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The ambulatory assessment of vocal function can be significantly enhanced by having

access to physiologically based features that describe underlying pathophysiological

mechanisms in individuals with voice disorders. This type of enhancement can improve

methods for the prevention, diagnosis, and treatment of behaviorally based voice

disorders. Unfortunately, the direct measurement of important vocal features such as

subglottal pressure, vocal fold collision pressure, and laryngeal muscle activation is

impractical in laboratory and ambulatory settings. In this study, we introduce a method

to estimate these features during phonation from a neck-surface vibration signal through

a framework that integrates a physiologically relevant model of voice production and

machine learning tools. The signal from a neck-surface accelerometer is first processed

using subglottal impedance-based inverse filtering to yield an estimate of the unsteady

glottal airflow. Seven aerodynamic and acoustic features are extracted from the neck

surface accelerometer and an optional microphone signal. A neural network architecture

is selected to provide a mapping between the seven input features and subglottal

pressure, vocal fold collision pressure, and cricothyroid and thyroarytenoid muscle

activation. This non-linear mapping is trained solely with 13,000 Monte Carlo simulations

of a voice production model that utilizes a symmetric triangular body-cover model of

the vocal folds. The performance of the method was compared against laboratory

data from synchronous recordings of oral airflow, intraoral pressure, microphone, and

neck-surface vibration in 79 vocally healthy female participants uttering consecutive

/pæ/ syllable strings at comfortable, loud, and soft levels. The mean absolute error

and root-mean-square error for estimating the mean subglottal pressure were 191 Pa

(1.95 cm H2O) and 243 Pa (2.48 cm H2O), respectively, which are comparable with

previous studies but with the key advantage of not requiring subject-specific training
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and yielding more output measures. The validation of vocal fold collision pressure and

laryngeal muscle activation was performed with synthetic values as reference. These

initial results provide valuable insight for further vocal fold model refinement and constitute

a proof of concept that the proposed machine learning method is a feasible option for

providing physiologically relevant measures for laboratory and ambulatory assessment

of vocal function.

Keywords: ambulatory monitoring, neck-surface accelerometer, subglottal pressure estimation, voice production

model, neural networks, clinical voice assessment

1. INTRODUCTION

Laryngeal voice disorders have been estimated to affect
approximately 30% of the adult population in the United States at
some point in their lives (Bhattacharyya, 2014). Voice disorders
can disrupt or preclude normal oral communication and thus
have far-reaching social, professional, economic, and personal
consequences for those affected. The most common voice
disorders are associated with detrimental patterns of daily vocal
behavior and voice use (often classified as vocal hyperfunction)
for which there is limited understanding of the underlying
etiological and pathophysiological mechanisms. The paucity of
such information serves to hinder the effective prevention,
diagnosis and treatment of these common voice disorders.

Ambulatory voice monitoring using a neck-placed
accelerometer (ACC) provides the capability to quantitatively
assess daily vocal function and has also been shown to have the
potential to assist in modifying vocal behaviors via ambulatory
biofeedback (Popolo et al., 2005; Hillman and Mehta, 2011;
Mehta et al., 2012; Andreassen et al., 2017; Van Stan et al.,
2017a). Numerous features have been extracted from the
ambulatory recording of the ACC signal, including phonation
duration, sound pressure level (SPL), fundamental frequency
(fo) (Ghassemi et al., 2014), vocal vibration-dose measures
(Titze et al., 2003; Titze and Hunter, 2015), spectral and cepstral
measures (Mehta et al., 2015, 2019), and aerodynamic measures
(Llico et al., 2015; Cortés et al., 2018). These measures have
been used to differentiate the daily voice use of patients with
vocal hyperfunction from matched controls (Ghassemi et al.,
2014; Cortés et al., 2018; Van Stan et al., 2021) and to track
changes related to surgical and voice therapy treatment of
hyperfunctional voice disorders (Van Stan et al., 2017b, 2020).
Current classification accuracy using these parameters is in the
range of 0.7–0.85.

We argue that the extraction of additional physiological
measures from ambulatory ACC recordings, such as subglottal
pressure, vocal fold collision pressure, and laryngeal muscle
activation, would provide critical additional insights into the
etiologic and pathophysiological mechanisms that underlie
hyperfunctional voice disorders and thus significantly enhance
the capability to identify the detrimental daily patterns of
vocal behavior associated with these disorders (Espinoza et al.,
2017; Galindo et al., 2017; Hillman et al., 2020). There have
been recent efforts to develop subject-specific representations
that can capture such physiologically relevant measures (e.g.,

subglottal pressure, contact pressure, muscle activation, and
material properties of the vocal folds) that are difficult to obtain
directly (Deng et al., 2019; Hadwin et al., 2019; Alzamendi
et al., 2020; Drioli and Foresti, 2020). These approaches take
advantage of the physiological relevance of lumped and finite
element models of voice production, which have been shown
to be useful tools for the investigation, diagnosis, and treatment
of voice disorders (Erath et al., 2013). The most recent in vivo
approach uses a Bayesian framework to estimate lumped-element
vocal fold model parameters to predict subglottal pressure, vocal
fold collision pressure, and laryngeal muscle activation along
with their corresponding confidence intervals from observations
obtained in clinical recordings, i.e., high-speed videoendoscopy
(HSV) and oral airflow (Alzamendi et al., 2020).

