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Abstract

Two-point boundary value problems of Dirichlet-type are investigated for a hybrid
Ermakov-Painlevé IV equation. Existence and uniqueness results are established in
terms of the Painlevé parameters. In addition, it is shown how Ermakov invariants may
be used to systematically obtain solutions of a coupled Ermakov-Painlevé IV system in
terms of seed solutions of the canonical integrable Painlevé IV equation.

1. Introduction

The six classical Painlevé equations, commonly denoted as PI-PVI, arise in a wide
of physical applications and play a fundamental role in modern soliton theory (see e.g.
Conte [1] and Clarkson [2] together with literature cited therein). In particular, Painlevé
IV has important applications in hydrodynamics, nonlinear optics and quantum gravity
theory. On the other hand, nonlinear coupled systems of Ermakov-Ray-Reid type [3–7]
namely

α̈+ ω(t)α =
1

α2β
Φ(β/α) ,

β̈ + ω(t)β =
1

αβ2
Ψ(α/β) ,

(1.1)

with their distinctive integral of motion

I =
1

2
(αβ̇ − βα̇)2 +

∫ z=β/α

Φ(z)dz +

∫ w=α/β

Ψ(w)dw (1.2)

likewise have extensive physical applications (see e.g. [8–14]). Just as solitonic systems and
their associated classical Painlevé equations admit nonlinear superposition principles (per-
mutability theorems) generated via invariance under Bäcklund transformations (see [1]),
it is known that Ermakov-Ray-Reid systems also possess underlying nonlinear superpo-
sition laws, albeit of another kind [3, 4]. Moreover, while solitonic and their associated
Painlevé reductions generically admit linear representations, Ermakov-Ray-Reid systems
likewise have been shown to have associated linear structure [15]. Despite these important
commonalities investigations of Painlevé and Ermakov-Ray-Reid type systems have pre-
ceded independently until recently in [16] wherein hybrid Ermakov-Painlevé II symmetry
reductions have been derived for N+1-dimensional resonant nonlinear Schrödinger systems.

A range of boundary value problems for the Painlevé II equation has been investigated
in [17–21], notably in the context of multi-ion electrodiffusion. In the present work, a class
of boundary value problems for a hybrid Ermakov-Painlevé IV equation is investigated.
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Moreover, in an appendix, an over-arching Ermakov-Painlevé IV system is set down and the
key role of Ermakov invariants in its reduction to consideration of the canonical integrable
Painlevé IV equation is established.

2. The Class of Dirichlet Boundary Value Problems

Here we consider the nonlinear ‘Ermakov-Painlevé IV’ equation [22]

Ωxx − [
3

4
Ω4 + 2xΩ2 + x2 − α ]Ω =

β

2Ω3
, (2.1)

which, on insertion of ω = Ω2 leads to the canonical Painlevé IV equation (see e.g. [1, 2]),

ωxx =
ω2
x

2ω
+

3

2
ω3 + 4xω2 + 2( x2 − α )ω +

β

ω
, (2.2)

where α, β are Painlevé parameters.

In [23], Bassom et al considered a class of Dirichlet boundary value problems for the
avatar (2.1) of the integrable Painlevé IV equation but with the specialisation β = 0. In that
paper, the concern was to isolate solutions Ω(α : x) constrained by the boundary condition
Ω(∞) = 0. Bound state solutions were obtained via an integral equation formulation which,
importantly, decay exponentially as x = 0. Here, by contrast, our concern is with two-point
boundary value problems wherein (2.1) with β 6= 0 are to be solved with Dirichlet conditions

Ω(0) = Ω0 > 0 , Ω(1) = Ω1 > 0 . (2.3)

According to the standard terminology in singular problems, the cases β < 0 and β > 0
are termed, respectively, attractive and repulsive. In the first case, existence of classical
solutions shall be proven; moreover, the solution is shown to be unique provided that the
parameter α satisfies an appropriate smallness condition. For the repulsive case, we shall
show that if one of the Dirichlet boundary values is prescribed, then at least one classical
solution exists if and only if the other value belongs to a certain closed interval. Finally, we
shall establish, for the attractive case, the existence of non-classical solutions that vanish
over a prescribed finite set B ⊂ (0, 1). At each of these zeros, the left and right derivatives
tend respectively to −∞ and +∞.

