof It is clear that f 	→ f0 is a group homomorphism.
Let f ∈ H1(N , M) be such that f0 = 0. That is, f (n0)(x0) = 0 for every n0 ∈ N0. We

claim that there is ϕ ∈ M such that f (m) = (ϕ · m) − ϕ and thus f = 0 in H1(N , M). Set

ϕ(x) := f (n)(x0) if x = n � x0.

Let us check that this is well-defined: if x = n � x0 = n′ � x0, then n−1n′ ∈ N0. Since
f (1) = 0, one obtains that f (n−1) = − f (n) · n−1. Then

0 = f0(n
−1n′) = f (n−1n′)(x0)

= − f (n)(n−1n′ � x0) + f (n′)(x0) = − f (n)(x0) + f (n′)(x0),

and thus ϕ(x) does not depend on n ∈ N such that x = n � x0. Finally for each m ∈ N and
every x = n � x0 ∈ X with n ∈ N ,

(ϕ · m − ϕ)(x) = ϕ(m � x) − ϕ(x) = ϕ(m � n � x0) − ϕ(n � x0)

= f (mn)(x0) − f (n)(x0) = ( f (m) · n)(x0) + f (n)(x0) − f (n)(x0)

= f (m)(n � x0) = f (m)(x),

and therefore f = 0. �
Recall the definition of the Z-action on H1(N , M) from (2.4).

Lemma 3.4 Assume X is a quandle. Then H1(N , M) = H1(N , M)Z.

Proof Let f ∈ H1(N , M) and set g = f − f · x0. If n0 ∈ N0, then

g0(n0) = f (n0)(x0) − f (x0n0x
−1
0 )(x0 � x0) = 0.

Thus g0 = 0 and hence f = f · x0 for all f ∈ H1(N , M) by Lemma 3.3, since the group
homomorphism g 	→ g0 is injective. �

In order to show the surjectivity of the map f 	→ f0 from Lemma 3.3, we need to fix a
decomposition of N into N0-cosets

N =
k⊔

i=0

σi N0,

where σi ∈ N is a representative, σ0N0 = N0. We define

σ : N → {σ0, . . . , σk}, σ (n) = σi if n ∈ σi N0. (3.3)

For n ∈ N we consider c(n) ∈ N0 defined by

n = σ(n)c(n). (3.4)

Remark 3.5 For all n ∈ N and n0 ∈ N0 it follows that c(nn0) = c(n)n0. Indeed, nn0 =
σ(n)c(n)n0 = σ(nn0)c(nn0) and thus the claim holds since each m ∈ N decomposes
uniquely as m = σ(m)c(m).

Lemma 3.6 The map H1(N , M) → Hom(N0, A), f 	→ f0, is surjective.
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Proof Let g : N0 → A be a group homomorphism; we shall construct an f ∈ Z1(N , M)

such that f0 = g. We claim that the map f : N → M , n 	→ f (n), given by

f (n)(x) = g(c(nm)) − g(c(m)) = g(c(nm)c(m)−1), (3.5)

where m ∈ N is such that x = m � x0, is well-defined. Indeed, if m′ ∈ N also satisfies
x = m′ � x0, then m−1m′ ∈ N0 and thus σ(m)−1σ(m′) ∈ N0. That is σ(m) = σ(m′)
and thus σ(nm) = σ(nm′) for every n ∈ N since (nm′)−1nm ∈ N0. As g is a group
homomorphism,

g(c(nm)c(m)−1) − g(c(nm′)c(m′)−1) = g(c(nm)c(m)−1c(m′)c(nm′)−1).

Now, c(nm)c(m)−1c(m′)c(nm′)−1 is, by definition,

(σ (nm)−1nm)(m−1σ(m))(σ (m′)−1m′)(m′ −1n−1σ(nm′)) = 1.

Hence g(c(nm)c(m)−1) − g(c(nm′)c(m′)−1) = g(1) = 0 and thus f does not depend on
the choice of m.

Now we show that f ∈ Z1(N , M). Let x ∈ X , n, n′ ∈ N and m ∈ N be such that
x = m � x0. On the one hand, we have

f (nn′)(x) = g(c(nn′m)) − g(c(m)).

On the other,

( f (n) · n′)(x) + f (n′)(x) = f (n)(n′ � x) + f (n′)(x)
= g(c(nn′m)) − g(c(n′m)) + g(c(n′m)) − g(c(m))

= f (nn′)(x).