Direct application of Bayesian subject-specific estimation
from the ACC signal remains unsolved. There are challenges
associated with the current extended Kalman filter approach for
processing ambulatory data and using the ACC as the solely
observation that remain to be addressed, including the large
computational cost for the volume of data to be processed,
the need for data fusion from different recording sessions, the
need for an online estimation of model covariance, and the
incorporation of a time-domain neck skin model for the ACC
sensor within the voice production model.

On the other hand, machine learning and artificial intelligence
are becoming relevant tools in biomedical engineering, as they
can provide accurate predictions and efficient implementations.
Numerical models are attractive alternatives for training
purposes, suitable representing a significant range of conditions
and providing access to relevant measures that are difficult to
obtain experimentally. Voice assessment is starting to make use
of these modeling advantages, where machine learning methods
have been trained using simulated data from physiological
numerical models to predict clinical parameters of interest.
This approach was utilized by Gómez et al. (2019) to predict
subglottal pressure from HSV in excised porcine vocal folds and
by Zhang (2020) to predict vocal fold (geometric andmechanical)
properties and subglottal pressure from a microphone signal.
No machine learning method trained with a voice production
model has been devised for the ACC signal in a laboratory or
ambulatory context.

Although there are ongoing efforts to address the challenges
of the Bayesian framework for the ambulatory monitoring,
we propose in this study a more direct solution for the
estimation of ambulatory physiologically-based features from
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the ACC that uses machine learning and voice modeling tools.
Thus, we propose a method to obtain a non-linear optimal
mapping between ACC features and subglottal pressure, vocal
fold collision pressure, and laryngeal muscle activation. We
propose using the impedance based inverse filtering (IBIF)
algorithm (Zañartu et al., 2013; Cortés et al., 2018), which yields
an unsteady glottal airflow signal from the ACC signal, to provide
aerodynamic features that are used as inputs to the non-linear
mapping. At the same time, we propose using a neural network
(NN) regression architecture trained from a physiologically
relevant muscle-controlled voice synthesizer with a triangular
body-cover vocal fold model (Alzamendi et al., 2019, 2021) that
takes the aerodynamic features as input and provides subglottal
pressure, collision pressure, and laryngeal muscle activation as
output. Predictions obtained with this scheme are validated
against numerical simulations and laboratory measurements of
subglottal pressure. The contributions of this work are twofold:
First, the proposed scheme provides access, for the first time,
to various physiologically relevant model-based features from a
neck-surface accelerometer signal. Then, the approach provides
a comprehensive contrast of the selected voice production model
against laboratory data.

2. MATERIALS AND METHODS

Figure 1 provides an overall schematic of the proposed method
of estimating four vocal function measures from neck-surface
vibration recorded using a neck-surface accelerometer (ACC)
sensor. The first analysis block results in an estimate of
the unsteady glottal airflow volume velocity signal using the
IBIF model (Zañartu et al., 2013), which has been shown to
provide aerodynamic features reliably for the classification of
vocal hyperfunction in laboratory (Espinoza et al., 2020) and
ambulatory (Cortés et al., 2018) settings. The second analysis
block computes the following six features from the glottal
airflow signal: amplitude of the unsteady glottal airflow (ACFL),
maximum flow declination rate (MFDR), open quotient (OQ),
speed quotient (SQ), spectral tilt measured as the log-magnitude
difference between the first and second harmonics (H1 − H2),
and fundamental frequency (fo). A seventh feature—the sound
pressure level (SPL)—can be estimated either directly using an
acoustic microphone (MIC) in the laboratory setting or using
a log-log mapping between the root-mean-square magnitude of
the ACC signal and SPL (Švec et al., 2005). See Table 1 for
descriptions of each feature. These seven features are used as
input into a NN to estimate four desirable measures of vocal
function: subglottal pressure (Ps), vocal fold collision pressure
(Pc), and normalized activation levels of the cricothyroid (aCT)
and thyroarytenoid (aTA) muscles.

The NN was trained using 13,000 Monte Carlo simulations of
a numerical voice production model. The design of the network
architecture and overall training description are provided in
section 2.1, and the details of the numerical voice production
model are found in section 2.2. Validation of the estimated
output features were performed using in vivo laboratory
reference measures of Ps or numerical simulations of phonation

for reference measures of Pc, aCT , and aTA. Details of the
experimental validation are provided in section 2.3.

2.1. Neural Network Architecture and
Training
A supervised machine learning framework for regression was
implemented based on amulti-layer NN (Hagan et al., 2014). The
network consisted of an input layer of the seven aerodynamic
and acoustic features (ACFL, MFDR, OQ, SQ, H1 − H2, fo,
and SPL), an output layer composed of the four target vocal
function measures (Ps, Pc, aTA, and aCT), and two interconnected
hidden layers with a 10% dropout to avoid overfitting. Each
neuron within the hidden layers had adjustable weight and bias
parameters that combined with the outputs of the preceding layer
to activate a rectified linear unit activation function; then, the
resulting activation served as input for the next layer Bianco et al.
(2019). The number of neurons for each layer was investigated
as a function of the model performance against both numerical
and experimental data. The training stage updates the weights
and biases using the Adam optimization algorithm (Kingma and
Ba, 2017) with a learning rate of 0.001. All the NNs involved in
this work were implemented in a virtual machine from Google
Colaboratory with two CPU models Intel(R) Xeon(R) CPU @
2.00GHz, using Python 3.7.11. and the TensorFlow 2.5.0 library
(Abadi et al., 2015). The runtime for the largest network (8
hidden layer with 128 neurons and 100 epoch) was less than 120 s.

