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(Communicated by Lev Borisov)

Dedicated to Steve Kleiman on the occasion of his 70th birthday

Abstract. A very general surface of degree at least four in P3 contains no curves other than
intersections with surfaces. We find a formula for the degree of the locus of surfaces in P3 of

degree at least five which contain some elliptic quartic curve. We also compute the degree of the

locus of quartic surfaces containing an elliptic quartic curve, a case not covered by that formula.

1. Introduction

The Noether-Lefschetz theorem asserts that all curves contained in a very general surface F
of degree at least four in P3 are complete intersections. This is usually rephrased saying that
the Picard group is Z. Noether-Lefschetz theory shows that, roughly speaking, each additional
generator for PicF decreases the dimension of the locus of such F in PN = |OP3(d)|, d ≥ 4.

Let W be a closed, irreducible subvariety of the Hilbert scheme of curves in P3 with Hilbert
polynomial pW (t). Let us denote by NL(W,d) the subset of PN defined by the requirement that
the surface contain some member of W .

The purpose of this note is to address the question of determining the degree of NL(W,d) for
the family of elliptic quartic curves in P3.

When W is the family of lines, or conics, or twisted cubics, formulas for NL(W,d) have been
found in [9]. There as here, we follow the strategy of using Bott’s formula as explained in [5]. We
get a polynomial formula (4.3) valid for d ≥ 5. We also compute the degree (38475) of the locus
of quartic surfaces containing an elliptic quartic curve. The case of quartic surfaces is not covered
by the formula essentially because the map that forgets the curve shrinks dimensions: generically,
it contracts a pair of disjoint pencils, see 4.2.
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2. there is a polynomial formula

Let W be a closed, irreducible subvariety of the Hilbert scheme of curves in P3 with Hilbert
polynomial pW (t). Let

(2.1) W × PN
p2 //

p1

��

PN

W

denote the projection maps from W ×PN . Castelnuovo-Mumford regularity [12] shows that for all

d >> 0, the subset ÑL(W,d) of pairs (C,F ) in W × PN such that the curve C is contained in the
surface F is a projective bundle over W via p1. We have

codim W×PnÑL(W,d) = pW (d).

For instance, if W is the Grassmannian of lines in P3, then pW (d) = d+ 1 and so dim ÑL(W,d) =
N − (d− 3), d ≥ 1.

Let us denote by NL(W,d) the subset of PN defined by the requirement that the surface contain
some member of W . In other words, with notation as in (2.1),

NL(W,d) = p2(ÑL(W,d)).

We assume henceforth that the general member of W is a smooth curve.

2.1. Proposition. For fixed W we have that degNL(W,d) is a polynomial in d of degre ≤
3 dim W , for all d >> 0.

Proof. Let C̃ ⊂ W × P3 be the universal curve. Likewise, let F̃ ⊂ PN × P3 be the universal

surface of degree d. Write Ĉ, F̂ for their pullbacks to W × PN × P3. We have the diagram of
sheaves over Y := W × PN × P3,

OY

ρ ##

// OY (F̂ ) //

����

OF̂ (F̂ )

OĈ(F̂ )

By construction, the slant arrow ρ vanishes at a point (C,F, x) ∈ W × PN × P3 if and only if
x ∈ F ∩ C. We have C ⊂ F when the previous condition holds for all x ∈ C (point with values

in any C-algebra). Thus ÑL(W,d) is equal to the scheme of zeros of ρ along the fibers of the

projection p12 : Ĉ → W ×PN . Recalling [1, (2.1),p. 14], this is the same as the zeros of the adjoint

section of the direct image vector bundle p12?(OĈ(F̂ )). Let

W × P3 q2 //

q1

��

P3

W

denote the projection maps from W × P3. Since O(F̃ ) = OPN (1)⊗OP3(d), by projection formula
we have to make and do with a section of OPN (1)⊗ Ed, where

(2.2) Ed = q1?(OC̃(d)).
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By Castelnuovo-Mumford and base change theory, there is an integer d0 such that Ed is a vector
bundle of rank pW (d) for all d ≥ d0 (=regularity, see Remark 2.2.). In fact, it fits into the exact
sequence of vector bundles over W ,

