
ARTICLE TEMPLATE

Knowledge representation in Industry 4.0 Scheduling problems

Daniel A. Rossita and Fernando Tohméb
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ABSTRACT
Industry 4.0 raises the need for a closer integration of management systems in man-
ufacturing companies. Such process is driven by Cyber-Physical Systems (CPS)
and the Internet of Things (IoT). Starting from the potential of these technolo-
gies, a knowledge architecture aimed at addressing scheduling problems is proposed.
Scheduling-support systems generally do not solve real-world scheduling problems,
being instead only capable of solving simplified versions, producing solutions that
human schedulers adapt to real problems. The architecture aims to record and con-
solidate the empirical knowledge generated by the solutions of actual scheduling
problems. In this way, it summarizes the implicit criteria used by human schedulers.
The architecture presented here records this knowledge in data structures compat-
ible with the structure of scheduling problems. In further iterations this knowledge
crystallizes into a sound and smart structure.
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1. Introduction

The fourth industrial revolution, known as Industry 4.0 (Hermann, Pentek, and Otto
2016) aims, like its predecessors, to change the way in which manufacturing processes
are carried out (Zhang et al. 2020). Industry 4.0 has already started to show that
the capacity and flexibility of production processes in industrial environments at the
technological frontier have greatly improved (Zhang et al. 2018). This enables the
creation of new business models based on the customization of manufactured products,
a trend that will continue generating economic niches in the near future (Yu et al.
2017).

As with past industrial revolutions, the paradigm shift is driven by technological ad-
vances that modify the structure of production systems (Zhong et al. 2017). In the case
of Industry 4.0, the main technological advances behind the new production structures
are Cyber Physical Systems (CPS) and the Internet of Things (IoT) (Lee, Bagheri, and
Kao 2015; Monostori 2014). CPS are production systems that allow the direct inte-
gration of the physical space in which production takes place with the cybernetic or
digital space usually associated with decision-making processes (Wang, Zhang, and
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Zhong 2020). Basically, CPS are systems that consist of physical components with
computational functionalities (Guo et al. 2020). This is why CPS allow to create a
real-time model of the physical processes in cyber space, yielding what is known as a
Digital Twin of the real world counterpart (Park et al. 2019; Zhang et al. 2020). The
different CPS connected by IoT can collect data and communicate with each other,
improving the modeling capacity of Digital Twins (Leng et al. 2019). In addition, IoT
transmits the same information in real time to decision-making centers, increasing the
capacity of controlling online the production process (Tao et al. 2018). The impact of
these technologies makes it possible to conceive that in the near future, production
processes will be entirely based on CPS (Monostori 2014). Their use ends up resulting
in the digitization of the production process, availing the use of increasing amounts
of data and information, improving the decision-making processes in industrial firms
(Kusiak 2017; Zhang et al. 2018; Rossit, Tohmé, and Frutos 2019a).

Scheduling is one of the decision processes that has been most affected by the ad-
vent of Industry 4.0 as well as by the widespread use of big databases (Ivanov et al.
2016; Rossit and Tohmé 2018). Scheduling problems arise at the last stage of pro-
duction planning, involving the final decision-making phase before starting the actual
production activities (Pinedo 2012). Scheduling takes care of assigning the different
work orders to the production resources respecting established time horizons (Fram-
inan, Leisten, and Garćıa 2014). This poses problems that are very difficult to solve
computationally (Lenstra, Kan, and Brucker 1977), making scheduling a nontrivial
activity (Framinan and Ruiz 2010; Qin et al. 2019). The scientific community has only
very recently started to study how to make scheduling an inherent task of Industry
4.0 environments (see, for instance (Ivanov et al. 2018; Dolgui et al. 2019; Rossit,
Tohmé, and Frutos 2019d)). Currently, human schedulers use Decision Support Sys-
tems based on Advanced Scheduling Planning modules as those offered by SAP or
SIEMENS’ Preactor (Bożek and Wysocki 2015). These systems are usually integrated
into Manufacturing Scheduling Systems (MSS), which manage and execute the pro-
duction itself (Kletti 2007). The tools used to find solutions to scheduling problems
require a very intense participation of the human scheduler, who has to evaluate po-
tential alternatives using Decision Support Systems (Leusin et al. 2018). Furthermore,
the solutions so obtained cannot be adapted straight ahead to the real problem at
hand (Ferraro et al. 2019). The scheduler has to adapt manually those solutions to
the real problems. This implies that the actual solutions adopted depend heavily on
the scheduler in charge. Imponderable factors threaten the quality and efficiency of a
plan, on top of the inefficiencies already present in solving manually such a complex
problem (NP-hard in most cases) (Framinan, Leisten, and Garćıa 2014).

Based on the potential of Industry 4.0, it is presented a design intended to overcome
these difficulties, automatizing as much as possible the process of scheduling. The inno-
vation is to incorporate an Artificial Intelligence (AI) complement to the MSS based on
SOEKs (Set of Experience Knowledge Structure) and Decisional DNA (DDNA) (Sanin
and Szczerbicki 2007; Shafiq, Sańın, and Szczerbicki 2014). These two latter concepts
involve a tailored knowledge representation system which allows the generation of an
efficient repository of decision-making events (Sanin et al. 2012). Therefore, the AI
complement added to the MSS aims to efficiently register the empirical knowledge
generated by schedulers. The AI complement records the adjustments to the MSS so-
lution found by the schedulers. This generates a repository of formal decision-making
events modeled through data structures (SOEKs) that are compatible with scheduling
problems and their solutions. A search engine appended to the system matches new
scheduling problems to formal decisions made for similar instances, already recorded
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in the repository. Therefore, the response capacity and quality of the system improves
in time.

