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Abstract The potential use of Sr/Ca and Ba/Ca ratios in
fish otolith, as a complement to 87Sr/86Sr to study
movements of Prochilodus lineatus, was evaluated in

the La Plata Basin (South America). Water ratios were
obtained from samples collected during the high and
low water seasons at 42 sites across the La Plata Basin.
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Elemental and isotopic ratios in water were measured by
MC-ICP-MS, ICP-MS and ion chromatography, and
obtained from available literature. Fish were caught
from six different sites with different physiochemical
features. Otolith core-to-edge Sr/Ca and Ba/Ca profiles
were determined by LA-ICP-MS, while the otolith
87Sr/86Sr data set was taken from literature. The predic-
tive classification by rivers according to water Sr/Ca,
Ba/Ca and 87Sr/86Sr ratios (92.5%) was higher than that
based solely on 87Sr/86Sr (58%), with classification that
reached 100% for several rivers. Unlike Ba/Ca, a sig-
nificant relationship (R2 = 0.94, p < 0.05) was found
between otolith edge and water Sr/Ca, suggesting that
this could be an efficient movement indicator for
P. lineatus. The Sr/Ca ratio complemented the informa-
tion provided by Sr isotopes and it was particularly
useful in the northwest basin, where the isotopes alone
do not allow differentiating between large rivers.

Keywords Calcified structure . Freshwater fish .

Geomarkers . Migration indicators . Natural tag

Introduction

Several fish species are known to perform freshwater
migrations, including movements between different
sub-basins or between different environments in a given
basin, such as channels and floodplains (Duponchelle
et al. 2016). Knowledge of fish migration patterns en-
ables effective conservation and management strategies
to be designed and implemented. Over the last decades,
the use of natural markers, such as isotope and trace
element signatures in fish otoliths, have been used to
reconstruct the life history of many migratory fish
(Duponchelle et al. 2016; Avigliano et al. 2020;
Hauser et al. 2020). Otoliths are calcified structures
located in the inner ear of teleost fish, composed mainly
of aragonite (calcium carbonate, ~96%) deposited in an
acellular matrix of a fibrous protein called otoline
(Campana 1999). As the otolith grows continuously
and is metabolically stable, elements deposited at its
surface are permanently retained in the calcified struc-
ture and not reabsorbed into the animal body. Therefore,
several chemical components (e.g., Li, Ba, Mn, Mg, Sr,
etc.) registered in otoliths form a detailed chronological
record of the environment to which the fish was exposed

(Campana 1999; Hüssy et al. 2020). Nevertheless, some
elements (e.g., Mn, Se, Zn, etc.) show a complex net-
work of endogenous and exogenous factors that control
uptake and incorporation (Sturrock et al. 2015; Thomas
and Swearer 2019), hindering its use as a habitat indi-
cator throughout ontogeny (Hermann et al. 2016;
Maichak de Carvalho et al. 2020). For this reason, the
correct choice of geomarkers and knowledge about the
drivers that regulate their incorporation into the otolith is
essential to study displacements throughout ontogeny.
In marine environments characterized by gradients in
temperature and primary production, oxygen and carbon
isotopes were proved to be effective in tracing fish
movements (Rooker et al. 2014). In estuarine environ-
ments with salinity gradients, the most commonly used
natural tags in fish otolith are the Sr/Ca and Ba/Ca ratios,
which have been shown to be positively and negatively
related, respectively, to the salinity for several species
(Brown and Severin 2009; Tabouret et al. 2010; Smith
and Kwak 2014). In freshwater systems with sub-basins
that are geologically heterogeneous, strontium isotope
ratios (87Sr/86Sr) have allowed tracking the migratory
patterns of fish species (e.g., in the neotropical area:
Pouilly et al. 2014; Hegg et al. 2015; Duponchelle
et al. 2016; Avigliano et al. 2020).

The streaked prochilod Prochilodus lineatus
(Valenciennes, 1837), a detritivorous and migratory
fish which covers distances of more than 1500 km in
its lifetime (Sverlij et al. 1993), is one of the most
important freshwater fisheries of the La Plata Basin. In
relation to extractive fishing, some countries such as
Argentina have captured more than 36,000 t/year of this
fish (Espinach and Sánchez 2004; MINAGRI 2019). It
is thus critical to track the migration of this fish within
the La Plata Basin. Recently, the comparison of Sr
isotope composition in water and otolith helped reveal
fish displacements among sub-basins in the La Plata
Basin (Avigliano et al. 2020). Nevertheless, the Sr iso-
tope signature of the water proved to be similar between
several large sub-regions of the basin, mainly in the
northwest area (Gran Chaco and Andean regions)
(Avigliano et al. 2020). Gran Chaco and Andean rivers
form a vast and isotopically homogeneous area covering
an area of 400,000 km2 including the lower section of
the Paraguay River and two large Andean sub-basins:
Pilcomayo and Bermejo rivers. Such similarity imparts
significant spatial limitation of Sr isotopes for studying
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the migration of fish, in particular P. lineatus (Avigliano
et al. 2020).