(2.3) 0 // q1?(IC̃ ⊗OP3(d)) // q1?(OP3(d)) // q1?(OC̃(d)) // 0

Dd // // Fd // // Ed

where we set for short

Fd = H0(OP3(d)),

(trivial vector bundle with fiber) the space of polynomials of degree d. Taking the projectivization,
and pulling back to PN ×W , we get

OPN (−1)
��

��

ρ

$$
Dd // // Fd // // Ed

By construction, ρ vanishes precisely over ÑL(W,d). This shows that we actually get

(2.4) ÑL(W,d) = P(Dd).

Since rank of Ed and codimension of ÑL(W,d) agree, it follows that ÑL(W,d) represents the top
Chern class of OPN (1)⊗Ed (cf. [6, 3.2.16, p. 61]). This is the key to the calculation of degrees below.
The map

(2.5)
W × PN ⊃ ÑL(W,d)

p2−→ NL(W,d) ⊂ PN
(C,F ) 7→ F

is generically injective by Noether-Lefschetz theory [8], cf. Corollary 4.2 below. Therefore the degree
of NL(W,d) can be computed upstairs. Namely, setting

m = dim ÑL(W,d), H = c1OPN (1),
we have

degNL(W,d) =

∫
Hm ∩ ÑL(W,d) =

∫
Hmcτ (OPN (1)⊗ Ed),

where τ = rankEd. Expanding the top Chern class and pushing forward to W , we arrive at

(2.6) degNL(W,d) =

∫
W

cw(Ed),

with w = dimW . Since Ed is the pushforward of a sheaf on W × P3, we may apply Grothendieck-
Riemann-Roch [6, p. 286] to express the Chern character of Ed as

ch(Ed) = ch(q1!(OC̃(d)) = q1?

(
ch(OC̃) ch(OP3(d))toddP3

)
.

Notice that the right hand side is a polynomial in d of degree ≤ 3. Since cw is a polynomial of
degree w on the coefficients of the Chern character, we deduce that cw(Ed) is a polynomial in d of
degree ≤ 3w. �
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2.2. Remarks. (1) The assertion that Ed, as defined in (2.2), is a vector bundle of rank pW (d)
holds for all d beyond d0 = the maximal Castelnuovo-Mumford regularity of the members of W .
For instance, if W is the family of lines in P3, then d0 = 1.
(2) For the case of elliptic quartic curves presented below, we note that the regularity of the ideals
〈x2

1, x
2
2〉 and 〈x1x2, x

2
1, x

3
2〉 is 3, whereas for 〈x2

0, x0x1, x0x
2
2, x

4
1〉 it is 4. The last two ideals are

representatives of the closed orbits in W . An argument of semi-continuity shows that d0 = 4 works
for all members of W , see [2]. Nevertheless, the map in display (2.5) is generically injective only
for d ≥ 5, cf. (4.2) below. Notice that the full Hilb4tP3 has a “ghost” component with regularity
index ≥ 5, see [7].

3. elliptic quartics

We consider now the case of surfaces of degree ≥ 4 containing an elliptic quartic curve in P3.
Thus, a general member C4 of W is the intersection of two quadric surfaces. The parameter space
W is described in [2] and has been used in [5] to enumerate curves in Calabi-Yau 3-folds. For the
convenience of the reader, we summarize below its main features.

The Noether–Lefschetz locus of quartic surfaces containing some C4 is slightly exceptional. This
is a case when the map (2.5) fails to be generically injective (cf. Corollary 4.2): it actually shrinks

dim ÑL(W,d) = 34 to dimNL(W,d) = 33. Indeed, if a quartic surface F contains some general
elliptic quartic C4, then F must contain the two pencils |C4| and |C ′4|, where C ′4 is the residual
intersection of F with a quadric containing C4, i.e., 2H = C4 + C ′4, with H = plane section. We
show in §3.2 that NL(W, 4) is a hypersurface of degree 38475 in P34 = |OP3(4)|.