Finally we see that g = f0, that is f0(n) = g(n) for n ∈ N0. Now, if n ∈ N0, then
c(n) = c(1 · n) = c(1)n cf. Remark 3.5. Also, as as x0 = 1 � x0,

f0(n) = f (n)(x0) = g(c(n · 1)c(1)−1) = g(c(1 · n)) − g(c(1))

= g(c(1)n) − g(c(1)) = g(c(1)) + g(n) − g(c(1)) = g(n)

and the lemma follows. �
Now we proceed to show (3.1).

Proposition 3.7 The map Z1(N , M) → Hom(N0, A) given by f 	→ f0, where f0(n0) =
f (n0)(x0) for n0 ∈ N0, induces a group isomorphism

H1(N , M)Z → Hom(N0, A).

Proof Lemma 3.4 implies that H1(N , M)Z � H1(N , M) and Lemmas 3.3 and 3.6 yield
H1(N , M) � Hom(N0, A), as desired. �

This allows us to complete the proof of Theorem 1.1.

Proof of Theorem 1.1 Using the cocycle condition, we get

j ( f )(�) = 1

|N |
∑

n∈N

(
f (n) · x�

0 + f
(
x�
0

)
− f (n)

)

= f
(
x�
0

)
+ 1

|N |
∑

n∈N

(
f (n) · x�

0 − f (n)
)

.
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Hence, as X is a quandle, for each � ∈ Z,

j ( f )(�)(x0) = f (x0)(x0). (3.6)

Since H1(G/N , MN ) � A by Lemma 3.1 and by Proposition 3.7 there exists an iso-
morphism ζ : H1(N , M)Z � Hom(N0, A), we write the inflation-restriction sequence (2.6)
as

0 → A
inf0−−→ H1(G, M)

res0−−→ Hom(N0, A) → 0, (3.7)

where res0( f ) = res( f )0 for all f ∈ H1(G, M) and inf0 is the composition A � MN �
H1(G/N , MN ). We set f0 = res0( f ) by abuse of notation, i.e.

f0(n0) = f (n0)(x0), n0 ∈ N0. (3.8)

A retraction for inf0 is given by the composition

j0 : H1(G, M)
j→ H1(G/N , MN ) � A,

using Lemmas 2.10 and 3.1, that is

j0( f ) = j ( f )(1)(x0) = f (x0)(x0), (3.9)

cf. (3.6). Hence H1(G, M) � A × Hom(N0, A) via

f 	→ ( f (x0)(x0), f0). (3.10)

This completes the proof. �

4 Proof of Theorem 1.2

In this section we show the Reconstruction Theorem 1.2. We fix x0 ∈ X and write N0 ≤ NX

for the stabilizer of x0 in NX . By Lemma 2.1, N0 is a finite group.
The key for the proof of Theorem 1.2 lays in the existence of a particular class of decom-

positions

NX =
k⊔

i=0

σi N0

of NX into N0-cosets, which are good in our context.

Proposition 4.1 Let X beafinite indecomposable quandle. Then there exists a decomposition
NX = ⊔k

i=0 σi N0 of NX into N0-cosets such that the following hold:

(1) σ0 = 1.
(2) For each i ∈ {0, . . . , k} there is j ∈ {0, . . . , k} such that x0 � σi = σ j .
(3) For each x ∈ X there is j ∈ {0, . . . , k} such that σ j � x0 = x.

Proof Fix a decomposition into cosets NX = ⊔k
i=0 σi N0. Recall from (3.3) and (3.4) the

definition of the corresponding assignments

σ : N → {σ0, . . . , σk} and c : N → N0.
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Since σ0 = 1, (1) holds. Condition (3) also holds trivially: If x ∈ X , there is n ∈ NX is
such n � x0 = x by Corollary 2.4. Now, there is j ∈ {0, . . . , k} such that n ∈ σ j N0, that is
n = σ j n0 for some n0 ∈ N0. Then x = n � x0 = σ j � (n0 � x0) = σ j � x0.

