
Artificial Bee Colony Algorithm Improved with
Evolutionary Operators

Algoritmo de colonia de Abejas Artificiales Hibridado con Algoritmos Evolutivos

Gabriela Minetti1 and Carolina Salto1,2

1Facultad de Ingeniería, Universidad Nacional de La Pampa, Argentina

{minettig, saltoc}@ing.unlpam.edu.ar
2CONICET, Argentina

Abstract

In this paper, we design, implement, and analysis the

replacement of the method to create new solutions in

artificial bee colony algorithm by recombination op-

erators, since the original method is similar to the re-

combination process used in evolutionary algorithms.

For that purpose, we present a systematic investiga-

tion of the effect of using six different recombina-

tion operators for real-coded representations at the

employed bee step. All the analysis is carried out

using well known test problems. The experimental

results suggest that the method to generate a new can-

didate food position plays an important role in the per-

formance of the algorithm. Computational results and

comparisons show that three of the six proposed algo-

rithms are very competitive with the traditional bee

colony algorithm.

Keywords: ABC algorithm, parameter tuning, re-

combination

Resumen

En este trabajo, se ha diseñado, implementado y ana-

lizado el reemplazo del método para crear nuevas so-

luciones en algoritmos basados en colonia de abejas

artificiales por operadores de recombinación, ya que

el método original es similar al proceso de recombi-

nación usado en los algoritmos evolutivos. Para cum-

plir con este propósito, se presenta una investigación

sistemática del efecto de usar seis operadores de re-

combinación distintos en el procedimiento llevado a

cabo por la abeja empleada. Para la experimentación

se utilizan casos de pruebas complejos, habitualmen-

te utilizados en la literatura. Los resultados obtenidos

Citation: G. . Minetti and C. Salto. "Artificial Bee Colony A lgo-

rithm Improved w ith Evolutionary O perators". Journal of
Computer Science & T echnology, vol.18, no.2, pp. 114-124, 2018.

DOI: 10.24215/16666038.18.e13
Received: February 21, 2018. Revised: June 11, 2018. Ac-

cepted: June 19, 2018.

Copyright: This article is distributed under the terms of the Cre-

ative Commons License CC-BY-NC.

sugieren que el método generador de nuevas fuentes

de comida afecta el desempeño del algoritmo. A par-

tir del análisis y comparaciones de los resultados, se

observa que tres de las seis propuestas algorítmicas

son competitivas con respecto al algoritmo basado en

colonia de abejas tradicional.

Palabras claves: Algoritmo ABC, configuración pa-

ramétrica, recombinación

1 Introduction

Swarm intelligence is a research field inspired by the

cooperation of large numbers of homogeneous agents

in the environment. An ant colony, a flock of birds,

a honeybee or an immune system are typical exam-

ples of swarm systems. Many algorithms that simu-

late these models have been proposed in order to solve

a wide range of problems. In this line, Karaboga et

al. [1] proposed an optimization algorithm based on

the intelligent behavior of honey bee swarm, called

Artificial Bee Colony (ABC) algorithm. Considering

that it works with a set of solutions, ABC is classified

as a population-based metaheuristic.

Like most metaheuristics, the parameter tuning is a

drawback in the ABC algorithms, which is not easy to

perform in an thorough manner [1]. Morover, the pa-

rameters may have a great influence on the efficiency

and effectiveness of the search. They are not only nu-

merical values but may also involve the use of search

components. This problem was addressed by several

researchers, mainly by studying more suitable value

ranges of parameters to the solution of the noise elim-

ination problem [2]. Akay and Karaboga [3] modified

a larger number of variables at each employed and

onlooker bee step than in the original ABC version.

In [4, 5, 6], the authors presented different modifica-

tions to the method to generate a new food position

by adding information of the best global solution. Di-

wold et al. [5] also changed the way to calculate the

selection probability of a solution by introducing the

Euclidean distance between two solutions in the prob-

ability equation. Alatas [7] used chaotic maps to cre-

ate the initial solutions and a local search to generate

- ORIGINAL ARTICLE -

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-114-

the solution at the scout bee step. Furthermore, ABC

was hybridized with Differential Evolution (DE) in or-

der to propose different ways to create the initial solu-

tions and local search methods to generate solutions

at scout bee step [8, 9]. Jadon et al. [10] also used the

hybridization with DE to improve the employed, on-

looker, and scout bee phases. In [11], Yan et al. pre-

sented an ABC hybridized with Genetic Algorithms

to exploit the search space as an extra step in the ABC

algorithm. Another hybridization was presented by Li

et al. in [12], where the bacterial foraging optimiza-

tion algorithm is used as a local search step.

The aforementioned proposals considered different

solutions, added factors into the original method to

create a candidate food position, or introduced com-

ponents of another metaheuristics, but no new entirely

distinct ways to generate new food positions were pre-

sented. The mechanism used by ABC to produce a

new candidate solution is very similar to the proce-

dure carried out by the recombination operators for

real-coded spaces in the evolutionary algorithm liter-

ature. The effect of this change on the ABC perfor-

mance had not been studied and their impact could

be more significant than the traditional approach, be-

coming this in the objective of this work. In this sense,

the application of other mechanisms to generate new

source positions using the recombination operators is

a very promising approach in order to improve the

ABC performance.

For this purpose, we design and implement the re-

placement of the original method with genetic recom-

bination operators. Six recombination operators for

real-coded spaces are considered in this step, they

are: Arithmetical, Binomial, Linear, One Point, Multi-

Point, and Max-Min Arithmetical recombinations. As

a consequence,six new ABC variants arise. The

methodology devised in this work is targeted to char-

acterize these variants regarding the performance and

it can be summarized as follows. We evaluate these

ABC variants using a large scale global optimization

test suite (IEEE CEC’2008 [13]) and compare them

against the traditional ABC approach. On the one

side, this study includes both the solution quality and

computational effort in order to analyze the effective-

ness and efficiency of the all approaches. Further-

more, we explore the fitness evolution through the

search to give a better insight into the internal behav-

ior of each algorithm. On the other side, a comparison

with the state-of-the-art solutions for the considered

benchmarks is carried out. Thus, the performance of

the best ABC variants are compared and ranked with

the first six algorithms of CEC’2008 competition. A

preliminary version of this paper appears in [14].

The rest of this article is organized as follows. In

Section 2 and 3, we describe the ABC algorithm

and the used recombination operators, respectively.

