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1. Introduction

Let B(#), 3(#) and U(.#) be the C*-algebra of all bounded linear operators acting on a complex
Hilbert space .»7, the set of all invertible elements in B(#) and the class of all unitary operators in
B(#), respectively. The operator norm on B(.»#) is denoted by | - ||. We denote by
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(), the set of all invertible self-adjoint operators in B(.7),

P(s#), the set of all positive operators in B(.7),

Po (), the set of all invertible positive operators in B(.#),

() = () N (), the set of all unitary reflection operators in B(.#),
Mo (7), the set of all invertible normal operators in B(.7).

For 1 < p < oo, the Schatten p-norm class consists of all compact operators A for which [|Al|, :=
(tr|A|P)!/P < oo, where tr is the usual trace functional. If A and B are operators in B(#) we use A @ B

A0
to denote the 2 X 2 operator matrix { } regarded as an operator on .# @ #. One can show that
0B

1/p
1A @ BI| = max(JAll, IBI). 1A @ Bll, = (IIAlIL + IBI?) (11)
One of the most essential inequalities in the operator theory is the following so-called Heinz inequality:
IPX + x|l > |P*xQ' ™ + P xQ| (12)

forall P,Q € P(s7),allX € B(s#) and all « € [0, 1]. The proof given by Heinz [7] is based on the
complex analysis and is somewhat complicated. In [9], McIntosh showed that the Heinz inequality is
a consequence of the following inequality

VA,B,X € B(x), |A*AX + XBB*|| > 2 ||AXB|| (1.3)
McIntosh proved that (1.3) holds and gave his ingenious proof of (1.3) = (1.2). In the literature,
inequality (1.3) is called “Arithmetic-geometric-Mean Inequality”.

In [4] Corach-Porta-Recht proved the following, so-called C-P-R inequality,

VS € ()X € B(#), sts*l + s*lst > 2 |X] (14)

The C-P-R inequality is a key factor in their study of differential geometry of self-adjoint operators.
They proved this inequality by using the integral representation of a self-adjoint operator with respect
to a spectral measure.

An immediate consequence of the C-P-R inequality is the following:

VS, T € (#)VX € B(#), str—l +s—1XTH > 21X (15)

Using the polar decomposition of an operator, we may deduce easily from the C-P-R inequality the
following operator inequality

VS € 3()VX € B(#), |S*XSTT+STIXS*| = 2 |1X|| (1.6)

Three years after and in [5], Fujii-Fujii-Furuta-Nakamato proved that inequalities (1.2)-(1.5) and
two other ones hold and are mutually equivalent. By giving an easy proof of one of them, they showed
a simplified proof of Heinz inequality, see also [6]. Also, it is easy to see that two inequalities (1.4) and
(1.6) are equivalent.

In [10], it is shown that the operator inequality

VX € B(#), sts—1 + s”st > 2 IX|| (S € 3(2)) (1.7)

is in fact a characterization of C* () = {AM : A € C\ {0}, M € A (1)}
Recently in [11], using inequality (1.6) and the above characterization of C*.# (%), it is proved
that this class is also characterized by each of the following statements:

VX € B(#), S*XST1 4+ STIXS*| (S € 3(#)) (1.8)

sxs—! + s*xs” -

VX € B(#), [sxs™! + s—lst > Hs*xs—1 + 5~ 1xs* H (S € 3(#)) (1.9)

Note that this class of operators is the class of all invertible normal operators in B(.7#) the spectrum
of which is included in a straight line passing through the origin.
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For the class of all invertible normal operators in B(.#), it is proved [11,12] that this class is
characterized by each of the following properties

VX € B(x), sts—l H + Hs—lst > 2|X|| (S € 3(#)) (1.10)
VX e B(r), |sxs7H + s7ixs| = [sxs ! + [sT'xs*| (s € a()) (111)
VX € B(#), HSXS‘1 H + HS_1XSH > [s*xs! H + Hs*xs* (S € 3(#)) (112)
VX € B(x), ”sxs—1 H + Hs—lst < Hs*xs—l H + Hs—lxs* H (S € 3(#)) (113)

It is natural to ask what happen if we consider in each of the above operator inequalities instead of
u}n, either ugn Or u=n‘
Let us consider the following associated operator inequalities

