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Abstract. We study approximation classes for adaptive time-stepping finite
element methods for time-dependent Partial Differential Equations (PDE). We
measure the approximation error in L2([0, T ) × Ω) and consider the approxima-
tion with discontinuous finite elements in time and continuous finite elements in
space, of any degree. As a byproduct we define Besov spaces for vector-valued
functions on an interval and derive some embeddings, as well as Jackson- and
Whitney-type estimates.
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1. Introduction and main result

Adaptive time-stepping finite element methods (AFEM) for evolutionary PDE
usually lead to a sequence of timesteps and meshes, which yield a partition of the
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Figure 1. Time-space partition P

time interval 0 = t0 < t1 < · · · < tN = T and one triangulation Ti for each time
interval [ti−1, ti). The complexity of the discrete solution is thus related to the total
number of degrees of freedom needed to represent it on the whole interval, which in
turn is equivalent to

∑N
i=1 #Ti.

In this article we study spaces of functions which can be approximated using
such time-space partitions with an error of order

(∑N
i=1 #Ti

)−s
for different s > 0.

The results that we obtain are similar in spirit to those of [BDDP02, GM14], where
the spaces corresponding to stationary PDE are considered.

Our goal is not to prove the optimality of AFEM but rather to understand which
convergence rates are to be expected for the solutions of evolutionary PDE given
their regularity. In this paper we aim at establishing the first results in this direction,
thus at some points we sacrifice generality in order to have a clearer presentation of
the basic ideas and set the foundation for further research in this area.

In order to roughly state our main result, we need to introduce some notation,
which will be explained in detail later.

Given a polyhedral space domain Ω ⊂ Rn, n ≥ 1, we let T denote the set of all
triangulations that are obtained through bisection from an initial triangulation T0
of Ω. For each T ∈ T we denote by #T the number of elements of the partition

For T ∈ T, we let VrT denote the finite element space of continuous piecewise
polynomial functions of fixed order r, i.e.,

VrT := {g ∈ C(Ω) : g
∣∣
T
∈ Πr for all T ∈ T },

where Πr denotes the set of polynomials of total degree (strictly) less than r.
Let r1, r2 ∈ N denote the polynomial orders in time and space, respectively. Let

{0 = t0 < t1 < . . . < tN = T} be a partition of the time interval and T1, . . . , TN ∈ T
be partitions of the space domain Ω, where Ti corresponds to the subinterval [ti−1, ti),
i = 1, . . . N . The time-space partition as illustrated in Figure 1 is then given by

P = ({0 = t0 < t1 < . . . < tN = T}, {T1, . . . , TN}) with #P =
N∑
i=1

#Ti

and P is the set of all those time-space partitions. This is the precise kind of
time-space partitions produced by time-stepping adaptive methods.



APPROXIMATION CLASSES FOR TIME-STEPPING AFEM 3

The finite element space Vr1,r2
P subject to such a partition P is defined as

Vr1,r2
P := {g : [0, T )× Ω→ R : g[ti−1,ti)×Ω ∈ Πr1 ⊗ Vr2

Ti , for all i = 1, 2, . . . , N},

i.e., g ∈ Vr1,r2
P if and only if g(t, ·) ∈ Vr2

Ti for all t ∈ [ti−1, ti) and g(·, x)
∣∣
[ti−1,ti)

∈ Πr1

for all x ∈ Ω, and all i = 1, 2, . . . , N . Discrete solutions of adaptive time-stepping
methods, e.g. those which use Discontinuous Galerkin (DG) in time, belong to
spaces of this type.

We define the best m-term approximation error by
σm(f) = inf

#P≤m
inf

g∈Vr1,r2
P

‖f − g‖L2([0,T )×Ω).

In this article we measure the error in L2([0, T )× Ω) and leave the general case of
Lp([0, T ), Lq(Ω)) and other generalizations as future work.

For s > 0 we define the approximation class As as the set those functions whose
best m-term approximation error is of order m−s, i.e.,

As := {f ∈ L2([0, T )× Ω) : ∃c > 0 such that σm(f) ≤ cm−s, ∀m ∈ N}.
Equivalently, we can define As through a semi-norm as follows:

As := {f ∈ L2([0, T )× Ω) : |f |As <∞} with |f |As := sup
m∈N

ms σm(f).

Alternatively, this definition is equivalent to saying that f ∈ As if there is a constant
c such that for all ε > 0, there exists a time-space partition P that satisfies

inf
g∈Vr1,r2

P

‖f − g‖L2([0,T )×Ω) ≤ cε and #P ≤ ε−1/s, (1)

and |f |As is equivalent to the infimum of all constants c that satisfy (1).
Our main result is stated in terms of Besov spaces, which will be defined in the

next section, and reads as follows.

Main Result 1. Let 0 < si < ri, i = 1, 2, 0 < q1 ≤ ∞, 1 ≤ q2 ≤ ∞ with
s1 >

( 1
q1
− 1

2
)

+ and s2 > n( 1
q2
− 1

2
)

+. Then

Bs1
q1,q1

([0, T ), L2(Ω)) ∩ L2([0, T ), Bs2
q2,q2

(Ω)) ⊂ As for s = 1
1
s1

+ n
s2

.

This result is a consequence of Theorem 25, where, given f ∈ Bs1
q1,q1

([0, T ), L2(Ω)∩
L2([0, T ), Bs2

q2,q2
(Ω)), and ε > 0 we construct a time-space partition P that satisfies

#P ≤ c1ε−
(

1
s1

+ n
s2

)
and a function F ∈ Vr1,r2

P such that

‖f − F‖L2([0,T )×Ω) ≤ c2 ε
[
|f |Bs1

q1,q1 ([0,T ),L2(Ω)) + ‖f‖L2([0,T ),Bs2
q2,q2 (Ω))

]
.

Here Bsp,q(I,X) denote Besov spaces of X-valued functions with respective semi-
norms | · |Bsp,q(I,X), cf. Section 2.2. It is worth noting that in order to determine the
largest spaces, integrability powers 0 < p < 1 must be considered. This makes some
proofs more complicated than if we were to consider only p ≥ 1.

Our construction is performed in two steps. The first one uses a Greedy algorithm
to obtain the partition of the time domain, resorting in a Whitney-type estimate
for vector-valued functions. That is, we interpret functions in L2([0, T ) × Ω) as
functions from [0, T ) into L2(Ω) as is customary in the study of evolutionary PDE,
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and develop a nonlinear approximation theory for this situation, by revisiting
and extending some results from Storozhenko and Oswald [Sto77, OS78]. This
is presented in Section 3, after defining Besov spaces of vector-valued functions
in Section 2. In Section 4 we revisit the known results for the stationary case
and perform the aforementioned first step by applying the Greedy algorithm to
vector-valued functions. In Section 5 we combine those two results and prove our
main result. We end this article presenting some discussion and comparison of the
approximation classes for space-time discretizations.

We finally mention that we will use A . B inside some statements, proofs and
reasonings in order to denote A ≤ cB with a constant c that depends on the
parameters indicated in the corresponding statement. As usual, A ' B means
A . B and B . A.

2. Besov spaces of vector-valued functions

The goal of this section is to define and understand some properties of Besov
spaces of functions from a real interval I into a Banach space. From now on, we let
X be a separable Banach space with norm ‖ · ‖X .

We first introduce the moduli of smoothness and state and prove some of their
properties, which are analogous to those corresponding to the case of real-valued
functions. Afterwards we define the corresponding Besov spaces and state and prove
some embeddings.

2.1. Moduli of smoothness of vector-valued functions on an interval. We
start this section by providing new definitions of moduli of smoothness for vector-
valued functions, which are analogous to the ones already known for real-valued
functions, and stating and proving some of their basic properties.

It is worth mentioning that there is a forerunner regarding moduli of smoothness
and Whitney-type estimates of vector-valued functions, cf. [DF90]. However, our
definition (which is an immediate generalization of the classical moduli of real-valued
functions) differs from the one given in [DF90] (which is more elaborate and tricky).
In particular, in [DF90] a duality approach is used between the given Banach space
and its dual in order to reduce the definitions and results for abstract functions
to real ones. But there is a price to pay: the results are restricted to the set of
bounded functions. Therefore even classical Banach spaces like Lp(I,X) cannot be
considered entirely.

Given 0 < p ≤ ∞, a real interval I= [a, b) with |I| = b − a, and a function
f : I → X, we say that f ∈ Lp(I,X) if f is measurable and ‖f‖Lp(I,X) :=( ∫

I
‖f(t)‖pXdt

)1/p
< ∞ if p < ∞ and ‖f‖L∞(I,X) = esssupt∈I ‖f(t)‖X . For such

a function f , r ∈ N and 0 < |h| < |I|
r , the r-th order difference ∆r

hf : Irh → X is
defined as

∆r
hf(t) =

r∑
i=0

(
r

i

)
(−1)r−if(t+ ih), t ∈ Irh := {t ∈ I : t+ rh ∈ I},

which clearly satisfies ∆r
hf = ∆h∆r−1

h f and ‖∆r
hf‖

min{1,p}
Lp(Irh) ≤ 2‖∆r−1

h f‖min{1,p}
Lp(I(r−1)h),

understanding that ∆hf = ∆1
hf and ∆0

hf = f .



APPROXIMATION CLASSES FOR TIME-STEPPING AFEM 5

The modulus of smoothness is defined as
ωr(f, I, u)p := sup

0<|h|≤u
‖∆r

hf‖Lp(Irh,X) = sup
0<h≤u

‖∆r
hf‖Lp(Irh,X), u > 0, (2)

which is clearly increasing as a function of u, and the averaged modulus of smoothness
is defined, for u > 0, as

wr(f, I, u)p :=
(

1
2u

∫ u

−u
‖∆r

hf‖
p
Lp(Irh,X) dh

) 1
p

=
(

1
u

∫ u

0
‖∆r

hf‖
p
Lp(Irh,X) dh

) 1
p

.

(3)
The well-known definitions for f : Ω → R, with Ω a domain of Rn, n ≥ 1,

are as follows. For h ∈ Rn, the domain of ∆r
hf is the set Ωrh := {x ∈ Ω :

x, x+ h, . . . , x+ rh ∈ Ω}, and the moduli of smoothness ωr(f,Ω, u)p, wr(t,Ω, u)p
are defined for u > 0 via

ωr(f,Ω, u)p := sup
0<|h|≤u

‖∆r
hf‖Lp(Ωrh), (4)

wr(f,Ω, u)p :=
(

1
(2u)n

∫
[−u,u]n

‖∆r
hf‖

p
Lp(Ωrh) dh

) 1
p

.

