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Abstract

The gradient of Bicoid (Bcd) is key for the establishment of the anterior-posterior axis in Drosophila embryos. The gradient
properties are compatible with the SDD model in which Bcd is synthesized at the anterior pole and then diffuses into the
embryo and is degraded with a characteristic time. Within this model, the Bcd diffusion coefficient is critical to set the
timescale of gradient formation. This coefficient has been measured using two optical techniques, Fluorescence Recovery
After Photobleaching (FRAP) and Fluorescence Correlation Spectroscopy (FCS), obtaining estimates in which the FCS value is
an order of magnitude larger than the FRAP one. This discrepancy raises the following questions: which estimate is
"correct’’; what is the reason for the disparity; and can the SDD model explain Bcd gradient formation within the
experimentally observed times? In this paper, we use a simple biophysical model in which Bcd diffuses and interacts with
binding sites to show that both the FRAP and the FCS estimates may be correct and compatible with the observed
timescale of gradient formation. The discrepancy arises from the fact that FCS and FRAP report on different effective
(concentration dependent) diffusion coefficients, one of which describes the spreading rate of the individual Bcd molecules
(the messengers) and the other one that of their concentration (the message). The latter is the one that is more relevant for
the gradient establishment and is compatible with its formation within the experimentally observed times.
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Introduction

Diffusion is a key factor underlying many physiological

processes among them, the formation of morphogen gradients.

Having reliable estimates of diffusion rates in cells is thus of great

relevance. Optical techniques provide a means to obtain such

estimates. A difficulty with their direct application in cells and

embryos is that free diffusion, as first considered by Einstein[1,2],

rarely occurs in living organisms [3,4]. In particular, in many

occasions binding/unbinding processes hinder transport. When

the resulting net transport is observed over a long enough time it

usually recovers the properties of (normal) diffusion but with a

diffusion coefficient that depends on concentrations and on the

rates of binding/unbinding as well. A single species, Pf , that reacts

with slowly diffusing or immobile binding sites, S, to form a

complex Pb,

Pf zS/?
kon

koff

Pb ð1Þ

has two distinct diffusion coefficients: a "collective’’ one, Dcoll , that

governs the rate at which concentrations spread, and a "single

molecule’’ one, Dsm, that governs the rate at which the mean

squared displacement of the individual particles increase with time

[5]. Both types of coefficients are weighted averages of the free

diffusion coefficients, Df , of the molecules, Pf , and that of the

binding sites, DS , that depend on the concentrations of the species

involved. In the case of the scheme given by Eqs. (1) or (5) they

read:

Dcoll~
Df z

½S�2
KDST

DS

1z
½S�2

KDST

,Dsm~
Df z

½S�
KD

DS

1z
½S�
KD

, ð2Þ

where KD is the dissociation constant of the binding/unbinding

process and ½S� and ST are the unbound and total binding sites

concentrations, respectively. If the molecules do not react but only

diffuse freely within a simple solvent, it is Dcoll~Dsm~Df . If they

also bind/unbind to/from slowly moving sites, the ratio Dsm=Dcoll

can be arbitrarily small [5]. We illustrate the difference between a

situation with freely diffusing particles and with particles that

diffuse and react by means of Videos S1 and S2, respectively. In
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both these simulations a bolus of fluorescent particles is initially

added to an equilibrium situation. The subsequent spread of the

deviation of the concentration of all the particles with respect to

equilibrium (left most panels), of the concentration of added

particles (center panels) and of the added particles (right most

panels) are shown in these Videos. The rate at which these three

quantities spread out with time are characterized, respectively, by

the second moment of the distribution of all particles, the second

moment of the distribution of added particles and by the mean

square displacements of the added particles (see Materials and

Methods). These are shown in Figs. 1 and 2. In both simulations,

the quantities shown in the figures eventually scale linearly with

time and diffusion coefficients can be estimated from the slopes

(see Materials and Methods and supplementary text S3). We

observe that for the freely diffusing particles all three slopes yield

the same diffusion coefficient to within a few percent which

coincides with the free coefficient of the particles (Df ~20mm2=s in

the simulation). In the case in which the particles interact with the

binding sites the coefficient derived from the slope of the second

moment of the distribution of all particles (Fig. 2 A) is an order of

magnitude larger than the other two which coincide between

themselves. The former corresponds to Dcoll (Eq. (2) gives

Dcoll~10:18mm2=s for the simulation parameters) and the other

two to Dsm (Eq. (2) gives Dsm~0:72mm2=s for the simulation

parameters). Video S2 and Fig. 2 show that the spreading of the

individual particles and that of the deviation with respect to

equilibrium of the total particle concentration are eventually

diffusive but with two different (effective) diffusion coefficients in

the presence of binding/unbinding (for more details see supple-

mentary text S1). The existence of one coefficient ruling the

diffusion of individual particles and another one ruling the decay

of concentration gradients also occurs in the context of non-ideal

solutions [6] particularly those involving polymers [3,7]. The

combination of free diffusion and binding/unbinding processes

can also result in what is called anomalous diffusion [3,4,8,9]. The

defining property of this type of transport is that, differently from

normal diffusion, the mean square displacement of a molecule is

not proportional to the time elapsed. In this Introduction we will

limit the description to situations in which the observed transport

has the properties of normal diffusion. We discuss the properties of

free, anomalous and effective diffusion in more detail in

supplementary text S1.

In the effective diffusion regime, the optical techniques,

fluorescence recovery after photobleaching (FRAP), and fluores-

cence correlation spectroscopy (FCS), provide information on the

effective diffusion coefficients. FRAP is an optical technique that is

commonly used to estimate the diffusion rate of fluorescently

labeled proteins in cells [10,11]. In FRAP the fluorescence is

photobleached inside a small region. By measuring the time it

takes for the fluorescence to recover the transport rate of the

fluorescent species can be estimated. When the fluorescent species

diffuses and undergoes binding/unbinding reactions and the

transport is effectively diffusive FRAP prescribes the single

molecule coefficient [5,6,12–14]. We illustrate this in Video S3

where we show the simulation of a FRAP -like experiment. The

interaction between the binding sites and the particles is the same

in this simulation as in Video S2. The circle that is predominant at

the beginning is the (projection into 2 space dimensions of) the

FRAP volume. The particles in the FRAP volume that are

bleached are shown as blue at all times. The unbleached particles

inside the FRAP volume are shown as red. The unbleached

particles outside the FRAP volume are not shown. Fig. 3 A shows

the recovery curve and the time of 1=2 recovery for this

"experiment’’. From the recovery curve we estimate

Dfrap&0:68mm2=s. The MSD graph yields Dsm&0:8mm2=s. We

see that FRAP and particle tracking give diffusion coefficients in

reasonable agreement with that of Dsm in Eq. (2)

(Dsm~0:72mm2=s). These estimated effective diffusion coefficients

are in rough accord with the single molecule coefficients obtained

in the particle bolus simulation (Figs. 2B, C) and are an order of

magnitude smaller than the collective diffusion derived from the

same simulation (Fig. 2A). FCS is also commonly used to estimate

diffusion coefficients of fluorescently labeled proteins. When the

fluorescent proteins diffuse and react with other species FCS can

give information on both effective coefficients [12]. Both FRAP
and FCS produce time-dependent data whose interpretation

requires an underlying mechanistic model. By fitting the

experimental data to functions derived from the model, one may

obtain estimates of model parameters. The choice of the

mechanistic model is especially important when diffusion and

binding/unbinding processes are involved since the fitted param-

eters need not correspond to fixed model parameters (e.g., free

diffusion coefficients), but instead may be functions of space or

time dependent quantities (e.g. concentrations). FCS and FRAP
have been used to estimate the diffusion coefficient of the

morphogen Bicoid in Drosophila melanogaster embryos giving values

such that the one obtained with FCS is an order of magnitude

larger than the one obtained with FRAP [15,16]. In this paper we

analyze these results using an underlying mechanistic model that

provides a clear distinction between fixed parameters and model

variables (see Materials and Methods). In this way we determine a

consistent set of model parameters that explains the difference in

the Bicoid diffusion coefficients obtained with FRAP and FCS.

Bicoid (Bcd) is a key morphogen for the organization of the

anterior-posterior axis in Drosophila embryos [17,18]. The inho-

mogeneous distribution of its concentration induces the differential

expression of certain genes determining the embryo body plan

along the axis [18]. This patterning starts with the deposition of

maternal cues, among them the transcription factor Bcd, into the

developing egg. About 2 hours after egg deposition Bcd is

unevenly distributed in the embryo with a gradient of concentra-

tion that decays exponentially from the anterior to the posterior

end. This gradient becomes stable within 80 min (at 25oC) after

Author Summary

Understanding the mechanisms by which equivalent cells
develop into different body parts is a fundamental
question in biology. One well-studied example is the
patterning along the anterior-posterior axis of Drosophila
melanogaster embryos for which the spatial gradient of the
protein Bicoid is determinant. The localized production of
Bicoid is implicated in its inhomogeneous distribution.
Diffusion then determines the time and spatial scales of
the gradient as it is formed. Estimates of Bicoid diffusion
coefficients made with the optical techniques, FRAP and
FCS resulted in largely different values, one of which was
too slow to account for the observed time of gradient
formation. In this paper, we present a model in which
Bicoid diffuses and interacts with binding sites so that its
transport is described by a "single molecule’’ and a
"collective’’ diffusion coefficient. The latter can be arbi-
trarily larger than the former coefficient and sets the rate
for bulk processes such as the formation of the gradient. In
this way we obtain a self-consistent picture in which the
FRAP and FCS estimates are accurate and where the
gradient can be established within the experimentally
observed times.