A complement to employing otolith Sr isotope
ratios for reconstructing fish migration patterns is
the use of elemental chemical ratios. This is true,
in particular for element ratios that (1) are likely to
be only poorly fractionated during incorporation in
the otolith and (2) vary across different freshwater
environments in the region of study. The X/Ca ratios
are most likely the best candidates to fulfill the
condition 1. Calcium is the major cation of calcium
carbonate material, and X can be chosen to be an
element with a geochemical behavior close to that of
Ca and that can substitute it in a calcified structure
(elements commonly present as a divalent cation in
water such as magnesium (Mg2+), strontium (Sr2+),
barium (Ba2+), Thomas and Swearer 2019). Regard-
ing condition 2, we note that the distribution of Sr
and Ba concentration in freshwater environments of
the La Plata Basin has been reported to be hetero-
geneous and related to electrical conductivity (EC:
23–5508 μS/cm, Sr concentration: 32–886 μg/L and
Ba concentration: 11–127 μg/L), especially in the
northwest (Avigliano et al. 2019b). This observation
suggests that otolith Sr/Ca and Ba/Ca ratios could be
a powerful complement to 87Sr/86Sr for studying fish
displacements. Avigliano et al. (2017b) have already
suggested that otolith Sr/Ca ratios could be useful as
a salinity indicator in studying P. lineatus displace-
ments between freshwater and the estuary. However,
the recent description of high levels of salinity and
water Sr concentration in the Bermejo and Pilcoma-
yo sub-basins (Avigliano et al. 2019b) cast doubt on
this possibility. As a consequence, it is timely to
map the variation in water Sr/Ca and Ba/Ca ratio
across the La Plata Basin, and to assess the potential
of these chemical ratios to infer the displacements of
commercially important fish.

The purpose of the present study was to evaluate
the potential of Sr/Ca and Ba/Ca ratios in fish oto-
lith, as a complement to Sr isotopes, to study move-
ments of Prochilodus lineatus in the La Plata Basin.
To achieve this objective, we compare the Sr/Ca and
Ba/Ca ratios in water and fish otoliths sampled in
the major hydrographic regions of the La Plata Ba-
sin, and discuss the observed variations in these
ratios across different freshwater environments.

Materials and methods

Study area

The Paraná and Uruguay rivers are the largest water
courses of the La Plata Basin (Fig. 1). The Paraná River
(mean discharge ~17,000 m3/s) runs for 3965 km from
the Andes (Argentina, and Bolivia) and the Atlantic
Rain Forest areas (Argentina, Brazil, and Paraguay) to
the Paraná River Delta (Argentina), and it is partitioned
in three hydrogeographic regions (Fig. 1a) depending on
watercourse morphology, and ecoregions: upper, mid-
dle, and lower Paraná (Tucci and Clarke 1998). The
Paraguay River is the main tributary of the Paraná River.
It also receives the waters of the sediment-rich Bermejo
and Pilcomayo rivers. The Bermejo River (mean dis-
charge ~400 m3/s) transports around 45% of the total
sediment load of the La Plata Basin (~90 Mt/y of
suspended sediments; Depetris and Paolini 1988) and
has important tributaries such as the San Francisco
River. Downstream, the combination of low slope and
the input of large sediment loads from the Andean
tributaries favor the formation of large floodplains in
the middle and lower Paraná River before giving way to
a large delta that continues through the Río de La Plata
Estuary. On the eastern part of the basin, the Uruguay
River (mean discharge ~6000 m3/s) runs along 1800 km
from the Brazilian shield to the Paraná River Delta and
is joined by several short tributaries, and forms several
successive flooded valleys (Berbery and Barros 2002).
The Uruguay River also is partitioned in three
hydrogeographic regions (upper, middle, and lower
sections, Fig. 1b), depending on watercourse morphol-
ogy. The Paraná River Delta discharges into the Río de
La Plata Estuary (mean discharge ~22,000 m3/s, Piola
et al. 2003). More details on the hydrogeomorphology
of the basin can be found in Avigliano et al. (2020).

Water sample collection and chemical analysis

Surface water samples were collected during the high
(summer, March 2018) and low (winter, August 2018)
water seasons at 42 sites across the La Plata Basin
during the same sampling reported by Avigliano et al.
(2020). The sampling stations represent different envi-
ronments such as rivers, streams, floodplain lakes, wet-
lands, lakes/reservoirs, lagoons, floodplains and the
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estuary (Fig. 1a and Table S1). Water samples were
collected at ~0.3-m depth in 500-ml polyethylene-tere-
phthalate bottles pre-cleaned with nitric acid (Merck Pro
Analysis). For each season, samples were collected
within 3 weeks to minimize effects of possible hydro-
logical variations. Immediately after being collected,
samples were stored in darkness at 4 °C and transported
to the laboratory. The conductivity was determined ex
situ using a Horiba U-52 probe. Water samples were
vacuum-filtered through nitrocellulose filters (0.22-μm
pore size) and acidified with nitric acid to pH < 2 (Baird
et al. 2017).

Water dissolved Ca2+ concentrations were measured on
specific sample aliquots by ion chromatography, using
electrochemical suppression and conductivity detection
(IC5000+, ThermoFisher Scientific) in the Institut de phy-
sique du globe de Paris at Université de Paris (France). The
ion separation was enabled using a specific cation ex-
change column (IonPac CS16-5 mm, Dionex) and a 31-
mM methanesulfonic acid solution as eluent (Sigma-Al-
drich). The column temperature was 40 °C and the flow
rate 1.2 ml/min. The standard solutions used for quantifi-
cation were made in the laboratory using mono elemental
solutions for ion chromatography (SCP Science), with
Ca2+ concentrations ranging from 1.2 to 125 μg/g.

Water dissolved Sr2+ and Ba2+, and Sr isotopic data
was taken from Avigliano et al. (2019b) and Avigliano
et al. (2020), and were measured by Quadrupole-ICP-
MS and MC-ICP-MS, respectively. These data sets
correspond to the same water samples on which calcium
was determined here for the first time.

Fish collection and otolith analysis

Prochilodus lineatus specimens (N = 29) were caught
between February 2011 and November 2014 using
trammel nets at six different sites: Río de la Plata Estu-
ary, lower and middle Uruguay, middle and upper
Paraná, and upper Bermejo rivers (Fig. 1a and
Table S2). Fish collection locations were based on his-
torical knowledge of abundance and the geographical
distribution of Sr isotopes in water in order to obtain
differentiable signatures (Avigliano et al. 2020). Fish
were sacrificed by percussive stunning (Van De Vis
et al. 2003), and transported to the laboratory at 4 °C,
measured (standard length = SL, 35–58 cm) and their
lapilli otoliths were extracted.