VX € B(#), sts*l +s*1st <2|X| (S € 3(#)) (114)
VX € B(x), sts—1 +s—1st =2IX|| (S € 3x)) (115)
VX € B(x), HSXS‘1 +S‘1x5H < Hs”‘xs—1 +57'Xs* H (S € 3(#)) (116)
VX € B(2), sts—l H + Hs—lst =2IX|| (S € 3(x)) (117)
VX € B(#), ”sxrl H + HS”XSH <20XI (S € 3(#)) (118)

In [11-13], it was established that each of inequalities (1.14), (1.17) and (1.18) characterize R*$(.2#)
and (1.15) characterizes C* 4, (7).

We found also in [11,12] that R*4(#) is also characterized by each of the following two operator
equalities

VX € B(#), ||S*XST'4+STIXS*| =2 |IX|| (S € 3(#)) (119)

VX € B(#), |s*xs! H + ”s*lxs* =2|X|| (Se€ax) (1.20)

A unitarily invariant norm |||-||| is defined on a norm ideal Jjj;;;; of B(#’) associated with it and
has the property |[|UXV||| = |[IX|||, where U and V are unitaries and X € J.j. Note that inequalities

(1.2)-(1.5) were generalized for arbitrary unitarily invariant norms. Furthermore, it is proved in [3]
that the characterization of the invertible normal operators via inequalities of the uniform norm in
B(#) ((1.10)-(1.14)) also holds for any unitarily invariant norm.

In [16] and in the case dim .# < oo, by introducing two parameters r and t, Zhan proved that for
n X n positive matrices A, B, arbitrary n x n matrix X and (t,r) € (-2, 2] x [%, %], the following
inequality

241 H ATXB2T 4 A2 XB'

gz}HAszAXBJrXBZH( (1.21)

holds for any unitarily invariant norm [||.|||. The tool used for proving this inequality is based on the
induced Schur product norm. It should be noted that the case r = 1, t = 0 of this result is the
well-known arithmetic-geometric mean inequality due to Bhatia and Davis [1]. In this paper we want
to extend it and to obtain some refinements of this inequality to the case where 7 is a Hilbert space
of arbitrary dimension by using elementary techniques. We also characterize the class of operators
satisfying HSXS_1 +S7IXS + kXH > (k 4+ 2) || X|| under certain conditions.

Recently, Kittaneh proved in [8] the following refinement of the Heinz inequality.

Proposition 1.1. LetA, B € P(s¢) and X € Jjj).jj|- Then



C. Conde et al. / Linear Algebra and its Applications 436 (2012) 3008-3017 3011

(1) fora € [0, %] the following inequalities hold
H‘AaXB1—(x _'_Al—aXBaH’ < H‘AQ/ZXB1—(1/2 +A1—a/2XBa/2‘H

1 o
bl

%IIIAX+XB||| + % a8 + A= x|

AYXB'™V + AT7VXBY||| dv

N

<
< |I1AX + XB|| (1.22)

(2) fora € [%, 1] the following inequalities hold

AVXB'™V +A‘*“XB”H]du

[axB! = + al-oxge || < H‘A%XBFT“ + AT xBTS

1 1
<l—oc/at H

< % I[|AX + XB||| + % || axB' == + at=erxp*||
< |I1AX + XB|| (1.23)

where

.1 o
1AX + XB||| = lim 7/ I
a—0 o Jo

1 1
oz—>ll—ot/a H

AVXB! ™V +A1—VXB“H] dv

= lim AYXB'™V + ATTVXBY||| dv.

2. Main results

In this section, we shall prove that inequality (1.21) of Zhan follows immediately from the gener-
alized version of the known inequalities (1.2) and (1.4) in the more general case of arbitrary complex
Hilbert space.
Theorem 2.1. Let A, B € P(s), where ¢ is a Hilbert space of arbitrary dimension and let t < 2,
re [%, %]. Then for any unitarily invariant norm |||.||| and for every X € Jy)|.|j, the following inequalities
hold

(1) forr €[5, 1]

2H]A2x+x32 +mx3m > 2mAzx+x32 +2AXB‘H — (4 —2t) |||AXB]|]