As a consequence of the fact that ∆1
mhf(x) =

∑m−1
i=0 ∆1

hf(x+ ih), for m ∈ N, we
can prove by induction ‖∆r

mhf‖Lp(Armh) ≤ mr‖∆r
hf‖Lp(Arh), for A = I or A = Ω

(for details see [PP87, Sect. 3.1]). As an immediate consequence of this,
ωr(f,A,mu)min{1,p}

p ≤ mrωr(f,A, u)min{1,p}
p , u > 0. (5)

From the properties stated above, we have
wr+1(f,A, u)min{1,p}

p ≤ 2wr(f,A, u)min{1,p}
p . (6)

Finally, we notice that if f : [a, b)→ X and f̂ : [0, 1)→ X with f̂(t) = f(a+t(b−a)),
then, for u > 0

ωr(f, [a, b), u)p = (b− a)1/p ωr(f̂ , [0, 1), (b− a)−1u)p,

wr(f, [a, b), u)p = (b− a)1/p wr(f̂ , [0, 1), (b− a)−1u)p.
(7)

Now we prove that the two moduli of smoothness wr and ωr as defined above
in (2) and (3) are equivalent. This result is well-known and proved for real-valued
functions in [DL93, Lem. 6.5.1]. The proof for vector-valued functions is analogous
and we sketch it here for completeness.
Lemma 1. Given 0 < p <∞ and r ∈ N the two definitions of moduli of smoothness
wr(·, ·, ·)p and ωr(·, ·, ·)p are equivalent, more precisely

wr(f, I, u)p ≤ ωr(f, I, u)p ≤ cwr(f, I, u)p,
for all f ∈ Lp(I,X), I = [a, b) and 0 < u < |I|/r, where the constant c depends
only on r and p, but is otherwise independent of f , I, and u.
Proof. The fact that wr(f, I, u)p ≤ ωr(f, I, u)p is obvious. Therefore, it remains
to prove the converse inequality. We prove the result for the reference situation of
I = [0, 1), the general case follows by scaling using (7).

We use the reproducing formula

∆r
hf(t) =

r∑
l=1

(−1)l
(
r

l

)[
∆r
lsf(t+ lh)−∆r

h+lsf(t)
]
, (8)
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which holds if t ∈ [0, 1− rh] and

t+ lh+ rls ≤ 1 and t+ rh+ rls ≤ 1.

This together yields the range t ∈ [0, 1 − rh − r2s]. Formula (8) is proved by
induction, starting with the observation that

∆1
hf(t) = f(t+ h)− f(t)

= f(t+ h)− f(t+ h+ ls) + f(t+ h+ ls)− f(t)
= −

[
∆1
lsf(t+ h)−∆1

h+lsf(t)
]
.

We now consider 0 < h ≤ u ≤ 1
4r and 0 ≤ t ≤ 1

2 . This gives us the upper bound
s < 1

4r2 . Integrating formula (8) yields∫ 1/2

0
‖∆r

hf(t)‖pXdt .
r∑
l=1

∫ 1/2

0
‖∆r

lsf(t+ lh)‖pXdt+
∫ 1/2

0
‖∆r

h+lsf(t)‖pXdt.

Thus, setting I− := [0, 1/2] and averaging over s ∈ [0, u] gives

‖∆r
hf‖

p
Lp(I−,X) (9)

.
r∑
l=1

1
u

[∫ u

0

∫
I−

‖∆r
lsf(t+ lh)‖pXdtds+

∫ u

0

∫
I−

‖∆r
h+lsf(t)‖pXdtds

]

=
r∑
l=1

1
lu

[∫ lu

0

∫
I−

‖∆r
h′f(t+ lh)‖pXdtdh′ +

∫ h+lu

h

∫
I−

‖∆r
h′f(t)‖pXdtdh′

]

.
r∑
l=1

1
(r + 1)u

∫ (r+1)u

0
‖∆r

h′f‖
p
Lp(I,X)dh

′

≤ wr(f, I, (r + 1)u)pp, (10)

where in the second step we used the substitution h′ := ls in the first and h′ :=
h+ ls in the second integral. By symmetry, we also have that ‖∆r

−hf‖
p
Lp(I+,X) ≤

wr(f, I, (r + 1)u)pp with I+ = [1/2, 1]. Taking the supremum w.r.t. 0 < h ≤ u on
both sides we arrive at

ωr(f, I, u)p . wr(f, I, (r + 1)u)p

Using (5) we obtain

ωr(f, I, (r + 1)u)p . ωr(f, I, u)p . wr(f, I, (r + 1)u)p,

which completes the proof. �

2.2. Besov spaces and embeddings. Using the generalized modulus of smooth-
ness defined in the previous subsection, we introduce the Besov spaces Bsp,q(I,X),
s > 0, 0 < p, q ≤ ∞, which contain all functions f ∈ Lp(I,X) such that for
r := bsc+ 1 the quasi-seminorm

|f |Bsp,q(I,X) :=
(∫ |I|/r

0

[
u−sωr(f, I, u)p

]q du
u

)1/q

<∞, 0 < q <∞,

|f |Bsp,∞(I,X) := sup
0<u<|I|/r

u−sωr(f, I, u)p <∞.
(11)
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Moreover, a quasi-norm for Bsp,q(I,X) is given by
‖f‖Bsp,q(I,X) := ‖f‖Lp(I,X) + |f |Bsp,q(I,X), (12)

which is a norm whenever 1 ≤ p, q ≤ ∞.

Remark 2. One can replace the integral
∫ |I|/r

0 by
∫ 1

0 if |I| < ∞ and still get an
equivalent norm. More precisely,∫ |I|/r

0
[u−sωr(f, I, u)p]q

du
u
'
∫ 1

0
[u−sωr(f, I, u)p]q

du
u

with equivalence constants that depend only on s, r, p, q, but are otherwise
independent of f and |I| as |I| → 0.

We prove this claim for 0 < q < ∞, the case q = ∞ is analogous. If |I|/r < 1
then, on the one hand,

∫ |I|/r
0 [u−sωr(f, I, u)p]q du

u ≤
∫ 1

0 [u−sωr(f, I, u)p]q du
u . On the

other hand, ωr(f, I, u)p = ωr(f, I, |I|/r)p, when u ≥ |I|/r. Therefore, using (5) and
the monotonicity of ωr(f, I, ·)p,∫ 1

|I|/r
[u−sωr(f, I, u)p]q

du
u

= ωr(f, I, |I|/r)qp
∫ 1

|I|/r
u−sq−1du

. ωr(f, I, |I|/(2r))qp (|I|/r)−sq

. ωr(f, I, |I|/(2r))qp
∫ |I|/r
|I|/(2r)

u−sq−1du

≤
∫ |I|/r
|I|/(2r)

[u−sωr(f, I, u)p]q
du
u
,

which yields the second inequality for the case |I|/r < 1.
If |I|/r > 1, trivially

∫ 1
0 [u−sωr(f, I, u)p]q du

u ≤
∫ |I|/r

0 [u−sωr(f, I, u)p]q du
u . Be-

sides, using again (5) and the monotonicity of ωr(f, I, ·)p,

ωr

(
f, I,

1
2

)
p

≤ ωr(f, I, u)p ≤ ωr
(
f, I,

|I|
r

)
p

. |I|rωr
(
f, I,

1
2

)
p

,
1
2 ≤ u ≤ |I|/r.

Hence,∫ |I|/r
1

[u−sωr(f, I, u)p]q
du
u
. |I|rqωr

(
f, I,

1
2

)q
p

. |I|rq
∫ 1

1
2

[u−sωr(f, I, u)p]q
du
u
,

which proves the claim for the case |I|/r > 1.

Remark 3. Our definition for the Besov spaces above is in good agreement with
the standard case: When f : Ω→ R, with Ω a domain of Rn, the usual Besov spaces
Bsp,q(Ω) are defined as those subspaces containing all functions f ∈ Lp(Ω) for which

|f |Bsp,q(Ω) :=
(∫ diam(Ω)

0

[
u−sωr(f,Ω, u)p

]q du
u

)1/q

<∞ (13)

(with the usual modification if q = ∞) and r = bsc + 1. Here the modulus of
smoothness involved is the usual one given in (4). The space Bsp,q(Ω) is then
quasi-normed via ‖f‖Bsp,q(Ω) := ‖f‖Lp(Ω) + |f |Bsp,q(Ω). For more information on these
spaces we refer to [DL93, Tri83].

Later on it will be useful for us to discretize the quasi-seminorm (11) as follows.
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Lemma 4. The quasi-seminorm (11) for Bsp,q(I,X) is equivalent to

|f |∗Bsp,q(I,X) :=
( ∞∑
k=0

[
2ksωr(f, I, 2−k)p

]q)1/q

, 0 < q <∞,

|f |∗Bsp,∞(I,X) := sup
k≥0

2ksωr(f, I, 2−k)p,
(14)

with constants of equivalence independent of f and I as |I| → 0.

Proof. The proof follows along the lines of the standard case, which may be found
in [DL93, p. 56]. Using (5) with m = 2 and the monotonicity of ωr(f, I, ·) we see
that for u ∈ [2−k−1, 2−k] it holds

2−r
(
2ksωr(f, I, 2−k)p

)min{1,p} ≤
(
u−sωr(f, I, u)

)min{1,p}
p

≤
(

2(k+1)sωr(f, I, 2−k)p
)min{1,p}

.

Raising all terms of the inequality to the power 1
min{1,p} we obtain

u−sωr(f, I, u)p ' 2ksωr(f, I, 2−k)p for u ∈ [2−k−1, 2−k].

Hence, since
∫ 2−k

2−k−1
du
u = ln 2 ' 1 we get(∫ 2−k

2−k−1
[u−sωr(f, I, u)p]q

du
u

)1/q

' 2ksωr(f, I, 2−k)p.

This completes the proof for 0 < q <∞ taking into account Remark 2, after adding
all terms for k ≥ 0. The case q =∞ is analogous. �

2.2.1. Embedding results. Before we provide some embeddings for the scaleBsp,q(I,X)
needed later on, let us briefly recall what is known concerning the Besov spaces
Bsp,q(Ω).