Otoliths were embedded in epoxy resin and sectioned
(thickness 700 μm) transversally at the core plane by
using a Buehler Isomet low speed saw (Hong Kong,

Fig. 1 La Plata Basin map (South America). a delineation of
87Sr/86Sr regions, b Water and fish sampling site distribution.
Surface water samples were collected during the high (summer)
and low (winter) water seasons at 42 sites. Prochilodus lineatus

specimens were caught fromRío de la Plata Estuary (fish sampling
site 1), lower (2) and middle Uruguay (3), middle (4) and upper
Paraná (5), and upper Bermejo (6) rivers
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China). Otolith sections were fixed to glass slides using
resin, polished to core and sonicated for 5 min in ultra-
pure water (resistivity = 18.2 MΩ/cm) (Avigliano et al.
2020). Fish ages were determined by counting otolith
annuli according to Espinach Ros et al. (2012). The
number of annuli in the otolith was counted with the
sections immersed in water at 40-X magnification.

The Ca, Sr, and Ba concentrations in otolith samples
were determined in the Laser and Plasma Spectroscopy
Research Lab at Oviedo University through the mea-
surement of 43Ca2+, 88Sr2+ and 138Ba2+ ion signal, re-
spectively, derived from a Laser Ablation Inductively
Coupled Plasma Mass Spectrometry (LA-ICP-MS) sys-
tem, using a 193 nm ArF Excimer system (Photon
Machines Analyte G2) coupled to an ICP-QMS Agilent
7700 (Santa Clara, USA). The ablation was performed
in scan mode from core to edge. A circular aperture of
30 μm was used at 5 μm/s with a laser repetition rate of
10 Hz and a fluence of 12 J/cm2 (Avigliano et al.
2017b). The ICP-MS was operated at a power of
1600 W using Helium (flow: 800 mL/min) as carrier
gas in the ablation cell, while Argon (900 mL/min) was
added before introduction of the laser-induced aerosol
into the ICP-MS torch. The 238U/232Th and 16O/232Th
ratios in NIST 612 were used for monitoring the ICP
robustness and the oxide formation, showing ratios be-
low 1.2 and 0.4%, respectively. The reference materials
NIST610 and NIST612 (trace elements in silicate glass,
National Institute of Standards and Technology, USA)
were analyzed in triplicate every 10 samples and used as
primary and secondary standards, respectively (Pearce
et al. 1997; Jochum et al. 2011). A Ca reference value of
38.3 (weight %) was used as an internal standard (IS)
(Yoshinaga et al. 2000). Conversion of counts per sec-
ond (intensity) to concentrations was achieved consid-
ering constant Relative Sensitivity Factors (RSFx = (Ix/
IIS)/(Cx/CIS)) in the reference material and in the otolith
samples. Reference material recoveries based on
NIST612 showed acceptable values for 138Ba (98%)
and 88Sr (100%). Elemental Sr/Ca and Ba/Ca molar
ratios were expressed in mmol/mol.

The otolith Sr isotopic data set was taken from
Avigliano et al. (2020). This data set corresponds to
the same otolith samples measured in the present study,
which were previously analyzed by a fem-to-second
Laser Ablation system (Nexeya SA, Canejan, France)
coupled to a MC-ICPMS Nu Plasma (Nu Instruments,
Wrexham, UK) under dry plasma conditions. The certi-
fied fish otolith reference material (NIESS 22, National

Institute of Japan Environmental Studies) was used to
check the accuracy and repeatability of the 87Sr/86Sr
measurements (mean ± 2SD = 0.7093 ± 0.0001, N =
31).

Data analysis

Statistical analyses were performed using the PAST 3.0
and Mystat software

Water chemistry The relationships between water Sr/Ca
and Ba/Ca ratios and conductivity were assessed using a
power-law function [the relationship between 87Sr/86Sr
and conductivity was reported by Avigliano et al. 2020].
A Principal Component Analyzes (PCA) was performed
to explore possible patterns of variation in Sr/Ca, Ba/Ca
and 87Sr/86Sr ratios between sampling sites. PCA was
based on the correlation matrix to remove the scale
effect of the variables. A Linear discriminant analyzes
(LDA) was performed to test the capacity of 87Sr/86Sr
and the elemental ratios plus 87Sr/86Sr to discriminate
between the main rivers and areas differentiated by the
PCA. Standardized discriminant coefficients were used
to compare the relative importance of the natural tags to
classify the samples into the different sub-basins. The
predictive ability of the discriminant models was
assessed by the leave-one-out cross-validation
(jackknifed) method. Prior to the discriminant analyzes,
the multicollinearity was tested by calculating the toler-
ance value (Hair et al. 2014).

Relationship between water and otolith chemistry To
test the relationship between elemental ratios composi-
tion in otolith and water, linear regression analysis was
carried out between otolith edge (~outer 100 μm, corre-
sponding to the most recent life period) and water, for
Sr/Ca and Ba/Ca ratios separately.

Otolith chemistry and life history A PCA based on the
correlation matrix was performed to explore possible
patterns of variation in otolith edge ratios between sam-
pling sites. A discriminant analysis was performed to
test the capacity of the geomarkers (87Sr/86Sr and the
elemental ratios plus 87Sr/86Sr) to discriminate between
the main capture hydroregions applying a similar statis-
tical approach used for the water samples. In this case, a
Quadratic Discriminant Analysis (QDA) was performed
for the otolith samples because the homogeneity of
variances-co-variances matrices was not met (Box test,
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p < 0.05). Both the PCA and the QDA were performed
with those variables that showed a relationship between
the otolith and water.

The variations in elemental and Sr isotopic ratios
over the course of individual’s life were represented by
otolith core-to-edge transects. Additionally, the first an-
nual mark was highlighted on the plots.