The main contributions of this paper are:

• A proposal of an architecture able to record the solutions that a human planner
generates in time that will be later provide the grounds to analyze unforeseen
events.

• The design of the architecture will support the ability to describe in detail the
scenarios at which the decisions made by the scheduler were generated.

• A contribution to the design of expert systems for the solution of scheduling
problems.

The rest of this work is organized as follows. In Section 2 the main concepts used
of the design are introduced. Section 3 presents the decision-making process involved
in Scheduling and defines the problem that is intended to address. Section 4 presents
the proposed architecture and discusses its main features. Section 5 presents the con-
clusions of this work.

2. Industry 4.0 and knowledge representation

In this section it is presented the characterization of the industrial environments under
the Industry 4.0 paradigm and the main ideas behind the proposed design. The focus is
centred on the application of ideas drawn from Knowledge Representation in Artificial
Intelligence that can be useful for the mentioned purposes, in particular on the concepts
of SOEK and DDNA , which allow modeling different decision-making problems.

2.1. Background on Industry 4.0

Industry 4.0, unlike past industrial models in which the management proceeded
through hierarchical and centralized structures, presents schemes in which autonomous
agents interact in decentralized architectures. These agents are connected to each other
and to the decision centers through IoT (Tao et al. 2018). These connections make it
possible to greatly improve the flow of data previously registered at the PLC (Pro-
grammable logic controller) or SCADA (Supervisory Control And Data Acquisition)
level, which can now be transmitted to the other stages of the production process
as well as to the decision-making centers (Rossit, Tohmé, and Frutos 2019c). This
increase in the ability to transmit data necessarily implies a considerable increase in
the amount of data circulating within an Industry 4.0 environment (Tao et al. 2018;
Qian et al. 2020). This is why, among the technologies that drive the paradigm shift in
Industry 4.0, data science is vitally important (Zhong et al. 2017). These technologies
allow to handle and manage large amounts of data efficiently and achieve a more real-
istic representation of the production system. In turn, the CPS are linked through IoT,
becoming able to access tools that allow to easily increase computer processing capac-
ity. This can be achieved through Cloud Computing or Edge Computing, which allows
a faster response (Tao et al. 2018). Processing this large amount of data requires the
techniques already developed for large non-homogeneous databases collected online
(Kusiak 2017).
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2.2. Knowledge representation

In the era of mass digitalization, data is generated in large amounts by all systems
and in all environments (Liu et al. 2019). Production processes are not an exception,
generating more than 1000 exabytes per year (Tao et al. 2018). The data comes from
different areas of the industry, such as the shop floor, the negotiations with suppliers,
the results of medium and long-term planning, and many other sources. Such a variety
of sources means that the data is stored in various formats, in such way that no person
or group of people can understand and use them all (Wang, Sańın, and Szczerbicki
2013). On the other hand, new market trends indicate that players who can take
advantage of the data by transforming it into useful information that enjoys large
competitive advantages in the market (Yu et al. 2017; Jung 2009). Therefore, new
solutions and techniques are needed to extract knowledge from the available data
that, very often, can be unstructured, semi-structured, diffuse or vague. In addition,
it is important to ensure the transportability, reusability and the ability to share the
knowledge extracted from that data (Jung 2009).

One of the main issues to address in order to convert data into useful information is
the proliferation of different knowledge representations, and consequently of different
knowledge management systems (Alavi and Leidner 2001). Finding a unifying repre-
sentation of knowledge is a complex, hard to accomplish, task. Thus, in this work the
main focus is to consider the pros and cons of two commonplace conceptions. One
assumes a hierarchical view while the other is much more flexible.

The hierarchical vision of knowledge was introduced by Rowley (Rowley 2007),
stating that addressing and interpreting reality requires a hierarchical procedure or-
ganized according to the Data-Information-Knowledge-Wisdom structure, commonly
called the DIKW hierarchy (Figure 1). At the lowest level there is data, which is not,
by itself, useful to the decision maker. Data has no meaning or value without a context
or interpretation. Data, thus, provides only elementary descriptions of things, events,
etc. Information, instead, can be identified with a dataset organized in such a way
that it becomes able to convey meaning to the decision maker. This means that in this
view information is at a higher level than data. According to Rowley (Rowley 2007),
“knowledge is an intrinsically ambiguous and equivocal term”. For the purposes of this
work, knowledge can be understood as a synthesis of various sources of information
over time, where the structures of beliefs, experience and ability of the entity that
builds knowledge influences the process. Knowledge can be seen as a combination of
information, understanding, ability, experience, skills and values. The highest term
in the hierarchy, wisdom, has an even more abstract meaning, which can be roughly
assimilated to accumulated knowledge, which allows the entity to understand how
to apply concepts of a domain to new situations or problems (Jessup and Valacich
2003). Figure 1 shows the relationships among the objects in this hierarchy. In stark
contrast, the ability of computer systems to process these items runs in the opposite
direction: the higher an element is in the hierarchy, the harder becomes to process it
algorithmically.