For Condition (2), set S = {σ1, . . . , σk}. We define

t j = t j (S) := min{t ≥ 1 : xt0 � σ j = σ j }
for all j ∈ {1, . . . , k}. Observe that 1 ≤ t j (S) ≤ ord ϕx0 , cf. §2.2. For i ∈ {1, . . . , k} and
t ∈ {0, . . . , t j (S) − 1} we define τ j,t = xt0 � σ j and let

T = {τ j,t : 1 ≤ j ≤ k, 1 ≤ t < t j (S)}.
It is clear that S ⊆ T , as σ j = τ j,0 by definition, and that if S = T , then we are done. Notice
that this is not a multi-set: we may have τ j,t = τ j ′,t ′ , for different ( j, t), ( j ′, t ′). On the other
hand, if t �= t ′, then τ j,t �= τ j,t ′ for every j , since t < t j (S). In other words, there are r ≤ k,
1 = i1 < i2 < · · · < ir and s j ≤ ti j , 1 ≤ j ≤ r such that

T = {τi j ,t : 1 ≤ j ≤ r, 1 ≤ t < s j }
and τi j ,t �= τi j ′ ,t ′ if j �= j ′ or t �= t ′. We reorder the set S so i j = j , j = 1, . . . , r . If S �= T ,
then we proceed inductively: we order T by:

τi,s ≺ τ j,t ⇐⇒ i < j or i = j and s < t.

Let τ = min{τ j,t : τ j,t /∈ S} and let � be such that σ(τ) = σ�, i.e. τ j,t = xt0 � σ j ∈ σ�N and
τ j,t �= σ�. Observe that if τ = τ j,t , then � �= j . Set S0 = S and T0 = T . We make a new
choice of representatives replacing the original set S0 by

S1 = (S0 \ {σ�}) ∪ {τ } = {σ1, . . . , σ�−1, τ, σ�+1, . . . , σk}.
Define t j (S1) and (T1,≺) accordingly. We claim that t j (S1) ≤ t j (S0) for all j . Indeed,
equality holds if j �= � and it readily follows that

t�(S1) = t�(S0) − t < t�(S0).

In particular, it follows that |S| = |S1| ≤ |T1| < |T0|. (This also follows as when constructing
T1 we are removing all the τ�,t .) If T1 = S1, then we are done. Otherwise, we repeat this
procedure until we end up with Sp = Tp for some p > 1. Then Sp becomes the set of
representatives we searched for. �

We say that a decomposition of NX into N0-cosets satisfying the conditions in Proposi-
tion 4.1 is good.

If NX = ⊔k
i=0 σi N0 is a good decomposition, then for each y ∈ X we set

σy := σ j . (4.1)

for j ∈ {0, . . . , k} such that σ j � x0 = y.

Lemma 4.2 If NX = ⊔k
i=0 σi N0 is good, then

c(x0 � n) = c(n).

Proof Indeed, x0 � n = x0σ(n)x−1
0 c(n), as c(n) ∈ N0 and x0σ(n)x−1

0 = σi , for some
i ∈ {0, . . . , k}. �

Recall the definition of the group homomorphism d : GX → Z from (2.1).
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Lemma 4.3 For each u ∈ GX and y ∈ X,

σu�y = uσy x
−d(u)
0 c

(
uσy x

−d(u)
0

)−1
.

In particular if n ∈ N, then σn�y = σ
(
nσy

)
.

Proof Since

σu�y � x0 = u � y = u � (σy � x0) = (uσy) � x0 = (uσy x
−d(u)
0 ) � x0

and uσy x
−d(u)
0 ∈ N , it follows that σu�y = σ(uσyx

−d(u)
0 ). Then

uσy x
−d(u)
0 = σu�yc

(
uσy x

−d(u)
0

)
,

and the first claim follows. If n ∈ N , then d(n) = 0 and therefore it follows that σn�y =
nσyc

(
nσy

)−1 = σ
(
nσy

)
cf. (3.4). �

We can now proceed to prove Theorem 1.2.

Proof of Theorem 1.2 We need to define an inverse to the map (3.10). Fix a ∈ A, g ∈
Hom(N0, A) and set f : G → M as

f (u)(y) := d(u) a + g
(
c
(
uσy x

−d(u)
0

))
,

for each u ∈ G. We show that f ∈ Z1(G, M) and f 	→ (a, g) via (3.10).
On the one hand, as σx0 = σ0 = 1,

f (x0)(x0) = a + g
(
c
(
x0x

−1
0

))
= a.

On the other, if n0 ∈ N0, then d(n0) = 0 and thus

f0(n0) = f (n0)(x0) = g(c(n0)) = g(n0).

Now we check the cocycle condition. First,

f (uu′)(y) = d(uu′)a + g
(
c
(
uu′σy x

−d(uu′)
0

))
.