Proposition 5. Let s > 0 and 0 < p, q ≤ ∞.
(i) Let 0 < ε < s, 0 < ν ≤ ∞, and q ≤ ϑ ≤ ∞, then

Bsp,q(Ω) ↪→ Bs−εp,ν (Ω) and Bsp,q(Ω) ↪→ Bsp,ϑ(Ω).
(ii) (Sobolev-type embedding) Let 0 < σ < s and p < τ be such that

s− n

p
≥ σ − n

τ
, (15)

then
Bsp,q(Ω) ↪→ Bστ,ϑ(Ω), (16)

where 0 < ϑ ≤ ∞ and, additionally, q ≤ ϑ if an equality holds in (15).
Moreover, in the limiting case when σ = 0 and ϑ is such that

s− n

p
≥ −n

ϑ
, (17)

we have
Bsp,q(Ω) ↪→ Lϑ(Ω), (18)

where again q ≤ ϑ if an equality holds in (17).
(iii) If the domain Ω ⊂ Rn is bounded, then for τ ≤ p we have the embedding

Bsp,q(Ω) ↪→ Bsτ,q(Ω). (19)
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Remark 6. (i) The above
results can be found in
[DL93, § 2.10, 12.8], [HS09,
Thm. 1.15], and [BS88].
In the interpolation diagram
aside we have illustrated
the area of possible embed-
dings of a fixed original space
Bsp,q(Ω) into spaces Bσ1

τ1,ν1
(Ω)

and Bσ2
τ2,ν2

(Ω). The lighter
shaded area corresponds to
the additional embeddings
we have if the underlying
domain Ω is bounded.

Bs
p,q

Bσ1
τ1,ν1

Bσ2
τ2,ν2

1
p

s

Lϑ

Ω bounded

s − n
p = −n

ϑ

Figure 2. Embeddings for
Bsp,q(Ω)

(ii) In the non-limiting case (corresponding to the strict inequality in (15)
and (17)) the embeddings in Proposition 5 are known to be compact. In
particular, for α > 0 and p < τ , the embeddings Bs+αp,p (Ω) ↪→ Bsτ,τ (Ω)
(s > 0) and Bαp,p(Ω) ↪→ Lτ (Ω) (s = 0) are compact if, and only if,

α− n

p
> −n

τ
.

For the scale Bsp,q(I,X) there are counterparts of the embeddings from Proposi-
tion 5.

Proposition 7. Assume s > 0 and 0 < p, q ≤ ∞.
(i) Let 0 < ε < s, 0 < ν ≤ ∞, and q ≤ ϑ ≤ ∞, then

Bsp,q(I,X) ↪→ Bs−εp,ν (I,X) and Bsp,q(I,X) ↪→ Bsp,ϑ(I,X).

(ii) If the time interval I is bounded, then for τ ≤ p we have the embedding
Bsp,q(I,X) ↪→ Bsτ,q(I,X). (20)

Proof. The embeddings in (i) and (ii) can be proven as in the standard case, using
the discrete version of the seminorm for Besov spaces, i.e.,

|f |Bsp,q(I,X) ' |f |∗Bsp,q(I,X) =
( ∞∑
k=0

[2ksωr(f, 2−k)p]q
) 1
q

, 0 < q <∞,

with the analogous one for q = ∞. Indeed, the second embedding in (i) is just a
consequence of the monotonicity of the `q sequence spaces, i.e., `q ↪→ `ϑ for q ≤ ϑ.
The first embedding for q ≤ ν is also clear since 2k(s−ε) ≤ 2ks. If ν < q one uses
Hölder’s inequality with q

ν > 1, which gives the desired result.
Moreover, (ii) follows immediately since for τ ≤ p and |I| <∞ we have Lp(I,X) ↪→
Lτ (I,X). �

Remark 8. The counterpart of the limiting embedding (18) in Prop. 5(ii) is derived
in Corollary 21 as an application of our generalized Whitney’s estimate presented
in Proposition 20. Moreover, the Sobolev-type embeddings as stated in Prop. 5(ii),
formula (16), should also hold. The proof in the standard case, cf. [DL93, § 12.8],
involves spline representations for Besov spaces, which we have not provided for our
generalized setting so far. This is out of the scope of the present paper.
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3. Jackson- and Whitney-type theorems for vector-valued functions

In this section we prove Jackson- and Whitney-type theorems for functions defined
on an interval, but valued on a Banach space. Some proofs are rather technical, and
analogous to the ones presented for scalar-valued functions in [Sto77, OS78].

Let us mention that regarding Jackson’s theorem there is a proof for 1 ≤ p ≤ ∞,
which is based on the K-functional method of interpolation [PP87, §3.5] and seems
extendable to vector-valued functions. There is an alternative proof in [PP87,
Thm. 7.1], which holds for 0 < p ≤ ∞ and avoids all the technicalities from [Sto77,
OS78]. However, it is based on a contradiction argument and does not work in the
vector-valued case, or at least we could not generalize it to the infinite-dimensional
setting.

The proof of Whitney’s theorem that we present below in Section 3.2 follows the
steps from [DeV98, Sect. 6.1]. In order to do it, we need an equivalence of Lp-norms
for vector-valued polynomials, which is contained in Lemma 17 and Corollary 19.
After proving Whitney’s estimate in Bsq,q(I,X) ∩ Lp(I,X) in Proposition 20 we
obtain the embedding Bsq,q(I,X) ⊂ Lp(I,X), and arrive at Whitney’s estimate in
Bsq,q(I,X).

3.1. Jackson’s estimate. The goal of this section is to prove a Jackson-type
estimate, which is stated below in Theorem 9 and requires some definitions.

Given a separable Banach space X, r ∈ N, and an interval I = [a, b), we denote
by VrI,X the space of X-valued polynomials of order r w.r.t. time, which we define
as follows:

VrI,X :=
{
P : I → X,P (t) =

r∑
j=1

`rj(t)Pj : Pj ∈ X, t ∈ I
}
, (21)

with `rj the usual (scalar-valued) Lagrange basis functions

`rj(t) =
∏
i6=j

t− ti
tj − ti

for tj = a+ (j − 1) b− a
r − 1 , j = 1, 2, . . . , r. (22)

Notice that any basis for the space Πr of scalar-valued polynomials in R, such as
1, t, t2, . . . , tr−1, leads to the same space VrI,X .

The main result of this section is the following.

Theorem 9 (Jackson’s Theorem). Let 0 < p ≤ ∞ and r ∈ N. Then there exists a
constant c > 0 such that for any interval I and every f ∈ Lp(I,X), there exists a
vector-valued polynomial Pr ∈ VrI,X , which satisfies

‖f − Pr‖pLp(I,X) ≤ cwr(f, I, h)pp with h = |I|2r . (23)

In other words, there exist a0, a1, . . . , ar−1 ∈ X such that, if Pr(t) = a0 + a1t +
. . .+ ar−1t

r−1, then (23) holds.

Due to the homogeneity (5) and the equivalence of Lemma 1, Jackson’s estimate
can also be stated as:
Er(f, I)p := inf

Pr∈VrI,X
‖f − Pr‖pLp(I,X) ≤ cwr(f, I, |I|)

p
p, ∀f ∈ Lp(I,X). (24)

In order to prove this estimate, we need several auxiliary lemmas, which are
rather technical, and analogous to the ones proved for scalar-valued functions
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in [Sto77, OS78]. We generalize them to our setting. The basic idea is to first
study periodic functions and their higher order differences, and then relate them to
differences of the functions we are actually interested in.

Let f : [a, b)→ X be anX-valued function and f∗ denote its periodic continuation
with period d := b− a, i.e.,

f∗(t) = f(t− `d), where ` ∈ Z is such that t− `d ∈ [a, b).
Moreover, for 0 < p <∞ and k ∈ N consider the integrals

I∗p,k(h) :=
∫ b

a

‖∆k
hf
∗(t)‖pXdt =

∫ d

0
‖∆k

hf
∗(t)‖pXdt, (25)

Ip,k(h) :=
∫ b−kh

a

‖∆k
hf(t)‖pXdt. (26)

Note that we do not emphasize on the fact that the expressions I∗p,k(h) and Ip,k(h)
also depend on the functions f and f∗, respectively, since it will always be clear
from the context which function we deal with.

We start with the following result showing how the best approximation of some
function f ∈ Lp(I,X) by a constant a0 ∈ X can be bounded using first differences
of its periodic continuation f∗.

Lemma 10. Let 0 < p <∞ and f ∈ Lp(I,X). There exists a0 ∈ X such that

‖f − a0‖pLp(I,X) ≤
1
d

∫ d

0
I∗p,1(y)dy.

Proof. We show how to construct a0 ∈ X satisfying the desired inequality. Let f∗
denote the d-periodic continuation of f . We make the following easy observation,

inf
a0∈X

‖f − a0‖pLp(I,X) = inf
a0∈X

∫ d

0
‖f∗(t)− a0‖pXdt

= inf
a0∈X

∫ d

0
‖f∗(t+ y)− a0‖pXdt

≤
∫ d

0
‖f∗(t+ y)− f∗(y)‖pXdt, for any y ∈ [0, d).

Now using the fact that f∗ is d-periodic and the left-hand side does not depend on
y, integration from 0 to d w.r.t. y yields

inf
a0∈X

‖f − a0‖pLp(I,X) ≤
1
d

∫ d

0

∫ d

0
‖f∗(t+ y)− f∗(y)‖pXdtdy

= 1
d

∫ b

a

∫ b

a

‖f(t)− f(y)‖pXdtdy = 1
d

∫ b

a

g(y)dy,

where in the last line we put g(y) :=
∫ b
a
‖f(t) − f(y)‖pXdt. Note that the set S

defined as

S :=
{
z ∈ [a, b) : g(z) ≤ 1

d

∫ b

a

g(y)dy
}
,

is non-empty. Therefore, taking z ∈ S and putting a0 := f(z) we obtain

‖f − a0‖pLp(I,X) =
∫ b

a

‖f(t)− f(z)‖pXdt = g(z)
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≤ 1
d

∫ b

a

∫ b

a

‖f(t)− f(y)‖pXdtdy

= 1
d

∫ d

0

∫ d

0
‖f∗(t+ y)− f∗(y)‖pXdtdy

= 1
d

∫ d

0

∫ d

0
‖f∗(t+ y)− f∗(y)‖pXdydt

= 1
d

∫ d

0
I∗p,1(t)dt,

which shows that a0 := f(z) with z ∈ S yields the assertion. �

The following lemma shows that we can bound integrals of lower order differences
of periodic functions with integrals involving higher order differences.

Lemma 11. Let 0 < p <∞ and k ∈ N. Then we have the following relation∫ d

0
I∗p,k(y)dy ≤ c

∫ d

0
I∗p,k+1(y)dy,

with the constant c > 0 only depending on k and p, but otherwise independent of the
function f and the interval [a, b).

Proof. We make use of the following identity

∆k
2yf
∗(t)− 2k∆k

yf
∗(t) =

k∑
i=1

(
k

i

) i−1∑
m=0

∆k+1
y f∗(t+my), (27)

which can be found in [Tim63, Sect. 3.3.2]. Let 0 < p < 1. In this case we know
that | · |p is subadditive. This and integration from 0 to d w.r.t. t in (27) leads to

2kp
∫ d

0
‖∆k

yf
∗(t)‖pXdt−

∫ d

0
‖∆k

2yf
∗(t)‖pXdt

≤
k∑
i=1

(
k

i

) i−1∑
m=0

∫ d

0
‖∆k+1

y f∗(t+my)‖pXdt.