The NN regression models were trained following the scheme
shown in Figure 2. For this purpose, a synthetic voice dataset
was obtained with a numerical voice production model described
in section 2.2. Similar approaches were recently taken by
other authors using different sensing modalities, i.e., high-speed
videoendoscopy (Gómez et al., 2019) and MIC sensors (Zhang,
2020) in ex vivo experimental validation platforms (instead of
in vivo). Using synthetic data for training helped addressing
the lack of comprehensive and massive in vivo human datasets
with thousands or even millions of conditions. Testing of
the NN models was performed with both numerical and in
vivo laboratory datasets. The laboratory dataset is described in
section 2.3.

The voice production model described in section 2.2 was
used to create 110,000 Monte Carlo simulations of sustained
phonation. The simulations included a wide variation of
the model control parameters such as lung pressure (PL),
activation levels for the cricothyroid (aCT), thyroarytenoid (aTA),
lateral cricoarytenoid (aLCA), interarytenoid (aIA), and posterior
cricoarytenoid (aPCA) muscles. Control model parameters and
their variation range are shown inTable 2. Each simulation lasted
800 ms, with the mean value of the seven input features taken for
the last 50 ms to avoid transient artifacts. The glottal airflow was
filtered using the same low- and high-pass filters utilized in the
analysis of the laboratory recordings, as described in section 2.3.

As suggested by Gómez et al. (2019), the training data
resembled the empirical distribution of the population-based
aerodynamic and acoustic feature set. Thus, simulated data with
ACFL less than 30 mL/s and fo outside the range of 120–
400 Hz were discarded, as these cases were not found in the
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FIGURE 1 | A schematic of the proposed method for the ambulatory vocal assessment based on processing the neck skin acceleration signal and a regression neural

network.

TABLE 1 | Description of aerodynamic features extracted from the glottal airflow signal and acoustic sound pressure level extracted from the microphone or

accelerometer signal.

Feature Description Units

ACFL The difference between the maximum and minimum amplitude of the AC glottal airflow (peak-to-peak) within each

glottal cycle

mL/s

MFDR Maximum flow declination rate: Negative peak of the first derivative of the glottal waveform L/s2

OQ Open quotient: Ratio of the open time of the glottal vibratory cycle to the corresponding cycle period. Computed as in

Cortés et al. (2018)

%

SQ Speed quotient: Ratio of the opening time of the glottis to the closing time. Computed as in Cortés et al. (2018) –

H1 − H2 Difference between the magnitude of the first two harmonics dB

fo Fundamental frequency Hz

SPL Sound pressure level: dB from the RMS envelope of the acoustic signal dB SPL

laboratory data used for testing the NN. As a result, the final
synthetic dataset consisted of 13,000 samples. Figure 3 shows
the normalized histogram of features for the synthetic data (blue
color) and laboratory data (red color).

Notice that feature ranges and distributions for both clinical
and synthetic data sets agree, except for SPL and Ps, where
ranges are noticeable dissimilar (see histograms for attenuated
red color). Two bias corrections were considered for these
components. First, as the SPL for the voice production model
is obtained at the lips, the SPL value was corrected to match

the 10 cm mouth-to-microphone recording distance considered
in the clinical recordings, yielding a −28.5 dB correction factor
(Švec and Granqvist, 2018). In addition, histograms of Ps suggest
that the physiological voice synthesizer yields higher values for
this measure. It is possible that sub and supra glottal tract
propagation losses and the losses at the glottal boundary were
not sufficiently high, thus amplifying source-filter interactions
and raising up subglottal pressure. This bias has motivated
subsequent exploration and model developments. However, to
address the need to correct for the difference in Ps in this study,
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FIGURE 2 | A schematic for the proposed training procedure. A regression neural network is built for mapping accelerometer-based vocal features into clinically

relevant estimates for subglottal pressure, subglottal collision pressure, and laryngeal muscle activation levels of the thyroarytenoid (TA) and cricothyroid (CT) muscles.

Training data are produced from a numerical voice production model.

TABLE 2 | Range and increment step for control parameters in the numerical

voice production model considered for building the synthetic dataset.

Parameter Range Step Unit

aCT 0-1 0.1 –

aTA 0-1 0.1 –

aLCA 0.2-0.8 0.1 –

aPCA 0-0.1 0.1 –

aIA 0.2-0.8 0.1 –

PL 500 – 2000 150 Pa

a bias correction was applied by taking the differences between
the mean of clinical and synthetic Ps values, thus leading to a
−3.37 cm H2O offset.

Synthetic training data were min-max normalized and
selected randomly from 80% of the total simulations. Testing

was performed in the remaining 20% of synthetic data and in
the clinical data in order to identify the models providing the
best estimation of subglottal pressure. To assess the regression
performance during both training and validation stages and
to compare with prior studies (Gómez et al., 2018; Lin et al.,
2020; Zhang, 2020), the mean absolute error (MAE) and the
root-mean-squared error (RMSE) metrics were utilized.