A perspective closer to business, presented by Alavi & Leinder (Alavi and Leidner
2001), suggests that it is not possible to define a strict hierarchy like the DIKW
model. These authors reviewed the literature on Knowledge Management at their time,
concluding that hierarchical definitions of knowledge (data-information-knowledge)
always depend, at some point, on some arbitrary choices. They adopt the definition
in (Fahey and Prusak 1998), suggesting that there is no knowledge independently of
a cognitive agent, being shaped both by her needs and her initial stock of knowledge.
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Figure 1. The DIKW hierarchy (Rowley 2007).

Therefore, Alavi & Leinder state that there cannot exist a radical difference between
information and knowledge other than by the fact that information becomes knowledge
once it is articulated in the minds of individuals. Conversely, knowledge becomes
information once it is articulated and presented in the form of text, graphics, words
or other symbolic forms. This approach is consistent with the classical definition of
knowledge of Churchman (Churchman 1971), which indicates that knowledge is defined
by the user and not by any underlying collection of data. According to this, the
definition given by Alavi & Leinder is: knowledge is a justified belief that increases an
entity’s capacity for taking effective action. They also postulate two important general
characteristics: (i) since knowledge is personalized, to make it useful to others, it must
be expressed and communicated in a way that is interpretable by the recipients, and (ii
) large volumes of information are only valuable (in particular Enterprise Knowledge
Management Systems) if they are useful for its recipients. Therefore, knowledge can be
hard to transfer through an organization, even though IT technologies make it easily
accessible.

The authors of this work remain agnostic with respect to these two opposed views
and concentrate on a practical approach in which knowledge becomes “a significant
high-level tool that allows the decision maker to improve her decision process”. Ac-
cordingly, the following structures representing decision-making events to exploit them
using methods drawn from data science are presented.

2.3. Decisional DNA

Decisional DNA is a Knowledge Engineering technology aimed at solving decision-
making problems. Usually, when a decision event arises, managers select actions that
have previously worked well. They detect the most significant features of the current
circumstances that allow the identification with similar situations and thus apply the
corresponding actions that gave good results in the past. Therefore, it is very important
to keep a record of previous decisions and turn them into explicit knowledge (Sanin and
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Szczerbicki 2007). Decisional DNA (DDNA) stores previous Formal Decision Events
(FDE) explicitly, generating a Set of Knowledge Experience (SOEK) (Sanin et al.
2012).

SOEK is a formal model of decision-making knowledge based on real world evidence.
It starts by classifying the components of decision-making events as being either Vari-
ables, Functions, Constraints or Rules (Sanin et al. 2012). Variables constitute the
core of SOEKs, expressing the states of events. Functions are formulated as equa-
tions intended to describe the relations between dependent variables and the set of
input variables. A decision may differ from another by the addition or subtraction
of a function. Constraints are similar to functions in that they relate variables but
their purpose is different, since they seek to restrict the performance and configura-
tion of the system as well as the feasible solutions to the decision problem. Finally,
rules provide yet another way of relating variables, conditioning the relations among
variables, essentially using the IF-THEN-ELSE format to connect preconditions and
their consequences (Wang, Sańın, and Szczerbicki 2013).

These components are stored in a dynamical combined structure inside a SOEK.
This is analogous to the way in which four nucleotides are combined in DNA, giving
a distinctive character to the result (Sanin et al. 2012). Besides, the elements in the
structure are connected among them, imitating a DNA chain, i.e. a gene. Therefore, a
gene can be assimilated to a SOEK: in the same way as a gene produces a phenotype,
a SOEK produces a decision value in terms of its elements. Such value is called the
efficiency or the phenotype value of the SOEK (Shafiq, Sańın, and Szczerbicki 2014),
being the response to a query. Analogously to the way in which a gene guides the
hereditary responses of a living organism, a SOEK leads to responses in certain areas
of a decision process.

A single SOEK cannot control a complete system, not even an area or specific
category of a system. And therefore it is necessary to acquire and build larger sets of
experiences. The regular operations of a system yield a large number of decisions and
thus a collection of different SOEKs (Shafiq, Sańın, and Szczerbicki 2014). A group of
SOEKs of the same category constitute a decisional chromosome in the same way as
DNA does with genes. This decisional chromosome stores the decision “strategies” of
a category. In such case, each module of chromosomes constitutes an entire inferential
tool, providing a schematic view of knowledge in an organization. More precisely, a
diverse set of decisional chromosomes provides a family of inferential strategies in an
industrial organization (Sanin et al. 2012).

3. Production Scheduling decision-processes and Industry 4.0

This section presents a solution to the problem of making decisions on Production
Scheduling. For this, Manufacturing Execution Systems (MES) are analyzed from the
perspective of Industry 4.0 technologies.

3.1. Manufacturing Execution Systems and Industry 4.0

Manufacturing Execution Systems (MES) are in charge of controlling, executing and
managing all the actions that are directly related to production processes. Taking
the ANSI /ISA-95 architecture as a reference framework, MES are at level 3, below
level 4 (general management and ERP systems), and above level 2 (SCADA and con-
trol systems of the production). The typical function of a MES is the execution of
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Figure 2. Levels of ANSI/ISA-95 absorbed by CPS.

production plans defined by the organization at Level 4. MES provides information
that helps decision makers to understand how current plant conditions can be opti-
mized to improve production (Kletti 2007). Although MES implementations depend
on the type of production (batch, continuous or discrete) and on how firms implement
it (especially for SMES), for the VDI (Verein Deutscher Ingenieure), the MES must
provide, among other functions, detailed planning and detailed scheduling control,
operating resources management, material management, personnel management, data
acquisition and processing, performance analysis and quality analysis.