Results

Water chemistry

The water Sr/Ca ratio ranged from 2.48 to 8.08 mmol/
mol (mean ± SD = 3.91 ± 1.16), while Ba/Ca varied
from 0.26 to 2.28 mmol/mol (mean ± SD = 1.34 ±
0.52) (Table S1). A positive relationship was found for
Sr/Ca and conductivity (R2 = 0.25, p < 0.05) and a neg-
ative relationship between Ba/Ca and conductivity
(R2 = 0.47, p < 0.05), when the two extreme points of
the site 1 (upper Estuary) characterized by a relatively
high conductivity were excluded (Fig. 2). When these
two points from upper estuary were included, significant
positive and negative relationships with conductivity
were also observed for Sr/Ca (R2 = 0.43, p < 0.05) and
Ba/Ca (R2 = 0.50, p < 0.05), respectively (Fig. 2).

The PCA on water Ba/Ca, Sr/Ca and 87Sr/86Sr values
from 42 sites showed that the first two components
accounted for 80.6% of the total variance of the data
set (PC1 = 46.0%, PC2 = 34.1%, Fig. 3). The 87Sr/86Sr
(eigenvector = 0.72) was the variable that most contrib-
uted to the formation of the spatial distribution of the
PC1 score, followed by Sr/Ca (0.62), and Ba/Ca (0.30).
For the PC2, Ba/Ca (0.88) was the variable that most
contributed, followed by Sr/Ca (−0.47), and 87Sr/86Sr
(0.04). The PCA resulted in the separation of six main
groups of sites: 1) the Bermejo and San Francisco sam-
pling sites formed a well-identified group characterized
by a high Sr/Ca (≥6.2 mmol/mol) and 87Sr/86Sr
(0.7149 = 0.7151), and low Ba/Ca (0.97–0.99 mmol/
mol); 2) the Pilcomayo area and upper Bermejo present-
ed relatively low Ba/Ca (<0.8 mmol/mol), moderate Sr/
Ca ratios (3.1–3.9 mmol/mol) and high 87Sr/86Sr
(0.7147 = 0.7167); 3) the middle and lower Paraná sites
showed overlap with two sites (25 and 26) from the
main course of Paraguay River and were characterized
by moderate values of Ba/Ca (1.2–1.7 mmol/mol) and
Sr/Ca (3.1–3.7 mmol/mol), and high 87Sr/86Sr
(0.7151 = 0.7154); 4) the tributaries of the Paraguay

River and the sites 23 and 27 (Paraguay River) were
characterized by moderate values of Ba/Ca (1.6–
1.9 mmol/mol), Sr/Ca ratios (3.8–4.4 mmol/mol), and
high 87Sr/86Sr (0.7148 = 0.7154); 5) the upper Paraná
sites also formed a well-identified group characterized
by high Ba/Ca (2.1–2.3 mmol/mol), moderate Sr/Ca
ratios (3.4–3.5 mmol/mol) and low 87Sr/86Sr
(0.7125 = 0.7141); 6) the lower Uruguay, the Paraná
Delta, and mountain streams with low/intermediate Ba/
Ca (0.56–1.57 mmol/mol), low Sr/Ca ratios (2.5–
4.2 mmol/mol) and low 87Sr/86Sr (0.7072 = 0.7115).
Finally, the three points (site 1, 2 and 3) from the estuary
were segregated, with point 3 (upper Estuary) charac-
terized by a lower Sr/Ca, and higher Ba/Ca and 87Sr/86Sr
ratios.

The predictive classification of rivers according to
water Sr/Ca, Ba/Ca and 87Sr/86Sr ratios (LDA, mean%
of correct classification =92.5%) was higher than that
based solely on 87Sr/86Sr values (mean = 58%, Table 1),
showing the maximum score of correct classification
(100%) for Bermejo, Paraná, Paraguay, Estuary and
upper Paraná, and high values (up to 75%) for the rest
of the areas. As observed with the PCA, Sr/Ca was the
ratio that contributed most to the discrimination (stan-
dardized discriminant coefficients: Sr/Ca = 0.17; Ba/
Ca = 0.005; 87Sr/86Sr = 0.0008).

Water versus otolith chemistry

The otolith edge Sr/Ca ratio varied between 1.01 and
2.18 mmol/mol (1.40 ± 0.44 mmol/mol, Supplementary
Material 1). The highest values corresponded to fish
caught in the upper Bermejo River (2.18 ± 0.34 mmol/
mol) and in the estuary (1.65 ± 0.18 mmol/mol), while
the lowest ratios were obtained for the Uruguay (1.08 ±
0.29) and upper Paraná rivers (1.01 ± 0.20 mmol/mol).
The otolith edge Ba/Ca ratio ranged from 0.013 to
0.018 mmol/mol (0.016 ± 0.0017 mmol/mol). The low-
est values corresponded to the middle Uruguay River
(0.013 ± 0.0018) and the upper Paraná River (0.015 ±
0.0028 mmol/mol), and the highest to those obtained
from the middle Paraná River (0.017 ± 0.0096 mmol/
mol) and the estuary (0.018 ± 0.0067 mmol/mol).

A significant positive linear relationship (R2 =
0.94, slope = 0.29, p < 0.05) was found between the
Sr/Ca ratios of otolith edge and those of water
(Supplementary Material 1). There was no signifi-
cant relationship between otolith edge and water Ba/
Ca ratios (R2 = 0.043, p > 0.05). The strong
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Fig. 2 Relationship between
water element/Ca ratios and con-
ductivity. The insets show the re-
lationships excluding the two
highest values (Middle Estuary,
site 1) recorded for conductivity.
Bars indicate the temporal stan-
dard deviation

Fig. 3 Principal Component Analyzes based on correlation ma-
trices. a results based on water Sr/Ca, Ba/Ca and 87Sr/86Sr ratios.
Numbers correspond to sampling sites (see Fig. 1), b results based

on otolith edge Sr/Ca and 87Sr/86Sr ratios. Otolith Ba/Ca was not
included because it did not show a relationship with the water
composition. PC principal component
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relationship found between otolith and water Sr/Ca
ratios suggests that this ratio could be an efficient
natural indicator for P. lineatus migration in combi-
nation with 87Sr/86Sr ratios, unlike Ba/Ca ratios. For
this reason, Ba/Ca transects in otoliths are not
discussed in the following part.

