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Abstract

We construct anon Abelian model for SU (2) Yang—Mills theory in an Euclidean
three-dimensional spacetime and study its different phases. The model contains
a center vortex sector coupled to a dual effective field encoding information
about how the vortices are paired in the ensemble. The possible phases in the
parameter space are interpreted in terms of the proliferation of either closed
center vortices or closed chains, where the endpoints of open vortices are
attached in pairs to monopole-like defects.

PACS numbers: 11.15.—q, 11.15.Tk

1. Introduction

One of the most promising physical explanations for quark confinement is based on the
role played by magnetic objects when analyzing the vacuum structure of SU(N) Yang—
Mills theories. These scenarios have been analyzed in the lattice, relying only on monopoles
[1-4], only on Z(N) center vortices [5—9], or on chains. In the latter case, the ensemble
includes configurations where N center vortices are attached to a monopole [10-12]. In
the continuum, the difficulties encountered when trying to explore these ideas from first
principles, by following controlled steps on the partition function of pure Yang—Mills theories,
are daunting. Indeed, three related questions come to mind, the first being how quantum
effects can generate a dimensionful scale to characterize these ensembles. Then, one should
know how to define a path integral measure including those magnetic configurations. Finally,
one should compute the corresponding ensemble integration. These stumbling blocks are
precisely what make semiheuristic effective models interesting. Using as a phenomenological
input the possibility that magnetic defects could play a relevant role, and based on general
principles of symmetry, different models can be proposed to be contrasted with experiments
or the lattice. In this direction, effective field models based on the monopole component, to
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describe confinement in 4D, have been extensively discussed (see [13—18]). More recently,
a non Abelian model containing Higgs fields in the adjoint describing confining strings and
junctions has been presented [19]. While the string confines a quark—antiquark pair to form
normal mesons, junctions confine quarks in a color nonsinglet state together with a valence
gluon, to form an overall neutral object, identified with a hybrid meson. These states are allowed
by QCD, and current experimental collaborations are aimed at identifying them [20-22].

In 4D, monopoles are stringlike so that ensembles only formed by them can be naturally
related to effective field models. This comes about as an ensemble of stringlike objects can
be thought of as a sum over different numbers of particle worldlines, which corresponds to
a second quantized field theory [23-28]. On the other hand, the inclusion of center vortices,
which in 4D are two-dimensional objects, poses great difficulties. They are naturally associated
with random surface models [29] rather than with an effective field description. To gain insight
into the possible mechanisms based on magnetic objects and explore their possible relation
with effective models, it would be interesting to take into account the role played by all the
different types of magnetic defects. Models defined in 3D are unique in this sense since here
vortices are stringlike, thus opening the possibility of discussing correlated monopoles and
center vortices by means of a field theory. In this work, our main interest will be constructing
and analyzing an SU (2) model whose possible phases correspond to the different ensembles.

The vortex model introduced by t” Hooft [30] is a low energy effective field theory that
successfully describes some aspects of the confinement mechanism in 3D SU (N) Yang—Mills
theories. It is defined in terms of a dynamical variable which is a complex scalar field V
equipped with a discrete Z(N) symmetry, whose Lagrangian is

L=208,V3,V+pu*VV +a(VV):+ WY + VM), (1)

Its form is based on a study of the possible nontrivial vortex correlation functions in the original
theory. In particular, the confining phase is described as one where the discrete Z(N) symmetry
is spontaneously broken (Z(N) SSB), due to the presence of a vortex condensate. In [31], we
derived this type of model by considering an ensemble of chains, where the vortex endpoints
are attached in pairs to monopole-like defects, and following recent polymer techniques to
compute the vortex end-to-end probability. The obtained model is in fact a generalization
of equation (1) where 0,, is substituted by the covariant derivative D,,, which depends on a
dual vector field A, describing the off-diagonal sector. The dynamics is completed with a
Proca action term for A, (see also [32, 33]). 3D effective field models can also be obtained in
scenarios based just on the monopole (instanton) component. In this case, the assumption of
Abelian dominance and the associated monopole ensemble is encoded in a sine-Gordon type
model for a scalar dual field (see [34, 35] and references therein), as occurs in the case of
compact QED(3), discussed by Polyakov in [36].

In spite of the fact that the initial theory is a non Abelian one, these effective models are
Abelian, that is, additional information regarding this transition is already incorporated, while
it would be desirable to see it appearing as a phase transition in a previous non Abelian model.