3.1. Next we give an outline of the calculation. Put

X = G(2,F2),

the Grassmannian of pencils of quadrics in P3.
The diagram below summarizes the construction of W as explained in [2].

(3.1) G(19,F4) ⊃ W X̂

��

Ê

��

? _oo

G(8,F3)× X ⊃ X̃

��

⊃ Ẽ

��

⊃ Ỹ

��
G(2,F2) X ⊃ Z ⊃ Y

where 
Z ∼= P̌3 ×G(2,F1) consists of pencils with a fixed plane;
Y ∼= {(p, `) | p ⊃ `} = closed orbit of Z;

Ỹ −→ Y = P2 − bundle of degree 2 divisors on the varying ` ⊂ p;
X̂ = the blow-up of X̃ along Ỹ and

X̃ = the blow-up of X along Z.

Z =

 �
��

�
��

 ⊃ Y =

 �
��

�
��

�
��

←− Ỹ =

 �
��

�
��

�
��
?

?


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Let
A ⊂ F2 × X

be the tautological subbundle of rank 2 over our Grassmannian of pencils of quadrics. There is a
natural map of vector bundles over X induced by multiplication,

µ3 : A⊗F1 −→ F3 × X
with generic rank 8. It drops rank precisely over Z. It induces a rational map κ : X 99K G(8,F3).

Blowing up X along Z, we find the closure X̃ ⊂ G(8,F3)×X of the graph of κ. Similarly, up on X̃
we have a subbundle B ⊂ F3 × X̃ of rank 8 and a multiplication map

µ4 : B ⊗ F1 −→ F4 × X̃

with generic rank 19. The scheme of zeros of
19∧
µ4 is equal to Ỹ . Indeed, it can be checked that

each fiber of B is a linear system of cubics which

• either has base locus equal to a curve with Hilbert polynomial pW (t) = 4t
• or is of the form p · F? ?2 , meaning the linear system with fixed componente a plane p,

and F? ?2 denoting an 8-dimensional space of quadrics which define a subscheme of p of
dimension 0 and degree 2.

The exceptional divisor Ê is a P8-bundle over Ỹ . The fiber of Ê over (p, y1+y2) ∈ Ỹ is the system
of quartic curves in the plane p which are singular at the doublet y1 + y2. Precisely, if x0, . . . , x3

denote homogeneous coordinates on P3, assuming p := x0, ` = 〈x0, x1〉, a typical doublet has
homogeneous ideal of the form 〈x0, x1, f(x2, x3)〉, with deg f = 2. Our system of plane quartics
lies in the ideal 〈x1, f〉2 = 〈x2

1, x1f, f
2〉. Given a non-zero quartic g in this ideal, we may form

the ideal J = 〈x2
0, x0x1, x0f, g〉. It can be checked that the J contains precisely 19 independent

quartics and its Hilbert polynomial is correct. In fact, any such ideal is 4-regular (in the sense of

Castelnuovo-Mumford). Moreover, up on X̂ we get a subbundle

C ⊂ F4 × X̂

of rank 19. Each of its fibers over X̂ is a system of quartics which cut out a curve with the correct
Hilbert polynomial. The multiplication map

C ⊗ Fd−4 −→ Fd × X̂

is of constant rank
(
d+3

3

)
− 4d. The image

Dd ⊂ Fd × X̂
is a subbundle as in (2.3). We have

ÑL(W,d) = P(Dd) ⊂ PN × X̂.

Now the map ÑL(W,d) → NL(W,d) is generically injective for d ≥ 5 in view of Corollary 4.2 (ii)
below. Hence the degree of the image NL(W,d) ⊂ PN is given by

∫
c16Ed, cf. (2.6).

The above description suffices to feed in Bott’s localization formula with all required data.

Indeed, X̂ inherits a C?-action, with (a lot) of isolated fix points. The vector bundle Dd → X̂ is
equivariant; ditto for Ed. Bott’s formula reads [4],

(3.2)

∫
c16Ed =

∑
p∈fixpts

cT16(Ed)p
cT16τp

·

The equivariant classes on the r.h.s are calculated in two steps. We set below d = 5 for
simplicity. First, find the C?–weight decomposition of the fibers of the vector bundles Ed and τ at
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each fixed point. Then, since the fix points are isolated, the equivariant Chern classes cTi are just
the symmetric functions of the weights.