Discrimination based on otolith edge chemistry

The PCA and QDA based on the otolith edge were
performed with Sr/Ca and 87Sr/86Sr ratios (Fig. 3b and
Table 2). Otolith Ba/Ca was not included because it did
not show a relationship with the water chemical
composition.

The PCA showed that the first components accounted
for 67.8% of the total variance (PC2 = 32.2%, Fig. 3b),
with Sr/Ca and 87Sr/86Sr contributing in the same pro-
portion for both PCs (eigenvector = 0.70). While the
Estuary samples showed a relatively high dispersion,
the rest were grouped into three large groups: Bermejo,
upper Paraná and Uruguay rivers. Bermejo samples were

mainly associated with high values of Sr/Ca and 87Sr/86Sr
ratios, while those from Uruguay showed the opposite
pattern.With intermediate Sr/Ca and 87Sr/86Sr values, the
upper Paraná samples were distributed between the Ber-
mejo and Uruguay groups.

The predictive classification of fish based on otolith
edge Sr/Ca and 87Sr/86Sr ratios (correct classification
=79.0%) was higher than that obtained on 87Sr/86Sr
values (64%, Table 2), showing the maximum score of
correct classification (100%) for Bermejo River. The
upper Paraná and Uruguay River showed relatively high
classification percentages (78–80%), while the lowest
value was for the upper Estuary (50%). Sr/Ca was the
ratio that contributed most to the discrimination (stan-
dardized discriminant coefficients: Sr/Ca = 0.93;
87Sr/86Sr = 0.59).

Otolith core-to-edge time series

Otolith core Sr/Ca ratio of fish from the Bermejo River
varied from 0.87 to 1.89 mmol/mol for specimens P75,

Table 1 Jackknifed percentages of linear discriminant analysis based on the water Sr/Ca, Ba/Ca, and Sr isotope ratios. N = sampling size

N Estuary Middle/Lower
Paraná

Uruguay Paraguay Bermejo Upper Paraná Mountain Stream Pilcomayo

87Sr/86Sr

Estuary 3 100 0 0 0 0 0 0 0

Middle/Lower
Paraná

10 0 60 0 10 0 30 0 0

Uruguay 8 38 0 25 0 0 25 13 0

Paraguay 8 0 0 0 63 0 0 0 38

Bermejo 3 0 0 0 67 0 0 0 33

Upper Paraná 4 0 25 0 0 0 75 0 0

Mountain Stream 4 0 0 25 0 0 0 75 0

Pilcomayo 3 0 0 0 33 0 0 0 67

Mean 58

Sr/Ca, Ba/Ca and 87Sr/86Sr

Estuary 3 100 0 0 0 0 0 0 0

Middle/Lower
Paraná

10 0 90 0 0 0 10 0 0

Uruguay 8 0 13 75 0 0 0 13 0

Paraguay 8 0 0 0 100 0 0 0 0

Bermejo 3 0 0 0 0 100 0 0 0

Upper Paraná 4 0 0 0 0 0 100 0 0

Mountain Stream 4 0 0 25 0 0 0 75 0

Pilcomayo 3 0 0 0 0 0 0 0 100

Mean 93
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P78 and P79, and from 1.27 to 2.1 mmol/mol for spec-
imens P76 and P77 (Fig. 4a and Supplementary
Material 2a). Considering the complete transects, the
Sr/Ca ratio of fish P76 fluctuated between 1.48 and
2.82 mmol/mol (Supplementary Material 2a), while
the rest of the specimens showed an increase in the ratio
towards the end of life (up to 3.52, Supplementary
Material 2a). In contrast, the Sr isotopic ratio showed
fewer changes through ontogeny (Supplementary
Material 2g).

With the exception of P48 and P51, fish from the
middle Uruguay River (upstream) showed otolith Sr/Ca
ratios between 0.75 and 1.5 mmol/mol (Fig. 4b and
Supplementary Material 2b). Fish P48 and P51 had Sr/
Ca ratios exceeding values of 2 mmol/mol (over a short
distance for P48 and over a longer distance for P51;
Supplementary Material 2b). The 87Sr/86Sr ratio also
showed peaks in these two fish (Supplementary
Material 4h).

Fish from the lower Uruguay River were charac-
terized by relatively low Sr/Ca ratios (around
1 mmol/mol) (Fig. 4c and Supplementary Material
2c), except specimens P46 and P45 which had ratios
>1.5 over a significant distance. On the contrary, the
Sr isotope ratios of the otolith core were variable
among individuals (Supplementary Material 2i). All
fish showed a partial overlap of the Sr/Ca transects,
especially in the outer 1000 μm of the otolith
(Supplementary Material 2c).

For the upper Paraná River (Yacyretá Reservoir, Fig.
4d and SupplementaryMaterial 2d), a relatively variable

otolith core Sr/Ca ratio was observed, ranging from 0.76
to 1.89 mmol/mol. The Sr/Ca profiles partially overlap
for all fish, except for P71, which presented higher Sr/
Ca values, with a peak that exceeded 5mmol/mol within
the core area (Supplementary Material 2d). This Sr/Ca
peak was not reflected in the isotopic pattern
(Supplementary Material 2j). The otolith Sr isotopic
ratio of upper Paraná River fish showed a tendency to
decrease over time (SupplementaryMaterial 2j). Specif-
ically, fish P70 and P71 showed a pronounced drop in
87Sr/86Sr approximately 1 year of life (Fig. 4d and
Supplementary Material 2j). The drop in 87Sr/86Sr ob-
served in fish 70 matched with an increase in the Sr/Ca
ratio (Fig. 4d).