>4HA%XB%+A%XB% ‘—(4—2t)|||AXB|||
> zHA%XB% +AIXB3 ‘JrzH,c\rXBZ*r+A2*rx3r — (4 —2¢) ||]AXB]||
4 T—% V—‘rl §_v §_v v_;’_l
> ]/ AVTIXB2 Y + A2 VXB' 2 ‘dv—(4—2t)|||AXB|||
r—21Jo
2
2r+1 7-=2r 7-2r 2r+1
>4HATXBT AT xR H—(4—2t)|||AXB|||

> 4||axB> "+ A2 XB | — 4 - 20) lljax |
> (t+2)||[axB2 " + A2 "xp ]| @1)



3012 C. Conde et al. / Linear Algebra and its Applications 436 (2012) 3008-3017

(2) forr € [1, 3]
2(HAZx+x32 +mx3m > zmAzx + XB? +2AXB)H — (4 —20) |||AXB|||

o
g
4 1
é_r/_i

‘ ‘ ‘ r+3 5-2r 2r+

XB —|—A 4 XB
I

(t+2) ]HATXBZ—f + Az—rxsfm .

3.1 1.3
A2XB2 + A2XB2

\—(4—2r)|||AXB|||

AXB*" + A*TTXB'||| — (4 — 2t) |||AXB]||

3.1 1,3
A2XB2 + A2XB2

\HH

AVFaXB3 T + A3 TVXBY 2 ||| dv — (4 — 2¢) |||AXB]||

WV

|- @=20 il

rXB2 r+A2erBr

— (4 —20) |||AXB|[|

=4
2

(2.2)

Proof. LetX € J). and without loss of generality we may assume thatA, B € Py(¢).Puta = r— %

then0 <o <1

First, we consider the case« € [0, %]. Using Heinz inequality and its refinements (1.22) for unitarily

N PR S |
invariant norms and considering A~ 2XB™ 2 € Jjj.;| we have

1, -1 11
A2XB 2 + A" 2XB2

1 1 1 11 L . :
25( A2XB 2 +A 2XB2 ’+' AYT3IXB2 Y £ A2TUXBY 2 )
1 ra IR [
o Jo
o=l 1-o 1 o—1
2"/%2 XB2 +Az XB 2 H
g H A*TIXBTTY 4 ATTOXBY '
Since

1 1 1 1 1 1
AXB~' +ATIXB 42X = A2(A2XB™ 2 + A" 2XB2)B" 2
1 1 1 1 1 1

+A"2(A2XB”2 + A" 2XB?)B2,

utilizing the generalized version of C-P-R inequality for unitarily invariant norms, we obtain

1 1 1 1
A2XB 2 +A 2XB2

|axB=" + A7'xB + 2x|| > 2 ’HA%XB—% L ATIXB2 H

> |
> E/Q H AY"3XB2 ™V 4+ A2 VXB""3
o Jo
a=1_ 1—a l1—a o—1
ZH‘A T XB' 2" + A2 XB“Z

2 H
1

H\AXB*1 +A*1XB+2xH] > 2H

It follows from (2.3) and (2.4) that

AIXB2 Y 4 A2 TOXBY:

11 11
A2XB 2 +A 2XB2

|

>2 H AYTIXB2 Y 4 A2 TOXBY )

.

(2.4)
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On the other hand, due to

AXB™' +ATIXB+2X = AXB™' + AT'XB+ tX + (2 — 0)X,
we have

H]Axs—l L ATIXB + 2xm < H‘AXB_l +A7XB + cxm +@=0IXI - (2.6)
From two last inequalities (2.5) and (2.6), we obtain

2||[axB~" +A7"xB + ||| > 2 ||axB~" + A7 XB + 2] || — (4 — 20) |11x11)

1 1 1 1
> 4|||[A2XB™2 + A" 2XB2 '—(4—2t)IIIXIII
11 11 11 1 1
>2|||a2xB~2 + A2 xB2 '+2HA°‘_2XBZ_“+A2_“XB"‘_2 ’—(4—2t)|||X|||
4 el 1o 1, 1y ,v—1
> 2 [t At av - @ — 20 i
o Jo
a—1 1—«a 1—a a—1
>4|[|A 2 XB2 +A2 XB 2 H—(4—2t)IIIXII|
> 4||A2XB2 Y 4 AZUXBY 2 ’—(4—2t)|||X|||. 2.7)