Now integrating once more from 0 to d w.r.t. y and using the definition of I∗p,k gives

2kp
∫ d

0
I∗p,k(y)dy −

∫ d

0
I∗p,k(2y)dy ≤

k∑
i=1

(
k

i

)
i

∫ d

0
I∗p,k+1(y)dy. (28)

Since I∗p,k(y) is d-periodic, we have the identity∫ d

0
I∗p,k(2y)dy = 1

2

∫ 2d

0
I∗p,k(y′)dy′ =

∫ d

0
I∗p,k(y)dy.

Inserting this in (28) we obtain(
2kp − 1

) ∫ d

0
I∗p,k(y)dy ≤ ck,p

∫ d

0
I∗p,k+1(y)dy, (29)

which gives the desired estimate in the case 0 < p < 1. When 1 ≤ p <∞ we proceed
with (27) as follows: We add 2k∆k

yf
∗(t) on both sides of (27) and integrate from 0

to d w.r.t. t and from 0 to d w.r.t. y afterwards in the Lp-norm. This gives (28)
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but with the integrals to the power 1
p . We proceed as before and end up with (29)

to the power 1
p , which proves the asserted estimate. �

The following lemma shows how to bound integrals of higher order differences of
the periodic extension of a function by integrals of higher order differences of the
original function plus first order differences.

Lemma 12. Let f ∈ Lp(I,X), where 0 < p <∞. Then for any k ∈ N it holds∫ d
k

0
I∗p,k(y)dy ≤ 2

∫ d
k

0
Ip,k(y)dy + c d Ip,1

(
d

k

)
.

with the constant c > 0 only depending on k and p, but otherwise independent of the
function f and the interval [a, b).

Proof. By definition ∆k
yf
∗(t) =

∑k
i=0(−1)k−i

(
k
i

)
f∗(t+ iy) and the fact that f∗ is

the d-periodic continuation of f , i.e., f = f∗ on [a, b) and f∗(t) = f(t− d) for some
t ∈ [b, b+ d), we express I∗p,k in terms of the values of f as follows:

I∗p,k(y) =
∫ b

a

‖∆k
yf
∗(t)‖pXdt

=
∫ b−ky

a

‖∆k
yf(t)‖pXdt+

k∑
j=1

∫ b−(j−1)y

b−jy
‖Sj‖pXdt, 0 ≤ y ≤ d

k
, (30)

where

Sj(t) =
j−1∑
i=0

(−1)k−i
(
k

i

)
f(t+ iy) +

k∑
i=j

(−1)k−i
(
k

i

)
f(t+ iy − d).

x x + y x + 2y x + 3y x + 4y

f∗ = f f∗(·) = f(· − d)

b − 4y b − 2y b − ya bb − 3y

Figure 3. Express f∗ via f with j = 3
Now we transform Sj as follows: we augment the first term of the first sum and the
last of the second sum in order to obtain the value of the k-th difference of f at the
point t with step y − d

k . This yields

Sj =
k∑
i=0

(−1)k−i
(
k

i

)
f

(
t+ i

(
y − d

k

)) ↗ i = 0 first sum
↘ i = k second sum (=: T1)

+
j−1∑
i=1

(−1)k−i
(
k

i

)[
f (t+ iy)−f

(
t+ i

(
y − d

k

))]
(=: T2(j))

+
k−1∑
i=j

(−1)k−i
(
k

i

)[
f (t+ iy − d)−f

(
t+ i

(
y − d

k

))]
(=: T3(j))
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=: T1 + T2(j) + T3(j).
Since T1 does not depend on j,

k∑
j=1

∫ b−(j−1)y

b−jy
‖T1‖pX dt =

∫ b

b−ky
‖T1‖pXdt =

∫ b

b−ky
‖∆k

y− dk
f(t)‖pX dt

=
∫ a+ky

a

‖∆k
d
k−y

f(t)‖pXdt = Ip,k

(
d

k
− y
)
, (31)

where in the third step we changed the step y − d
k involving the k-th difference of f

into d
k − y in order to obtain a nonnegative step. We now estimate the sum

k∑
j=1

∫ b−(j−1)y

b−jy
‖T2(j)‖pX + ‖T3(j)‖pXdt

.
k∑
j=1

∫ b−(j−1)y

b−jy

{
j−1∑
i=1

(
k

i

)p∥∥∥f(t+ iy)− f
(
t+ i

(
y − d

k

))∥∥∥p
X

+
k−1∑
i=j

(
k

i

)p∥∥∥f(t+ iy − d)− f
(
t+ i

(
y − d

k

))∥∥∥p
X

dt

(change summation
∑k

j=1

∑j−1
i=1 =

∑k−1
i=1

∑k

j=i+1 and
∑k

j=1

∑k−1
i=j

=
∑k−1

i=1

∑i

j=1)

=
k−1∑
i=1

(
k

i

)p ∫ b−iy

b−ky

∥∥∥∥f(t+ iy)− f
(
t+ i

(
y − d

k

))∥∥∥∥p
X

dt

+
k−1∑
i=1

(
k

i

)p ∫ b

b−iy

∥∥∥∥f(t+ iy − d)− f
(
t+ i

(
y − d

k

))∥∥∥∥p
X

dt

(1st integral: Substitution t′ = t + i
(
y − d

k

)
; reverse sum i 7→ k − i)

(2nd integral: Substitution t′′ = t + iy − d)

=
k−1∑
i=1

(
k

i

)p ∫ k−i
k a+ i

k b

k−i
k a+ i

k b−iy

∥∥∥∥f (t′ + (k − i)d
k

)
− f (t′)

∥∥∥∥p
X

dt′

+
k−1∑
i=1

(
k

i

)p ∫ a+iy

a

∥∥∥∥f(t′′)− f
(
t′′ + (k − i)d

k

)∥∥∥∥p
X

dt′′.

(32)
Now (30), (31), and (32) yield

I∗p,k(y) ≤ Ip,k(y) + Ip,k

(
d

k
− y
)

+
k−1∑
i=1

(
k

i

)p ∫ k−i
k a+ i

k b

k−i
k a+ i

k b−iy

∥∥∥∥f (t′ + (k − i)d
k

)
− f (t′)

∥∥∥∥p
X

dt′

+
k−1∑
i=1

(
k

i

)p ∫ a+iy

a

∥∥∥∥f(t′′)− f
(
t′′ + (k − i)d

k

)∥∥∥∥p
X

dt′′.
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Integrating from 0 to d
k w.r.t. y gives∫ d

k

0
I∗p,k(y)dy ≤

∫ d
k

0
Ip,k(y)dy +

∫ d
k

0
Ip,k

(
d

k
− y
)

dy

+ c

{
k−1∑
i=1

∫ d
k

0

∫ k−i
k a+ i

k b

k−i
k a+ i

k b−iy

∥∥∥∥f (t′ + (k − i)d
k

)
− f (t′)

∥∥∥∥p
X

dt′dy

+
k−1∑
i=1

∫ d
k

0

∫ a+iy

a

∥∥∥∥f(t′′)− f
(
t′′ + (k − i)d

k

)∥∥∥∥p
X

dt′′dy
}
.

We change the order of integration in the double
integrals. For the second integral this yields∫ d

k

0

∫ a+iy

a

(. . .)dt′′dy −→
∫ a+i dk

a

∫ d
k

t′′−a
i

(. . .)dydt′′.

Similarly for the first one. Moreover, observing
that the integrand in both cases does not depend
on y we obtain

t′′

y

a

a + i d
k

t′′ = a + iy ⇐⇒ y = t′′−a
i

0 d
k

∫ d
k

0
I∗p,k(y)dy

≤ 2
∫ d

k

0
Ip,k(y)dy + c

{ k−1∑
i=1

∫ a+i dk

a

(
t′

i
− a

i

)∥∥∥∥f (t′ + (k − i)d
k

)
− f (t′)

∥∥∥∥p
X

dt′

+
k−1∑
i=1

∫ a+i dk

a

(
d

k
− t′′ − a

i

)∥∥∥∥f(t′′)− f
(
t′′ + (k − i)d

k

)∥∥∥∥p
X

dt′′
}

= 2
∫ d

k

0
Ip,k(y)dy + c

d

k

k−1∑
i=1

∫ a+i dk

a

∥∥∥∥f(t)− f
(
t+ (k − i)d

k

)∥∥∥∥p
X

dt. (33)

Using a telescopic sum we see that∥∥∥f(t)− f
(
t+ (k − i)d

k

)∥∥∥p
X
.

k−i∑
j=1

∥∥∥f (t+ (j − 1)d
k

)
− f

(
t+ j

d

k

)∥∥∥p
X

and for i = 1, 2, . . . , k − 1,
k−i∑
j=1

∫ a+i dk

a

∥∥∥∥f (t+ (j − 1)d
k

)
− f

(
t+ j

d

k

)∥∥∥∥p
X

dt

=
k−i∑
j=1

∫ a+ i+j−1
k d

a+ j−1
k d

∥∥∥∥f (t′)− f
(
t′ + d

k

)∥∥∥∥p
X

dt′

≤ (k − i)
∫ a+ k−1

k d

a

∥∥∥∥f (t′)− f
(
t′ + d

k

)∥∥∥∥p
X

dt′, (34)
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where in the second step we used a change of variables t′ := t+ (j − 1) dk . Inserting
(34) into (33) finally gives∫ d

k

0
I∗p,k(y)dy ≤ 2

∫ d
k

0
Ip,k(y)dy + d ck,p

∫ b− dk

a

∥∥∥∥f (t′)− f
(
t′ + d

k

)∥∥∥∥p
X

dt′

= 2
∫ d

k

0
Ip,k(y)dy + ck,p d Ip,1

(
d

k

)
,

which completes the proof. �

The previous lemmas give the following result, which shows that we can bound
the best approximation of a function f ∈ Lp(I,X) by a constant a0 ∈ X with the
help of integrals of higher order differences and first order differences of f .

Lemma 13. Let I = [a, b), 0 < p < ∞, and m ∈ N. There exists a constant
c = cm,p, such that for every f ∈ Lp(I,X) there exists a0 ∈ X satisfying, for
h = b−a

m ,

‖f − a0‖pLp(I,X) ≤ c

[
1
h

∫ h

0

∫ b−ms

a

‖∆m
s f(t)‖pXdtds+

∫ b−h

a

‖∆hf(t)‖pXdt
]

(35)

= c
[
wm(f, I, h)pp + ‖∆hf(t)‖pLp(Ih,X)

]
.

Remark 14. Note that the second term with the first order differences in (35) is
crucial: If f is a polynomial of degree m− 1 the first integral on the right-hand side
vanishes but the left-hand side might not.