Reconciling Disparate Estimates of Bcd Diffusion
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deposition and remains stable during the next several nuclei

divisions [16]. The question naturally arises as to what are the

mechanisms by which this gradient is established so rapidly and

precisely. To answer this question it is necessary to determine how

the Bcd distribution depends on the localization and dynamics of

the underlying Bcd mRNA and how Bcd is transported and

affected by other processes inside the cell. The exponential

distribution of the Bcd concentration is consistent with the

Figure 1. Second moments of particle distributions and mean square displacements obtained from a simulation of freely diffusing
particles. The data for this figure (shown in green and red) comes from the simulation of Video 0.1 which corresponds to a system of particles that
diffuse with Df ~20mm2=s in the absence of binding sites. The simulation starts with an equilibrium situation that is perturbed by adding N~1875

fluorescent particles to the the central (5mm)3 cube of the (20mm)3 simulation volume. In this figure we characterize the rate at which the deviations
with respect to equilibrium of the concentrations of all particles and of the added ones spread out with time by means of second moments. We
compare these second moments with the MSD of the added particles. Please notice that we are not plotting the mean square displacements in A)
and B) but a quantity (the second moment) that depends linearly with the time lag with the same slope as the mean square displacement. For more
details see Materials and Methods. A: Sr2TÐ

all
(shown in green) computed using Eq. (12) with ni the number of all particles in the ith box. Linear fit

(shown in black). B: Sr2TÐ
fluo

(shown in red) computed using Eq. (12) with ni the number of fluorescent particles in the ith box. Linear fit (shown in

black). C: The mean of the squared displacements of the added particles (shown in red) computed using Eq. (11). Linear fit (shown in black). As
explained in supplementary text S3 the diffusion coefficient, D, can be estimated by taking 1/6 of the slope of the fitting curves. In this case the three
estimates yield D~ 19:3mm2=s (A), 20:3mm2=s (B) and 20:2mm2=s (C). The second moment shown in A) corresponds to the "collective diffusion
coefficient’’, the one in C) to the "single molecule diffusion coefficient’’ and the one in B) could be called Dfluo. According to the theory all three
should coincide in the case of freely diffusing particles and this is reflected in this figure.
doi:10.1371/journal.pcbi.1003629.g001

Figure 2. Second moments of particle distributions and mean square displacements obtained from a simulation of particles that
diffuse and react with immobile binding sites. Similar to Fig. 1 but for the simulation of Video S2 which corresponds to a system of particles
that diffuse with Df ~20mm2=s and react with immobile binding sites according to Eq. (1). The simulation parameters are such that the effective
diffusion coefficients defined in Eq. (2) are Dcoll~10:18mm2=s and Dsm~0:72mm2=s. As in the simulation with the freely diffusing particles, the
simulation starts when a bolus of fluorescent particles is added to a background of (non-fluorescent) particles that are initially spatially uniform and in
chemical equilibrium with the binding sites. Also in this case we compute two second moments and the averaged mean square displacement of the
added particles to quantify relevant properties of the simulation. For more details see Materials and Methods. A: Sr2TÐ

all
(shown in gren) computed

using Eq. (12) with ni the number of all particles in the ith box. Linear fit (shown in black). B: Sr2TÐ
fluo

(shown in red) computed using Eq. (12) with ni

the number of fluorescent particles in the ith box. Linear fit (shown in black). C: The mean of the squared displacements of the added particles (shown
in red) computed using Eq. (11). Linear fit (shown in black). As explained in supplementary text 0.3, in this case, the diffusive behavior sets in after a
transient. Once this behavior is reached, diffusion coefficients, Dcoll , Dfluo and Dsm , can also be estimated by taking 1/6 of the slope of the three fitting

curves. Differently from the situation of freely diffusing particles, in this case, the estimates differ from one another. They yield A: Dcoll~10:6mm2=s, B:
Dfluo~1:1mm2=s, C: Dsm~1:06mm2=s. According to the theory (see supplementary text 0.3), Dfluo~Dsm and Dcoll and Dsm should be given by Eqs. (2).

In fact, the values derived from the simulation satisfy Dfluo&Dsm and are pretty close to the theoretical values, Dcoll~10:18mm2=s and

Dsm~0:72mm2=s.
doi:10.1371/journal.pcbi.1003629.g002
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so-called SDD model in which the protein is synthesized at the

anterior end and subsequently diffuses and is degraded throughout

the embryo [17,18]. Within this model the Bcd diffusion

coefficient is key to set the timescale over which the Bcd gradient

forms and becomes stable. Gregor et al. [16] estimated the Bcd

diffusion coefficient using FRAP during mitosis in embryos that

expressed Bcd-EGFP (Bicoid fused to eGFP). Surprisingly, their

estimate 0:3mm2=s) was an order of magnitude lower than the

value that is necessary in the SDD model to account for the

formation of a stable gradient within the observed times.

Consequently, Spirov et al. [19] suggested an alternative model

for the Bcd gradient formation and stabilization. Namely, they

argued that the Bcd gradient is the reflection of an underlying bcd

mRNA gradient. Later on, the diffusion coefficient of Bcd was

again estimated but using FCS in the cytoplasm [15] and inside

nuclei [20] of Bcd-EGFP expressing embryos. These experiments

yield a set of values one of which was as fast as needed by the SDD

model to explain the establishment of a stable gradient within the

experimentally observed time. In view of this new estimate, the

SDD cannot be discarded without first reconciling the two

contrasting measurements of Bcd diffusion. Further support for the

SDD model came from the results of Little et al. [21] according to

which 90% of the Bcd mRNA is located within the anterior 20%

of the embryo at any given time. Furthermore, including the

observed mRNA gradient in an extended version of the SDD

model, these authors concluded that the mRNA gradient could

not account by itself for the protein gradient dynamics so that Bcd

movement was necessary for the formation of its gradient. In view

of these results, having reliable estimates of the rate at which Bcd

diffuses in embryos becomes again most relevant. Abu-Arish et al.

[15] not only estimated this coefficient using FCS but also

performed FRAP experiments which yield a value of the same

order of magnitude as the one obtained by Gregor et al. [16]. The

question then arises as to what is the rate at which Bcd diffuses, the

one given by FRAP or the one given by FCS? In order to answer

this question it is necessary to understand why these values are so

different. Abu-Arish et al. argued that their FRAP estimate was

only a lower bound of the actual Bcd diffusion coefficient since the

FRAP recovery half-time, t1=2, they determined was of the order

of the photobleaching time, Tp. However, as discussed in

supplementary text S2, we do not expect the estimate determined

by FRAP to be so far off from the actual value only because

t1=2*Tp. Our explanation of the discrepancy between the FCS

and FRAP estimates is based on our demonstration that these two

techniques report different effective coefficients (Dcoll , or Dsm)

when probing the transport of a substance that does not diffuse

freely but also undergoes binding and unbinding [12]. Since the

collective, Dcoll , and the single molecule, Dsm, coefficients can be

very different for molecules that diffuse and interact with slowly

moving partners [5], we explain the disparate Bcd diffusion

estimates by hypothesizing the existence of a significant pool of

Bcd interacting molecules at the cortex during embryo develop-

ment. Given that Bcd has demonstrated physical interactions with

several proteins [22–24], and that it is able to bind specific mRNA

species in the cytoplasm [25] it is reasonable to assume that Bcd

does undergo binding/unbinding processes as it diffuses within the

embryo. One argument in favor of this assumption is that FCS
experiments performed using NLS-EGFP (a construct with a short

nuclear localization signal and a GFP tag identical to that in Bcd-

EGFP but that should diffuse freely in the cytoplasm [15]) yielded

a larger diffusion coefficient than the one obtained for Bcd-EGFP

with a difference that cannot be accounted for by the smaller size

of NLS-EGFP relative to Bcd-EGFP.

In the present work we combine various published experimental

results and interpret them within a biophysical model in which

Bcd molecules interact with a single type of binding sites and can

be fluorescent or not depending on EGFP maturation. Building

upon the results of Pando et al. [5] and Sigaut et al. [12] we obtain

a consistent set of values for the free diffusion coefficients,

concentrations and dissociation constant of the model species that

explains the difference in the Bcd-EGFP (effective) diffusion

coefficients determined with FRAP and FCS. In view of the

different physical meanings of the coefficients reported by FRAP
and FCS we also conclude that the experimentally observed time

it takes for the Bcd gradient formation is compatible with the SDD

model.