In this paper, we construct a non Abelian effective model which encompasses a description
of interacting effective gluons and center vortices. Depending on the choice of parameters,
the vortices can be found in different states, including a phase where they are closed, and
a phase where their endpoints become paired to form closed chains. To that aim, we use
a parametrization that treats the different color components in a symmetric way [37], and
describes correlated monopoles and center vortices as defects of a local color frame 7,
a = 1,2,3. This parametrization is based on the usual manner to introduce thin center
vortices in Yang—Mills theories [29, 38], and corresponds to a symmetric form of the
Cho-Faddeev—Niemi (CFN) decomposition [39—41], used to represent monopoles as defects
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of the third component 7 = 73. For a description of center vortices in the CFN framework,
and related consequences in the continuum, see [32, 33].

Since center vortices can be joined in pairs to pointlike monopoles, the natural non Abelian
field content of the model is given by a scalar field with one (magnetic) color index, generalizing
the vortex field V in equation (1), and a scalar field with two color indices, generalizing the
scalar dual field in scenarios only involving the monopole component®. The order parameters
present in the effective model bear a relation to the nature of the phase transition one
may describe. In this respect, an interesting point has been raised [35] about whether the
confining/deconfining phase transition is of the Kosterlitz—Thouless or Ising model type. The
former involves the monopole sector: at high temperatures, the instanton magnetic flux is
distributed along the two spatial directions, thus leading to effective logarithmic interactions.
Then, because of dimensional reduction, instantons and anti-instantons tend to be suppressed
by forming pairs. On the other hand, the latter naturally involves the vortex degrees of freedom,
as they are the objects where the discrete symmetry transformations act.

In the model we construct and study below, since it does contain order parameters for
both the center vortices and the distribution of monopole-like defects they can concatenate
to form chains, an interesting framework to discuss the competition between different phases
shall emerge, originating a phase diagram with a rich structure. This paper is organized as
follows: in section 2, we deal with the topological defects included in the model, in particular,
their parametrization, and the functional and ensemble integration over them. In section 3,
based on the results of the previous section, and after discussing the possible symmetries, we
construct an action for the effective model in terms of the fields introduced therein. Finally, in
section 4, we present a study of the phase structure of the model, based on some assumptions
about the relative strength of its different terms.

2. Non Abelian defects in YM theories

We shall begin from the SU (2) Yang—Mills action, Sy, which may be written as follows:
1 .
SYM = Z / d3XF;w . F;wa (2)

where 17,“, is the non Abelian field-strength tensor. We use an arrow on top of any object to
denote the 3-component vector formed by its components on the su(2) Lie algebra basis, whose
elements are the (Hermitian) generators (T”)zzl . In the concrete case we are considering, they
can be conveniently realized as 7¢ = t“/2, where t* denotes a Pauli matrix; they satisfy
[T, T?] = ie® T°, and tr(TT?) = 36

Thus, with this notation, we may write down the defining equation for ﬁ,w, as follows:

| Lo =
ELV'T=§[DM,D\)], D,=09,—igA, T, 3)

where D,, has been used to denote the covariant derivative operator, when acting on fields in
the fundamental representation.

It goes without saying that a ‘canonical color basis’ (é")z= , (with color components
éz = J4p) can be introduced, so that Xu = XZ ¢“. This seemingly trivial remark is made in
order to highlight the next step; namely, that one could have used a different basis. Indeed, in
order to describe configurations with defects, in a symmetric way that admits its extension to
finite size objects, we introduce a space-dependent color basis (72,)>_,, related to the original

a=1°

one by: ST*S™! =4, - T (with § € SU (2)). Thus the new basis is connected to the canonical

3 Interestingly, isospin two-order parameters appear in models for liquid crystals [42].
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one by an orthogonal space-dependent matrix R(S): 71, = R(S)é,, which belongs to the adjoint
representation. In this representation, the corresponding infinitesimal generators shall be
denoted by M“, with (M®)" = —ie®*. They satisfy [M*, M?] = ie®**M°, tr (M*M") = 25
At this point, and equipped with the local basis, we consider the parametrization of the gauge
field [37]:

Ay = (A = Gl “
where the frame-dependent fields
Ct = —ie“"‘*ﬁb 9,0 (5)
" 2% e,

satisfy the properties:

A A abc ~a
np - 0,7 = —ge Cw

i
CoM* = éR’lauR. (6)

This corresponds to a symmetric form of the (CFN) decomposition [39-41]. In terms of the
parametrization (4) of the gauge field, we note that the field-strength tensor becomes:

Fuy = G% i, G, = Fo(A) — F2,(O), (7

with 72, (A) = 9, A% — 8, A% 4 ge** AL A¢ (and an analogous expression for ¢, (C)), while
the Yang—Mills action is given by:

1
Sym = /d3xZGZvaw. ®)

Regarding the color components of the frame-dependent tensor 77, (C), they can also be
obtained by commuting covariant derivatives in the adjoint representation:

i 1 a a
Fo(OM" = é[D,L, D), D, =8, —igliM", ©)

so that the second equality in (6) implies the alternative expression for 7, (C):

Y

F°.(C) = Zi—gtr(M“R’l[E)M, 3,]R). (10)

This equation highlights the meaning of FJ,(C), by showing that it can only be different
from zero where R has defects; these, are characterized here by the noncommutativity of the
mixed partial derivatives. These defects are zero measure objects; in other words, the partial
derivatives will fail to commute on zero measure regions. Being this an effective theory, this
should be interpreted as the assumption that the model describes physics at distances much
larger than the size of the defects.