Several NN architectures with different numbers of neurons
in the hidden layers were trained for two cases. Case I included
six glottal aerodynamic features, described in Table 1 (ACFL,
MFDR, OQ, SQ, fo, and H1 − H2) as input layer to the NNs, i.e.,
glottal measures extracted only from IBIF. Case II had the input
layer of the NNs composed by all seven features in Table 1.

2.2. Voice Production Model
The selected voice production model for the training stage is a
multi-physics scheme featuring a low-order model of the vocal
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FIGURE 3 | Normalized histogram describing vocal features obtained for all measured quantities in the clinical data set (blue color). Resulting histograms for the

synthetic dataset (red color) are superimposed to illustrate model matching. Bias correction for synthetic SPL and Ps are shown as additional histograms (light red

color).

folds that allows for the coordinated activation of all five intrinsic
laryngeal muscles (Alzamendi et al., 2019, 2021). The model
was recently developed and was chosen due to its flexibility
and physical and physiological relevant way to cover numerous
(normal and disordered) phonatory conditions. The approach
builds upon prior efforts that describe rules for controlling
low-order models (Titze and Story, 2002), vocal fold posturing
(Titze and Hunter, 2007), and a triangular body-cover vocal
fold model (Galindo et al., 2017). The model also accounts for
tissue-fluid-acoustic interactions at the glottis (Zañartu et al.,
2014), sound wave propagation through the vocal tract followed
by sound pressure radiated from mouth (Zañartu, 2006), and
allows for describing sustained vowels and time-varying glottal
gestures. Given that the model is fairly new, we describe its main
components pertaining to the development of the NN regression
model and training set.

The triangular body-cover model (TBCM) (Galindo et al.,
2017) (see Figure 2) consists of paired three-mass body-
cover systems interconnected with mechanical elements
(Story and Titze, 1995) and configured in a triangular
anatomical shape (Birkholz et al., 2011). Beside resembling
the triangular glottis, the TBCM is physiologically relevant
because it mimics the layered vocal fold structure and extends
the vocal fold collision model with a gradual zipper-like
incomplete glottal closure. The latter aided to describe the
time-varying vocal fold collision pressure (Pc) during phonation.
Similar to Galindo et al. (2017), the parameterization of the
TBCM followed the original body-cover description (Story
and Titze, 1995) and applied the empirical rules to change
geometrical and viscoelastic vocal fold parameters developed
by Titze and Story (2002). However, the major difference

with (Galindo et al., 2017) resided in the computation of
both the internal tension and elongation in the vocal folds.
The remaining rules in Titze and Story (2002) were taken
as originally proposed for deriving the lumped-element
dynamical parameters.

Given the interest in estimating intrinsic laryngeal activity
with the proposed method, a comprehensive description of
muscle activity on the laryngeal configuration was considered.
For this purpose, the contributions of all five intrinsic muscles
and the passive response of connective tissue (i.e., the vocal
ligament and vocal fold mucosa) were included in the model.
Hence, simulated laryngeal muscle activations were the control
variables governing the phonatory posture and vocal fold
elongation. The incorporation of this muscle-controlled model
of the larynx allowed to dynamically modify the glottal
function during phonation, e.g., the vocal fold oscillatory
dynamics, time-varying glottal resistance, and aerodynamic-
acoustic coupling mechanisms. Following Titze and Hunter
(2007), the five intrinsic muscles were modeled independently
by using a modified Kelvin model (Hunter et al., 2004), which
dynamically solves for the internal stress-strain response in one-
dimensional fibrous tissues by integrating both active and passive
properties. Passive stress was described as a non-linear function
of longitudinal strain. Additionally, the active stress resulted
from the maximum isometric active stress and the normalized
activation level, in the range 0 ≤ a ≤ 1, mapping from relaxed
to strong muscle tension. The simulated muscle activation for
each intrinsic muscle was thus adjusted trough the corresponding
activation levels {aLCA, aIA, aPCA, aCT, aTA}. In the TBCM, an
adducted glottal configuration is critical for setting the system
into self-sustained oscillations, thus requiring higher activation
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of the adductory intrinsic (LCA and IA) musculature than
the abductury intrinsic (PCA) musculature. For simplicity, we
did not consider the effects of elevated antagonistic muscles
(Alzamendi et al., 2021) and only explored a small range of PCA
activation to secure self-sustained oscillations in the TBCM. This
approach allowed us to reduce the number of simulations to
be discarded and to optimize the computational load. Future
investigations will involve further scenarios for muscle control in
typical and disordered phonation. Models for the vocal ligament
and vocal fold mucosa were similarly implemented, except that
the active component was set to zero for these cases (Titze, 2006).

Beside controlling intrinsic muscle activation, the voice
production model also allowed for the adjustment of the
aerodynamic lung pressure, PL. The aerodynamic forces acting
over the vocal fold cover layer were then computed from the
resulting subglottal pressure, Ps, and supraglottal pressure, Pe,
according to Titze (2002). The three-way interaction at the glottal
level between sound, flow, and vocal fold tissue was included,
whereas the glottal airflow was computed from the acoustic
driving pressures impinging on the glottal (membranous plus
posterior portions) area following (Titze, 2006; Zañartu et al.,
2014; Lucero and Schoentgen, 2015). Simulation of the time-
varying acoustic wave propagation was achieved by applying
the wave reflection analog scheme, where the subglottal and
supraglottal tracts were modeled as a discrete concatenation of
short uniform acoustic cylinders with variable cross-sectional
areas. Effects due to the boundary condition at the lips was
approximated by including an inertive radiation impedance, that
produces the reflected pressure wave and the radiated sound
wave, Pout . Losses due to viscosity, moving walls, and other
losses are described by an exponential attenuation factor in the
propagation through the cylindrical sections (Zañartu, 2006;
Zañartu et al., 2007). Vocal tract area functions that resemble
a typical male (Story, 2008) and female (Story et al., 1998) that
could match the in vivo experimental data were selected, i.e.,
vowels /æ/ and /A, along with a representative subglottal tract
(Zañartu et al., 2014).