Results

We use the simple biophysical model described in Materials and

Methods to interpret the results of the FCS experiments of Abu-

Arish et al. [15] performed to probe the transport of Bcd-EGFP in

the cortical cytoplasm of the anterior region of embryos during

interphases of cycles 12–14 and those of Porcher et al. [20]

performed in anterior nuclei during cycles 13 and 14. In our

model, fluorescent and non-fluorescent Bcd-EGFP molecules

coexist, diffuse with free coefficient, Df , and interact with

dissociation constant, KD, with a single type of binding sites, S,

that diffuse with free coefficient DS (see Table 1 for a complete list

of symbols of the model). For the analysis we map the correlation

times derived from fits to the auto-correlation function (ACF) of

the fluorescence fluctuations presented in Refs. [15,20] to analytic

expressions that we derive for our model in terms of model

parameters. Abu-Arish et al. [15] tried fits with different numbers

of correlation times (or components). Those that provided the best

results had two or three. In Ref. [20] only the results of fits with

Figure 3. Simulated FRAP-like experiment. A: Recovery of relative
fluorescence, FR , given by Eq. (14) (shown in red), obtained from the
simulated FRAP experiment depicted in Video 0.3. For the initial
conditions of the simulation (a totally bleached spherical volume of
radius RFRAP) the half recovery time, t1=2, (i.e. the time at which

FR~1=2) is related to the diffusion coefficient by DFRAP& R2
FRAP

9:98t1=2
. From

the simulation we obtain t1=2&2:575s. Using RFRAP~4mm we derive

DFRAP&:62mm2=s. B: Single molecule MSD, Sr2TSBLEACHED, computed
using Eq. (11) for the bleached particles, as a function of time (shown in
blue) and linear fit (shown in black). The slope of the fitting curve is
4:8mm2=s which yields an estimated diffusion coefficient of &:8mm2=s.
doi:10.1371/journal.pcbi.1003629.g003
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two components were presented. Our analytic ACF also has two

or three components depending on whether the traps are

immobile (DS~0) or not with times that correspond to the

effective coefficients, Dcoll and Dsm, defined in Eq. (2) and to the

free coefficient of the traps, DS (in case it is not zero). The

mapping between the parameters of our ACF and those of the fits

of Refs. [15,20] is done by associating the components depending

on the relative ordering of the times which in our case is

tcollƒtsmƒtS (see Materials and Methods). We also analyze the

results of FCS experiments performed using NLS-EGFP [15,20].

Assuming that this construct does not interact with binding sites,

the free Bcd-EGFP diffusion coefficient, Df , can be derived from

the fits to these experiments taking into account a conversion

factor due to the different molecular weights of both molecules.

Thus, from the analysis of the correlation times derived from FCS
experiments we determine both free and effective diffusion

coefficients and, using Eqs. (2) and other properties of the model,

concentrations and the dissociation constant of the reaction

between Bcd and its putative binding sites. Our approach allows

us to separate fixed parameters and variables so that we can

analyze experiments performed under other conditions for which

the variables can take on other values. In particular, we analyze

the fluorescence recovery time obtained in the FRAP experiments

of Abu-Arish et al. [15] and of Gregor et al. [16] which were

performed during the mitosis following nuclear cycles 12 or 13 and

determine that they are consistent with the parameters derived

from the FCS experiments. We show the results obtained and

some consistency tests in what follows. For more details we refer

the reader to supplementary text S2.

FCS and FRAP yield consistent estimates of Bcd effective
diffusion

We first analyze the results derived from FCS experiments

performed in the cytoplasm during interphase [15]. From the

experiments performed using NLS-EGFP we estimate the free Bcd

coefficient, Df &19mm2=s. From the experiments performed using

Bcd-EGFP we derive the estimates Dcoll~(14+2)mm2=s,

Dsm~(1:6+0:5)mm2=s, and DS~(0:1+0:04)mm2=s if we use

the results of the three component fit of Abu-Arish et al. [15] while

we obtain Dcoll~(8:9+0:4)mm2=s, Dsm~(0:38+0:03)mm2=s and

DS~0 if we use the two component fit instead. Thus, our

interpretation of the FCS experiments performed in the cytoplasm

during interphase is that Bcd-EGFP has a relatively large free

diffusion coefficient, Df &19mm2=s, but that inside the embryo it

also binds to sites that diffuse very slowly (with DS&0:1mm2=s or

less). The net Bcd-EGFP transport that results from its free

diffusion and binding and unbinding to S is characterized by two

effective diffusion coefficients that differ by an order of magnitude

(Dcoll~14mm2=s and Dsm~1:6mm2=s or Dcoll~8:9mm2=s and

Dsm~0:38mm2=s according to the three or two component fit

estimates). As we mentioned before, FRAP yields the value, Dsm.

In fact, the value derived for this coefficient from the FCS
experiments using the three component fit is of the same order of

magnitude as the one derived using FRAP by Abu-Arish et al. [15]

(Dsm*1mm2=s) and the one obtained using the two component fit

is closer to the result obtained with FRAP by Gregor et al. [16]

(Dsm~0:37mm2=s). However, we must remember that the FRAP
and FCS experiments that we analyze here were performed

during mitosis and interphase, respectively. Thus, we can expect

the relevant concentrations and, thus, the effective diffusion

coefficient values to be different. Assuming that the free

coefficients, Df and DS , and the dissociation constant, KD, do

not change between mitosis and interphase, we conclude that a

20% change of the free binding site concentration can explain a

variation of Dsm between 1:6mm2=s during interphase and 1mm2=s
during mitosis (see supplementary text S2).

Our interpretation of the timescales derived from the FCS
experiments enables us to determine the ratio of concentrations

and of KD with respect to any concentration in the cytoplasm

Table 1. List of main symbols used in this paper.

BcdT Total Bcd concentration

ST Total concentration of binding sites

½S� Concentration of unbound binding sites

½Bcdb� Concentration of site-bound Bcd (or of Bcd-bound sites)

½Bcdf � Concentration of free Bcd

½Bcdt
b� Concentration of site-bound fluorescent Bcd

½Bcdt
f � Concentration of free fluorescent Bcd

½Bcdu
b � Concentration of site-bound non-fluorescent Bcd

½Bcdu
f � Concentration of free non-fluorescent Bcd

KD Dissociation constant, KD~koff =kon , of scheme (5)

Df Diffusion coefficient of free Bcd

DS Diffusion coefficient of free and Bcd-bound sites

Dcoll Collective effective diffusion coefficient (Eq. (2))

Dsm Single molecule effective diffusion coefficient (Eq. (2))

The concentrations listed above satisfy the following relationships: ST ~½S�z½Bcdb�, BcdT ~½Bcdf �z½Bcdb�, ½Bcdf �~½Bcdt
f �z½Bcdu

f �, ½Bcdb�~½Bcdt
b�z½Bcdu

b �. In
equilibrium they also satisfy other relationships (see supplementary text 0.2). Since we work with data obtained under different conditions in parts of the text we also

use the following superscripts: c,FCS to identify values derived from FCS experiments performed in the cytoplasm during interphase (i.e. cytoplasmic values during

interphase at a position along the embryo that corresponds to the one probed with FCS experiments); c,FRAP to identify values derived from FRAP experiments
performed in the cytoplasm during mitosis (i.e. cytoplasmic values during mitosis at a position along the embryo that corresponds to the one probed with FRAP which

we assume is the same as the one probed with FCS) and n,FCS to identify values derived from FCS experiments performed in nuclei (again at the location along the
embryo that is probed with FCS).
doi:10.1371/journal.pcbi.1003629.t001

Reconciling Disparate Estimates of Bcd Diffusion
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during interphase at the location where the FCS experiments are

performed. Using the estimated values of Dsm, in the cytoplasm

during interphase (Dsm~0:38{1:6mm2=s from FCS experiments)

and during mitosis (Dsm~1mm2=s from FRAP [15]) and assuming

that the ratio of total Bcd concentrations in both situations,

Bcdc,FRAP
T =Bcdc,FCS

T , is the same as that of fluorescent Bcd (which

we estimate from Ref. [16]), we can also derive the ratios of all the

concentrations during mitosis with respect to the total cytoplasmic

Bcd concentration during interphase at the location of the FCS

experiments, Bcdc,FCS
T . We show in Table 2 the ratios derived

using the parameters of the two component fit of Abu-Arish et

al.[15] (first value listed in each cell) and the three component fit

(second value listed in each cell). In all cases, the values listed were

derived from the mean values obtained with the fits.

The concentration BcdT changes along the axis of the embryo.

Thus, the concentration ratios, and, consequently, the effective

diffusion coefficients, Dsm, and Dcoll , given by Eq. (2) could vary

along the axis as well. We do not know what the binding sites are.

If we assume that they are uniformly distributed in the cortex

along the axis of the embryo as nuclei are and that KD does not

vary either then, Dsm, and Dcoll , would only change along the axis

due to changes in BcdT . Using Eq. (2) and the relations that the

various concentrations satisfy at equilibrium we can rewrite the

expressions for Dsm and Dcoll in terms of the ratios

BcdT=Bcdc,FCS
T , KD=Bcdc,FCS

T and ST=Bcdc,FCS
T (see supplemen-

tary text S2). In particular, setting ST=Bcdc,FCS
T equal to the value

derived from the FCS or the FRAP experiments we can determine

how Dsm and Dcoll vary with cytoplasmic BcdT=Bcdc,FCS
T for the

interphase (ST~Sc,FCS
T ) or the mitotic (ST~Sc,FRAP

T ) conditions,

respectively. We show in Figure 4 plots of Dcoll (solid line) and of

Dsm (dashed line) obtained in this way using the total concentra-

tion of binding sites derived for interphase (ST~Sc,FCS
T ) and a plot

of Dsm (dashed-dotted line) using the total concentration of

binding sites derived for mitosis (ST~Sc,FRAP
T ). Based on this

Figure we conclude that the dissociation constant, concentrations

and free diffusion coefficients of the species involved are such that

Dsm%Dcoll for a wide range of BcdT values, which include both

the ones probed with FRAP and FCS. Therefore, it is reasonable

that the two techniques report widely different diffusion coefficient

estimates.