Section 4 explains the experimental analysis and the

methodology used. Then, we study and analyze the

Algorithm 1 ABC Algorithm

1: Initialize the population of solutions xi, i = 1,2, ...,SN ;

2: Evaluate the population;

3: repeat

4: The employers generate the new solutions, vi, from each xi , using

Eq. 1;

5: The employers evaluate the new solutions, vi;

6: The employers apply the greedy selection mechanism;

7: The onlookers generate the new solutions, vi, from the selected xi ,

using Eq. 1;

8: The onlookers evaluate the new solutions, vi;

9: The onlookers apply the greedy selection mechanism;

10: The scouts determine the abandoned solutions and replace them

with new solutions, xi

11: Memorize the best solution found so far;

12: until the stop criterion is meet

13: return The best solution;

results obtained by the different ABC variants in Sec-

tion 5. Moreover, a comparison between our results

with state-of-the-art algorithms is shown in the Sec-

tion 6. Finally, we present our principal conclusions

and future lines of research.

2 Artificial Bee Colony Algorithm

The artificial bee colony algorithm is a simple opti-

mization tool, motivated by the intelligent behavior

of honey bees. In this kind of algorithm, the position

of a food source represents a possible solution to the

optimization problem and the nectar amount in this

source corresponds to the quality (fitness) of the as-

sociated solution. ABC provides a population-based

search procedure in which solutions are modified by

three kinds of artificial bees: employed, onlooker, and

scout bees.

The employed bees are associated with a particular

food source. The onlooker bees wait in the hive for

waggle dances exerted by the other bees to establish

food sources. These kinds of bees find and exploit

new food sources, memorize their locations, load a

portion of nectar to the beehive, and unload it to the

food area in the hive. Finally, the scout bees search

new food sources in the environment surrounding the

hive in a random way.

At the first step, an initial population of SN solu-

tions is randomly generated (see lines 1 and 2 in the

Algorithm 1). Each solution xi (i= 1,2, ...,SN) is a D-

dimensional vector. Here, D is the dimension of the

function or problem to be optimized. Secondly, this

population is iteratively modified by the employed,

onlooker and scouts bees (see lines 3-12).

A candidate food position, vi, is generated by em-

ployed bees from the old vi in memory (lines 4-5),

modifying only the parameter j as is shown in the

Equation 1:

vi j = xi j +φi j(xi j − xk j), (1)

where k ∈ {1,2, ...,SN}∧ k 6= i and j ∈ {1,2, ...,D}
are randomly chosen indexes. A random number be-

tween [-1, 1], called φi j, is used to control the gener-

ation of food sources around xi and compare the two

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-115-

food positions viewed by a bee. As the difference be-

tween the parameters xi j and xk j decreases, the pertur-

bation on the position xi j gets decreased, too. Thus,

as the search approaches the optimum solution in the

search space, the step length is adaptively reduced. If

a parameter value produced by this operation exceeds

its predetermined limit, the parameter can be set to an

acceptable value, e.g. to its limit value .

Regarding the probability value associated with a

food source, an artificial onlooker bee chooses a food

source, xk. Then this bee applies the Equation 1 to

obtain the candidate food position, vi, (lines 7-8). As

a consequence, the proportional selection method is

used to chose a solution, which inherently applies a

high pressure on the selection. In order to avoid it,

the proportional selection method is replaced by the

binary tournament selection [15] in our experiments.

After the creation and evaluation of vi, its fitness is

compared with xi. If vi is equal or better than xi, vi

takes the place in the memory. In this way, a greedy

selection mechanism is applied to select between vi

and xi (lines 6 and 9).

A food source is assumed to be abandoned when a

position cannot be improved further through a prede-

termined number of cycles, known as “limit” for aban-

donment. When a food source is abandoned by the

employed bees, it is replaced with a new food source

found by the scouts (line 10). This is simulated by

generating a random new position to replace the aban-

doned one.

3 Our ABC Proposal

The employed bees use a variation operator, as the

one used (Equation 1) in the fourth line of the Algo-

rithm 1, to produce a candidate food position from the

old one in memory. This operator generates one new

candidate solution by combining the information con-

tained in two existing ones. The resulting process is

similar to the recombination operation from the evo-

lutionary algorithms, which combines the genetic in-

formation from two parents. Therefore, this section

presents the recombination operators used as ABC

variation operator in our proposal. The most of them

comes from the real-coded Genetic Algorithms litera-

ture and has never been used with this metaheuristic.

The proposed ABC variants use the recombination op-

erator to create a single trial vector. In what follows

we name the ABC algorithm using the traditional vari-

ation operator as ABCT RAD.

Let us assume that xi and xk (i,k ∈ {1,2, . . . ,SN})

are the two solutions considered to produce a candi-

date food position vi. For a randomly chosen param-

eter j (j ∈ (1,2, . . . ,D)) in the solution, the operators

sketch in the following description can be incorpo-

rated to the ABC instead of using Equation 1 in line

4. The resting parameters l (l ∈ (1,2, . . . ,D)∧ l 6= j)

of vi come from xi.

3.1 Variating only one parameter in the can-
didate food position

The following operators only change one parameter

j ∈ {1,2, . . . ,D} in vi and the other ones are copied

from xi. Furthermore, these three operators (Linear,

Arithmetical, and Max-Min-Arithmetical recombina-

tions) are specific for the real-coded genetic algo-

rithms.

Arithmetical Recombination (ABCAX). This opera-

tor [16] chooses the parameter values of the candidate

food position (vi j) somewhere around and between

the parameter values of xi j and xk j. Let λ ∈ (0,1)
be an uniform random value, which are chosen for

each new candidate solution. Then, the j-th parame-

ter value of the candidate solution vi is computed ac-

cording to Equation 2.

vi j = (1−λ)xi j +λ xk j (2)

Max-Min-Arithmetical Recombination (ABCMMAX).