For instance, for the tangent bundle τ, say at the fixed point corresponding to the pencil p =
〈x2

0, x
2
1〉 ∈ X, we have

τp = Hom(p,F2/p) = p∨ ⊗F2/p = x0x1

x2
0

+ x0x2

x2
0

+ x1x2

x2
0

+ · · ·+ x2
3

x2
1
·

Each of the 16 fractions ,
xixj

xkxl
, on the right hand side symbolizes a 1-dimensional subspace of

τp where C? acts with character txi+xj−xk−xl . The denominator in (3.2) is the corresponding
equivariant top Chern class, to wit

(x1 − x0)(x2 − x0)(x1 + x2 − 2x0) · · · (2x3 − 2x1).
The numerator in (3.2) requires finding the monomials of degree 5 that survive modulo the ideal

〈x2
0, x

2
1〉 · 〈x0, . . . , x3〉3.

We are left with 20 (=rank E5) terms,
x3

2x1x0 + x3x
3
2x1 + · · ·+ x4

3x0.

Now the equivariant Chern class cT16(Ed)p is the coefficient of t16 in the product
(t+ x0 + x1 + 3x2)(t+ x1 + 3x2 + x3) · · · (t+ x0 + 4x3) .

(20 factors.) In practice, all these calculations are made substituting xi for suitable numerical val-
ues, cf. the computer algebra scripts in [13].

3.2. the case d = 4. Presently p2 : ÑL(W, 4) → NL(W, 4) is no longer generically injective. It
shrinks dimension by one: a general fiber is a disjoint union of P1’s (cf. Corollary 4.2 (iii) below).
Explicitly, say F4 = A1Q1 +A2Q2, degAi = degQi = 2, everything in sight as general as needed.
Then

F4 = (A1 − tQ2)Q1 + (A2 + tQ1)Q2,
so F4 contains the pencil of elliptic quartics 〈A1 − tQ2, A2 + tQ1〉, t ∈ P1; setting t = ∞, we find
〈Q1, Q2〉. Similarly, get 〈Q1 − tA2, Q2 + tA1〉. This is one and the same pencil. But there is
also 〈A1 − tA2, Q2 + tQ1〉. In general, these 2 pencils are disjoint. Looking at them as curves in
X = G(2,F2), we actually get a Plücker–embedded conic, (A1 − tA2) ∧ (Q2 + tQ1) = A1 ∧ Q2 +
t(A1 ∧ Q1 − A2 ∧ Q2) − t2A2 ∧ Q1, disjoint from Y (see (3.1)). In particular, capping each conic
against the Plücker hyperplane class Π = −c1A, we find 2. As before, we may write

degNL(W,d) =

∫
H33 ∩NL(W,d).

The cycle p?2H
33 ∩NL(W,d) can be represented by a sum of degNL(W,d) disjoint unions of pairs

of P1’s. Hence

degNL(W,d) =
1

4

∫
X̂
Π·H33 ∩ ÑL(W,d) =

1

4

∫
X̂

Π·(p1)?H
33 ∩ ÑL(W,d)

=
1

4

∫
X̂

Π·c15(E4).

The latter integral can be computed via Bott’s formula and we get 38475, cf. the script in [13].
This has been found independently in [3] with different techniques, using [10].

4. The fibers of p2

The main result needed to validate the above enumeration is the following.

4.1. Proposition. Let C ⊂ P3 be a smooth irreducible curve of degree e and genus g. Let d � 0
and let F ⊂ P3 be a general surface of degree d containing C. Then C is the only effective divisor
of degree e and arithmetic genus g on F .
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Proof. By [8, Cor.II.3.8] we have that Pic(F ) is freely generated by its hyperplane section H and
C. Let C ′ be an effective divisor of degree e and arithmetic genus g on F . Then there are two
integers a, b such that, on F , we have C ′ ∼ aH + bC. Now e = H · C ′ = ad+ be, so that

(4.1) a =
e

d
(1− b).