Proof. We first notice that, by induction, we can easily check that

∆m
myf

∗(t) =
m−1∑
im=0

· · ·
m−1∑
i1=0

∆m
y f
∗(t+ i1y + · · ·+ imy),

so that I∗p,m(my) . I∗p,m(y). Taking a0 ∈ X as constructed in Lemma 10 and using
Lemmas 11 and 12 with k = m, setting h = d

m , we obtain

‖f − a0‖pLp(I,X) .
1
d

∫ d

0
I∗p,1(y)dy . 1

d

∫ d

0
I∗p,m(y)dy

.
1
d

∫ d

0
I∗p,m

( y
m

)
dy = m

d

∫ d
m

0
I∗p,m(y′)dy′

≤ m

d

[
2
∫ d

m

0
Ip,m(y)dy + cp,mdIp,1

(
d

m

)]

= c′p,m
1
h

[∫ h

0

∫ b−my

a

‖∆m
y f‖

p
Xdtdy +

∫ b−h

a

‖∆hf(t)‖pXdt
]
,

which is the desired result. �

Finally, a repeated application of Lemma 13 now allows us to establish Jackson’s
inequality.

Proof of Theorem 9. We assume I = [0, 1). The general case follows by scaling,
using (7). Let h = 1

2r , f ∈ Lp(I,X), and denote the approximant a0 ∈ X from
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Lemma 13 by M(f, I) := a0. Now define the coefficients a0, . . . , ar−1 recursively as
follows:

ar−1 = M
(
∆r−1
h f, [0, 1− (r − 1)h]

) 1
hr−1

1
(r − 1)! ,

f1(t) = f(t)− ar−1t
r−1,

ar−2 = M(∆r−2
h f1, [0, 1− (r − 2)h]) 1

hr−2
1

(r − 2)! ,

f2(t) = f1(t)− ar−2t
r−2 = f(t)− (ar−1t

r−1 + ar−2t
r−2),

...

a2 = M(∆2
hfr−3, [0, 1− 2h]) 1

h2
1
2! ,

fr−2(t) = fr−3(t)− a2t
2 = f(t)− (ar−1t

r−1 + ar−2t
r−2 + . . .+ a2t

2),

a1 = M(∆1
hfr−2, [0, 1− h]) 1

h
,

fr−1(t) = fr−2(t)− a1t = f(t)− (ar−1t
r−1 + ar−2t

r−2 + . . .+ a1t),
a0 = M(fr−1, [0, 1]).

With

Pr(t) =
r−1∑
k=0

akt
k = a0 + a1t+ . . .+ ar−1t

r−1

we compute

‖f − Pr‖pLp(I,X) = ‖fr−1 − a0‖pLp(I,X) = ‖fr−1 −M(fr−1, [0, 1])‖pLp(I,X)

. w2r

(
fr−1, I,

1
2r

)p
p

+ ‖∆hfr−1‖pLp(Ih,X)

(which follows from applying Lem. 13 with m = 2r)

= w2r (f, I, h)pp + ‖∆hfr−2 − a1h‖pLp(Ih,X)

= w2r (f, I, h)pp + ‖∆hfr−2 −M(∆hfr−2, [0, 1− h])‖pLp(Ih,X)

. w2r (f, I, h)pp + w2r−1 (∆hfr−2, [0, 1− h], h)pp + ‖∆2
hfr−2‖pLp(I2h,X)

(which follows from applying Lem. 13 with m = 2r − 1)

. w2r−1 (f, I, h)pp + ‖∆2
hfr−3 − a22!h2‖pLp(I2h,X)

(we used (6))

= w2r−1 (f, I, h)pp + ‖∆2
hfr−3 −M(∆2

hfr−3, [0, 1− 2h])‖pLp(I2h,X)

. w2r−2 (f, I, h)pp + ‖∆3
hfr−4 − a33!h3‖pLp(I3h,X)

(which follows from applying Lem. 13 with m = 2r − 2)

...
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. wr+2 (f, I, h)pp + ‖∆r−1
h f − ar−1(r − 1)!hr−1‖pLp(I(r−1)h,X)

. wr+1 (f, I, h)pp + ‖∆r
hf‖

p
Lp(Irh,X)

(which follows from applying Lem. 13 with m = r + 1)

≤ wr+1 (f, I, h)pp + wr(f, I, h)pp
. wr (f, I, h)pp ,

which proves the theorem. �

Remark 15. Note that Theorem 9 also holds for p =∞: if we extend (25) by

I∗∞,k(h) := sup
t∈[a,b)

‖∆k
hf
∗(t)‖X = sup

t∈[0,d)
‖∆k

hf
∗(t)‖X ,

and similarly (26), then Lemmas 10–13 can be extended to the case when p =∞ by
obvious modifications in the proofs, i.e., mostly replacing the integrals by suprema.
In this case the factors ‘ 1d ’ and ‘d’ in Lemmas 10 and 12, respectively, disappear.

3.2. Whitney’s estimate. Having established Jackson’s estimate (24) in Theo-
rem 9 we now proceed to prove Whitney’s estimate.

Theorem 16 (Generalized Whitney’s theorem). Let 0 < p, q ≤ ∞, r ∈ N, and
s > 0. If (1/q − 1/p)+ ≤ s < r then there exists a constant c > 0 which depends
only on p, q, r such that

Er(f, I)p = inf
P∈Vr

I,X

‖f − P‖Lp(I,X) ≤ c|I|s+
1
p−

1
q |f |Bsq,q(I,X), (36)

for all f ∈ Bsq,q(I,X) and for any finite interval I.

Since this involves the Lp-norm on the left-hand side and an Lq-norm on the
right-hand side, we first deal with the problem of how to switch from p-norms
to q-norms for vector-valued polynomials. Using this together with the Jackson
estimate, the fact that according to Lemma 4 we can express the quasi-norm of
the Besov spaces Bsp,q(I,X) as a discrete summation instead of integrals yields
Whitney’s estimate.

Lemma 17. Let 0 < p <∞ and I = [0, 1]. On VrI,X the quasi-norm

‖P‖p :=
(∫ 1

0
‖P (t)‖pXdt

)1/p

is equivalent to the norm

‖P‖∗ := max
j=1,...,r

‖Pj‖X , Pj = P (tj), tj = j − 1
r − 1 , j = 1, . . . , r.

The constants involved in the equivalence depend on r and p, but are otherwise
independent of P ∈ VrI,X .

Remark 18. At first sight, it may seem that this lemma is obvious, because it
looks like an equivalence of quasi-norms in a finite-dimensional space. But this is
not the case, since the space VrI,X is not finite-dimensional, when X is an arbitrary
Banach space.
With slight modifications in the proof, Lemma 17 also holds for p = ∞ and the
quasi-norm ‖P‖∞ = supt∈[0,1] ‖P (t)‖X .
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Proof. Let {`j}rj=1 denote the Lagrange basis of Πr corresponding to the equally
spaced nodes tj = j−1

r−1 , j = 1, . . . , r on [0, 1], i.e.,

`j(t) =
∏
i 6=j

t− ti
tj − ti

, so that `j(ti) = δij and P =
r∑
j=1

Pj`j , if P ∈ VrI,X .

Obviously, for P ∈ VrI,X ,

‖P‖p =
(∫ 1

0
‖P (t)‖pXdt

)1/p

=

∫ 1

0

∥∥∥ r∑
j=1

`j(t)Pj
∥∥∥p
X

dt

1/p

≤ cp,r
r∑
j=1

(∫ 1

0
`pj (t)‖Pj‖

p
Xdt

)1/p

≤ cp,r max
j=1,...,r

‖Pj‖X = cp,r‖P‖∗.

Let now P =
∑r
j=1 Pj`j ∈ VrI,X and let i be such that ‖Pi‖X = maxj ‖Pj‖X = ‖P‖∗.

Then, for each t ∈ I, we have

‖P (t)‖X =
∥∥∥ r∑
j=1

`j(t)Pj
∥∥∥
X
≥ |`i(t)|‖Pi‖X −

∑
j 6=i
|`j(t)|‖Pj‖X

≥ ‖P‖∗
(
|`i(t)| −

∑
j 6=i
|`j(t)|

)
. (37)

Since at the point t = ti we have `i(ti) = 1 and `j(ti) = 0 for all j 6= i, there exists
δ > 0 such that

|t− ti| < δ =⇒ |`i(t)| >
3
4 >

1
4 >

∑
j 6=i
|`j(t)|;

notice that δ > 0 can be chosen independent of i, but will depend on r. Hence,

|`i(t)| −
∑
i6=j
|`j(t)| >

1
2 .

Hence, (37) gives us

‖P (t)‖X ≥
1
2‖P‖∗ for |t− ti| < δ.

Raising to the power p and averaging over the interval (ti − δ, ti + δ) ∩ I yields

‖P‖∗ ≤

(
2p

δ

∫
(ti−δ,ti+δ)∩I

‖P (t)‖pXdt
)1/p

≤ c̄p,r
(∫

I

‖P (t)‖pXdt
)1/p

= c̄p,r‖P‖p,

and the assertion follows. �

By a scaling argument we obtain from the previous Lemma the following equiva-
lence of Lp(I,X) norms in VrI,X on an arbitrary interval I. The proof is very simple
and is thus omitted.

Corollary 19. Let 0 < p, q ≤ ∞ and r ∈ N. Then there exists a constant c > 0
which depends only on p, q, r such that on any finite interval I,

‖P‖Lp(I,X) ≤ c|I|1/p−1/q‖P‖Lq(I,X), ∀P ∈ VrI,X . (38)
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Following the steps from [DeV98, Sec. 6.1] we can now prove Whitney’s estimate
in Bsq,q(I,X) ∩ Lp(I,X).

Proposition 20. Let 0 < p, q ≤ ∞, r ∈ N, and s > 0. If (1/q − 1/p)+ ≤ s < r
then there exists a constant c > 0 which depends only on p, q, r such that

Er(f, I)p := inf
P∈Vr

I,X

‖f − P‖Lp(I,X) ≤ c|I|s+
1
p−

1
q |f |Bsq,q(I,X), (39)

for all f ∈ Bsq,q(I,X) ∩ Lp(I,X) and for any finite interval I.

Proof. Since Er+1(f, I)p ≤ Er(f, I)p, it is sufficient to prove the result in the case
r = bsc + 1, and by scaling it is sufficient to consider I = [0, 1). Also, since
Er(f, I)p ≤ Er(f, I)q when p < q, it is sufficient to consider the case q ≤ p.