In this case, the operator [16] generates four can-

didate solutions according to Equation 3. After

evaluating them, a greedy selection mechanism is

considered. Thereupon, four additional evaluations

per new candidate solution are required. For the first

two candidates, a λ ∈ (0,1) value is used that is an

uniform random value.

vi j1 = λ xi j +(1−λ)xk j

vi j2 = (1−λ)xi j +λ xk j

vi j3 = min(xi j,xk j)

vi j4 = max(xi j,xk j)

(3)

Linear Recombination (ABCLX). This operator [17]

is similar to the Arithmetical recombination, but the

λ remains fix and can take two possible values 0.5

and 1.5. Three candidate solutions vi are generated

according to Equation 4. After evaluating each new

candidate position, the best one is considered. Conse-

quently, this method requires three additional evalua-

tions per new candidate solution.

vi j1 = 0.5(xi j + xk j)

vi j2 = 1.5xi j − 0.5xk j

vi j3 =−0.5xi j + 1.5xk j

(4)

3.2 Variating many parameters in the candi-
date food position

The next three operators change more than one param-

eter j in the solution vi, keeping the value of each one

without any adjustment, i.e., it is only copied from xi

or xk, depending of the operator, but no combinations

of values for this parameter are made. One of this

operator (Binomial Recombination) is specifically de-

signed for the real-coded genetic algorithms, while

the other two comes from the binary codification.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-116-

Binomial Recombination (ABCBX). The parame-

ter values of the candidate food position are chosen

from xi or xk (see Equation 5), depending on a ran-

dom value u to be lower than the probability parame-

ter ρ ∈ (0,1), which is a defined by the user [18]. For

this work, the ρ value was set to 0.5. Moreover, BX

generates the candidate food position ensuring that it

gets at least one variable from the k-th food position,

as indicated in Equation 6.

vi j =

{

xk j if u ≤ ρ
xi j otherwhise

(5)

vi j =

{

xk j if vi j = xi j

vi j otherwhise
(6)

One-Point Recombination (ABC1PX). This operator

randomly selects a cut point p ∈ (1,D) and the tails

of xi and xk are swapped to get the candidate food

position, as is seen in Equation 7.

vi = {xi1, . . . ,xip,xk(p+1), . . . ,xkD} (7)

Multi-Point Recombination (ABCmPX). In this oper-

ator [19], m different cut points (mp ∈ (1,D− 1)) are

chosen at random with no duplicates and sorted into

ascending order. Then, the variables between succes-

sive cut points are exchanged between xi and xk to

produce a new candidate food position, as is shown in

Equation 8.

vi = {xi1, . . . ,xim1
,xk(m1+1), . . . ,xk(m2),xi(m2+1), . . . ,xiD}

(8)

4 Experimental Design

In this section we describe the experimental design

used in this work to compare ABCT RAD with the

six different algorithmic variants: ABCAX , ABCBX ,

ABCLX , ABC1PX , ABCmPX , and ABCMMAX . Fur-

thermore, the execution environment and the analysis

methodology are detailed in this section.

A popular choice for evaluating the performance

of algorithms in the literature is to use the IEEE

CEC’2008 test suite [13]. This benchmark is spe-

cially designed with large scale real-parameter mini-

mization problems (i.e. of dimensions D=100, 500,

and 1000). The mean and standard deviation of the

error value are used to measure the performance of

the algorithmic variants. The error is calculated as the

difference between the current value of the global op-

timum and the best found value. Particularly, for func-

tion F7, the absolute value of the obtained optimum is

recorded and compared, because for that function, the

globally optimal function value is unknown.

In the experiments, the seven ABC variants use

the same parameter settings. The colony size SN

was set to 50. Furthermore, the control parameter

limit is defined by limit = SN ×D [20]. Finally, the

stop criterion is to achieve the maximum number of

function evaluations, computed as suggested in [13]

(5000×D). Notice that we are not using highly spe-

cialized ABC algorithms, since our goal is not to out-

perform other algorithms, for the considered test suite,

but to analyze the influence of the different mecha-

nisms to generate candidate food sources in the be-

havior of the proposed algorithms.

Because of the stochastic nature of the algorithms,

we performed 30 independent runs of each test to

gather meaningful experimental data and apply sta-

tistical confidence metrics to validate our results and

conclusions. Before performing the statistical tests,

we first checked whether the data followed a normal

distribution by applying the Shapiro-Wilks test. Since

the results do not follow a normal distribution, the

non-parametric Kruskal-Wallis (KW) test is applied.

Then, the pair-wise Wilcoxon test is used, in order

to assess individual differences in the performance

of the algorithms. This pair-wise test must be ad-

justed to compensate the family-wise-error derived

from the performance of multiple comparisons, using

the Holm’s method. Multiple comparisons using the

Tukey’s range test are used. All tests are carried out

considering as significance value α = 0.01.

5 Analysis of Results

In the following, we present an analysis of the re-

sults obtained by the six ABC variants described in

Section 3 and ABCT RAD to solve the CEC’2008 func-

tions. Our main goals are to offer different and effi-

cient mechanisms that will be used by the employed

bees to generate candidate food positions. For that

purposes, we analyze the quality of results consider-

ing the error values obtained by ABC for the functions

from f 1 to f 6 and the objective values for f 7. More-

over, the computational effort to find the best solution

is evaluated.

5.1 Comparison of the All ABC Variants

In the Table 1, the mean error values found by the

ABC variants are shown. The best values are bold

faced. From this table, two well differentiable groups

of algorithms can be observed when the quality of

the solutions is considered, regardless of the dimen-

sion. The first group, which consists of ABCT RAD,

ABCAX , ABCLX , and ABCMMAX , obtains the low-

est error values, and some of them find the opti-

mal values for the functions f 1, f 5, and f 6 in all

runs. In the second group, which is composed of

the remaining algorithms, their best solutions are far

from the optimum value (error values bigger than

1.28E+02). These differences among the algorithms

is statistically supported by post-hoc tests after KW

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-117-

Table 1: Mean error values from f1 to f6, and mean objective values for f7.
Func. Dim. ABCTRAD ABCAX ABCBX ABCLX ABC1PX ABCmPX ABCMMAX KW