By adjunction formula we have

(4.2) C2 = 2pa(C)− 2−KF · C = 2g − 2− e(d− 4) = (C ′)2 < 0

as d� 0. Now

C2 = (C ′)2 = (aH + bC)2 = a2d+ b2C2 + 2abe

and using (4.1) we get

(1− b2)(e2 − dC2) = 0.

Note that e2 − dC2 > 0 by (4.2), whence b = ±1. If b = −1 we have from (4.1) a = 2e
d 6∈ Z, as

d � 0. Therefore we deduce that b = 1 and a = 0, that is C ′ ∼ C. Since C2 < 0 we must have
C ′ = C. �

4.2. Corollary. Let W be an irreducible subvariety of a Hilbert scheme component of curves in P3

of degree e and arithmetic genus g with general member smooth. Let PN = P(H0(OP3(d))). Then

(i) there is a d0 such that for all d ≥ d0 the projection map p2 : ÑL(W,d)→ PN is generically
injective.

(ii) If W is the family of elliptic quartics then we can take d0 = 5, i.e., p2 is generically one-to-
one for d ≥ 5 and

(iii) for d = 4, the general fiber of ÑL(W, 4)
p2−→ NL(W, 4) is two disjoint P1’s.

Proof. We know from (2.4) that p1 : ÑL(W,d) → W is a projective bundle. Hence NL(W,d) =

p2(ÑL(W,d)) is irreducible and a general element F ∈ NL(W,d) can be identified with a general
hypersurface of degree d containing a general C ∈ W . Hence assertion (i) follows from the pro-
postion. Assertion (ii) also follows, except for d = 8. In this case, with the notation as in (4.1), if
b = −1 we would get a = 1, whence C ′ ∼ H −C so that C would be contained in a plane, absurd.
If b = 1, may proceed as at the end of the proof of the above proposition.

If d = 4 then we get instead C ′ ∼ 2H − C. The exact sequence

0 −→ OF −→ OF (C) −→ OC(C) = OC −→ 0

shows that |OF (C)| ∼= P1 and similarly |OF (2H − C)| ∼= |OF (C ′)| ∼= P1. Moreover there is no
curve D on F such that D ∼ C and D ∼ 2H − C for then 2C ∼ 2H giving the contradiction
0 = C2 = H2 = 4. This proves that, in this case, the general fiber of p2 is two disjoint P1’s,

(4.3) p−1
2 (F ) = |OF (C)| ∪ |OF (2H − C)|.

�

4.3. The formula. In view of Prop. 2.1, it suffices to find the degrees of NL(W,d) for 3 · 16+1
values of d ≥ 5 and interpolate. This is done in [13]. We obtain



8 F. CUKIERMAN, A.F. LOPEZ, AND I. VAINSENCHER

(
d−2
3

)(
106984881d29 − 3409514775d28 + 57226549167d27−

643910429259d26 + 5267988084411d25 − 31628193518727d24 + 126939490699539d23

−144650681793207d22 − 2701978741671631d21 + 28913126128882647d20−
182919422241175163d19 + 858473373993063183d18 − 3061191057059772423d17

+7448109470245631187d16 − 3841505361473930575d15 − 80644842327962348733d14+
568059231910087276234d13 − 2560865812030993315212d12 + 9159430737614259196104d11

−27608527286339077691280d10 + 71605637662357479581024d9

−160009170853633152594240d8 + 303685692157317249665152d7

−473993548940769326728704d6 + 571505502502703378479104d5

−459462480152611231457280d4 + 111908571251948243582976d3

+251116612534424272896000d2 − 328452832055501940326400d

+136886449647246114816000
)/

(227 · 39 · 52 · 72 · 11 · 13).

4.4. Acknowledgment. Thanks are due to the referee for kindly pointing out to us a sizable
portion of the argument that required clarification. We are also grateful to Kristian Ranestad and
Rahul Pandharipande for correcting an error in §3.2, and calling our attention to [3] and [10].
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