Second,

( f (u) · u′)(y) + f (u′)(y) = f (u)(u′ � y) + f (u′)(y)

= d(u)a + g
(
c
(
uσu′�y x−d(u)

0

))
+ d(u′)a + g

(
c
(
u′σy x

−d(u′)
0

))

= f (uu′)(y),

since A is abelian, d and g are a group homomorphisms and

c
(
uσu′�y x−d(u)

0

)
= c

(
uu′σy x

−d(uu′)
0

)
c
(
u′σy x

−d(u′)
0

)−1

by Lemma 4.3. Hence f ∈ Z1(G, M). �
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5 Applications

Our method for computing the 2nd cohomology group of an indecomposable quandle X
involves the group N0, see Sect. 1.3. In several important cases, this group can be obtained
applying the following lemma.

Lemma 5.1 Let X be a finite indecomposable quandle and x0 ∈ X. Assume that the canon-
ical map X → GX is injective. Then

N0 � [FX , FX ] ∩ CFX (ψ(x0)),

where ψ : X → GX → FX is the composition of the canonical maps and CFX (ψ(x0)) is the
centralizer of ψ(x0) in FX .

Proof Since X → GX is injective and X is indecomposable, X can be identified with the
conjugacy class of x0 inGX . By [15, Lemma 1.8], X can also be identifiedwith the conjugacy
class of ψ(x0) in FX . From Lemma 2.1 one obtains that NX = [GX ,GX ] � [FX , FX ] and
thus the claim follows.

Remark 5.2 If X is a conjugation quandle, then the canonicalmap X → GX is injective. Thus
Lemma 5.1 gives a nice description of N0 in the case of finite indecomposable conjugation
quandles.

Example 5.3 The claim of Lemma 5.1 does not hold for arbitrary quandles. Let X be the
quandle {x1, x2, x3, x4} with the structure given by

ϕx1 = (x2x3x4), ϕx2 = (x1x4x3), ϕx3 = (x1x2x4), ϕx4 = (x1x3x2).

This quandle is isomorphic to the conjugacy class of 3-cycles in A4. Let f : X × X → C
×

be the map given by

f (x, y) =
{
1 if x = x1 or y = x1 or x = y,

−1 otherwise.

Then f is a 2-cocycle of X with values in {−1, 1} � Z2, see [2, Example 2.2]. Let Y =
X × {−1, 1} be the quandle given by

(x, i) � (y, j) = (x � y, j f (x, y)), x, y ∈ X, i, j ∈ {−1, 1}.
Then the canonical map Y → GY is not injective. Indeed,

(x2, 1)(x3,−1) = (x1, 1)(x2, 1) = (x3, 1)(x1, 1) = (x2, 1)(x3, 1)

implies that (x3,−1) = (x3, 1) in GY .
Fix y0 ∈ Y . A straighforward calculation shows that FY � SL(2, 3) and [FY , FY ] ∩

CFY (ψ(y0)) � Z2. However, since [FY , FY ] and Y both have eight elements, N0 is the
trivial group.

5.1 Transpositions in Sn

Let X = (12)Sn be the quandle of transpositions in the symmetric group Sn . For n ≥ 4 a
non-constant 2-cocycle χ ∈ H2(X, C

×) was constructed in [21]. This cocycle is given by

χ(σ, τ) =
{
1 if σ(i) < σ( j),

−1 otherwise,
(5.1)

where τ = (i j), 1 ≤ i < j ≤ n.
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Lemma 5.4 Let X = (12)Sn , n ≥ 4, and fix x0 = (12) ∈ X.

(1) FX � Sn. Hence NX � An.
(2) N0 � Z2 � An−2. In particular, N0/[N0, N0] � Z2.

Proof Recall that Sn = 〈σ1, . . . , σn−1〉 with relations

σiσi+1σi = σi+1σiσi+1, 1 ≤ i < n − 1,

σkσ j = σ jσk, 1 ≤ j, k < n, | j − k| > 1,

σ 2
i = 1, 1 ≤ i < n.

Set ι : X ↪→ Sn the canonical inclusion let ϕ : 〈X〉 → Sn the unique group homomorphism
with ϕ|X = ι. This is in fact an epimorphism. Observe that ϕ(x2) = ι(x)2 = 1 and

ϕ(xy) = ι(x)ι(y) = ι(x)ι(y)ι(x)−1ι(x) = ι(x � y)ι(x) = ϕ((x � y)x).