It is noted that a Ermakov-Painlevé IV type equation of the type (2.1) arises in the
context of overarching two-component nonlinear systems as considered in the Appendix.
Such systems may be obtained as particular similarity reductions of overarching coupled
nonlinear Schrödinger systems. Dirichlet boundary conditions of the type (2.3) in that
setting, correspond to prescribed ‘total’ squared amplitude type terms [22].

3. Classical solutions

3.1 The attractive case (β < 0)

Theorem 3.1 The boundary value problem determined by (2.1) and (2.3) has a positive
solution, which is unique if α ≤ λ, where λ = 10.15116403 . . . is the first eigenvalue of the
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problem
−uxx + x2u = λu, u(0) = u(1) = 0.

Proof: Fix M, ε > 0 such that M > Ω0,Ω1 > ε and

3

4
M5 − αM +

β

2M3
> 0,

3

4
ε5 + 2ε3 + (1− α)ε+

β

2ε3
< 0.

From standard continuation methods, existence of solutions is guaranteed if the equation

Ωxx = σ

(
3

4
Ω5 + 2xΩ3 + (x2 − α)Ω +

β

2Ω3

)
(3.1)

with 0 < σ ≤ 1 has no solutions satisfying (2.3) on the boundary of the set {Ω ∈ C([0, 1]) :
ε < Ω < M}. Indeed, if Ω solves (3.1) and achieves a maximum at some x0 ∈ (0, 1) with
Ω(x0) = M , then Ωxx(x0) > 0, a contradiction. In the same way, it is shown that if Ω
achieves a global minimum at x0, then Ω(x0) 6= ε.

Now suppose that the boundary value problem comprising (2.1) with Dirichlet con-
ditions (2.3) admits two different positive solutions and denote their difference by Ω. It
follows that ΩΩxx ≥ (x2 − α)Ω2, with the inequality being strict over a non-empty open
subset of (0, 1). Thus,∫ 1

0
(Ω2

x + x2Ω2) dx < α

∫ 1

0
Ω2 dx ≤ α

λ

∫ 1

0
(Ω2

x + x2Ω2) dx,

a contradiction.

�

Remark 3.2 The exact value of λ in the previous result can be computed numerically as
the first positive zero of the equation

1F1(
3− λ

4
,
3

2
, 1) = 0,

where 1F1(a, b, z) = M(a, b, z) denotes the confluent hypergeometric function. Indeed, it is

known that y2(a, z) := ze−z
2/4

1F1(2a+3
4 , 3

2 ,
z2

2 ) solves the Weber equation

y′′(z)−
(
z2

4
+ a

)
y(z) = 0

and hence u(x) := 2−1/2y2(−λ
2 ,
√

2x) verifies

−u′′(x) + x2u(x) = λu(x), u(0) = 0, u′(0) = 1.

Thus, the claim follows from the fact that u(1) = 2−1/2y2(−λ
2 ,
√

2) = e−1/2
1F1(3−λ

4 , 3
2 , 1).
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3.2 The repulsive case (β > 0)

Theorem 3.3 For arbitrary Ω0 > 0, define

I(Ω0) := {Ω1 > 0 : (2.1), (2.3) has a positive solution}.

Then I(Ω0) = ∅ or there exists i(Ω0) > 0 such that I(Ω0) = [i(Ω0),+∞).

For a proof, we shall apply a shooting argument. For given λ ∈ R, let Ω be the unique
solution of (2.1) satisfying the initial conditions

Ω(0) = Ω0, Ωx(0) = λ. (3.2)

Fix M > Ω0,Ω(1) such that 3
4M

5 − αM > 0 and define

φM (λ) :=

{
M if Ω(x0) = M for some x0 < 1

Ω(1) otherwise.

Lemma 3.4 φM : R → (0,M ] is well defined and continuous. Furthermore, there exists
λM > 0 such that φM (λ) = M for |λ| ≥ λM .

