Asian-European Journal of Mathematics Vol. 11, No. 3 (2018) 1850067 (11 pages) © World Scientific Publishing Company DOI: 10.1142/S1793557118500675

Localization of tetravalent modal algebras

Aldo V. Figallo

Instituto de Ciencias Básicas Universidad Nacional de San Juan 5400 San Juan, Argentina avfigallonavaro@gmail.com

Gustavo Pelaitay*

Instituto de Ciencias Básicas
Universidad Nacional de San Juan
5400 San Juan, Argentina
Departamento de Matemática
Universidad Nacional de San Juan
5400 San Juan, Argentina
gpelaitay@gmail.com

Communicated by I. Chajda Received January 31, 2017 Revised June 3, 2017 Published July 5, 2017

The main aim of this paper is to define the localization of a tetravalent modal algebra A with respect to a topology \mathcal{F} on A. In Sec. 5, we prove that the tetravalent modal algebra of fractions relative to a \land -closed system (defined in Definition 3.1) is a tetravalent modal algebra of localization.

Keywords: Tetravalent modal algebra; tetravalent modal algebra of fractions; \land -closed system.

AMS Subject Classification: 06D30, 03G25

1. Introduction

A remarkable construction in ring theory is the *localization ring* $A_{\mathcal{F}}$ associated with a Gabriel topology \mathcal{F} on a ring A (see [18, 19]). In Lambek's book [11], it introduces the notion of complete ring of quotients of a commutative ring, as a particular case of localization ring (relative to the topology of dense ideals).

^{*}Corresponding author.

Starting from the example of the rings, Schmid introduced in [20, 21] the notion of maximal lattice of quotients for a distributive lattice. The central role in this construction is played by the concept of multipliers defined by Cornish in [5].

Using the model of localization ring, in [10], Georgescu defined the localization lattice $A_{\mathcal{F}}$ for a bounded distributive lattice A with respect to a topology \mathcal{F} on A and prove that the maximal lattice of quotients for a distributive lattice is a lattice of localization (relative to the topology of regular ideals). Analogous results we have for lattices of fractions of bounded distributive lattices relative to \land -closed systems.

In 1978, Monteiro introduced tetravalent modal algebras as a very interesting generalization of three-valued Lukasiewicz–Moisil algebras. These algebras do really offer a genuine interest, both from the point of view of algebra and from that of logic, and specially from the one of Algebraic Logic (see [8]). An algebraic study of tetravalent modal algebras can be found in [12–15] and [4, 6, 7].

The main aim of this paper is to develop a theory of localization for tetravalent modal algebras. Since three-valued Łukasiewicz–Moisil algebras is a particular case of tetravalent modal algebra (see [1]), the results of this paper generalize a part of the results from [2, 3, 9] (for LM_3 -algebras).

2. Preliminaries

In 1978, Monteiro introduced the tetravalent modal algebras (or TM-algebras) as algebras $\langle A, \vee, \wedge, \sim, \nabla, 1 \rangle$ of type (2, 2, 1, 1, 0) which verify:

```
(M1)  x \wedge (x \vee y) = x,
```

(M2)
$$x \wedge (y \vee z) = (z \wedge x) \vee (z \wedge y),$$

(M3)
$$\sim \sim x = x$$
,

$$(M4) \sim (x \vee y) = \sim x \wedge \sim y,$$

(M5)
$$\nabla x \vee \sim x = 1$$
,

(M6)
$$\nabla x \wedge \sim x = \sim x \wedge x$$
.

We denote by **TM** the category of TM-algebras.

It is easy to see that every TM-algebra satisfies:

(M7)
$$1 \lor x = 1$$
.