Thus, ϕ factors through φ : FX � Sn . Now, set S be the free group on s1, . . . , sn−1 and
let ψ ′ : S → FX be the group epihomomorphism given by si 	→ (i i + 1). Now ψ ′ factors
through ψ : Sn � FX and it is clear that φ and ψ are inverses to each other.

Let us prove the second claim. By the first part, we identify N with An . Consider An−2 ≤
An as those permutations fixing 1 and 2 and set t = (12)(34). Then tσ t−1 ∈ An−2 for all
σ ∈ An−2. Clearly 〈t〉 � An−2 ≤ N0.

Since An is generated by {(34�) | 1 ≤ � ≤ n, � �= 3, 4}, the group N is generated by the
subgroups An−2 and A4 � 〈(134), (234)〉. Notice that 〈(134), (234)〉 ∩ N0 � 〈t〉. We have
|〈t〉 � An−2| = (n − 2)! and

{σ(12)σ−1 : σ ∈ An} = (12)Sn .

Thus |N0| = |N |/|(12)Sn | = (n − 2)! and hence N0 = 〈t〉 � An−2.
Finally, since the commutator subgroup of some group A � B is the group generated by

[A, A] ∪ [A, B] ∪ [B, B] and N0 = 〈t〉 � An−2, it follows that [N0, N0] � An−2 and hence
N0/[N0, N0] � Z2. �

Theorem 5.5 Let n ≥ 4 and X = (12)Sn be the conjugacy class of transpositions. Then
H2(X, C

×) � C
× × 〈χ〉.

Proof Set x0 = (12) ∈ Sn . Since N0 � Z2 � An−2 and N0/[N0, N0] � Z2 by Lemma 5.4,
it follows that Hom(N0, C

×) � Z2. Applying the isomorphism (1.3) of Theorem 1.1 to the
2-cocycle χ given in (5.1),

χ 	→ (−1, ( fχ )0),

where ( fχ )0 : N0 → C
×, n0 	→ fχ (n0)(x0), n0 ∈ N0. Now the claim follows since ( fχ )0

generates Hom(N0, C
×). Indeed, fχ �= 1 since

( fχ )0((12)(34)) = fχ ((12)(34))(12)
(2.3)= χ((12), (34) � (12))χ((34), (12))

= χ((12), (12))χ((34), (12)) = −1.

This completes the proof. �
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5.2 Eisermann formula

We give a new proof of a formula of Eisermann as a consequence of our results.

Theorem 5.6 [8, Theorem 1.12] Let X be a finite indecomposable quandle and x0 ∈ X.
Then

HQ
2 (X, Z) � ([GX ,GX ] ∩ CGX (x0)

)
ab � (N0)ab,

where N0 is the stabilizer of a given x0 ∈ X of the action of [GX ,GX ] on X.

Proof The claim follows by “chasing” the chain of equivalences

A × Hom(N0, A) � H2(X, A) � Hom(H2(X, Z), A)

given by the application of Theorem 1.2 and Lemma 2.5. More explicitly, if (a, g) ∈ A ×
Hom(N0, A), then it defines q ∈ H2(X, A) via (1.4), which in turn defines a morphism
H2(X, Z) → A by Lemma 2.5:

[x, y] 	→ qx,y = a + g
(
c
(
xσy x

−1
0

))
∈ A,

cf. Theorem 1.2. Now, H2(X, Z) � HQ
2 (X, Z) × Z by Lemma 2.6 and so this assignment

becomes a map in Hom(HQ
2 (X, Z) × Z, A):

([x, y], �) 	−→ � a + g
(
c
(
xσy x

−1
0

))
.

Thus we see that the restriction of this map to HQ
2 (X, Z) × {0} gives an equivalence

Hom(HQ
2 (X, Z), A) � Hom(N0, A) � (N0)ab for any abelian group A. Hence we derive

Eisermann’s formula HQ
2 (X, Z) � (N0)ab. �

If we combine this fact with Lemma 2.6, we obtain the following.

Corollary 5.7 Let X be a finite indecomposable quandle, x0 ∈ X. Then H2(X, Z) �
(N0)ab × Z.

5.3 Affine quandles

Let L be an abelian group and γ ∈ Aut(L). The affine (or Alexander) quandle Aff(L , γ ) is
the set L together with the action

x � y = γ (y) + x − γ (x), x, y ∈ L .