Proof:

Claim 1. If Ω is defined on [0, x0] and Ω(x0) = M , then Ωx(x0) > 0. Indeed, we may
define xM = inf{x > 0 : Ω(x) = M}, then Ωx(xM ) ≥ 0 and Ωxx(xM ) > 0. We deduce that
Ωx(xM ) > 0 and Ω is strictly increasing after xM ; in consequence, xM = x0.

Claim 2. There exists c = c(λ) such that Ω(x) ≥ c > 0 for all x. Indeed, if Ω > 0 on
[0, x0) for some x0, then by integration we obtain

Ω2
x =

Ω6

4
+ xΩ4 −

∫ x

0
Ω4(s) ds+ (x2 − α)Ω2 − 2

∫ x

0
sΩ2(s) ds− β

2Ω2
+ C

where C = λ2 − Ω6
0

4 + αΩ2
0 + β

2Ω2
0
. If Ω tends to 0 as x tends to x0, then Ω2

x → −∞, a

contradiction.

As a conclusion from the last claim, we deduce that if Ω does not reach the value M
before x = 1, then it is defined on [0, 1] and hence φM is well defined and takes values
in (0,M ]. Continuity follows from the continuous dependence, together with the fact that
Ωx(x0) > 0 when Ω(x0) = M .

Now suppose that Ω < M on [0, 1].

On the one hand, if λ > 0, then from the fact that Ωxx > −αΩ we deduce that
Ωx > λ− αM and hence Ω > Ω0 + (λ− αM)x. In particular, λ < (1 + α)M −Ω0. On the
other hand, if λ� 0, then

Ω2
x +

β

2Ω2
= λ2 + o(λ2)
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and taking |λ| large enough we may assume that Ω2
x + β

2Ω2 >
λ2

2 . Let

A := {x ∈ [0, 1] : Ω(x) ≥ 2β

λ2
}

and observe that, if x ∈ A, then Ωx(x)2 ≥ λ2

4 . In particular, A does not contain any critical
point of Ω.

Let x1 ∈ A and assume that Ωx < 0 on [0, x1]. Then Ωx <
λ
2 on [0, x1] and hence

Ω(x1) − Ω0 <
λ
2x1. We conclude that x1 = O(|λ|−1) and thus Ω must abandon the set A.

Moreover, on any interval (a, b) ⊂ [0, 1]\A it is seen that Ω2 < 2β
λ2

and thus Ωxx ≥ c|λ|3 for
some constant c > 0 independent of λ. It is deduced that Ωx(b) − Ωx(a) ≥ c|λ|3(b − a).
Since |Ωx| = O(|λ|), we conclude that b − a = O(|λ|−2) and we deduce the existence of
x2 = O(|λ|−1) such that x2 ∈ A and Ωx(x2) > 0. Consequently, [x2, 1] ⊂ A and Ωx ≥ −λ

2

for x ≥ x2. This implies that Ω(1) > Ω(x2)− λ
2 ≥M if λ� 0, a contradiction.

�

Proof of Theorem 3.3:

Assume I(Ω0) 6= ∅, then there exists λ such that the corresponding solution Ω is defined
up to x = 1. Set M > Ω0,Ω(1) as before and take λM as in the previous lemma. We deduce
that φM ([−λM , λM ]) is a compact interval not containing 0. Thus, Im(φM ) = [i(Ω0),M ]
for some i(Ω0) ∈ (0,M) and the result follows since M can be chosen arbitrarily large and
i(Ω0) does not change when M is enlarged.

�

4. Lacuna solutions

Definition 4.5 A continuous function Ω : [0, 1] → R satisfying (2.3) shall be called a
(nonnegative) ‘lacuna’ solution of (2.1), (2.3) if there exists a nonempty finite set B ⊂ (0, 1)
such that

1. Ω ≡ 0 on B.

2. Ω > 0 and verifies (2.1) on (0, 1)\B.

Remark 4.6 It shall be seen, as a consequence of the next theorem, that

lim
x→x+∗

Ωx = − lim
x→x−∗

Ωx = +∞

for any x∗ ∈ B.

Theorem 4.7 1. If β > 0, then there are no lacuna solutions of (2.1), (2.3).
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2. Let β < 0 and 0 < x1 < . . . < xN < 1. Then there exists a lacuna solution Ω of (2.1),
(2.3) such that Ω(xj) = 0 for all j.