Of course, there are infinitely many different local frames, and corresponding fields A%,
that can be used to describe one and the same gauge field configuration, A7. One can use
that large amount of freedom in order to split it into its ‘regular’ and ‘singular’ parts. Indeed,
the AZ measure will represent topologically trivial fluctuations. The singular configurations,
described by the frames, will have a measure representing an ensemble integration over defects.

In [37], one of us has shown that the configuration in (4) is tantamount to the usual way
[29, 38] to introduce thin center vortices on top of a trivial field configuration AZ é,4, namely,

A, T=SA, TS+ 50,5 ~1,5)-T. (1
g

Because of the presence of the last term, this is not just a gauge transformation of the
topologically trivial gauge field. Indeed, the I, (S) field corresponds to the so called ideal
center vortex, and is localized on a hypersurface X. This is the region which, when traversed,
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makes S change by a center element. I:L (S) is designed to cancel the contribution in the second
term originated from the discontinuity of S~!, only leaving the effect of the border of ¥ where
the thin center vortices are located. That is, we can write

180,575 = 1,(5) - T, (12)
8

where the subscript in the left-hand side amounts to just keeping in the calculation the term
originated from the derivative of the discontinuity in S~'. Considering two regular mappings
U, U, the ideal vortex satisfies

LUSU™) T =UL,(S)-TU™", (13)

obtained from Bﬂ(ﬁ’IS’IUfl)Iz = 0’18,LS’1|2 U~', as the term localized on X is only
generated when 9,, acts on S~'. The gauge field A'M = A'u (/f, S) in (11) enjoys the following
properties,

AV(A, 8) =A(A US), A(AS) =AAY,SU). (14)
Then, in terms of the /T S variables we have a double redundancy, the usual one associated
with invariance of the Yang—Mills action under gauge transformations, XZ T = UA, e TU '+
éU a9, U ~!, represented by S — US, and other originated from the different ways to express
the same vector field, combining the transformation A'Z T=0U ./TM CTU! + i,l? 3u0 -1,
together with a right multiplication of S.

At this point, we would like to emphasize that a nonperturbative definition of the path
integral in Yang—Mills theory is still lacking. This comes about as a gauge fixing procedure
generally leads to Gribov copies [43] in that regime, so that it is difficult to define an appropriate
object where each physical situation is counted only once. The restriction to the modular region
has been usually implemented by means of the Zwanziger action [44]. In this framework, in
the infrared regime, the path integral has been shown to be dominated by configurations
near the Gribov horizon. On the other hand, as is well known, configurations containing
magnetic objects proliferate at the horizon [45—47]. From this perspective, it is natural to fix the
redundancy by introducing the identity 1 = Agp[.A] f [dlj 181 (AY)], in the perturbative sector
where the Faddeev—Popov procedure is well defined. In addition, as the S sector parametrizes
correlated monopoles and center vortices, it represents configurations at the horizon, relevant
to describe the large distance physics. Giving a configuration S, gauge fixing amounts to
choose a representative of the orbit US. Any condition imposed on A(A, S) will be invariant
under the U-transformations in equation (14). This is also the case for conditions depending
on I (85), as it is invariant under right multiplication (cf equation (13)).

In this paper, we shall not attempt to derive a precise construction of the integration
measure. Rather, having the previous remarks, notation and conventions in mind, we argue
that it is quite natural to propose the following path integral

Zyw = / [dAAS] ArpLAISLF(A)] &S] (15)

where dS represents the ensemble integration over monopoles and thin center vortices, that is
supposed to include its own approprlate gauge ﬁxmg condition. Note that, in the trivial sector,
where S = S, is regular, we have A(A S = A5 and the associated contribution to (15) is
the usual, perturbative one. Only in that sector A(AU S) = A(A SU) may be identified with
a gauge transformation.

As a final step, and as a guide to the construction of the effective model, we rewrite the
partition function in the equivalent form:

Zym = / [dAI[AS][dA] App[AISLf (A)] e~/ PHLEHMAHNFLA-FION - (16)

5
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where ]-" = e,w oy 0 and we have introduced a color-valued auxiliary field A“ to deal with

a first- order version of (8).