f1

100 0.00E+00 0.00E+00 4.88E+05 2.09E-01 1.42E+05 5.30E+04 0.00E+00 +

500 0.00E+00 0.00E+00 3.03E+06 3.98E+00 1.80E+06 1.23E+06 0.00E+00 +

1000 0.00E+00 0.00E+00 6.20E+06 3.81E+00 4.28E+06 3.29E+06 1.03E-03 +

f2

100 6.35E+01 7.65E+01 1.58E+02 8.71E+01 1.38E+02 1.28E+02 8.05E+01 +

500 1.39E+02 1.01E+02 1.83E+02 1.14E+02 1.72E+02 1.64E+02 1.10E+02 +

1000 1.60E+02 1.10E+02 1.87E+02 1.25E+02 1.80E+02 1.76E+02 1.24E+02 +

f3

100 7.87E+00 1.23E+01 4.39E+11 2.31E+01 5.92E+10 1.47E+10 1.70E+02 +

500 1.30E+01 3.03E+01 3.44E+12 6.84E+01 1.50E+12 8.13E+11 8.35E+02 +

1000 1.49E+01 5.51E+01 7.36E+12 1.81E+02 4.08E+12 2.68E+12 1.70E+03 +

f4

100 1.30E+00 4.46E-02 2.25E+03 3.35E+00 9.66E+02 5.42E+02 2.53E-01 +

500 1.81E+01 5.17E+00 1.24E+04 2.60E+01 8.50E+03 6.78E+03 1.30E+00 +

1000 4.10E+01 1.30E+01 2.52E+04 6.02E+01 1.97E+04 1.66E+04 2.54E+00 +

f5

100 0.00E+00 0.00E+00 4.15E+03 2.28E-02 1.11E+03 4.48E+02 0.00E+00 +

500 0.00E+00 0.00E+00 2.58E+04 2.35E-01 1.50E+04 1.02E+04 0.00E+00 +

1000 0.00E+00 0.00E+00 5.51E+04 2.04E-01 3.84E+04 2.97E+04 0.00E+00 +

f6

100 0.00E+00 0.00E+00 2.13E+01 3.79E-02 1.97E+01 1.80E+01 3.59E-02 +

500 0.00E+00 0.00E+00 2.15E+01 4.63E-01 2.10E+01 2.06E+01 1.29E-01 +

1000 0.00E+00 0.00E+00 2.15E+01 5.32E-01 2.12E+01 2.10E+01 1.56E-01 +

f7

100 -9.09E+02 -9.14E+02 -6.98E+02 -9.73E+02 -7.25E+02 -7.40E+02 -9.48E+02 +

500 -5.50E+03 -5.52E+03 -3.12E+03 -5.76E+03 -3.33E+03 -3.33E+03 -5.61E+03 +

1000 -1.16E+04 -1.15E+04 -6.03E+03 -1.19E+04 -6.37E+03 -6.34E+03 -1.16E+04 +

Table 2: Minimum error values from f1 to f6, and min-

imum objective values for f7.
Func. Dim. ABCTRAD ABCAX ABCLX ABCMMAX

f1

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00

500 0.00E+00 0.00E+00 1.06E-01 0.00E+00
1000 0.00E+00 0.00E+00 2.94E-01 0.00E+00

f2

100 5.74E+01 6.84E+01 7.67E+01 7.24E+01

500 1.33E+02 9.62E+01 1.05E+02 1.04E+02

1000 1.55E+02 1.02E+02 1.17E+02 1.19E+02

f3

100 9.23E-01 2.49E+00 1.63E+00 1.34E+02

500 3.80E+00 2.02E+01 1.20E+00 7.55E+02

1000 8.64E+00 4.62E+01 5.34E+01 1.57E+03

f4

100 0.00E+00 0.00E+00 1.90E+00 0.00E+00
500 1.30E+01 2.00E+00 2.11E+01 0.00E+00
1000 3.32E+01 1.02E+01 5.10E+01 7.00E-03

f5

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00

500 0.00E+00 0.00E+00 0.00E+00 0.00E+00
1000 0.00E+00 0.00E+00 2.00E-03 0.00E+00

f6

100 0.00E+00 0.00E+00 0.00E+00 0.00E+00

500 0.00E+00 0.00E+00 0.00E+00 0.00E+00
1000 0.00E+00 0.00E+00 0.00E+00 3.00E-03

f7

100 -9.74E+02 -1.00E+03 -1.06E+03 -1.04E+03

500 -5.71E+03 -5.70E+03 -5.88E+03 -5.83E+03

1000 -1.19E+04 -1.22E+04 -1.20E+04 -1.23E+04

test (p-values < 4.9E-10), as shown in the last col-

umn with the symbol +. The poor performance of

algorithms in the second group is due to the method

to generate the new candidate solution, which does

not introduce any adjustment to the parameters at the

employed bee step through the search process. More-

over, multi-point and binomial operators reduce the

representational bias at the expense of increasing the

disruption of parameters.

The ranking of the variants across the all dimen-

sions is shown in the Figure 1. To obtain these ranks,

the mean errors of all variants on a same function and

dimension were ranked from best (rank 1) to worst

(rank 7). In the case of ties, average ranks are com-

puted. Additionally, the # f unc row on top of each

bar indicates the number of functions where each

ABC variant finds the optimum value. This figure

empirically confirms the differences between the two

above mentioned groups, since ABCAX , ABCT RAD,

ABCMMAX , and ABCLX (in this order) are the best

ranked algorithms. Furthermore, the three first algo-

rithms solve optimally between three and four func-

tions, while the all algorithms of the second group are

not able to find the optimal value for any function and

dimension (# f unc = 0).

5.2 Comparison of the Best ABC Variants

Regarding the previous analysis, we continue the re-

sult study considering the first group of algorithms.

The Table 2 shows the minimum values obtained by

each algorithmic variant considering all functions and

dimensions. Additionally, the Figure 2 presents box-

plots that show the distribution of the evaluations to

find the best solution observed for each studied ABC

variant on the 7 benchmark functions. On the basis

of the results shown in the Figure 2, an important

difference between ABCLX and the rest of the algo-

rithms is observed. ABCLX needs a small computa-

tional effort, i.e. the lowest number of evaluations to

find its best solution. But when the minimum error

values from Table 2 are considered, ABCLX presents

a poor performance to solve the CEC’2008 bench-

mark functions in comparison with the result qual-

ity obtained by ABCAX , ABCT RAD, and ABCMMAX .

Following with the analysis of the number of evalua-

tions to find the best solutions, the results of the post-

hoc tests remark statistically significant differences

between ABCT RAD and both ABCLX and ABCMMAX ,

and between ABCAX and ABCLX for 100D and 500D.