2.3. Experimental Validation of
NN-Estimated Subglottal Pressure
An in vivo laboratory dataset (Mehta et al., 2015; Espinoza et al.,
2017, 2020) with synchronous recordings of intraoral pressure
(IOP), oral airflow volume velocity (OVV), MIC, and ACC from
vocally healthy subjects was utilized to provide a completely
separate testing platform for the estimates obtained with the
regression NN. This dataset was used to experimentally validate
the NN estimates of subglottal pressure. Direct measurements of
vocal fold collision pressure and laryngeal muscle activation are
difficult to obtain in the laboratory and were not included in this
experimental validation. Note that this dataset was not used to
train the NN.

The data correspond to a group of participants composed
of 79 adult females with no history of voice disorders. The
mean (SD) age was 29.6 (13.0) years old. Their vocally healthy
status was verified by a licensed speech-language pathologist
via interview (subjects reported no difficulties with their

voices in daily life), laryngeal videostroboscopic examination,
and a clinician-administered Consensus Auditory-Perceptual
Evaluation of Voice (CAPE-V) assessment (Kempster et al.,
2009). Informed consent was obtained from all the participants
in this study, and experimental and clinical protocols were
approved by the institutional review board of Mass General
Brigham (formerly Partners HealthCare) at the Massachusetts
General Hospital. Data recordings were conducted in a sound-
treated room where study staff instructed each participant to
repeat strings of /pæ/ syllables in three loudness conditions
(comfortable, loud, and soft). Although subjects were instructed
to maintain a constant pitch and loudness within each syllable
string, they were free to choose levels that were most natural
for them without any prescribed levels of absolute pitch
and loudness.

Recordings consisted of the simultaneous acquisition of
acoustic pressure obtained with a condenser MIC (MKE104,
Sennheiser, Electronic GmbH, Wedemark, Germany) placed
10 cm from the lips and having full bandwidth in the range
of 0–6 kHz, OVV sensed by using a circumferentially vented
pneumotachograph mask (PT-2E, Glottal Enterprises, Syracuse,
NY) with a bandwidth of approximately 1.1 kHz, IOP measured
with an oral catheter passed between the lips and connected to
a low-bandwidth pressure sensor with an effective bandwidth
of approximately 80 Hz (Espinoza et al., 2017), and ACC (BU-
27135; Knowles Corp., Itasca, IL, USA) placed on the anterior
neck surface halfway between the thyroid prominence and
the suprasternal notch (Zañartu et al., 2013). All signals were
sampled at 20 kHz/16 bits (Digidata 1440A, Axon Instruments,
Inc.), low-pass filtered at 8-kHz cutoff frequency (CyberAmp
Model 380, Axon Instruments, Inc.), and calibrated to physical
units (Espinoza et al., 2017).

Signals obtained from the ACC and pneumotachograph mask
were low-pass filtered at 1,100 Hz with a 10th-order Chebyshev
Type II filter and decimated to 8,192 Hz. Then, a fourth-order
Butterworth high-pass filter with cutoff frequency at 60 Hz was
used to remove low-frequency components. The IOP signal
was low-pass filtered at 80 Hz with a fifth-order Butterworth
filter and then decimated to 256 Hz sample rate. All filters
were applied with phase removal to avoid phase distortion
(Perkell et al., 1994).

Reference values for subglottal pressure were obtained from
IOP signals following (Espinoza et al., 2017). Driving pressure
was extrapolated as the mean value of the two consecutive
IOP plateaus produced by the combined lip closure and glottis
opening prior to the /p/ sounds, that produced just before and
after each vowel segment. The three middle syllables in each
/pæ/ string were selected for the analysis, so that the initial and
final portions were disregarded to avoid any evident transient
dynamics. The estimated subglottal pressure was the average
of these three-syllable values. Three reference measures per
participant for comfortable, loud, and soft loudness conditions
were obtained. Thus, a total of 237 /pæ/ tokens were used in
this study.

The OVV-based glottal airflow was obtained through a
common inverse filtering technique based on a single-notch filter
with a conjugate pair of zeros and unity gain at DC at first vocal
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tract resonance (Perkell et al., 1991; Cheyne, 2006). Each single-
notch filter was applied to a 50 ms stable portion of the middle
/pæ/ string. The center frequency of the filter was determined
following an optimization procedure developed by Espinoza et al.
(2017).