Industry 4.0 has a natural impact on MES and the problems and scenarios in which
MES provide support. This impact is essentially due to CPS as they allow a direct
link between virtual and physical spaces (Lee, Bagheri, and Kao 2015). A MES usually
processes the data and information from different sources (production plans, stock of
materials, production quality control and shop floor status, among others), and accord-
ingly generates reports or computes schedules that lead to achieving the production
objectives of the firm. The decision maker analyzes the output of the MES and gen-
erates a plan (Kletti 2007). The CPS shorten the distance between the space where
the MES work (virtual-computational) and the physical production one, allowing the
CPS themselves to reconfigure the shop floor autonomously and efficiently (Monostori
2014).

To illustrate the impact of the CPS on the production systems it is depicted in
Figure 2 the hierarchical structure ISA-95 and the levels reached by the CPS. It can
be seen that CPS included all the management systems of the industry from level
0 (physical process) to level 3 (MES) (Rossit, Tohmé, and Frutos 2019b; Rossit and
Tohmé 2018). This is due to the ability of CPS to carry out a broad spectrum of
activities, ranging from physical production operations (level 0) to planning, evalua-
tion and management of the entire production process (level 3), through control of
actions and systems at levels 1 and 2 (i.e. measuring and detection instruments, as
well as control systems). Some of the direct benefits of this integration of functional-
ities are, for example, the greater flexibility to respond to unexpected events or the
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faster transmission of information throughout the entire system. These advantages are
due to the fact that CPS can translate the data obtained at level 1 into the higher
order language used at level 3, bypassing the adjacency limitations inherent in ISA-95,
generating faster responses to unforeseen events.

It can also be seen in Figure 2 that decisions at a higher hierarchical level are
outside the control of the CPS. Basically, it is represented the fact that, although
all the flexibility and information provided by the CPS allow to improve hierarchical
decision making, these decisions will still be made by human beings. Decisions at the
aggregate level (such as company objectives) will be handled by ERP and human
systems, already adapted to intelligent manufacturing environments. A relevant detail
is that the CPS manage a good deal of the decisions made by the ERP systems (such
as inventory control, database management, information management on suppliers,
etc.), but do not absorb them entirely (Rossit, Tohmé, and Frutos 2019d).

3.2. Scheduling problems

To solve a scheduling problem, the allocation of available production resources to a
production plan generated at a previous planning stage must be resolved. A detailed
description of the process is necessary to define the schedule, which implies the han-
dling of a large volume of data and conditions (Framinan, Leisten, and Garćıa 2014;
Rossit, Tohmé, and Frutos 2019d). As is intuitively evident, these decision problems
have a strong combinatorial nature and, consequently, a high complexity.

Formally, a scheduling problem consists in the allocation of a family N of jobs,
N = {1, 2, . . . , n} on a set M of machines, M = {1, 2, . . . ,m}. Each job j consists of
a class Oj of operations, where operation Oij of job j must be carried out on machine
i. Each operation Oij has an associated processing time pij on machine i. Each job j
will be associated to an ordering Rj of the operations of Oj , reflecting the precedence
ordering among operations. The whole point of scheduling is to find a schedule π of
jobs over machines yielding an optimal value F (π), where F denotes some objective
function.

Scheduling problems are highly dependent on the actual details of the production
setting (Job Shop, Flow Shop, etc.). This implies that different parameters (deliv-
ery dates, preparation times, waiting times, etc.) and different objective functions
(makespan, total tardiness, maximal tardiness, etc.) require alternative statements of
the general problem.

Given the combinatorial nature and complexity of most scheduling problems, De-
cision Support Systems are required to assist in the corresponding decision making
process (Framinan, Leisten, and Garćıa 2014). The resulting systems are known as
Management Scheduling Systems (MSS). To delve into how to design an ad-hoc MSS
system, Framiñán & Ruiz (Framinan and Ruiz 2010) presents a guide for the design,
implementation and testing of an MSS. A classical MSS model was proposed by Pinedo
(Pinedo 2012), who presented a clear overview of MSS 3.

The system consists of the following components: a Database Management module,
an Automatic Schedule Generator, a Schedule Editor and a Performance Evaluator.
The user accesses the last two modules through a graphical interface (GUI), while
the Database Management module manages all the information required to develop
a schedule (Rossit, Tohmé, and Frutos 2019a). The Data Management module takes
as inputs the schedules that must be fulfilled, that is, the production orders and
the master production programs, but also receives inputs from the plant data, which
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Figure 3. Standard Scheduling System (Pinedo 2012).

allows monitoring the status of the physical aspects of the production. The output of
the database management module feeds the Automatic Schedule Generator.