In the case of 1000D, differences between ABCLX and

ABCMMAX is also exists.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-118-

100D functions
ra

nk
0

1
2

3
4

5
6

7
#func 4 4 0 3 0 0 4

500D functions

ra
nk

0
1

2
3

4
5

6
7

#func 3 3 0 2 0 0 4
1000D functions

ra
nk

0
1

2
3

4
5

6

#func 3 3 0 2 0 0 3

A
B

C
T

R
A

D

A
B

C
T

R
A

D

A
B

C
T

R
A

D

A
B

C
A

X

A
B

C
A

X

A
B

C
A

X

A
B

C
L

X

A
B

C
L

X

A
B

C
L

X

A
B

C
B

X

A
B

C
B

X

A
B

C
B

X

A
B

C
m

P
X

A
B

C
m

P
X

A
B

C
m

P
X

A
B

C
1

P
X

A
B

C
1

P
X

A
B

C
1

P
X

A
B

C
M

M
A

X

A
B

C
M

M
A

X

A
B

C
M

M
A

X

Figure 1: Performance comparison based on the average rank over 7 functions. The ranking was computed using

the average error value of each algorithm.

evaluations

2.0e+05 3.5e+05 5.0e+05

100D functions

evaluations

1.4e+06 2.0e+06 2.5e+06

500D functions

evaluations

3.5e+06 4.2e+06 5.0e+06

1000D functions

A
B

C
T

R
A

D

A
B

C
T

R
A

D

A
B

C
T

R
A

D

A
B

C
A

X

A
B

C
A

X

A
B

C
A

X

A
B

C
L

X

A
B

C
L

X

A
B

C
L

X

A
B

C
M

M
A

X

A
B

C
M

M
A

X

A
B

C
M

M
A

X

Figure 2: Boxplot of number of evaluations to find the best solutions for each dimension.

5.3 Analysis of Internal Behavior of the Best
Four ABC Variants

Let us now proceed with the internal behavior analy-

sis of the best performing ABC algorithms. The Fig-

ure 3 shows the evolution of the best fitness along the

execution of each algorithm for the problem instances

under all dimensions. On the one hand, we observe

that regardless of the problem dimension, ABCAX

drives to good solutions in fewer evaluations than the

rest. This observation suggests that this algorithm

leads to work out high quality solutions. Furthermore

and as observed in previous analysis (see Section 5.2),

ABCMMAX is the ABC variant that needs more evalu-

ations to find their best solutions, particularly for f 2.

On the other hand, the ABCT RAD and ABCLX behav-

iors oscillate from the ABCAX to the ABCMMAX ones.

Furthermore, after an initial period of evolution, the

curves belonging to the all ABC variants overlapped

to the ABCAX , which is an expected situation since

the algorithms obtain best solutions of similar quality.

5.4 Discussion

Summarizing, the ABCAX algorithm obtains the best

tradeoff between the solution quality and the effort to

find the best result. As a consequence, these results

suggest that practitioners developing ABC-based so-

lutions for applied optimization could adopt more

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-119-

5.0e+03 7.5e+04 1.4e+05

Evaluations

 −
45

0
 2

47
55

 4
99

59
 7

51
64

10
03

68
12

55
73

F
itn

es
s

va
lu

e

100 D function

5.0e+03 3.4e+05 6.8e+05

Evaluations

 −
45

0
15

81
02

32
83

99
49

86
96

66
89

93
83

92
90

F
itn

es
s

va
lu

e

500 D function

5.0e+03 6.9e+05 1.4e+06

Evaluations

−

45
0

 3
62

17
0

 7
43

22
7

11
36

57
7

15
42

22
0

19
47

86
2

F
itn

es
s

va
lu

e

1000 D function

5.0e+03 2.1e+05 4.2e+05

Evaluations

−
38

8
−

37
6

−
36

3
−

35
1

−
33

9
−

32
7

−
31

4
−

30
2

F
itn

es
s

va
lu

e

100 D function

5.0e+03 1.0e+06 2.1e+06

Evaluations

−
35

0
−

33
9

−
32

8
−

31
7

−
30

7
−

29
6

−
28

5
−

27
4

F
itn

es
s

va
lu

e

500 D function

5.0e+03 2.1e+06 4.1e+06

Evaluations

−
34

0
−

33
0

−
32

0
−

31
0

−
30

0
−

29
0

−
27

9
−

26
9

F
itn

es
s

va
lu

e

1000 D function

(a) f1 function (b) f2 function

5.0e+03 5.5e+04 1.0e+05

Evaluations

 3
94

18
48

60
48

85
5

40
05

31
05

39
3

61
62

01
61

93
0

F
itn

es
s

va
lu

e

100 D function

5.0e+03 2.6e+05 5.2e+05

Evaluations

40

6
21

78
10

97
83

35
47

52
23

95
22

52
73

26
36

92
61

68

F
itn

es
s

va
lu

e

500 D function

5.0e+03 5.2e+05 1.0e+06

Evaluations

 4

05
 5

10
66

63
06

68
3

11
24

94
60

66
40

9
17

46
62

67
87

09
6

F
itn

es
s

va
lu

e
1000 D function

5.0e+03 1.4e+05 2.8e+05

Evaluations

−
32

9.
8

−
11

5.
8

 7
8.

8
 2

73
.3

 4
67

.9
 6

62
.4

 8
57

.0

F
itn

es
s

va
lu

e

100 D function

5.0e+03 6.9e+05 1.4e+06

Evaluations

−
32

9
 6

53
16

35
26

65
36

94
47

24
57

54
67

84

F
itn

es
s

va
lu

e

500 D function

5.0e+03 1.4e+06 2.7e+06

Evaluations

 −
32

8
 1

99
3

 4
29

0
 6

58
7

 8
88

4
11

27
9

13
77

4

F
itn

es
s

va
lu

e

1000 D function

(c) f3 function (d) f4 function

5.0e+03 7.5e+04 1.4e+05

Evaluations

−
18

0
 −

45
 9

0
 2

25
 3

59
 4

94
 6

29
 7

64
 8

99

F
itn

es
s

va
lu

e

100 D function

5.0e+03 3.4e+05 6.8e+05

Evaluations

−
18

0
 8

77
19

34
30

42
41

50
52

57
63

65
74

72

F
itn

es
s

va
lu

e

500 D function

5.0e+03 6.9e+05 1.4e+06

Evaluations

 −
18

0
 2

36
8

 4
91

6
 7

46
4

10
12

0
12

88
5

15
65

0

F
itn

es
s

va
lu

e

1000 D function

5.0e+03 2.1e+05 4.2e+05

Evaluations

−
14

0
−

13
7

−
13

4
−

13
2

−
12

9
−

12
6

−
12

3
−

12
1

F
itn

es
s

va
lu

e

100 D function

5.0e+03 1.0e+06 2.1e+06

Evaluations

−
14

0
−

13
7

−
13

4
−

13
2

−
12

9
−

12
6

−
12

3
−

12
0

F
itn

es
s

va
lu

e
500 D function

5.0e+03 2.1e+06 4.1e+06

Evaluations

−
14

0
−

13
7

−
13

4
−

13
2

−
12

9
−

12
6

−
12

3
−

12
1

F
itn

es
s

va
lu

e

1000 D function

(e) f5 function (f) f6 function

5.0e+03 2.0e+05 3.8e+05

Evaluations

−
11

81
−

11
08

−
10

35
 −

96
8

 −
90

0
 −

83
2

 −
76

5
 −

69
7

F
itn

es
s

va
lu

e

100 D function

5.0e+03 9.6e+05 1.9e+06

Evaluations

−
62

03
−

57
78

−
53

52
−

49
27

−
45

01
−

40
76

−
36

50
−

32
25

F
itn

es
s

va
lu

e

500 D function

5.0e+03 1.9e+06 3.8e+06

Evaluations

−
12

93
1

−
11

84
5

−
10

75
8

 −
97

13
 −

87
02

 −
76

92
 −

66
81

F
itn

es
s

va
lu

e

1000 D function

(g) f7 function

Figure 3: Evolution of the best fitness during the search for the all functions and dimensions.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-120-

efficient choices to generate new food positions, at

the employed bee step. These choices can be based

on standard recombination operators, such us the

AX operator.