From the generalized version of C-P-R inequality for unitarily invariant norms, it is easy to see that if
seR

4 H)ASXB‘S +A‘SXBSM — AIXI 4 2t 11XN] = (¢ +2) H‘ASXB_S —l—A_SXBSm .
From (2.7) and the last inequality, we can deduce that for any X € Jjj |,

2|[axB=" +A7"xB + tX||| > 2 ||axB~" + A7"XB + 2] || — (4 — 20) |11x11)

>4HA%XB*%+A%XB% '—(4—zr>|||xn|
1 1 11 11 1 1

>2HA2XB—2+A—zXBz '+2HA°‘_2XBZ_“+A2_°‘XB“_2 ’—(4—2t)|||X|||

4 [ w=toploy | gloppul
27/ HA SXBS " + A3 VXB"3 ‘dv—(4—2t)|||X|||

o Jo
24‘HAQZ;1XBFTQ LA XBT H — (4—20) [|IXI]
> 4H AT2XBE 4 ATOXB 2 ||| — (4 — 26) ||]X]]]
>(t+2)HA“—%x3%—“+A%—°‘x3“—% ‘ (2.8)

whence, by replace X by AXB and o by r — % we get
2 ]HAZX + XB% + tAXBH‘ >2 H(Azx + XB% + 2AXBH‘ — (4 —2¢t) |||AXB]||

3 1 1 3
> 4H A2XBZ 4 A2XB2

‘— (4 — 2t) ||| AXB |

3.1 1.3
=2 H A2XB? + A2XB2

4
> [

‘ +2|||AxB2 " 4+ A2 XBT||| — (4 — 20) |1|AXB |

AVFIXB3 TV 4 A3 TVXBVF:

]dv—(4—2r)|||AXB|||
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2r+1 7-=2r 7-=2r 2r+1
>4HA 4+ XB4 +A 4 XB 3 H—(4—2t)IIIAXBIII
> 4H]Afx32—f +A2_rXBrH — (4 — 2¢) |||AXB]|]
> (t+2)HArx32*r+A2*rx3r . (2.9)

Finally, we note that the case o € [%, 1] is obtained analogously and this completes the proof. O

Note that the case t < —2 is trivial. An immediate consequence for the case r = 1 of this last
theorem is the following (exactly the Corollary 7 in [16] in finite dimensional case).

Corollary 2.2. LetA,B € B() and lett < 2. Then
VX € 3> |[[A"AX + XBB™ + ¢ [AI X [BI|]| = (¢ + 2) [[|AXB|] . (2.10)

Another immediate consequence of this last corollary is (exactly the Corollary 8 in [16] in finite
dimensional case).

Corollary 2.3. LetP,Q € Py(s#) and let t < 2. Then

VX e 3 |||+ PTIxQ + ||| > e+ 2 11Xl (211)
Remark 2.4. The last theorem and their two consequences was proved by Zhan in [16] in the particular
case of finite dimensional case. Note that Cano-Mosconi-Stojanoff [2] have proved the last corollary
using the spectral measure of a normal operator to generalize [16, Corollary 8] of Zhan for arbitrary

complex Hilbert space. Here, we have proved it in a general situation for an arbitrary Hilbert space
using only known operator inequalities.

Remark 2.5. It follows from the above corollary that for every k < 2 and for every operator S €
C*Py () the following inequality holds

VX € B(#), sts—1 +571Xs + ka > (k+2) X (2.12)

So it is interesting to characterize the class of all operators S in J(.7) satisfying this last inequality.
We denote this class by D (7).

Proposition 2.6. For every real numbers k, t,

(i) ifk > t, then © () C D¢(1),
(ii) if k > 0, then

D () C [aS ca e C* S e Alw),

Ao
—+ = +k
nwooA

> k+2, )\.,MGU(S)}.

Proof

(i) This follows by the same argument as in the proof of Theorem 2.1.
(i) Let S € Dy (). It follows immediately that the inequality HSXS’1 + S’1XSH > 21X holds
for every X in B(#°). Thus S € C*. (7).