Let Dk for k = 0, 1, 2, . . . denote the following dyadic partitions of I:

Dk := {Ijk := 2−k[j − 1, j), j = 1, . . . , 2k}.
We let Sk denote a piecewise polynomial function of order r on the partition Dk

satisfying the Jackson estimate (24) with p replaced by q, in each sub-interval, i.e.,

‖f − Sk‖Lq(Ijk,X) . wr(f, I
j
k, 2
−k)q, j = 1, 2, . . . , 2k, k = 0, 1, . . . ,

whence S0 ∈ VrI,X .
Then, on the one hand, we have

‖f − Sk‖qLq(I,X) =
2k∑
j=1
‖f − Sk‖qLq(Ijk,X)

.
2k∑
j=1

wr(f, Ijk, 2
−k)qq.

Denoting Ĩjk =
(
Ijk
)
rh

we obtain

‖f − Sk‖qLq(I,X) .
1

2−k

∫ 2−k

0

2k∑
j=1
‖∆r

hf‖
q

Lq(Ĩjk,X)
dh

= 1
2−k

∫ 2−k

0

2k∑
j=1

∫
Ĩj
k

‖∆r
hf(t)‖qXdtdh

≤ 1
2−k

∫ 2−k

0

∫
[0,1−rh]

‖∆r
hf(t)‖qXdtdh

= 1
2−k

∫ 2−k

0
‖∆r

hf‖
q
Lq([0,1−rh],X)dh = wr(f, I, 2−k)qq. (40)

On the other hand, using (38) in each subinterval Ijk+1, we have

‖Sk − Sk+1‖pLp(I,X) =
2k+1∑
j=1
‖Sk − Sk+1‖pLp(Ij

k+1,X)

. 2−k(1− pq )
2k+1∑
j=1
‖Sk − Sk+1‖pLq(Ijk+1,X)

. 2−k(1− pq )
2k+1∑
j=1
‖Sk − Sk+1‖qLq(Ijk+1,X)

p/q
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= 2−k(1− pq )‖Sk − Sk+1‖pLq(I,X), (41)

where in the second to last line we used the fact that `q/p ↪→ `1 for q ≤ p. This
yields for p = min{1, p},

‖Sk − Sk+1‖pLp(I,X) . 2−k(
1
p−

1
q )p‖Sk − Sk+1‖pLq(I,X). (42)

But then using (40), (42), and the assumption that f ∈ Lp(I,X), we obtain

Er(f, I)pp ≤ ‖f − S0‖pLp(I,X) ≤
∞∑
k=0
‖Sk − Sk+1‖pLp(I,X)

.
∞∑
k=0

2−k(
1
p−

1
q )p‖Sk − Sk+1‖pLq(I,X)

≤
∞∑
k=0

2−k(
1
p−

1
q )p
(
‖Sk − f‖pLq(I,X) + ‖f − Sk+1‖pLq(I,X)

)
.
∞∑
k=0

2−k(
1
p−

1
q )p‖f − Sk‖pLq(I,X)

.
∞∑
k=0

2−k(
1
p−

1
q )pwr(f, I, 2−k)pq

=
∞∑
k=0

2−k((
1
p−

1
q )+s)p2kspwr(f, I, 2−k)pq

≤
∞∑
k=0

2−kδp2kspwr(f, I, 2−k)pq , (43)

where δ :=
(

1
p −

1
q

)
+ s ≥ 0 due to our assumption s ≥ (1/q − 1/p)+. In (43) we

proceed as follows: if q < p we make use of the embedding `q ↪→ `p together with
the fact that 2−kδp ≤ 1 and for q > p we apply Hölder’s inequality with q

p > 1. This
finally gives

‖f − S0‖Lp(I,X) ≤

( ∞∑
k=0

2ksqwr(f, 2−k, I)qq

)1/q

' |f |Bsq,q(I,X). (44)

The assertion thus follows by recalling that S0 ∈ VrI,X . �

As a consequence of the previous theorem we have that under the same assump-
tions Bsq,q(I,X) is embedded into Lp(I,X).

Corollary 21. Let 0 < p, q ≤ ∞, r ∈ N, and s > 0. If (1/q − 1/p)+ ≤ s then
Bsq,q(I,X) is embedded into Lp(I,X) and there exists a constant c > 0 which depends
only on p, q, r, and s such that

‖f‖Lp(I,X) ≤ c‖f‖Bsq,q(I,X),

for all f ∈ Bsq,q(I,X) and for any finite interval I.

Proof. Let f ∈ Bsq,q(I,X) ∩ Lp(I,X), r ∈ N, r > s, and let S0 be as in the proof of
Theorem 16. Then,

‖f‖Lp(I,X) . ‖f − S0‖Lp(I,X) + ‖S0‖Lp(I,X) . |f |Bsq,q(I,X) + ‖S0‖Lq(I,X).
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Since S0 ∈ VrI,X was chosen satisfying Jackson estimate (24) with p replaced by q,

‖S0‖Lq(I,X) . ‖f−S0‖Lq(I,X)+‖f‖Lq(I,X) . wr(f, I, 1)q+‖f‖Lq(I,X) . ‖f‖Lq(I,X).

Therefore, for all f ∈ Bsq,q(I,X) ∩ Lp(I,X),

‖f‖Lp(I,X) . |f |Bsq,q(I,X) + ‖f‖Lq(I,X) . ‖f‖Bsq,q(I,X).

Finally, since Bsq,q(I,X) ∩ Lp(I,X) is dense in Bsq,q(I,X) the assertion follows. �

The generalized Whitney’s theorem, Theorem 16, is now a consequence of Propo-
sition 20 and Corollary 21.

4. Adaptive approximation in one variable

4.1. The stationary case. Given a polyhedral space domain Ω ⊂ Rn, n ∈ N,
we let T(T0) denote the set of all triangulations T (partitions into simplices) that
are obtained by successive application of the bisection routine of [Ste08] from a
properly labeled initial triangulation T0 of Ω. If n = 1, T({0 < T}) denotes
the set of all partitions of Ω = [0, T ) into sub-intervals that may be obtained by
successive bisection of T0 = {[0, T )}. For simplicity, the one-dimensional partition
{[0 = t0, t1), [t1, t2), . . . , [tN−1, tN = T )} will be usually denoted by {0 = t0 <
t1 < · · · < tN = T}. Whenever we write T∗ = Refine(T ,M), we understand
that M ⊂ T and T∗ is the refinement of T obtained by the bisection routine of
[Ste08]. In the one-dimensional case, we understand that T∗ is obtained by the sole
replacement in T of each element T = [a, b) ∈M by its children [a, a+b

2 ), [a+b
2 , b).

Therefore, the following complexity bound holds:
Let T0, T1, T2, . . . , be a sequence of partitions in T(T0) obtained by
successive calls of Tk+1 = Refine(Tk,Mk), withMk ⊂ Tk the set
of marked elements. Then, there exists a constant C that depends
on the initial triangulation T0 such that

#Tk −#T0 ≤ C
k−1∑
j=0

#Mj , k = 1, 2, . . . . (45)

For T ∈ T(T0), recall that VrT is the finite element space of continuous piecewise
polynomials of order r, i.e.,

VrT := {g ∈ C(Ω) : g
∣∣
T
∈ Πr for all T ∈ T },

where Πr denotes the set of polynomials of total degree (strictly) less than r. The
underlying domain Ω and its dimension are implicitly indicated by the partition
T , which will sometimes correspond to a time interval [0, T ) and sometimes to an
n-dimensional space domain.

Approximation Classes. Let X be a quasi-Banach space on the polyhedral
bounded Lipschitz domain Ω ⊂ Rn with quasi-norm ‖ · ‖X . Let T0 be a trian-
gulation of Ω, properly labeled so that (45) holds, and assume further that VrT ⊂ X
for T ∈ T(T0). In this context, for f ∈ X, the best N -term approximation error is
given by

σN (f) = inf
|T |≤N

inf
g∈VrT

‖f − g‖X .
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For s > 0 we define the approximation class As(X) as the set of those functions in
X whose best N -term approximation error is of order N−s, i.e.,

As(X) := {f ∈ X : ∃c > 0 such that σN (f) ≤ cN−s, ∀N ∈ N}.
Equivalently, we can define As(X) through a semi-quasi-norm as follows:

As(X) := {f ∈ X : |f |As(X) <∞} with |f |As(X) := sup
N∈N

NsσN (f).

Alternatively, this definition is equivalent to saying that f ∈ As(X) if there is a
constant c such that for all ε > 0, there exists a mesh T that satisfies

inf
g∈VrT

‖f − g‖X ≤ cε and |T | ≤ ε−1/s, (46)

and |f |As(X) is equivalent to the infimum of all constants c that satisfy (46).
We use the following result from [GM14, Thm. 2.2, Cor. 2.3], which is the

high-order analog to the one presented in [BDDP02] for linear finite elements
(r = 2).

Theorem 22. Let X = Bαp,p(Ω), 0 < p <∞, 0 < α < min{r, 1 + 1
p} or X = Lp(Ω)

if α = 0. If f ∈ Bs+ατ,τ (Ω) with s > 0, 0 < 1
τ <

s
n + 1

p , and s+ α < r, then

Bα+s
τ,τ (Ω) ⊂ As/n(Bαp,p(Ω)) (α > 0), (47)
Bsτ,τ (Ω) ⊂ As/n(Lp(Ω)) (α = 0). (48)

In particular, if p = 2 and α = 0 we have the following result.

Corollary 23. Let X = L2(Ω), r ∈ N, 0 < s < r, and 0 < 1
τ < s

n + 1
2 . Then

there exists a constant C = C(r, s, τ,Ω,T) such that, for every ε > 0 there exists
T ∈ T(T0) and g ∈ VrT such that

‖f − g‖X ≤ ε |f |Bsτ,τ (Ω) and |T | . ε−n/s.

4.2. Greedy algorithm. Theorem 22, or equivalently Corollary 23, is proved with
the help of a so called Greedy algorithm. In order to make this article self-contained,
we present it here and use it to build a quasi-optimal partition of [0, T ) to approximate
a vector-valued function in Lp([0, T ), X). This, in turn, is an intermediate tool for
constructing the optimal time-space partition.

In the rest of this section we consider the following framework. We let X denote
a Banach space, r ∈ N denotes the polynomial order with respect to time, and for
an interval I, recall the definition of VrI,X from (21):

VrI,X :=
{
P (t) =

r−1∑
j=0

ajt
j , aj ∈ X, t ∈ I

}
⊂ Lp(I,X),

i.e., the tensor product space Πr ⊗ X on the time slice I × Ω. For a partition
T = {0 = t0 < t1 < · · · < tN = T} of the time interval [0, T ), we consider the
following corresponding (abstract) finite element space:

VrT ,X = {P ∈ Lp([0, T ), X) : P|I ∈ VrI,X , I ∈ T }.

Recall the definition of the best approximation error Er(f, I)p associated with
an interval I ⊂ [0, T ), i.e.,

Er(f, I)p = inf
PI∈VrI,X

‖f − PI‖Lp(I,X), (49)
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so that

inf
g∈VrT ,X

‖f − g‖Lp([0,T ),X) =
(∑
I∈T

Er(f, I)pp

)1/p

.