3. The effective theory

Let us now derive a non Abelian effective field theory for the sector of defects. The derivation
will become possible by relying on the symmetries exhibited by the ensemble integration. This
effective theory shall contain mass parameters, which we assume are originated from those
present in a (phenomenological) ansatz for the action of the defects. In this regard, we note that
up to now we have considered thin center vortices, parametrized as in (4). However, lattice
simulations [5] point to the idea that they become thick objects, characterized by some finite
radius of the order of 1 fm. Moreover, as discussed in [37], the stable objects in the continuum
could in fact correspond to some deformation of the thin objects given in (4), where the ‘thin’
quantities Cj; are replaced by some smooth finite radius profiles Cj. If this is assumed to be
the case, rather than equations (7) and (8), the Yang—Mills action would have the form

1
SYM = fd3xz (‘7:,311("4) - va(C))Z + R’ (17)

where R vanishes for thin center vortices. Note that the first term can be linearized, as we
did before, by introducing the fields A7. Besides, at large distances, approximating Cj; by
C,, this term shall originate the terms appearing in the exponent of equation (16), when the
center vortices were considered to be thin. On the other hand, the second term (R), will be
concentrated on the center vortices and at large distances will produce instead an additional
action S, for the defects. Therefore, in the general case, the ensemble integration must be
written in the form

e Sunlt] _ / [dS] e~ S+ CBLFLC) | (18)
The second term in the exponent above has a local SO(3) symmetry under right multiplication:
S — SU, changing the color basis from 7, - T =STS"ton,-T =SUTU~'S", that is,

i, = R(S)R(U )é,. Note that, using (10), and that R(U ) contams no defects, we have
Fo,(C) = Zitr(R(lj)M"R’l(l})R’l(S)[BM, 3,1R(S)). (19)
8

In other words, a regular local rotation of A7, can be translated to a regular local transformation
of S. Then, if S; were nullified, that is, if we were dealing with strictly thin center vortices,
Sy.m[A] would be invariant under local SO(3) rotations, as the transformation S — SU could
be absorbed by the integration measure dS. In this regard, we would like to underline that
this measure is to be accompanied by an appropriate gauge fixing condition that is invariant
under right multiplication (see the discussion at the end of the previous section). However, in
Sy.m[A], that symmetry will be broken to a global one because of the thick character expected
for center vortices. To have a simple picture about this statement we note that an action for
thick center vortices will typically contain a Nambu—Goto term plus other terms describing
the center vortex rigidity [29, 48]. These pieces can be generated, for instance, from a large
distance approximation of the more symmetric term (in color space)

/ Exd’y F4,(C)] Gux — y)Fs,

where Gy is a kernel localized on a scale 1/M. Now, as we have seen in equation (19), the
field strength 77, (C) will rotate under local U transformations. Therefore, as for any finite M
the integrand above depends on the field strength at different spacetime points, it will change
under the local transformations, only leaving a symmetry under the global ones.

6
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Based on purely geometrical/mathematical grounds, the possible kinds of defects can be
straightforwardly classified as follows.

(i) Closed center vortices.
(ii)) Monopoles and antimonopoles, joined by center vortices (each pointlike object is joined
by a pair of center vortices).
(iii) A particular limit of (ii): a coincident pair of center vortices, which should correspond to
an unobservable Dirac string.

To proceed, let us consider a type (ii) configuration (correlated monopoles and center vortices).
To that end we recall that, in [32, 31], we have considered a particular case of that situation,
namely, when the center vortex color points along the (locally) diagonal direction 723. In that
case, the effective field describing these objects corresponds to a complex vortex field V. In
particular, in [31], we have shown how the ensemble integration over open center vortices,
whose endpoints are joined in pairs to form closed chains, leads to an Abelian Z(2) effective
theory that can be written in terms of V, thus making contact between the initial representation
and the final effective field theory. With this aim, we applied recent polymer techniques [49, 50]
to deal with the end-to-end probability associated with center vortices interacting with a general
vector field A, and a scalar field needed to represent vortex—vortex interactions. However,
it is far from straightforward to extend this type of derivation to the non Abelian context.
Therefore, in our case, we will propose a model relying on the symmetries displayed by the
initial representation, that strongly constraints the possible associated effective theories.