We may assume without loss of generality that S is invertible and self-adjoint. Denote
by ¢s k the operator on B(s#) given by ¢s i (X) = SXS™! + STXS + kX. So that o(psk) =

{% + % +k:A e 0(5)} C R. Hence each spectral value of ¢s | is in an approximate point
value. Let A, u € o (S). Then there exists a sequence (X,) of operators of norm one such that
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[$XaS™1 +571X,S + KX | — |2+ &+ k| Thus k + 2 = infjx=y |SXS™1 + 571X + kx| <
A I

)ﬁ + x + k‘ . O

Remark 2.7. In the case where k > 0 and dim sz = 2, the inclusion given in the above proposition

becomes an equality.
Indeed, let S be an invertible self-adjoint operator in B(.>#), and let A and u be the eigenvalues of

S such that ‘% + % + k’ > k + 2. By a simple computation, we obtain

k+2 2yt
VX € B(x7), SXS_1+S_1XS+I<)(:< w X )oX

A
LHE+k k+2

d /(e
Since the matrix . e+ 9 n . is positive definite, thus using the Schur
S\ /(GE+ w2
theorem, we obtain
1 Aoy K
VX € B(#), ( A’H—Z;L 1/(u—tx+k)>ox < —— |IX|
1/(%+ 4 +k) = k42
Therefore
k+2 4Lk
VX € B(), (A L TR ox] 2 k2 IXI
"w + N +k k+2

Conjecture 2.8. Let k be a real number such that 0 < k < 2. Then for every natural number n and
%+%+l<‘ > k+2 fori,j =1,...,nthe matrix

for every nonzero numbers A1, ..., Ay such that
(7)@" ) is positive.
2 2 EW .
AT KA ) i
Furthermore,

Theorem 2.9. Assume that Conjecture 2.8 is valid and dim # = n. Then for every number k such that
0< k<2,

Qk(,%ﬂ):IaS:ae(C*, S e H(x), >k+ 2, )L,,uea(s)}.

Ao

— 4+ —+k
nwoA
Proof. Using Proposition 2.6, it remains to prove that

[aS ca € C*, S e A,

A p
—+ -tk
nwoA

>k+2, A, ue U(S)} C D (2).
This follows by using the same argument used in the remark. [
Finally we present new variants of C-P-R inequality.

Theorem 2.10. LetS € 3(») and X, Y € J)1.)|- The following inequality holds and is equivalent to the
C-P-R inequality for unitarily invariant norms:

M ||| (sys" + 57 Tys*) @ (s*xs* "+ 57IXs) ||| > 2llx @ VI ; (213)

(if) H)(sys*—1 +5*71vs) @ (S*xs™' 4 57'xs%)

H>2|||xeay|||. (214)
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Proof.

-1
) 0S|, o ] 0S 0 s*1
(i) Clearly is a self adjoint operator in B(.# & ) and = Lt
S* 0 S* 0 st o

)

follows from the C-P-R inequality for unitarily invariant norms that
- -1 -1

0sS X0 0sS 0sS X0 0sS
sollollee] e lea) el
X0
i

which is indeed (2.13). Now assume that (2.13) holds for all X, Y € Jj,.;y and S € 3(2#). To get (1.3)
for unitarily invariant norms, let S be self-adjoint, take Y = X and use the fact that two inequalities
[11Alll < [||B]|| and |||A & A]||| < |||B & B|||, by the Fan dominance principle, are equivalence for all
unitarily invariant norms (see [8]).

’

whence

El

[ sys—1 4 s*—1ys* 0 -,
0 s*xs*1 4 s71xs

0X
(ii) To get inequality (2.14), use the same argument as in (i) with the matrix |: } and note that
Y 0

wom=[[33 ]

Corollary 211. (i) IfS € 3(s¢) and X € B(.7), then the following inequality holds and is equivalent to
the C-P-R inequality
max{[|SXS™! + S*TIXS*|[, IS*XS* T 4 STIXS|} = 2)1X]| .

(ii) If S € 3(s»#) and X, Y are in the Schatten p-class, then the following inequality holds and is equivalent
to the C-P-R inequality for the Schatten p-norm

[[sxs=" + 5%~ xs* TsTixs|[) > 22 i

Proof. Apply (2.13) to Y = X and equalities (1.1). O
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