The ACC-based glottal airflow was estimated using the IBIF
scheme (Zañartu et al., 2013; Cortés et al., 2018). This method
uses an acoustic transmission line model and a calibration step
to obtain a set of subject-specific parameters corresponding to
the neck-skin surface, length of the trachea, and accelerometer
position (Zañartu, 2010; Zañartu et al., 2013; Cortés et al., 2018).
These parameters are determined by minimizing the waveform
error between the OVV-based glottal airflow (reference signal
described previously) and the inverse filtered neck-skin ACC
signal via a particle swarm optimization Kennedy and Eberhart
(1995). The middle 50 ms of the glottal airflow signal estimated
from IBIF was selected to compute the six acceleration-based
aerodynamic feature (see Table 1). Even though SPL can be
computed from the ACC signal using regression methods Švec
et al. (2005), the synchronous microphone signal was used in
this study to avoid introducing any additional estimation error at
this point. Future work can be devoted to enhance current linear
mapping between ACC and SPL.

Validation with human data is the gold standard to assess
the ability of the NN regression scheme to represent in vivo
data; but direct measurement of certain physiological measures
of vocal function is not feasible. An advantage of using a voice
production model to train a neural network is that we can
estimate vocal function measures that are difficult to measure in
practice, which is the case for vocal fold collision pressure and
intrinsic muscle activation. Thus, the assessment of the estimates
of subglottal pressure is described in terms of test sets from
numerical simulations and laboratory data, whereas the estimates
of vocal fold collision pressure and laryngeal muscle activation
are only evaluated using a synthetic data test set.

3. RESULTS

3.1. Subglottal Pressure Estimation
The MAE and RMSE describing Ps estimates for the different
architectures are reported in Table 3 for both synthetic and
clinical test data. For both cases I and II, additional hidden layers
and neurons per layer yielded an improvement in subglottal
pressure estimation when tested against the synthetic data. For
example, in case I, MAE decreased from 1.98 cm H2O to 0.93 cm
H2O from the simplest (2 hidden layers with 4 neurons) to a
more complex (4 hidden layers with 128 neurons) architecture,
respectively. In case II, MAE decreased from 1.84 cm H2O
to 0.78 cm H2O for the same prior complexity in the NN
architecture. This represents a reduction of more than 50% in
MAE in both cases. A similar trend is observed with RMSE.
An explanation for the improvement comes from the fact that
the training and testing data were obtained from the same voice
production model. Therefore, more complex NN models appear
to capture efficiently the non-linear mechanisms of the model,
which has been suggested by Zhang (2020), when training and
testing with synthetic data from the same model. However, for

TABLE 3 | MAE and RMSE between the estimated Ps with the proposed NN

regression model and the reference measures from synthetic and laboratory test

data.

Neurons in Number of Synthetic Data Laboratory Data

each hidden hidden layers MAE RMSE MAE RMSE

layer (cm H2O) (cm H2O) (cm H2O) (cm H2O)

Case I:

4 2 1.98 2.51 2.23 2.82

8 2 1.81 2.34 2.28 2.86

16 2 1.35 1.83 2.56 3.13

32 2 1.18 1.64 2.82 3.43

64 2 1.02 1.48 2.89 3.50

128 2 0.99 1.68 2.94 3.58

128 4 0.93 1.33 3.17 3.87

128 6 0.97 1.38 3.14 3.85

128 8 1.01 1.45 3.12 3.76

Case II:

4 2 1.84 2.42 1.95 2.48

8 2 1.87 2.43 1.97 2.52

16 2 1.27 1.74 2.42 2.98

32 2 1.13 1.58 2.55 3.17

64 2 0.99 1.42 2.88 3.45

128 2 0.90 1.30 2.98 3.58

128 4 0.78 1.12 3.23 3.87

128 6 0.87 1.21 3.04 3.71

128 8 1.00 1.38 3.08 3.70

Errors are reported for different NN architecture (different number of neurons and hidden

layers). Case I: Input aerodynamic features of ACFL, MFDR, OQ, SQ, fo, and H1 − H2.

Case II: Input aerodynamic features in Case I and acoustic SPL.

the NN architectures composed over the six hidden layer with
128 neurons, the MAE and RMSE for synthetic data increase,
showing that a deeper NN does not improve the estimation of
subglottal pressure in this context.

It is important to highlight that all NNs were trained using 100
epochs. This criterion was selected to ensure the convergence of
models. Figure 4 shows mean squared error vs. the epochs for
training and validation of the simplest and the most complex
architecture models. The curves illustrate the convergence of
the training procedure, where the simplest regression model
exhibits a more rapid convergence. However, at around 100
epochs, the error remains constant, as the training progresses for
both architectures. A similar trend was observed for all tested
configurations. Another element to highlight is the absence of
overfitting, since the training and validation error monotonically
decrease at the same time. This shows that the network learns
the structure of the observed data and is able to infer the
validation data. An indication of overfitting would be a training
error that decreases while the validation error remains the same
or increases.

On the other hand, for the laboratory validation of subglottal
pressure, we found the opposite trend for MAE as a function
of the NN architecture complexity. In Case I, MAE increased
from 2.23 cm H2O to 3.17 cm H2O for an increasing complexity
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FIGURE 4 | Mean Squared Error (MSE) vs. epoch for training (blue color) and validation (red color) for two neural networks architectures. (Left) 2 hidden layers with 4

neurons. (Right) 8 hidden layers and 128 neurons.