Table 2. Estimates of equilibrium concentrations and of model parameters derived from experiments performed in the cytoplasm.

Cytoplasm, Interphase Cytoplasm, Mitosis

½S�=Bcdc,FCS
T

0.02–0.03 0.009–0.05

½Bcdb�=Bcdc,FCS
T

0.98–0.92 1.14

½Bcdf �=Bcdc,FCS
T

0.02–0.08 0.06

BcdT=Bcdc,FCS
T

1 1.2

ST=Bcdc,FCS
T

1–0.95 1.15–1.19

KD=Bcdc,FCS
T

0.00047–0.0026 0.00047–0.0026

Df (mm2s{1) 19 19

DS(mm2s{1) 0–0.095 0–0.095

Dcoll (mm2s{1) 8.9–14 16.7–10.4

Dsm(mm2s{1) 0.38–1.6 1

Parameters derived from fits to FCS experiments performed using Bcd-EGFP during interphase in the cytoplasm (first column, using data from [15]) and values
estimated for mitosis (second column) assuming that Df , DS and KD remained invariant and that Dsm~1mm2s{1 during mitosis (diffusion coefficient estimate derived

in. [15] using FRAP). The value Df ~19mm2s{1 was derived from fits to FCS experiments performed using NLS-EGFP. Two sets of FCS fits from [15] were used which

gave the two limiting values listed in the Table (2 and 3 component fits, respectively). The mean fitting parameters reported in [15] were used to obtain the values listed
in the table. All ratios listed are computed with respect to the total cytoplasmic Bcd concentration during interphase at the location where the FCS experiments were

performed, Bcdc,FCS
T .

doi:10.1371/journal.pcbi.1003629.t002

Figure 4. Dependence of the effective diffusion coefficients on
the total cytoplasmic Bcd concentration, BcdT , for fixed values
of the total concentration of binding sites, ST , and of the
dissociation constant, KD, as prescribed by our theory. The solid
and dashed curves correspond, respectively, to Dcoll and Dsm for the

estimated value of ST at interphase (ST=Bcdc,FCS
T ~0:95 inferred from

FCS experiments). The dashed-dotted curve corresponds to Dsm for the

estimated value of ST during mitosis (ST=Bcdc,FCS
T ~1:19 inferred from

FRAP experiments). We used KD=Bcdc,FCS
T ~0:0026 in all cases. The

symbols correspond to the situations probed with FCS (circles) and

FRAP (triangle) experiments for which BcdT=Bcdc,FCS
T , is equal to 1 and

1.2, respectively.
doi:10.1371/journal.pcbi.1003629.g004
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Consistency test I: The ratio of nuclear to cytoplasmic
total Bcd concentration estimated from FCS fits is within
the observed ratios of mature [Bcd-EGFP]

The ratio of the nuclear to cytoplasmic concentrations of

mature Bcd-EGFP may be estimated from the data presented by

Gregor et al. [16]. It can also be derived from the results of FCS
experiments under some assumptions. In the absence of detailed

experiments, we consider the simple assumption that the

dissociation constant of the binding/unbinding processes that

Bcd undergoes in the nuclei and in the cytoplasm is the same. In

this way we can combine the analyses of the FCS experiments

performed in the cytoplasm [15] and in the nuclei [20] to obtain

the ratio of nuclear to cytoplasmic Bcd concentration. Here we

analyze to what extent these two estimations match each other.

Porcher et al. [20] only report the parameters of a 2-component

fit to the ACFs obtained using NLS-EGFP and Bcd-EGFP.

Working as in the case of the experiments of Abu-Arish et al. [15],

we obain the values listed in Table 3 where Bcdn,FCS
T is the total

Bcd concentration in nuclei at the location where FCS experi-

ments were performed. Again, only the values derived using the

mean fitting parameters are listed in the table. In order to check

the compatibility of the results of Tables 2 and 3, we assume that

the KD between Bcd and the putative binding sites is the same in

the cytoplasm and in nuclei. We then combine the ratio

KD=Bcdn,FCS
T of Table 3 with the value KD=Bcdc,FCS

T derived

from the 2-component fit listed in Table 2

(KD=Bcdc,FCS
T ~0:00047) to determine Bcdn,FCS

T =Bcdc,FCS
T . We

obtain Bcdn,FCS
T =Bcdc,FCS

T ~2:37, which is within the ratios of

mature [Bcd-EGFP] reported by Gregor et al. [16]. This ratio is

reduced by a half if we assume that the dissociation constant in the

cytoplasm during interphase is twice as large as the one in nuclei.

Consistency test II: The estimated change in total
cytoplasmic binding sites concentration between
interphase and mitosis is similar to the observed change
in [Bcd-EGFP], which is consistent with a change of
available volume

The ratio between fluorescent Bcd-EGFP in mitosis and in the

cytoplasm during interphase is of the order of 1.2 (see Fig. 3 in

Gregor et al. [16]). Using the values derived from our analysis of

the FCS and FRAP experiments listed in Table 2 we obtain that

the equivalent ratio for ST is &1:15{1:25. The similarity

between both ratios can be interpreted very simply as due to a

change in the available volume between interphase and mitosis.

This becomes clear in the argument that follows with which we

derive a rough estimate of the ratio of available volumes. Let us

call Vnuc and Vcyt the volume occupied by nuclei and cytoplasm,

respectively, during interphase in the region where the FCS and

FRAP experiments are performed. These values change as the

divisions proceed, but let us consider they represent some mean

value between two consecutive divisions. Because the nuclear

membrane disappears during mitosis, the cytoplasmic volume

during mitosis is VnuczVcyt. Assuming that the total number of

Bcd molecules in the region immediately before and immediately

after nuclei division is conserved, we have: Bcdn,FCS
T VnuczBcdc,FCS

T

Vcyt~Bcdc,FRAP
T (VnuczVcyt)~Bcdc,FRAP

T (VnuczVcyt). Setting

Bcdn,FCS
T =Bcdc,FCS

T ~2:4 (the value we derive from our analysis of

FCS experiments in nuclei and the cytoplasm if we assume that the

dissociation constant is the same in both cases) and

Bcdc,FRAP
T =Bcdc,FCS

T ~1:2 (the value inferred from the figures of

Gregor et al. [16]) we obtain Vcyt=Vnuc&6. We derive a similar

value if we use the total binding sites concentration instead. The

volume ratio estimate is reasonable. It implies that the ratio of

length-scales, lcyt=lnuc&(Vcyt=Vnuc)
1=3&2, which is consistent with

having a spacing between neighboring nuclei of the same order as

the nuclei diameters, a very reasonable feature [16].

From ratios to absolute concentration values
Using the relative weight of the various components of the ACF,

the fraction, f ~Bcdt
T=BcdT of fluorescent to total Bcd-EGFP

molecules can be estimated. However, as described in supplemen-

tary text S2, there are some uncertainties regarding the correct

expression for the weights. Using different expressions we estimate

f to be between 0.7 and 0.99. The total concentration of

fluorescent Bcd, Bcdt
T , is not very well known either and a wide

range of values, Bcdt,nuc
T ~1:9nM{140nM, is given in Abu-Arish

et al. [15]. The relationship between Bcdt
T in nuclei and in the

cytoplasm on the other hand varies along interphase which adds

another uncertainty. We use Bcdn,FCS
T =Bcdc,FCS

T &2:4, which is

among the possible ones, and the rough estimate

f ~Bcdt
T=BcdT&0:8 to convert ratios (Tables 2 and 3) to absolute

values of concentrations and of the effective dissociation constant

between Bcd and its binding sites. In particular, using the same

value of KD when combined with the 2-component FCS fitting

parameters obtained in nuclei and in the cytoplasm during

interphase, f ~Bcdt
T=BcdT&0:8, Bcdc,FRAP

T =Bcdc,FCS
T &1:2 and

Bcdt,nuc
T ~1:9nM{140nM, we obtain the values of Table 4.

These values, however, should be considered with great care due

to all the uncertainties involved in their derivation.

Discussion

We have considered a simple biophysical model to analyze the

different experiments that have been done to estimate the rate at

which Bcd diffuses in Drosophila embryos. We have shown that the

disparate estimates obtained using FRAP [16] and FCS [15] are

perfectly consistent within this simple model. Namely, they can be

explained in terms of two distinct effective diffusion coefficients,

Dcoll and Dsm [5]. In our simple biophysical model effective

Table 3. Estimates of equilibrium concentrations and of
model parameters derived from experiments performed in
nuclei.