In our case, the candidate for a vortex field has to be a real 3-component field ¢
(a =1, 2, 3), because of the global SO(3) symmetry of the action S[A]. We shall also introduce
an isospin-2 field Q, where Q is a traceless symmetric 3 x 3 real matrix, encoding information
about how the monopole-like defects that center vortices can concatenate are distributed. We
may then consider in the effective theory, an invariant term V; that couples the monopole and
vortex sectors:

Vi=t¢¢pTQ¢, ¢ = constant (20)
which is invariant under the local SO(3) transformations:
¢(x) > R)P(x), Q) = RX)Q@)R (x). (21)

There are also invariant terms involving just either the vortex or the monopole field.
Regarding the former, we may include a ‘potential’ term Vs, with the general structure:

: A
Vo="5¢"0+ 5070 @2)

where p and A are arbitrary constants. On the other hand, for the case of the monopole field,
we recall that an order parameter Q, with a similar structure, is well known in the context of
liquid crystals. Thus, we expect the relevant terms in the effective theory to be of the same
kind, namely, we may include a potential V, [42]:

v, —A8+BA+C62+D5A+EA2+F83 (23)
72" 3T Ty 5 6 :
where A, ..., F are constants, and we have introduced two independent SO(3) invariants* that
can be built in terms of Q:
§=TrQ% A=TrQ". (24)

4 Being a traceless real symmetric matrix, the invariant content of Q can be generated by two real invariants. For
example, two of its eigenvalues.
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Thus, the three terms Vg, Vp and V; have the local symmetry (21). This local symmetry
will be broken to its global counterpart by the kinetic terms; however, these terms shall be
constructed in such a way that they are compatible with a local discrete gauge symmetry. This
symmetry must be present, at least in a phase where the vacuum is symmetric (no spontaneous
symmetry breaking).

In this regard, the field-strength tensor F' /‘j (C) can be written as

a 1 a
‘FM(C) = Ee;wp fUp(C)
8

= €uvp ,Ch + 2 € erchcd, (25)
where
Cl= — —hy- 3,3
8
2 1,
C: = — —n3 - anl
8
3 1. -
Cll = — —nj- 3,,712. (26)
8
We will show that 77/ (C) can be rewritten as
fZ(C) = hz - hz 27
Ta A a 1 ~ ~ ~
h, = €u0p0,C,,  hy = —dewpna - (Bp7g X 0plig), (28)

where, in the second tensor, no summation over a is understood.
Let us take, for example, the third component of the field-strength tensor

Fi=h —h, (29)
B = €updCs, I = —g€u,CiCo. (30)
In order to show that
1
= —Z—gewfﬁ - (8u7% x 3,1, (31)

we can simply note that
dviz = (A - 3,n3)Ay + (71 - 0y73)n + (A3 - 3y73)N3
= (A - dyn3)ny + (iy - 3,713)1;
= g(C; A1 — Cy ha). (32)
Then, replacing in the second member of (31), and using i x 7, = i3, etc., it is straightforward
to make contact with (30).
The important point is that (27) and (28) imply that for a fixed monopole background

correlated with center vortices, the integral of each component over a closed surface 99 (given
as the border of a three-volume )

~ 1
yg ds, F,(C) = '(ﬁ dSM(hZ —hy) = —f dS, €uvpiy - (Bpiig X 0phy), (33)
20 20 28 Joe
gives the IT, topological charge for the mapping 3¢ — n,. More precisely,
4
yg ds, F,(C) = ?(m(ﬁ) —n_(9)), (34)
36
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where ny (¢+) (n_(?)) is the number of monopole (antimonopole) defects inside ¢, for the
component 7.

It may appear that the previous expression sets a preferred direction in the color space.
This impression can be dispelled by considering the effect that a space independent change of
color basis has on the expression (34). To that end, we consider a new basis (fl;)z:l, related
to the original one by a (constant) matrix R’, namely: i1, = R'fi;, a = 1, 2, 3. In components,
and using an obvious notation, the last relation means:

()p = (R)pe (). (35)
Thus, we see that:

%d&@w%mm%x%%)
a0
= fi)@ dSue;wpeblbzbg (ﬁ;)bl av (ﬁ;)bz 8,0 (ﬁ;)b3

= % dS;LE;wablbzbg (R/)blcl (R/)bzcz (R/)bg('j, (ﬁu)cl av (ﬁa)cz ap (ﬁu)C}
a0

= (detR/)yg dS€p0pMa + (Bphig X Bphig), (36)
36
where we have used the property:
6b1bzb3 (R/)blcl (R/)bzcz (R/)b3c‘3 = (det R/)661€2€3 . (37)

A similar relation holds if one changes the original canonical basis by a constant rotation
matrix. What this proves is that it is possible to generate a monopole charge along any color
direction as long as one needs how to do that for, say, the third one.