In [7] Clauwens described the enveloping group of an affine quandle; we review his
construction next. Set

τγ : L ⊗Z L → L ⊗Z L , (x, y) 	→ (x, y) − (y, γ (x)),

S(L , γ ) := coker τγ = L ⊗Z L/〈(x, y) − (y, γ (x))〉. (5.2)

We write [x, y] ∈ S(L , γ ) for the class of an element x ⊗ y ∈ L ⊗Z L . Set X = Aff(L , γ );
then GX is the set L � Z × S(L , γ ) with multiplication

(x,m, [p, q]) (y, n, [r, s]) = (
x + γm(y),m + n, [p + r + x, q + s + γm(y)]) ,

for m, n ∈ Z, x, y ∈ L , [p, q], [r, s] ∈ S(L , γ ).
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The rack X identifies with the subset L�{1}×0with the rack action given by conjugation:

(x, 1, 0)(y, 1, 0) = (x + γ (y), 2, [x, γ (y)]) = (x + γ (y), 2, [x � y, γ (x)])
= (x + γ (y) − γ (x) + γ (x), 2, [x � y, γ (x)])
= (x � y, 1, 0)(x, 1, 0)

since [x � y, γ (x)] = [γ (y), γ (x)] + [x, γ (x)] − [γ (x), γ (x)] = [x, γ (y)], as [x, γ (x)] =
[γ (x), γ (x)]. We fix x0 = (0, 1, 0); then

NX = L × {0} × S(L , γ ), N0 = {0} × {0} × S(L , γ ). (5.3)

Let {x0, x1, . . . , xn} be an enumeration of the elements of L . In particular,

NX =
⊔

i∈{0,...,n}
σi N0 � L × coker τγ , σi = (xi , 0, 0), (5.4)

is a good decomposition of N into N0-cosets, cf. Proposition 4.1. Indeed,

(1) σ0 = (0, 0, 0) coincides with the unit element in GX ;
(2) fix j ∈ {0, . . . , n} and let k ∈ {0, . . . , n} be such that xk = γ (x j ). Then x0 � σ j =

(0, 1, 0)(x j , 0, 0)(0,−1, 0) = (γ (x j ), 0, 0) = σk ; and
(3) if i ∈ {0, . . . , n} and x j = (1 − γ )−1(xi ), then σ j � x0 = xi .

Recall from (4.1) the definition of the elements σy , y ∈ X , and from (3.4) the map c : NX →
N0. We see from Item (3) above that in this case

σy = (
(1 − γ )−1(y), 0, 0

)
, y ∈ X.

As a direct consequence of Theorem 1.2, we obtain the following.

Proposition 5.8 Let L be an abelian group, γ ∈ Aut(L) and X = Aff(L , γ ) be the corre-
sponding affine quandle and set � = S(L , γ ) as in (5.2). Fix x0 = 0 ∈ X and let A be an
abelian group with trivial GX -action. Consider a decomposition of NX into N0-cosets as in
(5.4). For each a ∈ A and g ∈ Hom(�, A), the map q : X × X → A given by

qx,y = a +
∑

0< j<ord(γ )

g
(
[x, γ j (y)]

)
(5.5)

is a 2-cocycle of X and any q ∈ H2(X, A) arises in this way.

Proof By Theorem 1.2 and Corollary 1.3, any 2-cocycle is of the form

qx,y = a + g(c(xσy x
−1
0 )).

for some a ∈ A and g ∈ Hom(�, A). Using the identifications above, we have

xσy x
−1
0 = (x, 1, 0)((1 − γ )−1(y), 0, 0)(0,−1, 0)

= (x + γ (1 − γ )−1(y), 0, [x, γ (1 − γ )−1(y)])
= σk(0, 0, [x, γ (1 − γ )−1(y)]) ∈ σk N0

for k ∈ {0, . . . , n} such that x + γ (1 − γ )−1(y) = xk . Hence

γ (1 − γ )−1(y) = (1 − γ )−1(y) − y =
∑

0< j<ord(γ )

γ j (y)

and the result follows. �
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If L = Fq is the finite field of q elements and γ is the multiplication by some 1 �= ω ∈ F
×
q ,

we write Aff(q, ω) = Aff(L , γ ).

Lemma 5.9 Let p be a prime number and 1 �= ω ∈ F
×
p , set X = Aff(p, ω). Then GX �

L � Z, NX � L and N0 is trivial.