6 Comparison with the State-of-the-Art
Algorithms

In this section, we compare the performance of

ABCAX , the best algorithm proposed in this work, with

other metaheuristics that solve the same benchmark,

in order to verify their performance. It is notice-

able that state of the art only reports ABC results for

functions until 200 dimensions [21, 22]. As a con-

sequence, ABCAX is compared with the first six algo-

rithms of CEC’2008 competition. These algorithms

are described in Section 6.1 and the comparison is car-

ried out in Section 6.2.

6.1 The First Best CEC’2008 Algorithms

These algorithms are: the Multiple Trajectory Search

(MT S) [23], a self-adaptive differential evolution al-

gorithm (jDEdynNP − F) [24], a MultiLevel Co-

operative Coevolution (MLCC) framework [25], a

Dynamic Multi-Swarm Particle Swarm Optimizer

(DMS-PSO) [26], a Differential Evolution with Self-

adaptation and Cooperative Co-evolution (DEwSAcc)

Algorithm [27], and an Efficient Population Uti-

lization Strategy for Particle Swarm Optimizer

(EPUS-PSO) [28].

The MT S [23] uses multiple agents to search the so-

lution space concurrently. Each agent chooses a local

search method that best fits the landscape of a solu-

tion’s neighborhood, an agent may find its way to a

local optimum or the global optimum.

In jDEdynNP − F [24], a self-adaptive control

mechanism is used to change the control (F and CR)

parameters [29, 30] during the optimization process.

Additionally, the algorithm incorporates a method for

gradually reducing the population size [31], and a

mechanism for changing the sign of the F parameter.

For the MLCC [25], first a set of problem decom-

posers is constructed based on the random grouping

strategy with different group sizes. Then, the evolu-

tion process is divided into a number of cycles, and

at the start of each cycle MLCC uses a self-adapted

mechanism to select a decomposer according to its

historical performance. Since different group sizes

capture different interaction levels between the orig-

inal objective variables, MLCC is able to self adapt

among different levels.

DMS-PSO uses a dynamic and randomized neigh-

borhood topology, which is improved by combin-

ing a classic local search algorithm, Quasi-Newton

method [26]. In this way, the whole population is

divided into a large number sub-swarms, these sub-

swarms are regrouped frequently by using various

regrouping schedules and information is exchanged

among the particles in the whole swarm.

In DEwSAcc [27], the original differential evolu-

tion is extended by log-normal self-adaptation of its

control parameters and combined with cooperative co-

evolution as a dimension decomposition mechanism.

In order to improve the PSO’s searching ability and

efficiency, EPUS-PSO [28] is hybridized with the pop-

ulation manager. This manager eliminates redundant

particles and hires new ones or maintains the particle

number according to the solution searching status to

make the process more efficient.

6.2 Results Comparison

As we can observe in the preceding descriptions,

the CEC’2008 winner metaheuristics need complex

improvements for solving these large scale real-

parameter minimization functions. Instead, ABCAX

only changes the original method to create a candidate

food position by a very simple recombination opera-

tor. Also, it is remarkable that our proposal neither

incorparates local search methods nor adaptive con-

trol parameters. In this way, our approach requires

less numerical effort than the remaining ones.

Furthermore, the simplicity of our proposal allows

to provide state-of-the-art solutions for the consid-

ered benchmark. Thus, ABCAX is ranked second

among the CEC’2008 winner metaheuristics. Besides,

ABCAX optimally solves the same number of func-

tions than the best performing CEC’2008 metahuris-

tics (MTS), as shown in Figure 4. To obtain these

ranks, the mean errors of all variants on a same func-

tion and dimension were ranked from best (rank 1)

to worst (rank 7). In the case of ties, average ranks

are computed. Additionally, the # f unc row on top

of each bar indicates the number of functions where

each ABC variant finds the optimum value. To obtain

these ranks, we used the same method described in

the previous section.

7 Conclusions

This article analysis the effect of changing the meth-

ods to generate a candidate food position in the arti-

ficial bee colony algorithm. In order to do this, six

different recombination operators are considered to

create new food positions at the employed bee step.

These operators are taken from the real-coded genetic

algorithm literature and they are used for the first time

in the ABC algorithm. In order to verify the perfor-

mance of our best performing ABC variant (ABCAX),

a comparison from a point of view of the solution

quality is carried out considering this algorithm with

the state-of-the-art CEC’2008 metaheuristics.

The experimental results of the Arithmetical op-

erator application show a very good performance in

terms of the average quality rank and the computa-

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-121-

Table 3: Mean error values from f1 to f6 and minimum objective values for f7 obtained by ABCAX and the first six

algorithms in the CEC’2008 competition.
Func. Dim. ABCAX MTS [23] jDEdynNP-F [24] MLCC [25] DMS-PSO [26] DEwSAcc [27] EPUS-PSO [28]