The MSS, represented in 3, is intended as an auxiliary or support system for decision
making by the programmer or the end user. The purpose of the MSS is to achieve a
work schedule of the entering production orders and also to address the events that
arise in the dynamics of the production process (Pinedo 2012). The main tasks faced by
system users are the assignation of jobs to resources (in general, machines), handling
problems that affect programs (such as changes in resources, dates, quantities, etc.)
and anticipating problems futures with the program (Framinan, Leisten, and Garćıa
2014; Lv, Zhang, and Qin 2019). In a field study, McKay & Buzacott (McKay and
Buzacott 2000) identified that in order to fulfill these tasks, planners usually follow a
similar process or “script”, either explicitly or implicitly, independently of the specific
production area. In the case of schedulers, this process begins by evaluating the current
production situation in search of possible “crises” or sources of conflict, as for instance
when a job is being processed taking a longer time than planned or by misusing
materials. Once the focus of the crisis has been identified, the scheduler analyzes
whether a reschedule or a reallocation of resources should be generated. Then, they
update the scenario and continue with the process of evaluation and analysis of possible
future crises, in a recursive way.

A consequence of this type of management (MSS managed by different people), is
that the behavior of the system becomes affected by the characteristics of the actions
of the individuals who make scheduling decisions. One of the characteristics detected in
field studies is that planners usually have a “myopic” perspective of the situation, not
being able to see more than half an hour ahead (Framinan, Leisten, and Garćıa 2014).
This myopia originates from two sources: on the one hand, the high complexity of
Scheduling problems, and on the other, the changing scenarios in which these problems
arise. Both conditions make it hard for a scheduler to contemplate a farther horizon
when looking for critical breaks.

On the other hand, planners manage to reduce the size of problems quickly, applying
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criteria such as Drum-Buffer-Rope and focusing the effort on bottlenecks (Framinan,
Leisten, and Garćıa 2014). This condition itself can be both an advantage and a dis-
advantage. On one hand, reducing the size of a problem drastically facilitates the
resolution process. However, an excessive reduction of the problem can eliminate op-
timal solutions, or at least valuable ones if quasi-optimal methods are used. Another
aspect of the behavior of schedulers is the variability of their recommendations, since
two schedulers assigned to different shifts can solve the same situation quite differently
(Framinan, Leisten, and Garćıa 2014). A related aspect is that planners usually design
schedules guided by the objectives they seek to optimize. This means that, instead of
generating a Schedule following some standard procedure or method, they evaluate
modifications by the potential objective satisfaction to obtained thanks to those mod-
ifications. In this sense, the field studies of Vernon (Vernon 2001) indicate that in
such cases the planners seek to improve their own production objectives instead of
objectives related to the service level of the shop floor, which may lead to outcomes
that do not respond to the expectations of management.

3.3. Dynamic and Standard Manufacturing Scheduling

A Manufacturing Scheduling System (MSS) consists of a set of business functions that
the system controls in the context of supporting production management decisions.
With respect to this, Framiñán & Ruiz (Framinan and Ruiz 2010) state that these
functions can be in general classified in two classes, depending on the time horizon.
These classes address, respectively, a global and a local temporal level:

• A higher level that uses the output of production planning to set up the dates
for the beginning of each job on each machine. The activities at this level are
often referred as release scheduling.

• A lower level which is involved with real-time item movement planning. The
actions at this level are usually called reactive scheduling.

An MSS must cover these two levels adequately, that is, the system architecture
must have functionalities capable of monitoring and executing the planned schedules
(Wang et al. 2019). Mckay & Wiers (McKay and Wiers 1999) proposed the concept
of “sustained control”, which implies that planners have to be able to monitor the
progress of production and solve problems if production deviates from the original plan.
Faced with these situations, schedulers may not have to solve scheduling problems by
themselves, but some particular optimization problems included in scheduling decision
processes. Therefore, the MSS must support both levels. The user tends to intervene
more frequently at the reactive scheduling level.

The reactive scheduling problem arises once the schedule is generated and man-
ufacturing operations begin . Managers and supervisors want the shop floor to run
according to the schedule (Qin, Zhang, and Song 2018). In practice, operations tend
to deviate from the scheduled plan. Small deviations in the starting and ending times
are to be expected, which are generally ignored (the definition of small depends on
the system in question). Larger deviations occur when unexpected events interrupt
the initial schedule (machines fail, for instance). Even if managers and supervisors do
not explicitly update the schedule, modifications are introduced when schedulers react
to interruptions that delay the completion of tasks or carry those out in a disorderly
manner (Vieira, Herrmann, and Lin 2003).

Rescheduling is the process of updating an existing production schedule in response
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to interruptions or other changes (Ouelhadj and Petrovic 2009). Some of the factors
that usually trigger these reschedules are the arrival of new jobs, failures or repairs of
machines, changes in delivery dates, delays or shortages in the delivery of materials,
changes in the priorities of work, reprocessing or quality problems, over or underesti-
mation of processing times, absenteeism of operators, etc. To solve these problems, the
planners use different techniques or strategies, ranging from addressing the problem
in a completely reactive way to generate robust strategies giving the initial schedule
enough slack to “absorb” these events (Framinan, Leisten, and Garćıa 2014; Vieira,
Herrmann, and Lin 2003; Ouelhadj and Petrovic 2009; Rossit, Tohmé, and Frutos
2019c).