Proof: The first case follows from claim 2 in the preceding proof. For the attractive case
β < 0, we shall divide the proof in several steps.

Step 1. There exists Ω positive solution of (2.1) on (0, x1) such that Ω(0) = Ω0,
Ω(x1) = 0. Indeed, set M > Ω0 large enough. As before, if Ω solves the initial value
problem with λ � 0 then Ω reaches the value M before x = x1 and does not come down
again. On the other hand, if Ω > 0 up to some x∗ < x1 and Ω(x) → 0 as x → x−∗ , then it
is seen that Ωx(x)→ −∞ as x→ x−∗ . Thus, the mapping φ defined by

φ(λ) =


M if Ω(x) = M for some x < x1

0 if Ω(x)→ 0 as x→ x−∗ for some x∗ < x1

Ω(x1) otherwise

is well defined and continuous. Moreover, if λ� 0 then Ω2
x ≥ λ2 + o(λ2) so we may assume

that Ωx ≤ λ
2 ; thus Ω(x) ≤ Ω0 + λ

2x and hence Ω vanishes before x1. The claim follows from
the continuous dependence on the initial conditions.

Analogously, we obtain:

Step 2. There exists Ω positive solution of (2.1) on (xN , 1) such that Ω(xN ) = 0,
Ω(1) = Ω1.

Step 3. There exists ε > 0 such that if 0 < a < b < 1 and b − a < ε then (2.1) has a
solution Ω > 0 on (a, b) with Ω(a) = Ω(b) = 0. Indeed, following the ideas in [25] it suffices
to prove that the autonomous problem

Ωxx =
3

4
Ω5 + 2Ω3 + (1− α)+Ω +

β

2Ω3
, Ω(a) = Ω(b) = 0. (4.1)

has a positive solution, which serves as a lower solution of the original problem. Multiplying
(4.1) by Ωx and setting w := Ω2 the following equation is obtained:

w2
x = (R2 − w)TR(w)

where

TR(w) := − 2β

R2
− w

(
R4 +R2w + w2 + 4[R2 + w + (1− α)+]

)
and

R = max
a≤x≤b

Ω(x).

Thus, it is easily verified that (4.1) has a positive solution if and only if there exists R > 0
such that

3

4
R8 + 2R6 + (1− α)+R4 +

β

2
≤ 0 (4.2)
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and

I(R) :=

∫ R2

0

dw√
(R2 − w)TR(w)

=
b− a

2
.

Moreover, observe that I is continuous and

I(R) ≤ 1√
TR(R2)

∫ R2

0

dw√
(R2 − w)

=
2R√
TR(R2)

→ 0

as R → 0. Hence, it suffices to take ε = 2I(R0), where R0 > 0 is the unique root of the
left-hand side of (4.2).

End of the proof

Fix ε > 0 as in step 3 and consider x0 = y0 < . . . < yM = xN such that yj+1 − yj < ε
for j = 0, . . . ,M − 1 and xi ∈ B := {yj : j = 1, . . . ,M} for all i = 0, . . . , N . A lacuna
solution is constructed for this B following the preceding steps. �

Appendix

A Coupled Ermakov-Painlevé IV System

The importance of the Ermakov-Painlevé equation (1.1) as a canonical form is empha-
sised here by establishing its role in the construction of solution sets of an overarching
coupled Ermakov-Painlevé IV system. It is remarked that Ermakov-Painlevé IV type sys-
tems have recently derived in [22] as symmetry reductions of coupled derivative nonlinear
Schrödinger systems such as arise in plasma physics.

Here, we consider the hybrid two-component Ermakov-Painlevé IV system

uxx − [
3

4
(u2 + v2)2 + 2x(u2 + v2) + x2 − α]u =

β

2u3
,

vxx − [
3

4
(u2 + v2)2 + 2x(u2 + v2) + x2 − α]v =

β

2v3
.