1

100 0.00E+00 0.00E+00 5.68E-14 6.82E-14 0.00E+00 5.68E-14 7.47E-01

500 0.00E+00 0.00E+00 9.32E-14 4.30E-13 0.00E+00 2.10E-09 8.45E+01

1000 0.00E+00 0.00E+00 1.14E-13 8.46E-13 0.00E+00 8.79E-03 5.53E+02

2

100 7.65E+01 1.44E-11 4.29E+01 2.53E+01 3.65E+00 8.25E+00 1.86E+01

500 1.01E+02 7.32E-06 8.46E+00 6.67E+01 6.89E+01 7.57E+01 4.35E+01

1000 1.10E+02 4.72E-02 1.95E+01 1.09E+02 9.15E+01 9.61E+01 4.66E+01

3

100 1.23E+01 5.17E-08 1.12E+02 1.50E+02 2.83E+02 1.45E+02 4.99E+03

500 3.03E+01 5.04E-03 6.61E+02 9.25E+02 4.67E+07 1.81E+03 5.77E+04

1000 5.51E+01 3.41E-04 1.31E+03 1.80E+03 8.98E+09 9.15E+03 8.37E+05

4

100 4.46E-02 0.00E+00 5.46E-14 4.39E-13 1.83E+02 4.38E+00 4.71E+02

500 5.17E+00 0.00E+00 1.47E-12 1.79E-11 1.61E+03 3.64E+02 3.49E+03

1000 1.30E+01 0.00E+00 2.17E-04 1.37E-10 3.84E+03 1.82E+03 7.58E+03

5

100 0.00E+00 0.00E+00 2.84E-14 3.41E-14 0.00E+00 3.07E-14 3.72E-01

500 0.00E+00 0.00E+00 4.21E-14 2.13E-13 0.00E+00 6.90E-04 1.64E+00

1000 0.00E+00 0.00E+00 3.98E-14 4.18E-13 0.00E+00 3.58E-03 5.58E+00

6

100 0.00E+00 0.00E+00 5.68E-14 1.11E-13 0.00E+00 1.13E-13 2.06E+00

500 0.00E+00 6.18E-12 1.49E-13 5.34E-13 2.00E+00 4.80E-01 6.64E+00

1000 0.00E+00 1.24E-11 1.47E-11 1.06E-12 7.76E+00 2.30E+00 1.89E+01

7

100 -9.14E+02 -1.49E+03 -1.48E+03 -1.54E+03 -1.14E+03 -1.37E+03 -8.55E+02

500 -5.52E+03 -7.08E+03 -6.88E+03 -7.44E+03 -4.20E+03 -5.75E+03 -3.51E+03

1000 -1.15E+04 -1.40E+04 -1.35E+04 -1.47E+04 -7.51E+03 -1.06E+04 -6.62E+00

100D functions

ra
nk

0
1

2
3

4
5

6
7

 #func 3 4 0 0 3 0 0
500D functions

ra
nk

0
1

2
3

4
5

6
7

 #func 3 3 0 0 2 0 0
1000D functions

ra
nk

0
1

2
3

4
5

6
7

 #func 3 3 0 0 2 0 0

A
B

C
A

X

A
B

C
A

X

A
B

C
A

X M
T

S

M
T

S

M
T

S

jD
E

d
y
n
N

P
-F

jD
E

d
y
n
N

P
-F

jD
E

d
y
n
N

P
-F

M
L

C
C

M
L

C
C

M
L

C
C

D
M

S
-P

S
O

D
M

S
-P

S
O

D
M

S
-P

S
O

D
E

w
S
A

c
c

D
E

w
S
A

c
c

D
E

w
S
A

c
c

E
P

U
S
-P

S
O

E
P

U
S
-P

S
O

E
P

U
S
-P

S
O

Figure 4: Performance comparison based on the average rank over 7 functions. The ranking was computed using

the average error value of each algorithm.

tional effort for all considered functions and dimen-

sions. As a consequence, this operator arises as a

promising alternative to the traditional method for cre-

ating new food positions. Furthermore, the perfor-

mances of the ABC variants applying LX and MMAX

(the other operators that adjust one variable in the so-

lutions) are similar to the behavior of the traditional

ABC. Instead the ABC variants applying BX, 1PX,

mPX operators, which only copy parts of other solu-

tions to create a new one, seem no good alternatives to

be used as optimization tool, because of the low qual-

ity of their solutions for any function and dimension.

Moreover, the comparison from a point of view of

performance ranks the ABCAX in the second place

among the CEC’2008 winner metaheuristics. It is re-

markable the algorithmic simplicity of our proposal in

front of the complex improvements introduced by the

compared algorithms. Furthermore, this ABC variant

solves competitively high dimensionality benchmarks

(100, 500, and 1000) whereas the ABC algorithms in

the literature provide solutions for benchmarks with

less than 200 dimensions. Consequently, ABCAX be-

comes in a relevant metaheuristic in the state-of-the-

art of ABC algorithms.

As future research line, we will experiment with

combinatorial problems to extend the study presented

in this work. These kind of problems has different so-

lution representations, imposing new methods to gen-

erate food positions. Another future line is related

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-122-

with the parallelization of the ABC algorithm using

the current parallel programming models.

Acknowledgments

The authors acknowledge the support of Universidad

Nacional de La Pampa and the Incentive Program

from MINCyT. The second author is also funded by

CONICET.

Competing Interests

Funding: This study was funded by the Universidad

Nacional de La Pampa and CONICET.

Conflict of Interest: Author Gabriela Minetti de-

clares that she has no conflict of interest. Author Caro-

lina Salto declares that she has no conflict of interest.

Ethical approval: This article does not contain any

studies with human participants or animals performed

by any of the authors.

References

[1] D. Karaboga and B. Akay, “A comparative

study of artificial bee colony algorithm,” Ap-

plied Mathematics and Computation, vol. 214,

no. 1, pp. 108 – 132, 2009.

[2] S. Kockanat and N. Karaboga, “Parameter tun-

ing of artificial bee colony algorithm for gaus-

sian noise elimination on digital images,” in

2013 IEEE INISTA, pp. 1–4, 2013.

[3] B. Akay and D. Karaboga, “A modified arti-

ficial bee colony algorithm for real-parameter

optimization,” Information Science, vol. 192,

pp. 120–142, 2012.

[4] G. Zhu and S. Kwong, “Gbest-guided artificial

bee colony algorithm for numerical function op-

timization,” Applied Mathematics and Computa-

tion, vol. 217, no. 7, pp. 3166 – 3173, 2010.

[5] K. Diwold, A. Aderhold, A. Scheidler, and

M. Middendorf, “Performance evaluation of arti-

ficial bee colony optimization and new selection

schemes,” Memetic Computing, vol. 3, no. 3,

p. 149, 2011.

[6] A. Banharnsakun, T. Achalakul, and B. Siri-

naovakul, “The best-so-far selection in artificial

bee colony algorithm,” Applied Soft Computing,

vol. 11, no. 2, pp. 2888 – 2901, 2011. The Im-

pact of Soft Computing for the Progress of Arti-

ficial Intelligence.

[7] B. Alatas, “Chaotic bee colony algorithms for

global numerical optimization,” Expert Systems

with Applications, vol. 37, no. 8, pp. 5682 –

5687, 2010.