3.4. The problem in an Industry 4.0 perspective

MSS generally calculate solutions for the release scheduling problem with some defi-
ciencies. These are mainly due to the fact that real industrial environments present too
many restrictions as to even conceive to seek a real optimal solution (Framinan and
Ruiz 2010). In practice, simplifications are usually considered, either in the modeling
of the problem or in the method of resolution. When the problem is simplified, the
optimization is carried out using some method (for example, ad-hoc designed meta-
heuristics) that may work well for the simplified version. For example consider a flexible
hybrid flow shop system with sequence-dependent setup times, but omitting personnel
selection, time windows, machine life before maintenance shutdown, etc. In that case,
a very good solution for the simplified problem can be obtained. Then, the scheduler
can manually modify the solution as to approximately meet all the real restrictions of
the problem (Framinan and Ruiz 2010). Alternatively, a simple resolution approach
can be used (for example dispactching rules) allowing fast solutions even for prob-
lems with too many restrictions (Framinan, Leisten, and Garćıa 2014; Pinedo 2012).
However, this solution can be very poor, and the scheduler may be forced to modify
the solution (at least partially) to achieve a better performance. For reactive schedul-
ing problems, the question of rescheduling upon a disruption is answered in a similar
way. When adjusting the computed solution to the real problem, the extra conditions
generated by a reschedule should be considered, like new delivery dates, other than
material handling, different windows for usable times, etcetera (Vieira, Herrmann, and
Lin 2003).

Given this, it remains to see whether Industry 4.0 can help to improve the outcome.
With regards to the limitations of modeling the problem (solving a simplified ver-
sion) or the limitations in computing solutions using simplistic resolution approaches,
there is not much to be achieved by the application of Industry 4.0 technologies, or at
least not directly, since they do not increase the hardware capacity or the modeling
techniques used to solve those problems. Nevertheless, Industry 4.0 allows the incorpo-
ration of Artificial Intelligence and Data Science tools that can contribute to improve
the way in which problems are addressed. Specifically, by generating a system trained
by the schedulers, collecting the “adjustments” made by them in problems of release
and reactive scheduling (either in modeling or solving the problems). That is, Industry
4.0 allows to create a system that collects data and information in an intelligent and
efficient way, so that when a scheduler faces situations similar to those of the past she
can count on a support system to provide at least the best of the empirical knowledge
generated by her colleagues. This leads to speed ups in the decision process, increasing
the response capacity and laying the groundwork for improvements in the solutions
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offered by the support system.

4. Decisional DNA approach to scheduling

To solve the problem discussed in the previous section, incorporating an Artificial
Intelligence complement to the MSS is proposed. Then, it is introduced a design for a
complement based on DDNA, which can be associated to the scheduling engine of the
system. Then, the whole architecture is presented, where both the scheduling classic
complement and the DDNA complement are linked, evaluating its potentialities.

4.1. The DDNA Complement

The idea behind this architecture is that it is convenient to add an AI complement to
a MSS, able to translate human reasoning processes into usable and understandable
procedures for CPS. This complement could be designed on the basis of the Decisional
DNA technology. As a proof of concept it can be shown that each element in the
decision-making process that is not usually considered in an optimization process (i.e.
solving job sequencing) can be modeled in this way. Those elements are usually incor-
porated by the user at the solution-tuning stage. The DDNA complement proposed
here, can collect those adjustments and stored them for similar events in the future.

To embed this decision process into a CPS it is necessary to model it in the ad-
equate terms for an intelligent system. In this sense, the concept of SOEK (Sanin
and Szczerbicki 2007), presented before in this paper, gains relevance. Basically, it
translates a formal decision event (FDE) into a model based on variables, functions,
constraints and rules. The analogies of this model with standard optimal scheduling
problems (Pinedo 2012) are quite evident. More precisely, scheduling problems can be
formulated in almost the same terms as a SOEK, albeit the Decisional DNA’s inde-
pendent variables (which do not get modified in the scheduling process, as for instance
processing times, precedence of operations, etc.) are called parameters. Then, the FDE
recorded by SOEKs, can be stored by the standard information of the optimization
process, jointly with some other elements, like environmental features or un-planned
events. This idea is illustrated in Figure 4, where the User decision-making process is
influenced by the standard scheduling information, and also, by the un-planned events
or environment aspects. But, the most important point is that all that information
has an associated performance measure, which can improve future decision-making in
similar situations. That is, the SOEK can record the shop-floor condition, the solution
adopted and the performance or actual result of that solution.

A SOEKS system consists of four interacting modules. The first one is the Inte-
grator, which compiles and organizes the information of the scenario under study. In
this case it will associate each decision-making experience with a description of the
context in which it happened, its nature, its consequences, etc. The Integrator sends
this information to the Prognoser, which analyzes it. In interaction with the DDNA
Repository and the XML Parser, the Prognoser organizes the knowledge required by
the task at hand. The Convertor translates this knowledge into DDNA and stores the
results in the Repository. The latter is the core of this design, since it is in charge
of keeping track of previous experiences while also influencing the future generation
of chromosomes. The entire system links with an I/O subsystem that informs in real
time the DDNA of all the relevant external events. The latter, in turn, evaluates each
of those events and checks whether there exist previous solutions to similar problems.
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Figure 4. Information registered in a SOEK.
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Figure 5. System Design for DDNA Scheduling System.

If so, it connects the event to those solutions and triggers the corresponding actions
stored in the DDNA Repository.