Nuclei, Interphase

½S�=Bcdn,FCS
T

0.018

½Bcdb�=Bcdn,FCS
T

0.989

½Bcdf �=Bcdn,FCS
T

0.011

ST=Bcdn,FCS
T

1.007

KD=Bcdn,FCS
T

0.0002

Df (mm2s{1) 20

DS(mm2s{1) 0

Dcoll (mm2s{1) 7.7

Dsm(mm2s{1) 0.22

Parameters derived from fits to FCS experiments performed using Bcd-EGFP
during interphase in nuclei (using data from [20]). The value Df ~20mm2s{1

was derived from fits to FCS experiments performed using NLS-EGFP. Only the
results derived from a 2-component fit were presented in [20]. The mean fitting
parameters reported in [20] were used to obtain the values listed in the table.
doi:10.1371/journal.pcbi.1003629.t003
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diffusion coefficients describe the net transport that results from

the combination of free diffusion and binding/unbinding processes

when this transport is observed over a long enough time. The

collective diffusion coefficient, Dcoll , describes the rate at which

concentration inhomogeneities spread out with time while the

single molecule one, Dsm, characterizes the distance that an

individual molecule travels during a given time. As illustrated by

Videos S1 and S2 and Figs. 1 and 2 both coefficients coincide in

the absence of the inter-particle coupling that the binding/

unbinding processes introduce but otherwise can be arbitrarily

different between themselves, with Dsm always equal or smaller

than Dcoll . The existence of two different diffusion coefficients, one

that describes the mean-square displacement of a molecule and

another that gives the rate of decay of a concentration gradient

also occurs in crowded, non-ideal solutions, particularly those

involving polymers [3,6,7]. In our model the interaction between

the molecules of Bcd that underlies the existence of the two

disparate transport rates is provided by the presence of binding

sites with which Bcd interacts. The time after which the net

transport can be described by these effective coefficients depends

on the relationship between the diffusive and reaction timescales

[12]. Once this occurs, FRAP experiments give information on the

single molecule coefficient [5,6,12–14] while those that use FCS
can give information on both [6,12]. Particle tracking experiments

give the single molecule coefficient as well. In FCS the

autocorrelation function of the observed fluorescence fluctuations

is computed and subsequently fitted to determine correlation

times, and, from them, diffusion coefficients. In this paper we have

analyzed the experimental data of Abu-Arish et al. [15], Gregor et

al. [16] and Porcher et al. [20] under the assumption that the

timescales are such that the derived transport coefficients

correspond to effective ones. One could wonder what conclusions

Table 4. Absolute values of concentrations and of the binding/unbinding dissociation constant.

Cytoplasm, Interphase Cytoplasm, Mitosis Nuclei, Interphase

Bcd-EGFP (nM) 8–59 9.6–71 19–140

½S� (nM) 0.2–2.2 0.9–4 0.4–3.2

½Bcdb� (nM) 9–72 11.4–84.5 23–173

½Bcdf � (nM) 0.2–6 0.6–4.5 0.26–2

BcdT (nM) 10–74 12–89 24–176

ST (nM) 9.5–74 11.5–88 24–176

KD (nM) 0.005–0.2 0.005–0.2 0.005–0.035

Parameters derived from Tables 2 and 3 assuming f ~0:8 (see supplementary text S2 for details). The smaller range of KD values in nuclei is due to the fact that only
data from a 2-component fit to the ACF are presented for this case, while in the cytoplasm the results obtained both for 2 and 3-component fits are presented and this
enlarges the range of KD values compatible with the observations.
doi:10.1371/journal.pcbi.1003629.t004

Figure 5. Effective diffusion coefficients and Bicoid concentration as functions of position along the embryo. Top: Effective diffusion
coefficients, Dcoll with solid lines, Dsm with dashed lines, as functions of the distance to the location where FCS and FRAP experiments were

performed, Dx, for a uniform concentration of binding sites consistent with its estimated cytoplasmic value during interphase (ST=Bcdc,FCS
T ~0:95)

and for a total concentration of Bcd that decreases exponentially with distance with a 125mm decaying length. Bottom: corresponding exponential
profile of total Bcd.
doi:10.1371/journal.pcbi.1003629.g005
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would be drawn if this were not the case. It is under this

assumption, however, that we can explain the disparity between

the diffusion coefficients estimated using FCS and FRAP. It has

been argued [15] that the disparity could be due to an

experimental limitation of FRAP. Namely, the recovery time

derived from FRAP by Abu-Arish et al. [15] is of the same order

of magnitude as the time it takes to photobleach the observation

volume. This means that once the photobleaching is over and the

recovery is monitored there is a noticeable fraction of bleached

molecules outside the observation volume. If the data is fitted as if

this fraction were negligible the recovery time and, consequently,

the diffusion coefficient, are understimated [26]. Numerical

simulations of our simple model show that this effect cannot

account for over an order of magnitude difference between the

coefficients determined using FRAP and FCS (see supplementary

text S2).

Our approach differs from fitting "blindly’’ the experimental

data since, by using explicit expressions for the correlation times

(and the weights) in terms of the parameters of an underlying

biophysical model, we can combine observations performed under

different experimental conditions and, in this way, estimate free

(instead of effective) diffusion coefficients, concentrations and the

reaction dissociation constant. According to our analyses, the

experiments of Abu-Arish et al. [15] and of Gregor et al. [16] are

compatible with Bcd having a free diffusion coefficient

Df *20mm2=s and interacting with immobile or slowly moving

sites (DS*0:1mm2=s). The transport rate of Bcd is then limited by

these two values and is larger the larger its concentration. We have

also determined that in the region where FCS experiments are

performed, the majority of Bcd (w90%) is bound to sites and that

a similarly large fraction of sites is also bound. This implies that the

affinity of Bcd for the binding sites is high. Although Bcd physically

interacts with several proteins [22–24], it is probably its binding to

mRNAs [25] that most significantly affects its diffusion. First,

mRNAs are relatively large, and thus diffuse more slowly than

proteins. Second, Bcd has already been shown to bind tightly to

the homogeneously distributed caudal mRNA. In addition when

in the nucleus, it might spend a significant amount of time bound

to DNA. Actually, it has been determined that Bcd binds

cooperatively to multiple sites of DNA and that this results in a

higher affinity (*5nM ) [27]. Our model is very simplified

regarding binding. It is implicit in the scheme (5) that the sites

act independently of one another. If we replace this scheme by one

with cooperative binding we expect the estimated values of ½S�=KD

and ½Bcdf �=KD to be smaller than the ones derived using the

simple model (5). This, in turn, would imply a larger value of

KD=Bcdc,FCS
T (see supplementary text S2). Thus, the estimate of

the relationship between the dissociation constant and the total

concentration of Bcd listed in the Tables should be considered as

some sort of effective value. A simple scheme like the one in (5) was

used in the model introduced by Deng et al. [28] to study the

dynamics of the Bcd gradient in Drosophila embryos. According

to the analysis presented by these authors the stability of [Bcd]

inside nuclei and other properties are dependent on the binding/

unbinding equilibrium of Bcd molecules to DNA sites. Deng et al.

[28] explore the parameter space of their model under the

assumption that Df *2mm2=s and determine that a

KD*3{80mM guarantees the stability of the Bcd gradient along

division cycles. Their estimate of KD, however, depends on the

assumed value of Df . It would have been much smaller if they had

assumed Df *20mm2=s, the value that we deduce from our

analysis of the experiments of Abu-Arish et al. [15].

Our interpretation of the experimental results of Abu-Arish et

al. [15] and of Gregor et al. [16] can be probed with other

experiments. In particular, the non-uniform distribution of Bcd

along the embryo implies that the effective coefficients that may be

estimated with FCS or FRAP could, in principle, vary with

position too. We can compute by how much they should vary with

the distance to the location where FCS and FRAP experiments

are usually performed (the anterior pole) if we assume, as before,

that the concentration of binding sites is spatially uniform. In

particular, assuming that the total Bcd concentration decays

exponentially with a characteristic lengthscale ldecay~125mm we

can go from Figure 4, in which the coefficients are plotted as

functions of BcdT=Bcdc,FCS
T to a figure in which they are plotted as

a function of the distance to the typical FCS location, Dx. We

show the results obtained in Figure 5 where we have plotted Dcoll

and Dsm as functions of Dx. There we observe that at Dx&25mm,

Dcoll , is reduced to about 20% of its value at the anterior pole.

Although this numerical estimate is rough, we expect that changes

of Dcoll along the embryo should be detectable using FCS.

Albeit with its uncertainties, our approach provides a self-

consistent picture of a variety of observations. The establishment

of the Bcd gradient is a nonlinear process and an accurate estimate

of the time it takes to develop should be obtained with a reaction-

diffusion model in which diffusion, binding and unbinding are

described separately. The actual transport of Bcd is not purely

diffusive although it can be characterized by effective diffusion

coefficients that are concentration-dependent and vary along a

gradient. This means that the transport of Bcd involves a

multiscale diffusion process, to some extent, similar to the process

analyzed by Daniels et al. [29]. In any case, it is the collective,

rather than the single molecule effective coefficient that gives a

rough estimate of the (local) rate at which concentration

inhomogeneities spread out with time. Within our interpretation

of the results of Abu-Arish et al. [15] it is Dcoll&9{14mm2=s.