For the middle Paraná f ish (Fig. 4e and
Supplementary Material 2e), core Sr/Ca ratios ranged
from 0.72 to 1.64mmol/mol. Moreover, Sr/Ca increased
throughout ontogeny for all fish, being more pro-
nounced in specimens P1 and P2 (up to 3.1 and
3 . 4 mmo l /mo l , r e spe c t i v e l y ; F ig . 4 e and
Supplementary Material 2e). In contrast, the isotopic
ratio showed a tendency to decrease in all fish
(Supplementary Material 2k). The specimens P1, P2
and P73 showed 87Sr/86Sr values at the beginning of
the profiles compatible with the Paraguay-Pilcomayo-
Bermejo isotopic conglomerate (Supplementary
Material 2k). In particular, the P2 fish showed a pattern
compatible with movements from the Bermejo to the
Paraná (even towards the Uruguay River) (Fig. 4k),
agreeing with the ascending pattern of Sr/Ca
(Supplementary Material 2e).

Table 2 Jackknifed percentages of quadratic discriminant analysis based on the otolith edge Sr/Ca and Sr isotope ratios. N sampling size

N Estuary Uruguay Bermejo Upper Paraná

87Sr/86Sr

Estuary 4 0 25 0 75

Uruguay 9 0 67 0 33

Bermejo 5 0 0 80 20

Upper Paraná 10 0 10 10 80

Mean 57

Sr/Ca and 87Sr/86Sr

Estuary 4 50 0 0 50

Uruguay 9 11 78 0 11

Bermejo 5 0 0 100 0

Paraná 10 10 10 0 10

Mean
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For fish P60, P61, P62, and P64 caught in the upper
estuary, the Sr/Ca ratio showed an increase throughout
ontogeny (from 1 to 2 mmol/mol) (Fig. 4f and
Supplementary Material 2f). In addition, fish P60, P62,
and P64 showed a similar pattern of decreasing 87Sr/86Sr
values during the ontogeny (Supplementary Material
2l), but P61 had low Sr/Ca ratios near birth and then
Sr/Ca ratios (Supplementary Material 2f) characterized
by Sr/Ca ratios between.

Discussion

Distribution of Sr/Ca, 87Sr/86Sr and Ba/Ca in the main
hydroregions

The PCA and LDA (Fig. 3 and Table 1) showed that it is
possible to separate different hydroregions of the basin
based on water Sr/Ca, Ba/Ca and 87Sr/86Sr ratios. Ac-
cording to the statistical approaches, Sr/Ca ratios had a
greater ability for the separation of the areas from the
northeast of the La Plata Basin (Bermejo, Pilcomayo
and Paraguay rivers), which have a relatively similar Sr
isotopic ratio (Avigliano et al. 2020).

The range of Sr/Ca and Ba/Ca ratios found in the
present study were concordant to those reported for
other basins around the world (Brown and Severin

2009). Typical Sr/Ca ratios in aquatic systems are 0.27
to 9.2 (mean = 2.39) mmol/mol for rivers and their
estuaries, and 8.17 to 8.87 mmol/mol for seawater
(Brown and Severin 2009). Most of the world’s major
freshwater basins such as the Congo, Ganga, Orinoco,
Mississippi, and Yukon rivers are characterized by Sr/
Ca ratios between ≈1 and ≈9 mmol/mol (Brown and
Severin 2009), a range comparable to that obtained in
this study. Values of Ba/Ca ratios obtained here for the
La Plata Basin were also comparable with those report-
ed previously for fluvio-estuarine systems, with ratios of
0.005 to 6.4 for freshwater, and of 0.009 to 0.1 mmol/
mol for estuarine/seawater (Elsdon and Gillanders 2005;
Hamer et al. 2015; Mohan and Walther 2015).

A striking feature of our dataset is the opposite rela-
tionship observed between conductivity versus Sr/Ca
ratio (positive trend), and between conductivity versus
Ba/Ca ratio (negative trend) (Fig. 2). A positive rela-
tionship between the water Sr/Ca ratio and salinity has
been reported in several river basins such as the Indigir-
ka, Indus, Mississippi, and Río de La Plata (lower basin
part), where the strongest slope corresponds to the estu-
ary area (Zlokovitz et al. 2003; Brown and Severin
2009; Avigliano and Volpedo 2013). However, inverse
relationships have also been found for a few basins such
as the St. Johns rivers (USA) (Brown and Severin 2009)
and the Wyuna Creek (Australia) (Hamer et al. 2015).

Fig. 4 Representative profiles of Prochilodus lineatus otolith Sr/
Ca (this paper) and 87Sr/86Sr (Avigliano et al. 2020) ratios obtained
by LA-ICP-MS. The shaded areas correspond to the range in water
87Sr/86Sr as a function of the potential migratory corridor (for fish

coming from reservoirs, only reference values from upstream are
shown) according to Avigliano et al. (2020). The arrows indicate
the position of the first annulus. Par-Pi-Be: Paraguay-Pilcomayo-
Bermejo system
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Dissolved Sr concentration and Sr/Ca ratios in river are
largely controlled by the presence of carbonate rocks in
the drainage basins, which tends to result in higher Sr
concentrations but lower Sr/Ca ratios (Palmer and
Edmond 1992). Rivers draining carbonate rocks are also
expected to display high conductivity, because of the
fast dissolution rates and high solubility of carbonates
compared to silicate minerals (Brantley et al. 2008).
Nevertheless, several alternative sources of dissolved
Sr and Ca to rivers can complicate this simple picture,
such as the deposition of marine-sourced atmospheric
salts, anthropogenic inputs, or the presence of evaporite
rocks in the basin. Additionally, processes such as the
formation of secondary carbonates can fractionate Sr
and Ca (Bickle et al. 2015). This complexity is the most
likely cause for the diversity of Sr/Ca vs. conductivity
relationships reported in the literature. Although Sr con-
centration in seawater is fairly high in any case, Sr
concentration in river water, and associated Sr/Ca ratio,
vary widely depending on the geological setting, such
that it can be either lower than (as is the case overall of
La Plata Basin) or higher than seawater as reported by
Elsdon and Gillanders (2005), Joung and Shiller (2014)
and Mohan and Walther (2015).