[8] W. Gao, S. Liu, and L. Huang, “A global best

artificial bee colony algorithm for global opti-

mization,” Journal of Computational and Ap-

plied Mathematics, vol. 236, no. 11, pp. 2741

– 2753, 2012.

[9] W. feng Gao and S. yang Liu, “A modified arti-

ficial bee colony algorithm,” Computers & Op-

erations Research, vol. 39, no. 3, pp. 687 – 697,

2012.

[10] S. S. Jadon, R. Tiwari, H. Sharma, and J. C.

Bansal, “Hybrid Artificial Bee Colony algo-

rithm with Differential Evolution,” Applied Soft

Computing, vol. 58, pp. 11 – 24, 2017.

[11] X. Yan, Y. Zhu, and W. Zou, “A hybrid artifi-

cial bee colony algorithm for numerical func-

tion optimization,” in 2011 11th International

Conference on Hybrid Intelligent Systems (HIS),

pp. 127–132, Dec 2011.

[12] L. Li, F. Zhang, C. Liu, and B. Niu, “A hybrid

Artificial Bee Colony algorithm with bacterial

foraging optimization,” in 2015 IEEE Interna-

tional Conference on Cyber Technology in Au-

tomation, Control, and Intelligent Systems (CY-

BER), pp. 127–132, 2015.

[13] K. Tang, X. Yao, P. N. Suganthan, C. Mac-

Nish, Y. P. Chen, C. M. Chen, , and Z. Yang,

“Benchmark functions for the CEC’2008 spe-

cial session and competition on large scale

global optimization,” technical report, Nature

Inspired Computation and Applications Labora-

tory, USTC, China, 2007.

[14] G. F. Minetti and C. Salto, “Improving artificial

bee colony algorithm with evolutionary opera-

tors,” in XXIII Congreso Argentino de Ciencias

de la Computación (CACIC 2017)., pp. 93–102,

2017.

[15] M.-D. Zhang, Z.-H. Zhan, J.-J. Li, and

J. Zhang, Tournament Selection Based Artifi-

cial Bee Colony Algorithm with Elitist Strategy,

pp. 387–396. Cham: Springer International Pub-

lishing, 2014.

[16] F. Herrera, M. Lozano, and A. Sánchez, “A

taxonomy for the crossover operator for real-

coded genetic algorithms: An experimental

study,” International Journal of Intelligent Sys-

tems, vol. 18, no. 3, pp. 309—-338, 2003.

[17] A. H. Wright, “Genetic algorithms for real pa-

rameter optimization,” in Foundations of Ge-

netic Algorithms, pp. 205–218, Morgan Kauf-

mann, 1991.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-123-

[18] G. Syswerda, “Uniform crossover in genetic al-

gorithms,” in Proceedings of the 3rd Interna-

tional Conference on Genetic Algorithms, pp. 2–

9, Morgan Kaufmann Publishers Inc., 1989.

[19] L. J. Eshelman, R. A. Caruana, and J. D. Schaf-

fer, “Biases in the crossover landscape,” in

Proceedings of the Third International Confer-

ence on Genetic Algorithms, pp. 10–19, Morgan

Kaufmann Publishers Inc., 1989.

[20] D. Karaboga and B. Basturk, “A powerful and

efficient algorithm for numerical function opti-

mization: Artificial bee colony (abc) algorithm,”

J. of Global Optimization, vol. 39, pp. 459–471,

Nov. 2007.

[21] X. Y., F. P., and Y. L., “A simple and efficient

artificial bee colony algorithm,” Mathematical

Problems in Engineering, vol. 2013, 2013.

[22] R. A. and P. M., “An improved self-adaptive ar-

tificial bee colony algorithm for global optimi-

sation,” International Journal of Swarm Intelli-

gence (IJSI), vol. 1, no. 2, 2014.

[23] L.-Y. Tseng and C. Chen, “Multiple trajectory

search for large scale global optimization,” in

2008 IEEE Congress on Evolutionary Computa-

tion (IEEE World Congress on Computational

Intelligence), pp. 3052–3059, June 2008.

[24] J. Brest, A. Zamuda, B. Boskovic, M. S.

Maucec, and V. Zumer, “High-dimensional real-

parameter optimization using self-adaptive dif-

ferential evolution algorithm with population

size reduction,” in 2008 IEEE Congress on Evo-

lutionary Computation (IEEE World Congress

on Computational Intelligence), pp. 2032–2039,

June 2008.

[25] Z. Yang, K. Tang, and X. Yao, “Multilevel coop-

erative coevolution for large scale optimization,”

in 2008 IEEE Congress on Evolutionary Compu-

tation (IEEE World Congress on Computational

Intelligence), pp. 1663–1670, June 2008.

[26] S. Z. Zhao, J. J. Liang, P. N. Suganthan, and

M. F. Tasgetiren, “Dynamic multi-swarm par-

ticle swarm optimizer with local search for

large scale global optimization,” in 2008 IEEE

Congress on Evolutionary Computation (IEEE

World Congress on Computational Intelligence),

pp. 3845–3852, June 2008.

[27] A. Zamuda, J. Brest, B. Boskovic, and

V. Zumer, “Large scale global optimization us-

ing differential evolution with self-adaptation

and cooperative co-evolution,” in 2008 IEEE

Congress on Evolutionary Computation (IEEE

World Congress on Computational Intelligence),

pp. 3718–3725, June 2008.

[28] S.-T. Hsieh, T.-Y. Sun, C.-C. Liu, and S.-J. Tsai,

“Solving large scale global optimization using

improved particle swarm optimizer,” in 2008

IEEE Congress on Evolutionary Computation

(IEEE World Congress on Computational Intel-

ligence), pp. 1777–1784, June 2008.

[29] J. Brest, V. Zumer, and M. S. Maucec, “Self-

adaptive differential evolution algorithm in con-

strained real-parameter optimization,” in 2006

IEEE International Conference on Evolutionary

Computation, pp. 215–222, 2006.

[30] B. Boskovic, S. Greiner, J. Brest, and V. Zumer,

“A differential evolution for the tuning of a

chess evaluation function,” in 2006 IEEE Inter-

national Conference on Evolutionary Computa-

tion, pp. 1851–1856, 2006.

[31] J. Brest and M. Sepesy Maučec, “Population

size reduction for the differential evolution algo-

rithm,” Applied Intelligence, vol. 29, pp. 228–

247, Dec 2008.

Journal of Computer Science & Technology, Volume 18, Number 2, October 2018

-124-