In order to ensure that a DDNA system has these abilities, it must be trained,
internalizing the knowledge needed to gain them. This DDNA complement to the
Scheduling Enhanced CPS, can obtain this knowledge in two different ways: 1) by
working in parallel with the human scheduler on the normal day-to-day operations, 2)
by associating it to the scheduling generation process. In the first case the DDNA sys-
tem will collect the FDE solved by the scheduler, generating the corresponding DNA.
Since the production system is commanded by CPS, even the real-time modifications
of the schedule (not recorded by the human scheduler) can be collected. The DDNA
system will get information about them through an ETL system (Extract, Transfor-
mation and Load) already in the network of the CPS. Thus, if a machine runs an

13



operation or job that was not originally scheduled, the CPS network will record this
event and, through the ETL system, the DDNA will generate knowledge about it.
Alternatively, the DDNA can access a database of past FDE, from which it generates
knowledge.

Another way of generating knowledge is required when the DDNA system is unable
to respond to a given FDE since the DDNA repository does not have a similar record.
But then, the DDNA is able to translate such event or scenario as a SOEK that, as
said, is equivalent to a classical scheduling problem. This problem is thus submitted
to the Schedule Generator of the MSS. In summary, the DDNA system is, potentially,
able to address any scheduling problem since any action executed ends up being a
solution to a scheduling problem.

4.2. Assessment of the design

The proposal of incorporating a complement of knowledge representation based on
SOEKs and DDNA to the MSS, is depicted on Figure 6. This figure shows the re-
lationship between the MSS and DDNA complement at the user level. The DDNA
complement is in charge of monitoring the status of the shop-floor. Then, DDNA can
function as a library of past solutions associated to different scenarios. The overall
system leverages the ability to make decisions of the scheduler. Thus, the architecture
depicted in Figure 6 can be associated to different shop-floor configurations, such as
cell manufacturing, assembly lines, job shop, flow shop, etc. At each case, the type of
scenario could be different and the MSS should be properly adopted.

Despite this versatility to adopt different shop-floors configurations, it remains nec-
essary to discuss whether this architecture can handle the two levels of decision-making
described in Section 3.3, namely, release scheduling and reactive scheduling (on-line).
The proposed architecture contributes, indeed, to the resolution of scheduling problems
at its two levels. With respect to the problem of release scheduling, this architecture
contributes providing better starting points, i.e. potential solutions. This criterion is
proven in practice, since it is often useful to solve scheduling problems by means of
backtracking algorithms that seek more recent solutions to the problem (Pinedo 2012)
. By backtracking, the MSS and the scheduler review the recent history of schedules.
Using, instead, a DDNA-based add-on the history of past schedules and scenarios in-
creases the chances of finding quickly a good solution that can be used as raw material
for the process of generating a new release schedule. In addition, DDNA incorporates
more information about the kinds of scenarios associated with each FDE, accumulat-
ing a curated history of recent resolutions. This has a non-trivial consequence, since
backtracking may recover simplified problems corresponding to different real problems
while DDNA increases the possibility of matching the current problem to an actual
problem solved in the past.

With respect to the reactive scheduling problem, the proposed architecture can
show how a previous solution was obtained and the results that ensued from its ap-
plication. Therefore, for a current event, the scheduler can either improve a previous
good schedule or even use the very same solution, speeding up the response time.

In turn, DDNA homogenizes the response capacity of all schedulers, that is, of
the different planners that work in different shifts. They all gain access to an expert
system yielding solutions according to the best criteria (maybe generated and executed
by another scheduler). In this way, all the schedulers will always get the best out of
past cases.
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Figure 6. Complete System Architecture for Scheduling System with MSS and DDNA complements.

4.3. Case Study: Single Machine Scheduling problem

In order to show how the proposed architecture may work on scheduling problems,
the following case study is presented.

Assume a single-machine process in which the goal is the minimization of total
weighted Tardiness. As a particular feature consider sequence dependent setup times.
While simple, this setting is enough to illustrate the knowledge representation archi-
tecture proposed in this paper. The description of this problem in a three-field notation
(α | β | γ) is 1 | sjk |

∑
wjTj . The tardiness of job j, Tj , can be calculated in terms

of j’s due date, dj , and j’s date of final processing, cj , as: Tj = max{cj − dj , 0}. The
weight wj represents the relative value of job j with respect to the other jobs. The
setup times sjk depend on the sequence, and thus, it is not equivalent to start pro-
cessing k after finishing j than the other way around. The goal is to minimize

∑
wjTj

respecting the constraints of the problem.
This single-machine problem is NP-Hard when the weights of the jobs are all equal

(Du and Leung 1990), while it is Strong NP-hard if they are different (Lawler, Lenstra,
and Kan 1982). Different heurıstic and meta-heuristic methods have been proposed
for this problem (Tasgetiren, Pan, and Liang 2009; Bektur and Saraç 2019). Also
dispatching rules have been suggested for treating it (Park, Kim, and Lee 2000; Pfund
et al. 2008). An effective dispatching rule is the Apparent Tardiness Cost with setups
(ATCS rule) (Lee and Pinedo 1997). This rule associates two different dispatching
rules, the Weighted Shortest Processing Time first (WSPT ) rule (which orders the
jobs according to the lowest weighted processing times), and the Minimum Slack first
(MS) rule (which takes into account the slack time of each job, determining max{dj−
pj − t, 0}, being t the moment at which slack is evaluated). The ATCS computes
the time at which a machine gets free, and orders the jobs according to decreasing
priority defined by the index. This rule was presented first in an exponential version
in (Vepsalainen and Morton 1987)), while in (Lee and Pinedo 1997) it was extended
to the case of sequence-dependent setup times, in which the index is defined as:
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Ij(t, l) =
wj

pj
exp(−max(dj − pj − t, 0)