Thus, a gradient over a lengthscale &200mm could be established

within 48–70 min. Bcd, on the other hand, regulates the

expression of various genes and its gradient plays a relevant role

since certain proteins are synthesized at very specific locations

along it. The very small number of Bcd molecules implies that

fluctuations are important. The expression of these downstream

genes, however, occurs with high precision. In particular, the

analyses of Gregor et al. [30] have estimated this precision at 10%.

As discussed by these authors, the physical limit to concentration

measurements is determined by the dynamics of molecules arrivals

at their targets. This, in turn, is determined by the diffusion

coefficient of the molecules. Based on the estimate of this

coefficient obtained using FRAP [16], the studies of Gregor et

al. [30] concluded that the system would need a very long time

(*2 hours) to average out the fluctuations to obtain the observed

level of precision. The authors then invoked an average in space to

reconcile the estimate of the diffusion coefficient of Gregor et al.

[16] and the 10% precision of the read-out mechanism. We must

recall that these computations used the estimate of the diffusion

coefficient obtained with FRAP thus, the single molecule

coefficient, Dsm. However, it is Dcoll , not Dsm, that determines

the mean time of separation between subsequent arrivals of the

signaling molecules (Bcd) at their targets. According to our

estimates, Dcoll is at least an order of magnitude larger than Dsm

(and it could be twice as large as the one used by Gregor et al.

[30]) at the location where the FCS experiments were performed.

In particular, computing the time, T , it could take to achieve a

10% precision as done by Gregor et al. [30] before invoking the

spatial averaging but with D~14mm2=s we obtain T*8min
which fits within a nuclear cycle. We must recall, however, that
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both Dcoll and Dsm would decrease with the distance to the

anterior pole if the concentration of binding sites remains constant

along the embryo (see Fig. 5). Thus, it is not certain that the value

determined from the FCS experiments is the one that should be

used. A more detailed study is necessary to address the problem of

the read-out mechanism precision.

Our approach involves several simplifications, in particular, the

assumption that Bcd interacts non-cooperatively with a single type

of binding site. For the analysis of the FCS experiments of Abu-

Arish et al. [15] we also assume that the system is in a regime such

that the net transport of Bcd can be described in terms of effective

diffusion coefficients. This is supported by the goodness of the fits

presented by Abu-Arish et al. [15], although a picture including

anomalous diffusion could also hold. In favor of our model we

have shown that it is self-consistent, but because of all its

simplifications the numbers we derive might not be completely

accurate. More detailed studies are necessary to draw a more

definitive picture. In any case we do think that it is the coupling

between Bcd molecules that is introduced by the binding with

almost immobile sites that can explain the disparate values of Bcd

diffusion estimated with FRAP and FCS, solve the problems

associated with the timescale of the Bcd gradient formation and

help understand the precision of its read-out mechanisms.

Materials and Methods

Analysis of data from FCS experiments
In FCS fluorescence fluctuations around equilibrium of a small

illuminated volume are measured and their auto-correlation

function (ACF) is computed. If the fluctuations are due solely to

free diffusion of a single species of fluorescent molecules in and out

of the volume, the ACF is of the form:

G(t)~
G

1z
t

tD

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

t

w2tD

r , ð3Þ

where tD~w2
r=4D and w~wz=wr. Here wz and wr are the sizes of

the illuminated volume along the axial and perpendicular

directions respectively. In this case, fitting the experimental data

to the theoretical ACF Eq. 7 gives an estimate of the diffusion

coefficient, D. This ideal situation rarely holds in real experiments.

In most cases there are multiple components and the best fits are

obtained using a superposition of the form:

G(t)~
Xn

i~1

G(i)

1z
t

t(i)

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

t

w2t(i)

r : ð4Þ

with as many weights, G(i), and diffusion coefficients,

D(i)~w2
r=4t(i), as components (in this case, n). For a system in

which there are several freely diffusing non-interacting fluorescent

species this superposition has a clear meaning; each component of

the ACF gives the free diffusion of a different species and

a(i):G(i)=
P

G(i) gives the average fraction of fluorescence that

the i-th species contributes to the total fluorescence, F , in the

volume. Even if, on average, each species contributes with a fixed

fraction to F , there is no timescale of the problem associated to the

mean diffusion coefficient, SDT~
P

a(i)D(i). Neither F nor any

other species diffuses with SDT. One would be tempted to assume

that t~w2
r=4SDT is the characteristic timescale of a particle that

diffuses at rate, D(i), during a fraction of time, a(i), and then

changes rate when it binds to another species. However, unless the

particles undergo spontaneous inter-conversions (not binding/

unbinding with other species), the weighted average, SDT does not

set the characteristic timescale of the particle dynamics. As shown

next, when the fluorescent species diffuses and binds/unbinds to

others and many reactions occur inside the observation volume the

fluorescence fluctuation ACF can be written as in Eq. 3 but with

some D(i)’s that are effective rather than free diffusion coefficients

[12]. Thus, the diffusion coefficients that can be extracted from

FCS experiments are already correctly weighted averages of free

diffusion coefficients. As before, the average, SDT, of these already

averaged coefficients is not associated to any timescale of the

problem.

In this paper we analyze the results of FCS experiments

performed in Drosophila melanogaster embryos that express Bcd-

EGFP [16]. More specifically, we use the parameter values derived

from the fits to the ACF’s presented in [15] and in [20]. They

correspond to experiments performed in the anterior cortical

cytoplasm during interphase at stage 12{{14 [15] and in

anterior nuclei during cycles 13 and 14 [20]. In the case of

experiments performed in the cytoplasm several fits are presented

in [15] which differ in the number of components of the ACF,

among other properties. The best fits correspond to ACF’s

approximately of the form of Eq. (4) with two or three components

(n~2 or n~3 in Eq. (4)) for which the estimated diffusion

coefficients and relative weights, F (i)~G(i)=
P

i G(i), are, for n~3:

D(1)~(14+2)mm2=s, F (1)~(63+8)%, D(2)~(1:6+0:5)mm2=s,

F (2)~(32+6)%, D(3)~(0:095+0:037)mm2=s, F (3)~(5+2)%,

and, for n~2: D(1)~(8:9+0:4)mm2=s, F (1)~(82+1)%,

D(2)~(0:38+0:03)mm2=s, F (2)~(18+1)%. We also use the

results obtained in the anterior cortical cytoplasm of embryos

expressing NLS-EGFP, a construct with a short nuclear localiza-

tion signal and a GFP tag identical to that in Bcd-EGFP but that

should diffuse freely in the cytoplasm [15]. In this case only the result of

a two component fit is presented: D(1)~(26:5+0:9)mm2=s,

F (1)~(89+1)%, D(2)~(1:0+0:1)mm2=s, F (2)~(11+1)%. In the

case of experiments performed in nuclei only the results of two-

component fits are presented both for Bcd-EGFP and NLS-EGFP

[20]. The diffusion coefficients and relative weights derived are

D(1)~(7:7+0:3)mm2=s, F (1)~(57+1)%, D(2)~(0:22+0:01)

mm2=s, F (2)~(43+1)% for Bcd-EGFP and D(1)~(28+1)mm2=s,

F (1)~(96+1)%, D(2)~(0:51+0:04)mm2=s, F (2)~(4+1)%, for

NLS-EGFP.

Underlying mechanistic model of Bcd dynamics
We consider the simplest biophysical model that incorporates

the presence of binding sites, S, that interact with Bcd-EGFP

according to the scheme:

Bcdf zS/?
kon

koff

Bcdb ð5Þ

with dissociation constant, KD~kon=koff . In this equation Bcdf

represents the free form of Bcd-EGFP and Bcdb its S-bound form.

We assume that both Bcd-EGFP for which GFP is mature (Bcdt)

and for which it is not (Bcdu) coexist in the system. This

assumption is reasonable since it takes several minutes for EGFP to

mature and become fluorescent [21,31]. We also assume that Bcdt

and Bcdu interact with S in the same way. The only difference

between the tagged (Bcdt) and untagged (Bcdu) forms of Bcd-

EGFP is that GFP is mature for the former (and, thus, fluorescent)

while it is not for the latter. Further assuming that the S molecules
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are more massive than the free Bcd-EGFP molecules, so that both

S and Bcdb have the same diffusion coefficient, DS , which is in

turn smaller than the coefficient of the free Bcd-EGFP molecules,

Df , the dynamics of the system is described by the following set of

reaction-diffusion equations:

L½Bcdt
f �

Lt
~Df +2½Bcdt

f �{kon½Bcdt
f �½S�zkoff ½Bcdt

b�

L½Bcdu
f �

Lt
~Df +2½Bcdu

f �{kon½Bcdu
f �½S�zkoff ½Bcdu

b �

L½Bcdt
b�

Lt
~DS+2½Bcdt

b�zkon½Bcdt
f �½S�{koff ½Bcdt

b�

L½Bcdu
b �

Lt
~DS+2½Bcdu

b �zkon½Bcdu
f �½S�{koff ½Bcdu

b �

L½S�
Lt

~DS+2½S�{kon½Bcdf �½S�zkoff ½Bcdb�, ð6Þ

where ½Bcdf �~½Bcdt
f �z½Bcdu

f � and ½Bcdb�~½Bcdt
b�z½Bcdu

b �. We

define ½Bcdu
T �~½Bcdu

f �z½Bcdu
b � as the total immature Bcd-EGFP

concentration (i.e., labeled with immature GFP which is non-

fluorescent or untagged) and ½Bcdt
T �~½Bcdt

f �z½Bcdt
b� as the total

mature Bcd-GFP concentration (i.e., labeled with mature GFP

which is fluorescent or tagged). Finally we define ½BcdT �~
½Bcdu

T �z½Bcdt
T � as the total Bcd-EGFP concentration (both fluore-

scent and non-fluorescent). To analyze the FCS experiments we

assume that the concentrations are approximately homogeneous

within the observation volume and that the mean value of the

concentrations are given by the equilibrium condition of the reaction

Eq. (5). The first of these assumptions is reasonable since the width of

the illuminating spot is wr&0:4mm and the typical lengthscale of the

Bcd-EGFP gradient is L&125mm. The second one is reasonable as

well since the typical timescale of variation of the gradient is much

larger than the duration of each FCS experiment. Treating

fluctuations around this mean as done in [32] we can obtain an

analytic approximation to the auto-correlation function (ACF) of the

fluorescence fluctuations, G(t), as shown in [12]:

G(t)~
Gcoll

1z
t

tcoll

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

t

w2tcoll

r z

Gsm

1z
t

tsm

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

t

w2tsm

r z
GS

1z
t

tS

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1z

t

w2tS

r :

ð7Þ

In Eq. (7) Gcoll , Gsm, GS , tcoll , tsm and tS are functions of the

biophysical model parameters and concentrations and w~wz=wr

with wz and wr the sizes of the illuminated volume along the axial

and perpendicular directions respectively. The times tcoll , tsm and

tS depend on the corresponding (effective) diffusion coefficients as

tX ~w2
r=(4DX ) (X = coll, sm, S). Thus, the ACF is the sum of

three components characterized by three different timescales: one

given by the free diffusion of the S molecules (with weight GS ) and

the other two (with weights Gcoll and Gsm) given by the effective

diffusion coefficients of Eq. (2). The analytic expression (7) holds as

long as the Bcd molecules undergo enough binding/unbinding

reactions while they stay inside the observation volume [12,33].

The weight of the last term becomes GS~0 if DS~0 (unpublished

data and supplementary text S2). Thus, the ACF reduces to two

components in this case.

FCS experiments and underlying biophysical model
Eq. (7) is formally similar to Eq. (4). The main difference

between our formula for G(t) and Eq. (4). is that we have explicit

analytic expressions for the weights, G(i), and the times, t(i), in

terms of the variables and parameters of our underlying

biophysical model. Therefore, by interpreting the published fitted

parameters of [15,20] in terms of our analytic expressions we

estimate values for the parameters and concentrations of our

simple mechanistic model for the conditions under which the

experiments were done. This interpretation allows us to readily

compare the results obtained with experiments, such as the ones

done using FCS and FRAP [16] or FCS in the cytoplasm and

nuclei, that were performed under different conditions and for

which the concentrations could be different. The mapping

between our approximation and the fits presented in [15,20] is

done by associating each of the terms in Eq. (7) to one component

of the ACF used in [15,20] according to the relative order of their

timescales since for the biophysical model it is ts§tsm§tcoll .

When using the two component fits of [15,20] we set GS~0 in Eq.

(7) and assume DS~0. All figures shown in this paper use the

results obtained from the three-component fit of [15]. Similar

figures are obtained for the two-component fit but with somewhat

different numerical values. For comparison purposes, we also

derive the parameters of our model in nuclei using the fitting

parameters of [20]. Finally, we use the timescales derived from

FCS experiments performed using NLS-EGFP to estimate the free

diffusion coefficient of Bcd-EGF, Df . Namely, given that the

weights of the two components obtained from the fits of NLS-

EGFP experiments satisfy F (1)&F (2) we assume that D(1) is the

free diffusion coefficient of NLS-EGFP from which we derive the

free coefficient of Bcd-EGFP considering the different molecular

weights of both molecules. This assumption seems to be correct

given that the range of values derived in the cytoplasm

(D(1)~(26:5+0:9)mm2=s) and in nuclei (D(1)~(28+1)mm2=s)

overlap. This does not happen for the experiments performed

with Bcd-EGFP, which is an indication that the coefficients

derived in this case are effective (concentration dependent) rather

than free.

Particle simulations
Eqs. (6) describe the spatio-temporal dynamics of the concen-

trations of three species that diffuse and react. This is actually a

mean-field description. However it is the individual molecules of

the species the ones that move in the medium and eventually react

with other molecules when they become close enough. In this

paper we present the results of numerical simulations in which we

follow the dynamics of the individual molecules as they diffuse in a

medium and react according to Eq. (5). In these simulations the

binding sites are immobile, i.e. they have DS~0. In what follows

we will refer to the moving molecules as walkers or free particles

and to the particles bound to sites as bound particles. Particles are

equivalent to Bcd molecules in the biophysical model of Eqs. (6).

Our simulations can be summarized in the following pseudo-

code:
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1. react.

2. diffuse free particles.

3. increment time by dt and go to 1.

Reaction. Each particle is referred to by an index, and

similarly each binding site. The particles are either free or bound

and the binding sites are either occupied or unoccupied. Each

particle and each binding site have coordinates. xyz is the list of

particle coordinates. xyztraps is the list of binding site coordinates.

"bound" and "occupied" are the lists of bound particles and

occupied binding sites, respectively. These two lists are updated at

each time step as described below. Pseudo-code for the call to

ChemistryUpdate is:

(bound,occupied,xyz)~

ChemistryUpdate(bound,occupied,:::xyz,xyztraps) :
ð8Þ

At each time step we partition space into disjoint boxes and

update the lists for each box independently. In what follows we

describe how the updates are performed within a given box.

To determine the number of bindings that take place with a box

we use the notion of a "Wiener Sausage" which is the volume [34]

traced out by a spherical Brownian particle of radius d and

diffusion coefficient D in time t:

Vsausage~2d 2pDf tz2d2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2pDf t

p
: ð9Þ

The survival probability { log v(t)~Vsausagertrap where rtrap is

the number density of the binding sites. The probability that a

single walker in a box of volume Vbox is trapped by a single

binding site, pb, is given by:

pb~
Vsausage

Vbox

ð10Þ

where Vbox is a volume which we took to be Vbox~1mm3 in our

simulations. We assume that pbnpvv1 where np is the number of

walkers in Vbox. If this condition failed the simulation was aborted

and a new realization was attempted. The number of binding

reactions for nt binding sites is obtained by drawing a random

sample, RS, from the multinomial distribution

M(nt,(pb,pb, . . . ,pb,1{np pb)) where the vector of probabilities

(pb,pb, . . . ,pb,1{np pb) has npz1 components. The number of

bindings, nb, to occur is then the number of nonzero entries in the

first np components of the random variable RS (plus 1 if the last

component of RSnpz1~0). We parametrize the reaction by KD so

that the probability of a particle unbinding, pu during the interval

dt is given by: pu~pb KDV~VsausageKD. This yields an on-rate of

kon~Vsausage=dt and an off-rate of koff ~KDVsausage=dt. To

perform the unbindings we determine how many of the initially

bound particles will remain bound,nrb, by drawing from a

binomial distribution (nbound ,1{punbind ). Note that the number

of occupied binding sites and bound particles is the same by

definition so the number of occupied binding sites that will remain

occupied is also nrb. At the end of the time step the updated list of

bound particles consists of the union of those previously bound

particles that remained bound with the list of those previously free

particles that were bound during the time step. Similarly, the

updated list of occupied binding sites consists of the union of the

previously occupied binding sites that remained occupied with the

list of those previously unoccupied binding sites that were occupied

during the time step. Particles that are selected to bind to a binding

site are moved to the location of their reaction partner (i.e. the

binding site they bound to). We neglect fluctuations in the sausage

volume and thus cannot claim that these simulations are

quantitatively accurate but they are adequate to illustrate the

subject at hand.

Diffusion. First the list of free particles is obtained by taking

the complement of the list of all particles with respect to the bound

particles. The 3 spatial coordinates of each free particle is

incremented by drawing 3 zero mean normally distributed

random variables with variance 2Df dt and adding them to the

current position. Then each particle is checked to see if it is still in

the simulation volume which we take to be (20mm)3. If any

coordinate of any particle is outside the volume by a distance dx

that particle coordinate is reflected back across the boundary. For

example let xb be the location of a boundary in the x direction. If,

after a diffusive step, the x-coordinate of a particle exceeds xb by

dx so that x~xbzdx is outside the simulation volume then the

reflected coordinate is x~xb{dx. This is done for all 3 spatial

coordinates.