An algorithm approximating the solution with a parameter δ > 0 reads as follows:

Algorithm 1 Greedy algorithm
1: function Greedy(f ,δ)
2: Let T0 = {0 < T} = {[0, T )}.
3: k = 0
4: whileMk := {I ∈ Tk : Er(f, I)p > δ} 6= ∅ do
5: Let Tk+1 = Refine(Tk,Mk)
6: k ← k + 1
7: end while
8: end function

4.3. Semi-discretization in time. Concerning the error when approximating a
vector-valued function with piecewise polynomials with respect to time, we have the
following result.

Theorem 24 (Time discretization). Let X be a separable Banach space, let s > 0,
0 < p, q ≤ ∞, and

(
1
q −

1
p

)
+
≤ s < r, with r ∈ N. Then, if f ∈ Bsq,q([0, T ), X) and

ε > 0, there exists δ > 0 such that Greedy(f ,δ) terminates in finitely many steps
and the generated partition T satisfies

#T ≤ c1 ε−1/s, (50)
where the constant c1 > 0 depends on p, q, and s but not on f . Moreover, there
exists P ∈ VrT ,X satisfying

‖f − P‖Lp([0,T ),X) ≤ c2 ε |f |Bsq,q([0,T ),X) ≤ c3 (#T )−s|f |Bsq,q([0,T ),X), (51)
with c2, c3 > 0 depending on p, q, and s but not on f .

Proof. Let ε > 0 be given and let δ = ε
s+1/p
s |f |Bsq,q([0,T ),X). Using Whitney’s

estimate (36) we see that the error Er(f, I)p associated with an interval I satisfies

Er(f, I)p = inf
PI∈VrI,X

‖f − PI‖Lp(I,X) . |I|s+
1
p−

1
q |f |Bsq,q(I,X). (52)

Since s+ 1
p −

1
q > 0 the right-hand side goes to zero as |I| goes to zero, which shows

that the Greedy algorithm terminates in a finite number of steps K.
We now bound the number of elements of T := TK as follows. Initially, T0 =

{[0, T )}, therefore, #T0 = 1. In each iteration of the while-loop, #Mk elements
are marked for refinement. IfM =

⋃K−1
k=0 Mk is the union of all marked elements

in a certain step of the algorithm, then, due to (45), the resulting final partition
T satisfies #T . 1 + #M . #M. We see that estimating #T is comparable
with estimating #M. In order to count the number of elements inM observe that
#M =

∑∞
k=0 #Mk, with

Mk =
{
I ∈M : |I| = T/2k

}
if 0 ≤ k ≤ K − 1 and Mk = ∅ if k ≥ K.
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On the one hand, since our time interval [0, T ) is finite, we obtain the upper bound

#Mk ≤ 2k, k ∈ N0.

On the other hand, if I ∈ Mk from steps 4 and 6 of the Greedy algorithm and
formula (52), we have

δ < Er(f, I)p .
(

1
2k

)s+ 1
p−

1
q

|f |Bsq,q(I,X), so that δq .

(
1
2k

)sq+ q
p−1
|f |qBsq,q(I,X).

This implies

δq#Mk =
∑
I∈Mk

δq .

(
1
2k

)sq+ q
p−1 ∑

I∈Mk

|f |qBsq,q(I,X) ≤
(

1
2k

)sq+ q
p−1
|f |qBsq,q([0,T ),X),

i.e.,

#Mk . min
{

2k, 1
δq

(
1
2k

)sq+ q
p−1
|f |qBsq,q([0,T ),X)

}
.

The first term corresponds to an increasing geometric series, the second to a
decreasing one. Setting k0 := min

{
k ∈ N0 : 1

δq

( 1
2k
)sq+ q

p−1 |f |qBsq,q([0,T ),X) < 2k
}

we obtain

#M =
∞∑
k=0

#Mk ≤
k0−1∑
k=0

2k +
∞∑

k=k0

1
δq

(
1
2k

)sq+ q
p−1
|f |qBsq,q([0,T ),X)

. 2k0 + 1
δq

(
1

2k0

)sq+ q
p−1
|f |qBsq,q([0,T ),X) . 2k0 . (53)

In order to estimate 2k0 we observe that

2k0−1 ≤ 1
δq

(
1

2k0

)sq+ q
p−1
|f |qBsq,q([0,T ),X) < 2k0 ,

2k0(s+ 1
p )− 1

q ≤ 1
δ
|f |Bsq,q([0,T ),X) < 2k0(s+ 1

p ).

We see that

2k0 ≤
(

1
δ

) 1
s+1/p

|f |
1

s+1/p
Bsq,q([0,T ),X), (54)

therefore, from (53) and (54) we get

#T . #M .
(

1
δ

) 1
s+1/p

|f |
1

s+1/p
Bsq,q([0,T ),X), i.e., δ . (#T )−(s+ 1

p )|f |Bsq,q([0,T ),X),

and (50) follows after recalling that δ = ε
s+1/p
s |f |Bsq,q([0,T ),X).

Finally, for each I ∈ T we let PI ∈ VrI,X satisfy ‖f − PI‖Lp(I,X) ≤ 2Er(f, I)p
and let P (t) =

∑
I∈T χI(t)PI(t), t ∈ [0, T ). Hence,

P ∈ VrT ,X and ‖f − P‖pLp([0,T ),X) . δ
p#T . #T −ps|f |pBsq,q([0,T ),X),

and (51) follows. �
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5. Discretization in time and space

We now consider the error when approximating a function with piecewise polyno-
mials with respect to time and space. In this article, we deal with the approximation
in L2([0, T )× Ω) = L2([0, T ), X), where hereafter we let X = L2(Ω). We restrict
ourselves to this Hilbertian case in order to avoid additional technical difficulties
and leave the study of more general quasi-norms, e.g. p 6= 2 and X 6= L2(Ω), to a
forthcoming article.

5.1. Time marching fully discrete adaptivity. Recall that the type of dis-
cretizations that we consider are those consisting of a partition {0 = t0 < t1 < · · · <
tN = T} of the time interval and a sequence of partitions T1, . . . , TN ∈ T of the
space domain Ω, where Ti corresponds to the subinterval [ti−1, ti), i = 1, . . . N . The
time-space partition is then given by

P = ({0 = t0 < t1 < . . . < tN = T}, {T1, . . . , TN}) , with #P =
N∑
i=1

#Ti,

Given r1, r2 ∈ N, the finite element space Vr1,r2
P subject to such a partition P is

defined as
Vr1,r2
P := {G : [0, T )× Ω→ R : G∣∣[ti−1,ti)×Ω

∈ Πr1 ⊗ Vr2
Ti , for all i = 1, 2, . . . , N},

i.e., G ∈ Vr1,r2
P if and only if G(t, ·) ∈ Vr2

Ti for all t ∈ [ti−1, ti) and G(·, x)
∣∣
[ti−1,ti)

∈
Πr1 for all x ∈ Ω and all i = 1, 2, . . . , N .

In order to construct an optimal approximate solution with tolerance ε > 0 we
use the one-dimensional Greedy algorithm as described on page 24 for the (adap-
tive) discretization in time and an n-dimensional Greedy algorithm for (adaptive)
discretizations in space. This allows us to use the results from Theorems 24 and 22,
respectively. In particular, we obtain the following result.

Theorem 25 (Approximation with fully discrete functions). Let 0 < si < ri,
i = 1, 2, 0 < q1 ≤ ∞, 1 ≤ q2 ≤ ∞ with s1 >

( 1
q1
− 1

2
)

+ and s2 > n( 1
q2
− 1

2
)

+. Let
f ∈ Bs1

q1,q1
([0, T ), X) ∩ L2([0, T ), Bs2

q2,q2
(Ω)), with X = L2(Ω). Then, for each ε > 0

there exists a time-space partition P that satisfies

#P ≤ c1ε−
(

1
s1

+ n
s2

)
and a function F ∈ Vr1,r2

P such that

‖f − F‖L2([0,T ),X) ≤ c2ε|||f ||| ≤ c3(#P)
− 1

1
s1

+ n
s2 |||f |||,

where |||f ||| = |f |Bs1
q1,q1 ([0,T ),X) + ‖f‖L2([0,T ),Bs2

q2,q2 (Ω)) and the positive constants
c1, c2, c3 depend on q1, q2, and s1, s2 but not on f .

Remark 26. Here (with a little abuse) we use the notation

L2(I,Bsq,q(Ω)) =
{
f : I → Bsq,q(Ω) : ‖f‖L2(I,Bsq,q(Ω)) <∞

}
with ‖f‖L2(I,Bsq,q(Ω)) :=

(∫
I
‖f(t)‖2Bsq,q(Ω)dt

)1/2
.

The restriction q2 ≥ 1 in Theorem 25 can probably be removed and replaced by
q2 > 0. It appears here due to the fact that we require in the proof below a uniform
bound of the approximants on a subinterval I = [ti−1, ti), which is established in
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Lemma 27. Our current proof of Lemma 27 uses Minkowski’s inequality which only
works if q2 ≥ 1. So far we were not able to find an appropriate modification for
q2 < 1.

Proof of Theorem 25. Given f ∈ Bs1
q1,q1

([0, T ), X) ∩ L2([0, T ), Bs2
q2,q2

(Ω)) and ε > 0,
the approximant F ∈ Vr1,r2

P is constructed in two steps as follows.
We first use a one-dimensional Greedy algorithm and apply the results from

Theorem 24. This gives a partition of the time interval 0 = t0 < t1 < . . . <

tN = T and an approximant G =
∑N
i=1 χ[ti−1,ti)Gi ∈ Vr1

{0<t1<···<T},X with Gi
the L2([ti−1, ti), X) projection of f|[ti−1,ti) into Vr1

[ti−1,ti),X . This partition and
approximant satisfy

N . ε−1/s1 and ‖f −G‖L2([0,T ),X) . ε|f |Bs1
q1,q1 ([0,T ),X).

Also, if {W j
i }

r1
j=1 is an orthonormal basis of Vr1

[ti−1,ti),R then

Gi(t) =
r1∑
j=1

Gji W
j
i (t), with Gji =

∫
I

f(t)W j
i (t) dt,

noting that the last integral is a Bochner integral in X = L2(Ω).
We now observe that due to Lemma 27 below we have Gji ∈ Bs2

q2,q2
(Ω) and

‖Gi‖L2([ti−1,ti),B
s2
q2,q2 (Ω)) . ‖f‖L2([ti−1,ti),B

s2
q2,q2 (Ω)). (55)

The second step consists in approximating each function Gji ∈ Bs2
q2,q2

(Ω) using
the space-adaptive Greedy algorithm. Resorting to Corollary 23 we find a mesh
T ji ∈ T(T0) and a finite element function F ji ∈ Vr2

T j
i

with

#T ji . ε
− n
s2 and ‖Gji − F

j
i ‖X . ε|G

j
i |Bs2

q2,q2 (Ω).