Proof Indeed, S(L , γ ) is a quotient of Zp � Zp ⊗Z Zp and we have that 0 �= (1−ω)⊗ 1 ∈
Im(τγ ), hence S(L , γ ) = 0 and the lemma follows. �

We recover the following result from [13, Lemma 5.1].

Proposition 5.10 H2(Aff(p, ω), C
×) � C

×.

Proof It follows from Theorem 1.1, using Lemma 5.9. �
5.4 Indecomposable quandles of size p2

Let p be a prime number and let X be an indecomposable quandle of size p2. By [13], X is
one of the following affine quandles (L , γ ) in the following list:

L = Zp ⊕ Zp, γα,β(x, y) = (α x, β y), α, β ∈ Z
∗
p\{1}; (5.6)

L = Zp ⊕ Zp, γα(x, y) = (α x, α y + x), α ∈ Z
∗
p\{1}; (5.7)

L = Fp2 , γα(x) = α x, α ∈ Fp2\Fp; (5.8)

L = Zp2 , γα(x) = α x, α �≡ 0, 1 (p). (5.9)

We identify Fp2 � Fp ⊕ Fp as abelian groups for notational reasons. For α = (α0, α1) ∈ F
2
p

we set

dα := (1 − α0 + α1)(1 − α0 − α1)
(
1 − α2

0 + α2
1

)
. (5.10)

Assume α ∈ Fp2\Fp , so α1 �= 0. If dα = 0, then α0 �= 1 and we set

tα := (
α0 − α2

0 + α2
1

)
(1 − α0)

−1, sα := (1 − α0)α
−1
1 . (5.11)

Proposition 5.11 The 2nd homology groups of the indecomposable quandles of order p2

are as follows:

H2
(
(Zp ⊕ Zp, γα,β), Z

) �
{

Z × Zp, if αβ = 1,

Z, if αβ �= 1.

H2
(
(Zp ⊕ Zp, γα), Z

) �
{

Z × Zp, if α2 = 1,

Z, if α2 �= 1.

H2
(
(Fp2 , γα), Z

) �
{

Z × Zp, if dα = 0,

Z, if dα �= 0.

H2
(
(Zp2 , γα), Z

) � Z.

Proof By Corollary (5.7), if X = (L , γ ) and τγ : L ⊗Z L → L ⊗Z L as in (5.2), then

H2(X, Z) = (N0)ab × Z = coker τγ × Z
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We compute coker τγ case by case. We will use the identifications
(
Zp ⊕ Zp

) ⊗Z

(
Zp ⊕ Zp

) � Z
4
p, (a, b) ⊗ (c, d) 	→ (ac, ad, bc, bd)

Fp2 ⊗Z Fp2 � F
2
p ⊗Fp F

2
p � F

4
p, (a, b) ⊗ (c, d) 	→ (ac, ad, bc, bd)

Zp2 ⊗Z Zp2 � Zp2 , a ⊗ b 	→ ab.

(5.12)

Case (5.6): We have that τα,β := τγα,β is

τα,β((a, b) ⊗ (c, d)) = (a, b) ⊗ (c, d) − (c, d) ⊗ (α a, β b).

With the identifications above this yields

τα,β : Z
4
p → Z

4
p, (x, y, z, w) 	→ ((1 − α)x, y − β z, z − α y, (1 − β)w).

Next, we compute the image Iα,β of this map: For (a, b, c, d) ∈ Z
4
p to be in this subgroup,

we need x = a(1 − α)−1, w = d(1 − β)−1 (recall α, β �= 1) and y, z to be a solution of
y − β z = b, −α y + z = c. This system has always a solution if αβ �= 1. If αβ = 1, then

Iα,β = {(a, b,−α b, d)|a, b, d ∈ Zp} � Z
3
p, hence

coker τα =
{
0, if αβ �= 1,

Zp, if αβ = 1.

In case (5.7), we have τα := τγα : Z
4
p → Z

4
p is given by

(x, y, z, w) 	→ (
(1 − α)x, y − α z + x, z − α y, (1 − α)w − y

)
.

For (a, b, c, d) to be in the image Iα of τα , we need x = a(1 − α)−1 (recall α �= 1) and
(y, z, w) to be a solution of

y − α z = b − a(1 − α)−1, −α y + z = c, −y + (1 − α)w = d.

This system has always a solution if α2 �= 1. If α2 = 1, then

Iα = {(a, b, α b − α(1 − α)a, d)|a, b, d ∈ Zp} � Z
3
p, hence

coker τα =
{
0, if α2 �= 1,

Zp, if α2 = 1.