Sets of particle simulations and parameters. In this

article we perform three sets of particle simulations: (1)Free

particles in the absence of binding sites, (2)Simulated FRAP -like

experiment and (3)Simulated particle bolus experiment. In the last

two sets of simulations binding sites are present and free particles

react with them according to Eq. (1). In all cases, the volume

simulated is a cube 20mm on a side and the free diffusion

coefficient of the walkers is Df ~20mm2=s. Both in the free particle

(no chemistry) simulations and in those of the particle bolus

experiment a bolus of free fluorescent particles is initially added to

a non-fluorescent pre-existing equilibrium inside the central

(5mm)3 cube. To make these two simulations comparable the

number of added particles is 1,875 in both simulations while the

total number of particles in the pre-existing equilibrium inside the

simulation volume is 20,000 in the absence of binding sites and

600,000 when binding sites are present. Given that in the

simulations we follow the individual particles we can do statistics

over all the particles or over the added (fluorescent) ones. We do so

as explained later. In the FRAP -like experiment an initial

equilibrium situation is assumed but with all free and bound

particles being fluorescent. At t~0 the free and bound particles

inside a spherical volume, Vbleach, of radius Rfrap~4mm, are

bleached. The equilibrium condition in the FRAP -like experi-

ment is the same as in the simulated bolus experiment with

binding sites. The reaction rates and diffusion coefficients also

coincide.

The parameters of the simulations with binding sites are:

KD~:1=mm3,

ST~75=mm3,

PT~75=mm3,

d~29nm,
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Vbox~1mm|1mm|1mm,

where ST and PT are the total concentrations of binding sites and

of particles, respectively, before the addition of the fluorescent

particles in the bolus simulation.

Simulation diagnostics. For all three simulation sets we

compute the mean square displacement (MSD), Sr2TS, as:

Sr2TS~
1

N

XN

i~1

(xi(t){xi0)2 ð11Þ

where the subscript, i, refers to each individual particle for which

the mean square displacement is computed, xi(t) and xi0 are the i-
th particle positions (in three space dimensions) at time, t, and at

the initial time and N is the total number of particles over which

the sum is performed. In the simulations with added particles we

perform this computation over the fluorescent particles (i.e. over

the particles that were initially added to the pre-existing

equilibrium). In the FRAP -like experiment, we do it for the

particles that are initially bleached.

For the simulations with added particles we also compute the

second moment of the particle distribution (which, in certain

circumstances, can be interpreted as a distributional MSD). This

involves performing a numerical version of an integral of the form

*
Ð

V
r2rX (r,t)dV over the simulation volume where rX (r,t) is the

concentration of particles of type X at position r and time t. Here r
is the three-dimensional position measured from the center of the

simulation volume. We do this both for the fluorescent (i.e., added)

particles and for all of them. In both cases we approximate the

integrals by partitioning space into boxes and counting the

particles in each box. We denote the number of particles in the ith

box by ni. The squared distance of the geometric center of the ith

box from the origin is denoted r2
i . Then we approximate Sr2TÐ

X

by:

Sr2TÐ
X
&

1

N

X
i

nir
2
i ð12Þ

where N is the number of added particles. When X refers to the

fluorescent (i.e. added) particles, ni is the number of fluorescent

particles in the ith box at each time. We use the subscript X~fluo
to identify this case. When X refers to both the fluorescent and

non-fluorescent (i.e. all) particles ni is the number of all particles in

the i-th box. We use the subscript X~all to identify this case. It isP
i ni~N for X~fluo while

P
i ni=N when X~all. As

explained in the supplementary text S3, in the long time limit,

Sr2TÐ
X

scales linearly with time according to:

Sr2TÐ
X
~2dDtzK, ð13Þ

with D a diffusion coefficient, both for X~fluo and X~all. In the

absence of binding sites it is D~Df in all cases. If there are

binding sites, D is different depending on whether X refers to the

fluorescent particles or to all of them. As we show with the

simulations, it is D~Dsm in the former and D~Dcoll in the latter

with Dsm and Dcoll defined in Eq. (2).

For the FRAP -like experiment we also compute the "relative

fluorescence’’ inside the initially bleached volume, Vbleach

as:

FR(t)~
n(t)

n(0{)
, ð14Þ

where n(t) is the number of fluorescent molecules in the bleached

volume at time t and n(0{) is the number of fluorescent

particles in the bleached volume just before the bleaching took

place.

Supporting Information

Text S1 Diffusion, length and time scales. In this text we

give a brief introduction to normal, anomalous and effective

diffusion.

(PDF)

Text S2 Detailed description of the mapping between
model and experiments. In this text we discuss the main

assumptions that underlie the application of our simple biophysical

model to interpret the results obtained from FCS and FRAP
experiments performed in Drosophila embryos that express Bcd-

EGFP. More specifically we compare different possible mappings,

discuss the compatibility of the models assumptions with the

observations, their limitations and possible extensions.

(PDF)

Text S3 Mean square displacement and second mo-
ments of particle distributions. Here we describe the

meaning of the various diagnostics that we perform on the

particle simulations. In particular, we show how the slope of the

MSD and of the different second moments, Sr2TÐ
X

, that we

compute are related to the different diffusion coefficients that we

discuss in this paper.

(PDF)

Video S1 Free particle diffusion. This video shows the

results of a simulation of a system of freely diffusing particles with

Df ~20mm2=s. In this simulation a bolus of 1,875 fluorescent

particles is added to the central (5mm)3 cube in a background of

20,000 particles that are uniformly distributed over the (20mm)3

cubic simulation volume (see Materials and Methods for details).

The video has three panels. In each of them we project the 3rd

dimension into the plane that is shown. The left-most movie shows

the local deviation in concentration of all particles above the

equilibrium concentration. The fluctuations in the equilibrium

baseline are apparent near the borders. The center movie shows

the concentration of the added (fluorescent) particles. In this case

the concentration of added particles near the borders begins at

zero so the fluctuations of this quantity in the early part of the

movie are small near the borders. As time passes and the particles

spread those fluctuations grow. The right-most movie shows the

actual (2D projection of the) positions of the added particles. We

quantify the rate of spread of the distributions in the left and center

panels by means of the second moments, Sr2TÐ
X

, (Eq. (12))

computed using all the particles (X~all) and only the (fluorescent)

added ones (X~fluo), respectively. Both second moments grow

linearly with time with the same slope as shown in Figs. 1 A and 1

B. This slope coincides with that of the averaged mean square

displacement of the individual particles Fig. 1 C. From the slopes

we obtain D&20mm2=s which agrees, in turn, with the diffusion

coefficient of the particles that was used in the simulation. In the

case of free diffusion the rate at which a perturbation spreads out

with time and at which the mean square displacement of the
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individual particles increases is ruled by the same diffusion

coefficient.

(MOV)

Video S2 Effective diffusion. This video shows a simulated

experiment in which a bolus of fluorescent particles is added to the

central (5mm)3 cube in a (20mm)3 cube in which particles diffuse

and react with immobile binding sites according to Eq. (1).

Particles and sites are initially uniformly distributed and at

chemical equilibrium (see Materials and Methods for details). As

in Video S1 the left-most panel shows the concentration of all the

particles above equilibrium. The center panel shows the

concentration of the added (fluorescent) particles. The right-most

panel shows (a 2-dimensional projection of the) positions of the

added particles. This is what would be observed if each of the

added particles could be identified. The deviation from equilib-

rium of the concentration of all the particles smooths out so fast

that is only obvious in the earliest frames of the left most panel.

This smoothing occurs much faster, on the other hand, than that

of the deviations in the fluorescent particle density. This difference

becomes quantifiable in Fig. 2 where we show the second

moments Sr2TÐ
X

(Eq. (12)) computed using all the particles

(X~all) in A and only the (fluorescent) added ones (X~fluo) in B.

In both cases the second moments eventually depend linearly on

time. From the slopes we obtain a diffusion coefficient that is more

than 10 times faster in Fig. 2 A than in Fig. 2 B. The latter, on the

other hand, is roughly the same as the one that is derived from the

slope of the mean square displacement shown in Fig. 2 C. These

observations agree with the results of [5] (see also supplementary

text S3). Namely, according to the theory, the deviation from

equilibrium of the total particle concentration spreads with the

collective diffusion coefficient, Dcoll , and that of the (fluorescent)

added particles with the single molecule coefficient, Dsm, which

also rules the time dependence of the individual particles mean

square displacement. For the simulation parameters, it is

Dcoll~10:18mm2=s about 14 times faster than the single molecule

diffusion coefficient, Dsm~0:7mm2=s, which agrees with what is

observed in the panels and in Fig. 2.

(MOV)

Video S3 FRAP. This video shows a simulated FRAP-like

experiment for a system like the one probed in Video S2. In this

simulation all the particles (free and bound) are assumed to be

initially fluorescent and at equilibrium with the binding sites. The

chemical parameters and rates are the same as in Video S2 (see

Materials and Methods for more details). At t~0, the particles in a

spherical volume (Rfrap~4mm) which is in the center of the

(20mm)3 simulation volume are bleached. The simulated particles

are diffusing in 3 dimensions but only two coordinates are shown.

In this video we show all of the bleached particles (BLUE) and

those unbleached particles (RED) that are inside the bleached

volume. We observe how the fluorescence in the bleached volume

recovers with time due to the diffusion of the free fluorescent

particles. This recovery is quantified in Fig. 3.

(MOV)
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