FIGURE 5 | Comparison between laboratory-estimated subglottal pressure

and the corresponding estimates from the trained neural network (2-hidden

layer, 4 neurons in each layer, and 7 voice features). R2
= 0.65. The dashed

line represents the theoretical 1:1 perfect matching.

from the 2 hidden layers with 4 neurons to 4 hidden layers
with 128 neurons model. Case II also exhibited MAE increases
from 1.95 cm H2O to 3.23 cm H2O for the same increasing
complexity in the NN architecture. These results represented an
increase of 42% and 66% in MAE for Case I and II, respectively,
with similar trends for RMSE. Therefore, higher NN complexity
was not adequate to represent sample distribution from the
laboratory dataset.

Table 3 also illustrates that the inclusion of SPL in the input
feature vector improves the estimation of subglottal pressure
for all tested NN architectures. Using the best architecture for
the laboratory validation, we found a 12% reduction in MAE
and RMSE. The best architecture for the synthetic validation
exhibited a 16% reduction in MAE and RMSE when SPL was
added. These results are in agreement with previous studies (Titze
et al., 2003; Björklund and Sundberg, 2016; Espinoza et al., 2017)
that reported a strong correlation between subglottal pressure
and acoustic SPL. Although not reported, no significant error
differences were observed when estimating SPL from either the
MIC or ACC sensor.

Therefore, the NN model with lowest error in the validation
set from the laboratory data was selected from 4 neurons
in the hidden layers and all seven input features. Figure 5

shows a scatter plot of the NN-estimated subglottal pressure
vs. the reference subglottal pressure from the laboratory data.
The dashed line represents a 1:1 correspondence between the
estimated and reference subglottal pressure. The coefficient of
determination R2 is 0.65 and the mean absolute percentage
error is 24.9%. We highlight that even though the IOP data
was used as ground truth for this assessment, differences in the
subglottal pressure estimates from IOP and direct measurement
of subglottal pressure via tracheal puncture has been reported in
the range of 5% (Hertegård et al., 1995), although interpolation
between the peaks of the pulses can lead to a 12% error
(Rothenberg, 2013).

3.2. Vocal Fold Collision Pressure and
Laryngeal Muscle Activation Estimation
Table 4 reports the coefficient of determination R2, MAE (in
physical units and in percentage of range) using synthetic data
for the four outputs (Ps, Pc, aCT , aTA) obtained using the NN for
the 2 hidden layers with 4-neuron and 4 the hidden layers with
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TABLE 4 | Assessment of estimated vocal measures Ps, Pc, aTA, and aCT using

the proposed NN regression method.

Parameters Units R2 MAE MAE

(Units) (%)

2-HL and 4-N architecture:

Ps cm H2O 0.64 1.84 11.4

Pc cm H2O 0.70 3.33 8.2

aTA - 0.07 0.21 21.1

aCT - 0.53 0.15 14.6

4-HL and 128-N architecture:

Ps cm H2O 0.93 0.74 4.7

Pc cm H2O 0.92 1.70 4.2

aTA – 0.52 0.13 13.3

aCT – 0.84 0.07 7.1

Reported values for R2 and MAE (in physical units and in percentage of range) for two NN

architectures with different hidden layers (HL) and neurons (N). The input vector includes

the seven aerodynamic measures.

128-neuron architectures. The architectures with more layers
exhibited the best performance for estimating subglottal pressure
for the synthetic data.

As seen before for the synthetic validation of subglottal
pressure, increasing the complexity of the NN architecture
increases the accuracy of the estimates. This performance holds
true for the estimates of vocal fold collision pressure and
laryngeal muscle activation. However, there is a significantly
smaller R2 of 0.52 for aTA estimation when compared with
R2 > 0.8 for estimation of the other measures using the 4
hidden layer with 128 neurons NN. This finding suggests that
certain measures, such as aTA, require deeper, more complex NN
architectures to achieve similar performance.

4. DISCUSSION

The purpose of this study was to explore the combination of
neural network regression networks with a voice production
model to estimate physiologically relevant vocal measures, i.e.,
subglottal pressure, vocal fold collision pressure, and (TA and
CT) laryngeal muscle activation from a neck-surface vibration
signal. Validation for this study was done both numerically
and experimentally. Given that some of the predicted measures
are difficult to obtain experimentally, only the estimates of
subglottal pressure could be compared with reference estimates
of mean subglottal pressure derived from the standard airflow
interruption technique in the laboratory.

Both numerical and experimental validation experiments
yielded reasonable accuracy. The robust and reliable estimates
of the proposed method are dependent on the capacity of
the selected voice production model to mimic the observed
distributions in the laboratory data. As the architecture
complexity of the NN increased, the estimation error decreased
for the synthetic data but increases for the laboratory data. We
argue that this is a result of the way the model was utilized,
i.e., model parameters were swept across a large range of values,

but no anatomical changes were considered; thus the model
simply described a single subject for a range of conditions.
This may be playing a role in the accuracy for the estimation
of subglottal pressure because no inter-subject variability was
considered. At the same time, we discarded cases that differed
from the laboratory distributions during the training process
and corrected for a bias in the estimation of subglottal pressure.
In addition, it is possible that subglottal and supraglottal tract
propagation losses and the losses at the glottal boundary were
not high enough, thus amplifying the source-filter interactions
and resulting subglottal pressure. Future efforts will be devoted to
improve model development, better reflect population behaviors,
and assess these effects in the predicted accuracy of the proposed
approach. In spite of its simplicity and the aforementioned
limitations, we still conclude that the triangular body cover
model provides a good general representation of typical sustained
phonation for a large range of subjects and conditions.