Like in our study, an inverse relationship between
Ba/Ca and conductivity has been reported for several
basins and estuaries around the world such as the Adour
River (France) (Tabouret et al. 2010), the Negro River
(Avigliano et al. 2019a), theMississippi River and in the
Gulf of Mexico (USA) (Joung and Shiller 2014; Mohan
and Walther 2015), and estuaries in Australia (Elsdon
and Gillanders 2005). Although little is known about the
controls on Ba abundance in freshwater, lithology is
expected to play a control over water Ba/Ca ratio. Un-
like Sr, river dissolved Ba is mostly derived from silicate
rocks (Charbonnier et al. 2020; Gou et al. 2020). In
addition, Ba is muchmore sensitive than Sr to secondary
processes including the formation of clays and oxides
(Dalai et al. 2002; Das and Krishnaswami 2006; Gong
et al. 2019) or biological uptake (Bullen and Chadwick
2016; Charbonnier et al. 2020). Although it is beyond
the scope of this work to clearly identify the controls on
river dissolved Ba/Ca ratios, it can be hypothesized that
the presence/absence of carbonate rocks in the studied
basins (leading to high conductivity but low Ba/Ca
ratios) exerts the strongest influence on the widespread
inverse relationships between conductivity and Ba/Ca
ratios. The widespread observation of inverse relation-
ships between Ba/Ca ratios and conductivity stems from

the fact that the concentration of Ba in lower estuary and
seawater (the high-conductivity end member) is rela-
tively low compared to that usually observed in conti-
nental waters (Wolgemuth and Broecker 1970;
Tabouret et al. 2010).

Are water Sr/Ca and Ba/Ca ratios reflected in otolith?

In our data set, Sr/Ca ratio of water samples was corre-
lated with that of edge otolith, but no correlation was
found for Ba/Ca ratio. This means that among the two
elemental ratios; only Sr/Ca could be used as an efficient
tracer of P. lineatus migratory patterns, at least in the
case of La Plata Basin. Nevertheless, the Ba/Ca baseline
in water presented in this study could be used to study
the migration of other fish species, for which an associ-
ation between the environmental concentration and a
calcified structure would be demonstrated.

Positive relationships between otoliths and water Sr/
Ca have been reported especially for diadromous or
euryhaline fish (Brown and Severin 2009; Tabouret
et al. 2010; Avigliano and Volpedo 2013; Arai and
Chino 2017), although there are relatively few studies
regarding freshwater species (e.g. Brown and Severin
2009). By contrast, the accurate record of water Ba/Ca
ratios by otolith seems to be less systematic. Although
several examples of positive relationships between Ba/
Ca of otolith and water have been reported for diadro-
mous or euryhaline fish (Tabouret et al. 2010; Mohan
et al. 2015), many species do not show such a relation-
ship, even those for which a relationship was observed
for Sr/Ca (e.g. Avigliano et al. (2018) and Rohtla et al.
(2014)). However, some species, like Morone saxatilis
from river habitats, show a significant positive relation-
ship between otolith and water for the Ba/Ca ratio but
not for the Sr/Ca ratio (Mohan et al. 2015).

Brown and Severin (2009) indicated that several
species experiencing exposure to a wide range of salin-
ity generally exhibit strong relationships between otolith
and water element/Ca ratios. However, the relatively
small range of Ba/Ca ratios covered by the freshwater
environments of our datasets is most likely too limited
for otoliths to record faithfully the water Ba/Ca ratio in
the La Plata Basin. Indeed, although a negative relation-
ship between the otolith Ba/Ca and salinity has been
found in many species (Tabouret et al. 2010; Mohan
et al. 2015), this was not the case for others such as
Genidens barbus (Avigliano et al. 2017a) and
Odontesthes bonariensis (Avigliano et al. 2018), for

Environ Biol Fish



which the incorporation of Ba/Ca in otoliths can be
highly sensitive to runoff or rainfall.

Tracing fish migration combining Sr/Ca and Sr isotope
ratios

Because otolith did not record conservatively the water
Ba/Ca ratio, in this work only Sr/Ca and 87Sr/86Sr ratios
were used for tracing fish migration. In general, the
otolith edge chemical composition showed a good abil-
ity to classify the fish in their respective catch areas,
suggesting that Sr/Ca and 87Sr/86Sr are good habitat
indicators for P. lineatus. The classification ability was
shown to be relatively low for the estuary, which could
be explained by the influence of the Paraná River water
discharged into the estuary, temporal variation in the
water chemical composition, and the relatively low
number of fish samples.