Therefore, after defining Ti = ⊕r1
j=1T

j
i (the overlay of the meshes [CKNS08]), we

have that Fi(t) :=
∑r1
j=1W

j
i (t)F ji ∈ Vr1

[ti−1,ti),V
r2
Ti

satisfies

#Ti ≤
r1∑
j=1

#T ji . ε
− n
s2 [CKNS08, Lem. 3.7] and

‖Fi −Gi‖L2([ti−1,ti),X) . ε‖Gi‖L2([ti−1,ti),B
s2
q2,q2 (Ω)) . ε‖f‖L2([ti−1,ti),B

s2
q2,q2 (Ω)),

due to (55).
Finally, we let P = {{0 = t0 < t1 < · · · < tN = T}, {T1, T2, . . . , TN}} and define

F =
∑N
i=1 χ[ti−1,ti)Fi ∈ Vr1,r2

P , whence by the triangle inequality
‖f − F‖L2([0,T ),X) ≤ ‖f −G‖L2([0,T ),X) + ‖G− F‖L2([0,T ),X)

. ε|f |Bs1
q1,q1 ([0,T ),X) +

( N∑
i=1
‖Gi − Fi‖2L2([ti−1,ti),X)

)1/2

. ε
(
|f |Bs1

q1,q1 ([0,T ),X) + ‖f‖L2([ti−1,ti),B
s2
q2,q2 (Ω))

)
and

#P =
N∑
i=1

#Ti . N ε−
n
s2 . ε−

1
s1 ε−

n
s2 = ε−( 1

s1
+ n
s2

).
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The assertion of the theorem thus follows. �

In Theorem 25, formula (55), we required a uniform bound of the approximants
Gi on a subinterval I = [ti−1, ti), which is provided by the following lemma.

Lemma 27. Given a finite interval I, let r = r1, s = s2, and q = q2 satisfy the
assumptions from Theorem 25 and assume f ∈ L2(I,Bsq,q(Ω)). If G ∈ VrI,X is the
L2(I,X) projection of f ∈ L2(I,Bsq,q(Ω)), then

‖G‖L2(I,Bsq,q(Ω)) . ‖f‖L2(I,Bsq,q(Ω)).

Proof. If {W j}rj=1 is an orthonormal basis of VrI,R then

G(t) =
r∑
j=1

GjW j(t) with Gj =
∫
I

f(t)W j(t)dt,

i.e.,

G(t)(x) =
r∑
j=1

Gj(x)W j(t) with Gj(x) =
∫
I

f(t, x)W j(t)dt,

for almost every x ∈ Ω. Notice first that

‖G‖2L2(I,Bsq,q(Ω)) =
∫
I

‖G(t)‖2Lq(Ω) + |G|2Bsq,q(Ω)dt

=
∫
I

∥∥∥ r∑
j=1

GjW j(t)
∥∥∥2

Lq(Ω)
+
∣∣∣ r∑
j=1

GjW j(t)
∣∣∣2
Bsq,q(Ω)

dt

.
r∑
j=1
‖Gj‖2Lq(Ω) + |Gj |2Bsq,q(Ω),

so that

‖G‖L2(I,Bsq,q(Ω)) .
r∑
j=1
‖Gj‖Lq(Ω) + |Gj |Bsq,q(Ω). (56)

We now bound ‖Gj‖Lq(Ω) and |Gj |Bsq,q(Ω) and focus on the case 1 ≤ q < ∞,
noting that the case q =∞ is analogous. Since q ≥ 1, by Minkowski’s inequality,
for any j = 1, 2, . . . , r we have

‖Gj‖Lq(Ω) =
(∫

Ω

∣∣∣∣∫
I

f(x, t)W j(t)dt
∣∣∣∣q dx

)1/q

≤
∫
I

(∫
Ω

∣∣f(x, t)W j(t)
∣∣q dx

)1/q
dt

=
∫
I

∣∣W j(t)
∣∣ ‖f(·, t)‖Lq(Ω) dt

≤
∥∥W j(t)

∥∥
L2(I)

∥∥∥‖f(·, t)‖Lq(Ω)

∥∥∥
L2(I)

so that
‖Gj‖Lq(Ω) . ‖f‖L2(I,Lq(Ω)), j = 1, 2, . . . , r. (57)

We now deal with
∣∣Gj∣∣

Bsq,q(Ω). Observe that for any j we have

∣∣Gj∣∣
Bsq,q(Ω) .

(∫ 1

0

[
u−swr(Gj , I, u)q

]q du
u

)1/q

=
(∫ 1

0
u−sqwr(Gj , I, u)qq

du
u

)1/q
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=
(∫ 1

0
u−sq

1
(2u)n

∫
|h|≤u

∥∥∆r
hG

j
∥∥q
Lq(Ωrh) dhdu

u

)1/q

=
(∫ 1

0
u−sq

1
(2u)n

∫
|h|≤u

∫
Ωrh

∣∣∣∣∫
I

∆r
hf(t, x)W j(t)dt

∣∣∣∣q dxdhdu
u

)1/q

=
(∫ 1

0

∫
|h|≤u

∫
Ωrh

u−sq
1

(2u)n

∣∣∣∣∫
I

∆r
hf(t, x)W j(t)dt

∣∣∣∣q dxdhdu
u

)1/q

.

Again, by Minkowski’s inequality

∣∣Gj∣∣
Bsq,q(Ω) ≤

∫
I

(∫ 1

0

∫
|h|≤u

∫
Ωrh

u−sq
1

(2u)n
∣∣∆r

hf(t, x)W j(t)
∣∣q dxdhdu

u

)1/q

dt

=
∫
I

∣∣W j(t)
∣∣(∫ 1

0
u−sq

1
(2u)n

∫
|h|≤u

∫
Ωrh
|∆r

hf(t, x)|q dxdhdu
u

)1/q

dt

=
∫
I

∣∣W j(t)
∣∣ |f(t)|Bsq,q(Ω) dt ≤

∥∥W j
∥∥
L2(I) ‖f(t)‖L2(I,Bsq,q(Ω))

whence ∣∣Gj∣∣
Bsq,q(Ω) . ‖f‖L2(I,Bsq,q(Ω)) . (58)

Therefore from (57) (58) and (56) we get
‖G‖L2(I,Bsq,q(Ω)) . ‖f‖L2(I,Bsq,q(Ω)) if 1 ≤ q <∞,

and analogously for q =∞. �

If we use the same polynomial degree in space and time in Theorem 25 the result
reads as follows.

Corollary 28 (Fully discrete with same polynomial degree). Let 1 ≤ q ≤ ∞
and n

(
1
q −

1
2

)
+
< s < r ∈ N. If f ∈ Bsq,q([0, T ), X) ∩ L2([0, T ), Bsq,q(Ω)) with

X = L2(Ω), then for each ε > 0 there exists a time-space partition P that satisfies

#P ≤ c1ε−
n+1
s

and a function F ∈ Vr,rP such that

‖f − F‖L2([0,T ),X) ≤ c2ε|||f ||| ≤ c3(#P)−
s

n+1 |||f |||,

where |||f ||| = |f |Bsq,q([0,T ),X) + ‖f‖L2([0,T ),Bsq,q(Ω)) and the positive constants c1, c2, c3
depend on q and s but not on f .

5.2. Comparison with space-time finite elements. If we were to use space-
time finite elements of order r in Rn+1, in order to obtain the same rate (#P)−

s
n+1

as that indicated in Corollary 28, Corollary 23 tells us that the function f should
belong to Bsq,q([0, T ) × Ω) with 0 < s < r and 0 < 1

q <
s

n+1 + 1
2 . This raises the

following question:
What is the relation between the spaces
Bsq,q([0, T )× Ω) and Bsq1,q1

([0, T ), L2(Ω)) ∩ L2([0, T ), Bsq2,q2
(Ω))

for the respective ranges of the parameters q1, q2, and q?
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The following proposition provides a first attempt to give an answer to this
question.

Proposition 29. Let 0 < s < r and 0 < q1, q2, q < ∞, where we additionally
require that

1
q
<

s

n+ 1 + 1
2 ,

1
q1
< s+ 1

2 , and 1
q2
<
s

n
+ 1

2 . (59)

Then we have⋃
q1,q2

Bsq1,q1
([0, T ), L2(Ω)) ∩ L2([0, T ), Bsq2,q2

(Ω)) 6⊂
⋃
q

Bsq,q([0, T )× Ω), (60)

where the union is taken over all q, q1, q2 according to (59).

Proof. We show that we can find functions belonging to
⋃
q1,q2

Bsq1,q1
([0, T ), L2(Ω))∩

L2([0, T ), Bsq2,q2
(Ω)) which are not in

⋃
q B

s
q,q([0, T )× Ω). For this let us choose q1

such that
1
q
<

s

n+ 1 + 1
2 <

1
q1
< s+ 1

2
and consider a function f which is constant with respect to the space variable x
and belongs to Bsq1,q1

([0, T )). Clearly, by our assumptions this function is also in
L2([0, T )). Moreover, by or choice of q1 we see from [HS13, Cor. 3.7] that

Bsq1,q1
([0, T ), L2(Ω)) 6↪→ Bsq,q([0, T )× Ω),

since q1 < q, which proves the claim. Alternatively, we could choose q2 such that

1
q
<

s

n+ 1 + 1
2 <

1
q2
<
s

n
+ 1

2

and consider a function f which is constant with respect to the time variable t and
belongs to Bsq2,q2

(Ω). Then, clearly this function also belongs to L2(Ω). By our
choice of q2 it again follows from [HS13, Cor. 3.7] that

Bsq2,q2
(Ω) 6↪→ Bsq,q(Ω),

since q2 < q. This completes the proof. �

Remark 30. We believe that for the above spaces under consideration we actually
have the following inclusion⋃

q

Bsq,q([0, T )× Ω) (
⋃
q1,q2

Bsq1,q1
([0, T ), L2(Ω)) ∩ L2([0, T ), Bsq2,q2

(Ω)),

where q, q1, and q2 are chosen according to (59). This can be interpreted in the
sense that the respective solution spaces for time-stepping algorithms yielding the
approximation class A s

n+1
(L2([0, T )× Ω)) are in fact larger than the corresponding

solution spaces for space-time finite elements.
In this context the fact that Bsq,q([0, T )×Ω) ⊂ L2([0, T ), Bsq2,q2

(Ω)) should be easier
to handle. However, these matters are quite technical and, therefore, this interesting
question will be tackled in a future paper.
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