Thus, coming back to the discussion on the possible form of the kinetic terms, they must
be—at least in the symmetric phase—compatible with the local discrete gauge symmetry:

Ay = A+ B0, (38)
where w* is a discontinuous function taking values :|:§ inside a three-volume ¥, and O outside.
Note also that in a phase only containing closed center vortices, a larger symmetry,

)»Z — AZ + 9,97, (39)
for any smooth ¢“, is expected: in this case, the absence of monopoles would imply
I F,(C) =0.

Then, the kinetic terms must have the global SO(3) symmetry plus the local Abelian
one. The simplest choice, which, in the effective theory approach spirit we shall consistently
adopt, is to minimally couple ¢ and Q to A7, (note that these couplings do not have the local
X(x) — R(x)X(x) symmetry). Thus, the structure of the kinetic term K is as follows:

K =K, + Kp, (40)
where:

Ky = 3(Vu)"(V,u9)"

Ko = 5(V. O (V.00 (4D
where V,, denotes the covariant derivative operator (consistent with the symmetries mentioned
above), which shall adopt a different expression when acting on each one of the fields.
Explicitly:

(Vu(p)a — aﬂ¢a _ 1g¢ )\Zéabc(ﬁc

(V/J,Q)ab — 8ﬂQab _ ng )\ZéaCdeb + ngQadédCb)\C , (42)
where g4 and g are constants.
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The global SO(3) symmetry is evident, while by imposing g4 = g¢, the effective action
will display a non Abelian gauge symmetry, and the different phases for the ensemble of
monopoles and center vortices will arise as different possible vacua when the system undergoes
SSB. Note also that as the field ¢ represents center vortices that in the case of Abelian
configurations possess a magnetic charge 27 /g, the natural choice is g4 = 27 /g, which also
matches the correct dimensions in equation (42) as [A] = 3/2, [g] = 1/2.

Then, joining the different pieces and taking into account equation (16), the following
model, encoding a general ensemble of magnetic defects, can be proposed

Lest = Lo+ 3A0X0 + 110 FL(A), (43)
Lym =Ko+ Ky+Vy+Vo+V. (44)

We would like to underline that according to the discussion at the end of section 2, and
beginning of section 3, the symmetry displayed by the second and third terms in equation (43),
namely a transformation AV, accompanied by the local SO(3) rotation of A%, is not the
gauge symmetry that operates on A - Therefore, the noninvariance of £, ,, under local SO(3)
rotations of A}, is not an explicit breaking of the gauge symmetry in our effective model.

Only in the trivial sector AU may be associated with a gauge transformation, in other words,
our model refers to the interaction of effective fields, parametrizing a general ensemble, with
effective gluons represented by A,,.

4. Phase structure

In order to analyze the possible phases of the model, it is necessary to study all the possible
scenarios regarding both the ¢ and Q dependent potentials, V;; and V), as well as the interaction
V;. This will yield information about the possible translation invariant configurations that will
determine the properties of each phase. Non translation invariant configurations, on the other
hand, are important to understand the mechanism driving the phase transitions between them.
Of course, that will require the inclusion of the derivative terms into the game.

Thus we consider the minima of

Vr =V, + Vo + V. (45)

This analysis is greatly simplified if we note that Q can always be diagonalized by a similarity
transformation Q = R DR, with

D= 0 -4+3 0]. (46)
0 0 q
Defining R¢ = 1, the potential V7 adopts the form
A B €, D E o 1 7 AT T
VT=§5+§A+Z5 +§8A+EA +71ﬂ W+Z(W V) + ¢y Dy, (47)

8=0Gq"+1"/2
A =3q(q" —n*)/4
VDY = =St )+ 203 — v+ qus. 48)

Here, the term &3 that was present in equation (23) has been discarded, as it does not modify
the qualitative structure of the minima [42].

10



J. Phys. A: Math. Theor. 46 (2013) 335401 C D Fosco and L E Oxman

N+ \ N—

Figure 1. A-B phase diagram for the monopole sector, when CE > 6D?/25, D < 0. The isotropic,
N* or N~, and N, monopole phases trigger corresponding vortex models displaying non Abelian,
U(1) and Z(2) symmetry, respectively. In particular, the N, phase may lead to a confining vortex
state, where Z(2) is spontaneously broken. Solid lines represent first-order transitions while dashed
lines are second order.

Now, to find the minima of the potential, we will suppose that the chain of
spontaneous breaking of the symmetries is dominated by the monopole sector. Concretely, this
approximation amounts to finding the minima of Vy, and using the configurations go, no that Q
adopts in those minima as a fixed background where we look for the vortex field configuration
that minimizes the remaining potential. Then, the whole space of minima is generated by
means of R-rotations of the former.