The predicted subglottal pressure in this study are comparable
with those obtained in previous studies. Our lowest mean
absolute error for estimated subglottal pressure from clinical data
was 191 Pa (1.95 cmH2O), whereas two relevant studies reported
mean absolute errors of 194 Pa (Gómez et al., 2019) and 115
Pa (Zhang, 2020). However, it is important to highlight that
our predictions are obtained from a neck-surface accelerometer
and that we tested our predictions against in vivo human data,
whereas these studies used porcine and human excised larynx
experiments. Lin et al. (2020) estimated subglottal pressure
from a neck-surface accelerometer using a subject-specific step-
wise factorial regression model in 26 normal subjects. The
investigators obtained an average root-mean-square error in
the range of 2.4–2.5 cm H2O, which is comparable with the
root-mean-square error of 2.48 cm H2O in the current study.
The linear regression models in Lin et al. (2020) included
cepstral peak prominence and fundamental frequency, along
with ACC-based aerodynamicmeasures and were constructed on
an individual basis for every subject across multiple elicited voice
qualities. The main advantages of the NN model approach are
the fact that a single, general non-linear regression mapping is
utilized and that our mapping also provides estimates of other
clinically relevant measures of vocal function. It is acknowledged
that future work is required to experimentally validate these
other measures of vocal fold collision pressure and laryngeal
muscle activation.

Titze et al. (2003) put forth a simple, empirically derived
formula (Equation 15) that computed subglottal pressure using
only measurements of SPL and fo. Applying this formula to the
laboratory data (237 tokens) in the current study to estimate
subglottal pressure resulted in a root-mean-square error of
2.86 cm H2O and mean absolute error of 2.11 cm H2O. The
relatively good performance for such a simple formula supports
the idea that simple regression architectures are adequate for
predicting subglottal pressure in vocally typical conditions;
estimation accuracy of linear regression models reduces when
non-modal voice qualities are included (Marks et al., 2019, 2020;
Lin et al., 2020). The model-based approach of the current work
allows for the estimation of additional measures of vocal function
(e.g., vocal fold collision pressure, laryngeal muscle activation).
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On the other hand, the accuracy of estimates of muscle
activation and collision pressure that was assessed against
synthetic data was hampered by the simplicity of the rather
shallowNN architecture that resulted frommatching clinical data
for subglottal pressure. When the complexity of the network
is increased, the estimation of muscle activation and collision
pressure improves. This result is encouraging to investigate the
development of subject-specific models that can handle more
complex neural network architectures without losing the ability
to predict subglottal pressure.

These initial results constitute a proof of concept that
the proposed NN method is a feasible option for estimating
clinically relevant vocal measures that are difficult to directly
measure in laboratory and ambulatory settings. Current results
could be significantly improved by exploring different NN
architectures, improving model development, training with ACC
signal features directly (vs. model features), using subject-specific
tuning with transfer learning instead of a generic training for all
subjects, and including experimental validation of all predicted
values. This study delineates a path for various subsequent
research efforts in this direction.

The neck-surface accelerometer sensor can be worn by a
speaker for laboratory, clinical, and ambulatory assessments
of vocal function. The estimation of subglottal pressure was
validated using sustained phonation datasets from numerical
modeling and laboratory recordings. There is potential to
translate this method into ambulatory settings due to the input
of the network only needing accelerometer-based features for
short-time windows of 50 ms in duration. We hypothesize
that the physiologically relevant measures that are obtained
with the proposed approach will yield salient measures of
vocal function in real-world environments. We expect that the
physiologically relevant measures that are obtained with the
proposed approach will provide unique quantitatively based
insights into the etiologic and pathophysiological mechanisms
associated with daily voice use in patients with hyperfunctional
voice disorders. The capability to link model outputs with clinical
data is expected to produce more comprehensive and specific
descriptions of aberrant phonatory mechanisms that will lead to
better subclassification (phenotyping) of hyperfunctional voice
disorders and ultimately improve the prevention, diagnosis, and
treatment of these disorders.

5. CONCLUSION

A framework to estimate subglottal pressure, collision pressure,
and muscle activation from a neck surface accelerometer is
developed integrating machine learning tools and a numerical
model of voice production. Aerodynamic measures estimated
from the neck surface accelerometer are combined with a sound
pressure level estimate obtained from either an accelerometer or
a microphone, and are selected as inputs to a neural regression
network. The non-linear mapping is trained solely with a low-
order voice production model featuring a symmetric triangular
body-cover model of the vocal folds. When compared with

clinical recordings from 79 female vocally healthy participants,
the mean absolute error and root mean square error for the
subglottal pressure were 1.95 cm H2O and 2.48 cm H2O.
These results are comparable with previous studies but with
the advantage of having a general mapping for all patients
and providing simultaneous estimates of collision pressure and
muscle activation. However, given that clinical validation for
these latter features is cumbersome, only synthetic data were
used for that purpose, and experimental validation is left for
future efforts. At the same time, relevant insights are gained by
comparing the numerical model with the clinical data that will
lead to further model refinements. The initial results constitute a
proof of concept that the proposed machine learning method is a
feasible option for providing highly relevant physical measures
for the ambulatory assessment of voice. Future efforts will be
focused on creating individualized mappings for normal and
disordered voices with transfer learning and validating all the
estimated features with in vivo recordings.
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