In case (5.8), if α = (α0, α1) ∈ F
2
p\Fp (hence α1 �= 0), then the map τα ∈ End(F4

p) is
represented by the matrix

[τα] =
(

1−α0 0 −α1 0
−α1 1 −α0 0
0 −α0 1 −α1
0 −α1 0 1−α0

)
,

with det[τα] = dα , see (5.10). Let Iα denote the image of this map. Now, the rank of this

matrix is ≥3, as det

(
0 −α1 0
1 −α0 0

−α0 1 −α1

)
= −α2

1 �= 0. Hence,

coker τα =
{
0, if det[τα] �= 0,

Zp, if det[τα] = 0.
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If det[τα] = 0, i.e. dα = 0, then we set tα, sα ∈ Fp as in (5.11) and thus

Iα = {(a, b, c,−tα(a + b) − sα c)|a, b, c ∈ Zp} � Z
3
p.

In case (5.9), τα : Zp2 → Zp2 is x 	→ (1 − α)x ; hence coker τα = 0. �
5.5 Explicit cocycles

Next we apply Proposition 5.8 to compute all non-constant 2-cocycles for the affine quandles
X described in (5.6)–(5.9). More precisely, we focus on those affine quandles in that list
admitting a non-constant 2-cocyle, as stated in Proposition 5.11:

L = Zp ⊕ Zp, γα(x, y) = (α x, α−1 y), α ∈ Z
∗
p\{1}; (5.13)

L = Zp ⊕ Zp, γ (x, y) = (−x, x − y); (5.14)

L = Fp2 , γα(x) = α x, α ∈ Fp2\Fp, dα = 0. (5.15)

Recall our identification Fp2 � F
2
p , x 	→ (x0, x1), and tα, sα ∈ Zp from (5.11). For x, y ∈ L

and j ∈ N we set, for X is as in (5.13),

ζ j (x, y) = α j x2y1 + α1− j x1y2;
for X is as in (5.14),

ζ j (x, y) = ( j + 2(−1) j )x1y1 + (−1) j (x1y2 − x2y1);
and, for X is as in (5.15),

ζ j (x, y) = x1(α
j y)1 + tα

(
x0(α

j y)0 + x0(α
j y)1

)
+ sα x1(α

j y)0.

Next, we define the map 〈 , 〉 : L × L → Z as

〈x, y〉 =
∑

0< j<ord(γ )

ζ j (x, y), x, y ∈ L .

Notice that ord(γ ) = p − 1, 2p (or 2 if p = 2) or p2 − 1 according to whether X is as in
(5.13), (5.14) or (5.15), respectively.

Proposition 5.12 Let X = (L , γ ) be an indecomposable affine rack of order p2. If q ∈
H2(X, k

∗) is non-constant, then X belongs to the list (5.13)–(5.15) and there are 0 < � < p
and λ ∈ k

∗ such that

qx,y = λ exp

(
2π i�

p
〈x, y〉

)
, x, y ∈ X. (5.16)

Proof Fix x0 = 0 ∈ L and a good decomposition N � L × coker τγ of NX into N0-cosets,
see (5.4). In this case, N0 = x0 × coker τγ � Zp , by Proposition 5.11. More precisely, if
we denote by ϕ : N0 → Zp this isomorphism, then it follows from the proof of Proposition
5.11 that, for tα , sα as in (5.11):

ϕ ([(a, b), (c, d)]) =

⎧
⎪⎨

⎪⎩

bc + αad ∈ Zp, X as (5.13);
bc + ad − 2ac ∈ Zp, X as (5.14);
bd + tα(ac + ad) + sα bc ∈ Zp, X as (5.15).

(5.17)
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On the other hand, if g ∈ Hom(N0, k
∗), then there is 0 ≤ � < p such that g is the morphism

g� given by 1 	→ exp
(
2πi�
p

)
. By Proposition 5.8, any q ∈ H2(X, k

∗) is thus of the form

qx,y = λ
∏

0< j<ord(γ )

exp

(
2π i�

p
ϕ([x, γ j (y)])

)
, x, y ∈ X,

for some λ ∈ k
∗, � ∈ Z. Hence the result follows as ζ j (x, y) ∈ Z is a representative of

ϕ([x, γ j (y)]), for each x, y ∈ X , via (5.17). �
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