Simultaneously considering the distribution of the
two faithful habitat indicators, it was possible to hypoth-
esize different ontogenetic migration patterns according
to Sr/Ca and 87Sr/86Sr variations along the otolith. Fig-
ure 5 schematizes possible chemical otolith profiles
based on the Sr/Ca distribution found in this work and
the Sr isotopic baseline. Considering the two “extreme”
signatures of the basin, more radiogenic (87Sr-enriched)
values and high Sr/Ca ratios are expected for the Ber-
mejo River region, while low 87Sr/86Sr and high Sr/Ca
ratios characterize the estuary. In the rest of the sub-
basins, different combinations of low and intermediate
Sr/Ca and Sr isotope ratios are expected (Fig. 5). The
Bermejo River is an illustrative example that shows the
complementary potential of Sr/Ca and 87Sr/86Sr ratios to
reveal migration patterns. The Bermejo-Pilcomayo-
Paraguay area presents highly radiogenic waters (high
87Sr/86Sr values) in all the tributaries sampled by
Avigliano et al. (2020). Unlike the other rivers of this
region, the Bermejo River waters showed higher Sr/Ca
signatures. Therefore, the otolith of a fish moving be-
tween the Paraguay River and the Bermejo River may
present a relatively constant profile of 87Sr/86Sr but a
variation in the Sr/Ca profile; with higher values during
the time it spent in the Bermejo River (Fig. 5, type 2;
Supplementary Material 2). The movements suggested
by both markers in the Bermejo-Pilcomayo-Paraguay
area are consistent with the limited independent infor-
mation available for P. lineatus. For example, fish
tagged at the Paraguay-Paraná confluence performed
downstream migrations (Bonetto and Pignalberi 1964;

Bonetto et al. 1981; Sverlij et al. 1993). Bonetto et al.
(1971) reported that tagged specimens at the Bermejo-
Paraguay confluence do migrate downstream and up-
stream towards the Andes, moving more than 700 km
upstream. This evidence supports the existence of a
migratory corridor between these rivers, as revealed by
otolith Sr/Ca and 87Sr/86Sr time-series (Fig. 5, migratory
pattern 2, and Supplementary Material 2).

Some fish caught upstream of the Uruguay (e.g., P48,
P51, Fig. 4d and j) and Paraná (e.g., P69 and P71, Fig.
4d and j) dams showed relatively variable Sr/Ca or
87Sr/86Sr patterns, specially within the first year of life.
It suggests that they were exposed to environments with
different geochemical features, despite the fact that no
great environmental variations of these markers have
been found in our sample set upstream from the dams
(Avigliano et al. 2020). In addition, theses variations
were not reflected simultaneously in both natural tags in
otolith and water. Then, it is possible that these signa-
tures stem from still unmapped environments in this
region, or that significant seasonal variability remains
yet to be documented.

The otolith Sr/Ca profiles for fish from the lower
Uruguay River showed relatively small variation
throughout ontogeny, nevertheless, the otolith 87Sr/86Sr
profiles were highly variable (Fig. 4c and i). This sug-
gests movements between environments with relatively
homogeneous salinity but heterogeneous in relation to
radiogenic features, for example between sub-basins
such as the Paraná, the Uruguay and the estuary.

In the middle Paraná River, otolith profiles were
consistent with movements from more radiogenic wa-
ters but lower in Sr/Ca ratio (for example the Paraguay
River) to water masses characterized by a higher Sr/Ca
and a lower Sr isotopic ratio (maybe the lower Paraná or
the Delta) (migratory pattern 3 and 5 represented in Fig.
5 and Supplementary Material 2).

For fish caught in the upper estuary, the use of
Sr/Ca brought additional more detailed description
to the patterns suggested by the isotopes. For exam-
ple, the isotope profile suggested movements be-
tween the Paraná, the Uruguay and the estuary for
fish P61. However, the increasing Sr/Ca ratio im-
plies displacements from lower to higher salinity,
from the lower Paraná or Uruguay, to the upper
estuary. Other fish such as P60, P62 and P64
showed Sr/Ca and 87Sr/86Sr patterns consistent with
movements towards the lower part of the basin (Fig.
4f and l, and Supplementary Material 2), as
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represented in Fig. 5 (migratory pattern 3).
Avigliano et al. (2017b) have suggested displace-
ments between freshwater and the estuary for
P. lineatus, based on the Sr/Ca ratio in otolith and
water. These authors have assumed that the highest
values of Sr/Ca in water corresponded to the exter-
nal part of the estuary (like many fluviomarine
systems; Brown and Severin 2009), and have thus
attributed otolith Sr/Ca peaks with incursions into
estuaries. The present study showed that the occur-
rence of high Sr/Ca in water of some particular sub-
basins, like the Bermejo, can impart high Sr/Ca
values in the otolith, and can sometime overcome
the high Sr/Ca ratios of the estuary. Therefore,
reinterpreting the results of Avigliano et al.
(2017b) in the light of the present study, many of
the fish analyzed in the latter study could have
migrated to water systems with the same character-
istics as the Bermejo River, rather than to the estu-
ary. This discussion highlights the importance of the
simultaneous use of multiple otolith markers, and
the need to generate more complete maps for these
markers in river basins.

Conclusion

The Sr/Ca ratio complemented the information provided
by Sr isotopes. The Sr/Ca ratio was particularly useful in
the northwest section of the basin, where the water Sr
isotopes do not allow differentiation of large rivers such
as the Bermejo and Paraguay rivers. In that region, the
Sr/Ca ratio measured in otoliths suggested that
P. lineatus migrates between areas of different salinity
but displays the same Sr isotope signature (maybe be-
tween the Bermejo, Pilcomayo, Paraguay and Paraná
rivers). The simultaneous use of both markers is also
interesting in the lower basin, where they showed op-
posite but complementary tendencies. Interpretation of
geochemical markers in otoliths is strongly dependent
on environmental baselines, and we thus recommend
intensifying Sr/Ca and 87Sr/86Sr studies in waters in
order to improve existing geochemical maps. Because
the hydrological conditions could affect the chemical
composition of the water, mapping will be further im-
proved through seasonal monitoring at strategic points
in the La Plata Basin. Subsequently, this methodology
could be used to reconstruct the life history of

Fig. 5 Hypothetical migratory
patterns and corresponding otolith
Sr/Ca (this paper) and 87Sr/86Sr
(Avigliano et al. 2020) profiles,
based on the integration of both
geochemical markers in water and
otoliths
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P. lineatus, this information being an important input for
the development of management policies on a provin-
cial or regional scale.
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