The minima of V are determined by:

9,V

Y 40,10

=0, d,Vo|, =0 (49)
plus the usual conditions on the second derivatives. We will follow the discussion in [42]
where the different kinds of minima are obtained by varying A and B.

When CE > 6D? /25, the potential, considered as a function of §, A, contains a positive
definite quadratic form. In addition, changing the independent variables g and », the region
83 > 6A? is mapped, and the strict inequality occurs for 5 # 0. Then, the points obtained by
simply minimizing with respect to §, A taken as independent variables lead to possible minima
as long as they correspond to ny # 0. Otherwise, the potential must be minimized with the
constraint 8° = 6AZ, in which case two different situations are obtained, qgo = 0,10 =0or
q0 75 0, No = 0.

Then, the 1-field minima follow from the study of the ‘effective potential’ V(v ), defined
by:

V() = Ve + Vi(qo, n0; ¥). (50)
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Nt N~

Figure 2. A-B phase diagram for the monopole sector, when CE < 6D?/25, D > 0. In this case,
the N}, phase and the associated Z(2) SSB vortex state are lacking. When D < 0, the diagram is
similar, with the NTN~ line having opposite tilt.

and of which explicit form is:

1 1
V() = 5[13 — ¢(qo +n0)J¥i + E[HP —¢(qo — 10)]¥3

1 A
+ zuﬁ +20q0)V3 + Z(w% + 93 +¥3)’ (51)

For D < 0, the monopole phase diagram is that of figure 1 [42].

When CE < 6D?/25, the minimization of the potential requires again the constraint
83 = 6A?, thus leading to go = 0,79 = 0 or gy # 0,79 = 0 minima. In this case, the
monopole phase diagram is depicted in figure 2 , so the analysis will be similar to the former
case, with the important difference that the 1y # O phase is lacking. Then, from now on we
will consider CE > 6D?/25. It is clear what kind of vacua may emerge, depending on the
relative values of the parameters. We first note that stability requires A > 0. If the parameters
A, B are initially in region I, we have Q = 0 (g0 = 1o = 0), and the effective vortex potential
results, V' () = “721,02 + %(1&2)2. Then, if x> > 0, the minimization gives ¥ = 0. With
this vacuum, S, ,, displays a non Abelian gauge symmetry, much larger than the Abelian
symmetries in equations (38) and (39), typically obtained when monopoles and center vortices
are present. Therefore, this phase represents a situation where monopoles and center vortices
do not proliferate (deconfining phase). Still in the Q = 0 phase, but with u?> < 0, the system
undergoes SSB leaving an Abelian symmetry. If the mass scale generated for the off-diagonal
fields is large, they will be suppressed and then the effective theory will essentially be invariant
under Abelian gauge transformations of the form

Xu-qgo — Xu-qgo+8u<p.
Thus, recalling equation (39), this phase describes an ensemble of closed center vortices.

Now, in order to continue the analysis, it is convenient to define a complex field
V= %fz (Y1 + 1yY,), and rewrite equation (51) in the form (we consider ¢ < 0)

12
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V(@) = (W + 121qo)VV + 3 |eIno (V2 + V) + L = 21¢1g0) v + A(VV + 1y2)°. (52)

When A is lowered from positive to negative values, after a first-order transition, we will enter
the uniaxial nematic phase N* (go > 0) or the N~ (g9 < 0), depending on whether B < 0 or
B > 0. These phases are characterized by 79 = 0. In what follows, to simplify the analysis,
we will suppose /Lz > 0. Then, if we enter the N~ phase, after a discontinuous transition, the
effective potential V™ (v) will be minimized by yr3 = 0. In the monopole sector, the vacuum
will be invariant under rotations around the third axis, while in the V-sector this symmetry will
undergo a U(1) SSB or not, depending on the sign of (1% + |¢|go). In addition, the N~ phase
will induce a mass of order q(z) for the charged dual vector fields A /11 and Ai, originated from the
covariant derivative of Q in equation (42). If we assume this mass to be large when compared
with the other mass scales in the problem, these dual vector fields will become suppressed.