(A.1)

This is seen to admit a characteristic Ermakov invariant

(uxv − vxu)2 +
β

2
[
(u
v

)2
+
(v
u

)2
] = E (A.2)

together with the (non-local) Hamiltonian

u2
x + v2

x −
1

4
Σ3 − 2

∫
xΣdΣ−

∫
(x2 − α)dΣ +

β

2
[

1

u2
+

1

v2
] = 2H . (A.3)

where Σ := u2 + v2.

The identity

(u2 + v2)(u2
x + v2

x)− (uxv − vxu)2 ≡ (uux + vvx)2 (A.4)

7



is now used together with the Ermakov and Hamiltonian invariant relations (A.2), (A.3) to
show that

Σ [ 2H+
1

4
Σ3 + 2

∫
xΣdΣ +

∫
(x2 − α)dΣ− β

2
(

1

u2
+

1

v2
) ]

−[E − β

2
(
(u
v

)2
+
(v
u

)2
)] =

1

4

(
dΣ

dx

)2

,

(A.5)

whence,

Σ [ 2H+
1

4
Σ3 + 2

∫
xΣdΣ +

∫
(x2 − α)dΣ ]− E − β =

1

4

(
dΣ

dx

)2

. (A.6)

The latter, in turn, leads to a Painlevé IV equation in Σ, namely

Σxx =
1

2

Σ2
x

Σ
+

3

2
Σ3 + 4xΣ2 + 2(x2 − α)Σ +

2

Σ
(E + β) (A.7)

which, in terms of Λ = Σ1/2 produces the canonical Ermakov-Painlevé IV equation

Λxx − [
3

4
Λ4 + 2xΛ2 + x2 − α ]Λ =

E + β

Λ3
. (A.8)

Importantly, the latter together with each in turn of the constituent nonlinear equations
in the original Ermakov-Painlevé IV system (A.1) constitute Ermakov-Ray-Reid systems.
This result in an additional pair of Ermakov-type invariant relations, viz

(uxΛ− Λxu)2 + (E + β)
(u

Λ

)2
+
β

2

(
Λ

u

)2

= RI , (A.9)

and

(vxΛ− Λxv)2 + (E + β)
( v

Λ

)2
+
β

2

(
Λ

v

)2

= RII . (A.10)

Thus, on introduction of the new independent variable x̄ according to

dx̄ = Λ−2dx , (A.11)

and new dependent variables U, V via

U =
(u

Λ

)2
, V =

( v
Λ

)2
(A.12)

it is seen that (A.9) and (A.10), in turn, yield

dU1/2/dx̄ = ±
√

RI − (E + β)U − β

2
U−1 , (A.13)

and

dV 1/2/dx̄ = ±
√

RII − (E + β)V − β

2
V −1 . (A.14)
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The latter pair show that, if E + β > 0 then

U =
1

2(E + β)
[RI +

√
R2

I − 2β(E + β) sin(±2
√
E + β x̄+ KI)] (A.15)

and

V =
1

2(E + β)
[RII +

√
R2

II − 2β(E + β) sin(±2
√
E + β x̄+ KII)] (A.16)

where KI and KII are constants of integration and it is required that R2
I > 2β(E + β),

R2
II > 2β(E + β). The relations (A.15), (A.16) are subject to the constraint U + V = 1 and

the latter relation may be used to calculate V in terms of U as given by (A.15) without
recourse to (A.14). Moreover, addition of the integrals of motion (A.9), (A.10) together
with use of the identity (A.4) and of the Ermakov invariant relation (A.2) is seen to impose
the constraint

RI + RII = 2(E + β) . (A.17)

In summary, solution pairs {u, v} of the Ermakov-Painlevé IV system (A.1) may be
constructed in terms of a seed solution Σ of the canonical Painlevé IV equation (A.7) via
relation

u = ±

√
1

2(E + β)

(
RI +

√
R2

I − 2β(E + β) sin(±2
√
E + βx̄+ KI)

)
Σ (A.18)

together with

v = ±
√

Σ− u2 (A.19)

where x̄ is obtained by integration of the relation (A.11), namely

dx̄ = Σ−1dx (A.20)

It is remarked that such seed solutions Σ of Painlevé IV may be generated, in particular, via
the application of established Bäcklund transformations (Bassom et al [24], Gromak [26]).
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