K1p̄
)exp(−

slj
K2s̄

) (1)

where K1 and K2 are scale parameters for the due date and the setup functions of
job j, respectively. These parameters strongly depend on the specific problem under
analysis and must be defined by the scheduler (Xi and Jang 2012). They are, in general,
associated to empirical statistics calculated for the problem: the due date tightness
factor (τ), the due date range factor (R) and the setup time severity factor (η) (Lee
and Pinedo 1997). Here τ is:

τ = 1−
∑

dj
nCmax

(2)

where Cmax is the optimal makespan for the problem (if the sequence dependent setups
times were disregarded, the makespan would be the sum of the pjs). The range R is
obtained by the comparison of the maximal and minimal due dates, dmax and dmin,
as follows:

R = 1− dmax − dmin

Cmax
(3)

Finally, the setup time severity factor η, is computed according to the average setup
and processing times, s̄ and p̄ respectively:

η =
s̄

p̄
(4)

While these statistics are easy to calculate, the makespan is rather involved to com-
pute since it depends on the sequence-dependent setup times. A useful approximation
to the makespan, was developed in (Pinedo 2012):

Ĉmax =

n∑
j=1

pj + ns̄ (5)

Approximation (5) tends to overestimate the optimal value of Cmax, since it includes
s̄, which contemplates all the values s, while in the case in which the minimal Cmax is
sought, the optimal schedule must take into account only the smaller s values. Other
approximations can be found in (Park, Kim, and Lee 2000).

As said, the value of Ij(t, l) of the ATCS rule (1) depends on how K1 and K2 are
defined by the user. In some studies, like (Lee and Pinedo 1997) and (Park, Kim, and
Lee 2000) the following specifications are suggested:

K1 = 1.2ln(n)−R
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K2 =
τ

A2
√
n

being A2 the empirical constant A2 = 1.8 (further contributions just rounded it up
to A2 = 2 (Bektur and Saraç 2019)). On the other hand, direct empirical values have
been proposed (Bektur and Saraç 2019)

K1 = 4.5 +R, if R > 0.5

K1 = 6− 2R, if R ≤ 0.5

Independently of the method of estimation of K1 and K2 to be used to compute
the schedule, the rule depends on its definition and on how it has been treated in
practice (Lee and Pinedo 1997; Park, Kim, and Lee 2000), or more recently (Xi and
Jang 2012; Bektur and Saraç 2019). It would be interesting to find a method to absorb
the empirical knowledge gained from the definition of these parameters in the daily
production of the firm. Thus, the ATCS rule is a good example of how the structure
proposed in this article, based on using a SOEK, allows to improve the values of K1

and K2 in time.
To incorporate K1 and K2 in a SOEK structure, start by defining them as Ij(t, l)

and z (representing the value of the objective function) and treat them as variables
of the SOEK. It is worth noting that the SOEK is not applied directly to yield the
scheduling problem, but to improve the process leading to its determination. The
conditions imposed by the system are summarized in the statistics τ , R, η and Ĉmax.
The objective is the minimization of

∑
wjTj (z =

∑
wjTj ) and the rule is ATCS.

All these elements allow to implement the SOEK according to definition (Sanin et al.
2012), and to record each FDE.

According to the architecture in Figure 5, a FDE will be addressed as follows: the
Integrator will compile and organize the information related to the FDE, i.e. n, τ ,
R, η and Ĉmax, as well as K1, K2, defined as Ij(t, l) and z. This information can be
organized in Comma Separated Values (csv) files, as proposed in (Sanin et al. 2019).
Afterwards this information is sent to the Prognoser, which will analyze it and jointly
with the Convertor will translate it to the DDNA format. When a new FDE arises,
the scheduler can request the MSS to look for previous similar problems based on
the values of n, τ , R, η and Ĉmax. The MSS with support in the DDNA can yield,
accordingly, a solution.

A final comment on this case, given the speed of computation of the ATCS rule
(defined by simple algebraic equations), is that this method can be applied both to
release and reactive scheduling. Thus, it is a method that can be applied to rescheduling
or dynamic scheduling problems to obtain schedules in real time.

5. Conclusion

Industry 4.0 prescribes the intensive digitization of production processes, leading to
a substantial improvement in the availability of data and information. These new
features allow the development of increasingly intelligent systems to support decision-
making in production planning. In this work it is proposed to use such systems to im-
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prove the ability to solve scheduling problems by incorporating Artificial Intelligence-
based complements to Manufacturing Scheduling Systems.

Scheduling problems are currently solved by human schedulers who use tools that
allow them to calculate different alternative production plans. These solutions cannot
be implemented directly to production systems without subsequent adjustments and
calibrations. Then, it is proposed an architecture that works in parallel with the human
scheduler, recording the adjustments and calibrations made. In the next iterations the
system is able to provide solutions better tuned to the real problems to be solved.
This is illustrated by the case of a single machine scheduling problem. The proposed
structure of records allows registering the variables, restrictions, rules and functions
faced at each decision event. Ihe proposed structure allows managing efficiently the
database of past case studies, speeding up the resolution capacity in future situations.

As future work, it is intended to analyze more complex scheduling systems (flow
shop systems, for instance), as well as the link between the knowledge repository and
more advanced decision-making modules (for example, for lot-sizing problems).
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