If we further diminish A, after a second-order phase transition, we will eventually reach the
biaxial phase N,, where ng # 0. As this transition is continuous, and we are approaching from
the N~ phase, we will begin with i3 and ny small. In the N, phase, the U (1) symmetry of the
effective action in the former N~ phase will be broken to a discrete one under 7 -rotations along
the third axis. Again, in the monopole sector the vacuum is invariant, while in the vortex sector
it will display SSB of the discrete -rotations depending on the sign of (% +|¢|go). When this
quantity is negative, at the minima, the V field can take a pair of values Vj, —V|; connected by a
Z(2) symmetry. That is, the obtained effective potential coincides with the confining phase of
the vortex model introduced by t’ Hooft, relying on the possible nontrivial vortex correlators
in the initial theory. In this phase, the spontaneous Z(2) symmetry breaking leads to domain
walls attached to Wilson loops, thus providing an area law. Still in the (1> + |¢|g0) < O case,
in the intermediate N~ phase, the vacuum no longer displays the Abelian symmetry present in
the initial phase, where center vortices are only closed objects, nor the discrete symmetry of
the last phase, typical of open center vortices whose endpoints are joined in pairs to monopole-
like objects that proliferate. From this perspective, we speculate that the N~ phase might be
associated with one where monopoles and antimonopoles are still bound in pairs.

5. Conclusions

We have constructed a novel non Abelian effective model for SU (2) Yang-Mills theory in
an Euclidean three-dimensional spacetime that allows for the description of a phase diagram
with a rich structure. The construction is based on a special parametrization of the gauge field
configurations X# in terms of a vector field ./ru, representing a topologically trivial sector
of smooth fluctuations, and a local color frame i, containing defects, the nontrivial sector
describing monopoles and thin center vortices. The frame can be written as a local SO(3)
rotation R of the canonical basis é,, which can be also expressed in the form R = R(S), where
S is in the fundamental representation.

This parametrization is used to write the Yang—Mills action, which defines the weight
assigned to each configuration. On the other hand, as in any non-perturbative definition of
the functional integration measure in a non Abelian gauge theory, one is faced with the usual
stumbling blocks, related to the Gribov problem. We do not attempt to tackle this problem;
rather, since we use the functional integral just as a guide for the subsequent derivation of the
effective model, we use instead a definition of the measure which: (a) reduces to the proper
one for topologically trivial configurations and (b) is consistent with (although not uniquely
determined by) the properties of the gauge field parametrization used.

The next step in the construction of the effective model proceeds with the introduction
of an auxiliary field Xu that linearizes the Yang—Mills action, and the incorporation of a
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phenomenological weight S, that senses the geometry of the defects. It is at this point where
the real reduction to an effective theory is implemented. Indeed, the symmetries are identified
here, for a given classification of defects, what allows us to construct an effective model.

If S; were nullified (thin objects), the partition function for the sector of defects should be
invariant under local SO(3) rotations of X, as they could be absorbed by a frame redefinition,
transforming S under right multiplication by an appropriate regular SU (2) matrix U~'. In the
Yang-Mills partition function, the symmetry should also be accompanied by the transformation
A?f. However, this symmetry is the one associated with the many different ways a given gauge
field Xu containing thin defects can be decomposed, so that it is expected to be broken as
soon as center vortices become thick. Alternatively, this could be seen as the noninvariance
of the effective phenomenological action S, under local frame rotations, only leaving a global
SO(3).

An interesting point is that in order to guide the construction of the effective model for
the ensemble integration, not only the global SO(3) symmetry is important but also a new
symmetry comes into play. At least in the symmetric phase, due to the topological structure
of monopoles, the model should be invariant under a local discrete gauge symmetry. This led
us to propose a non Abelian model describing the interaction of the natural order parameters
for monopoles and center vortices with the effective gluon field .,ATM. As center vortices can be
attached in pairs to the non Abelian monopoles, the corresponding order parameters are given
by fields ¢ and Q, carrying isospin one and two, respectively. The effective character of the
gluons is due to the fact that gauge transformations of the Yang—Mills fields Xu act as a left
multiplication of the § sector, leaving XM invariant.

The effective model we introduced exhibits a rich phase diagram. For instance, the
monopole sector of the effective potential depends on two invariants, § = Tr 9%, A = Tr Q°. If
this sector is supposed to dominate the transitions, the phase diagram inherits, by construction,
some of the properties found in liquid crystals. In this case, if the quadratic form in the
quantities 6 and A is positive definite, and the coefficient of the linear A-term is positive, an
interesting chain of phase transitions is obtained.

Initially, when the coefficient of the linear §-term (A) is varied from positive to negative
values, a first-order transition from the isotropic deconfining phase to a uniaxial monopole
condensate takes place. In this process, in the vortex sector, the ‘third” component becomes
suppressed, while the other two components can be arranged as an Abelian complex vortex
field V displaying U (1) SSB. In this example, the vortex mass scales have been supposed to be
negligible when compared with those generated in the monopole sector. The further reduction
of A produces a second-order phase transition, and the monopole condensate becomes biaxial.
Here, center vortices are left in a global Z(2) SSB phase, thus making contact with the ’t Hooft
vortex model, and arriving at the confining phase expected in 3D Yang—Mills theories.
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