From M1, M2, M7, M3, M4 it follows that $\langle A, \wedge, \vee, \sim, 1, 0 \rangle$ is a De Morgan algebra with greatest element 1 and least element $0 = \sim 1$. Taking into account [16, 17], we have that three-valued Lukasiewicz-Moisil algebras (or LM₃-algebras) are TM-algebras which, moreover, satisfy:

$$(M6') \ \nabla(x \wedge y) = \nabla x \wedge \nabla y.$$

The results announced here for TM-algebras will be used throughout the paper

(M8)
$$x \leq \nabla x$$
,

(M9)
$$\nabla 0 = 0$$
,

$$(M10) \nabla 1 = 1,$$

- (M11) $\nabla \nabla x = \nabla x$
- (M12) $\nabla(x \vee y) = \nabla x \vee \nabla y$,
- (M13) $\nabla(x \wedge \nabla y) = \nabla x \wedge \nabla y$,
- (M14) $x \in \nabla(A)$ if and only if $\nabla x = x$,
- (M15) ∇x and $\sim \nabla x$ are Boolean complements,
- (M16) $\nabla \sim \nabla x = \sim \nabla x$.

From (M8), (M9), (M13) and (M16), we have that ∇ is an existential quantifier in the sense of Halmos.

3. TM-Algebra of Fractions Relative to an ∧-Closed System

Definition 3.1. A nonempty subset S of a TM-algebra A is called \land -closed system in A if:

- (S1) $1 \in S$,
- (S2) $x, y \in S$ implies $x \land y \in S$.

We denote by S(A) the set of all \land -closed systems of A.

Lemma 3.1. Let S be a \land -closed system of a TM-algebra A. Then, the relation θ_S defined by $(x,y) \in \theta_S$ if and only if there is $s \in S \cap \nabla(A)$ such that $x \land s = y \land s$ is a congruence on A.

Proof. We need only to prove that θ_S is compatible with \sim and ∇ . Let $(x,y) \in \theta_S$. Then there is $s \in S \cap \nabla(A)$ such that (1) $x \wedge s = y \wedge s$. Thus, (2) $\nabla s = s$ by (M14) and $\sim x \vee \sim s = \sim y \vee \sim s$. From this assertion and (M15), we get that $\sim x \wedge \nabla s = \sim y \wedge \nabla s$. Hence, by (2), we obtain that $(\sim x, \sim y) \in \theta_S$. On the other hand, from (1), (2) and (M13), we have that (3) $\nabla x \wedge \nabla s = \nabla y \wedge \nabla s$. Besides, from (2), we deduce that $\nabla s \in S \cap \nabla(A)$. Therefore, from (3), we conclude that $(\nabla x, \nabla y) \in \theta_S$.

Let $A \in \mathbf{TM}$. For $x \in A$, we denote by $[x]_S$ the equivalence class of x relative to θ_S and by $A[S] = A/\theta_S$.

By $p_S: A \to A[S]$, we denote the canonical map defined by $p_S(x) = [x]_S$, for every $x \in A$.

Remark 3.1. Since for every $s \in S \cap \nabla(A)$, $s \wedge s = s \wedge 1$, we deduce that $[s]_S = [1]_S$, hence $p_S(S \cap \nabla(A)) = \{[1]_S\}$.

Proposition 3.1. If $a \in A$, then $[a]_S \in \nabla(A[S])$ if and only if there exists $s \in S \cap \nabla(A)$ such that $a \wedge s \in \nabla(A)$. So, if $a \in \nabla(A)$, then $[a]_S \in \nabla(A[S])$.

Proof. For $a \in A$, we have $[a]_S \in \nabla(A[S])$ if and only if $\nabla[a]_S = [a]_S$, that is, $[\nabla a]_S = [a]_S$. So, $(\nabla a, a) \in \theta_S$, which it means that there exists $s \in S \cap \nabla(A)$ such

that $\nabla a \wedge s = a \wedge s$, that is, $\nabla (a \wedge s) = \nabla (\nabla a \wedge s) = \nabla a \wedge \nabla s = \nabla a \wedge s = a \wedge s$, hence $a \wedge s \in \nabla(A)$. If $a \in \nabla(A)$, since $1 \in S \cap \nabla(A)$ and $a \wedge 1 = a \in \nabla(A)$, we deduce that $[a]_S \in \nabla(A[S])$.

Theorem 3.1. If A is a TM-algebra and $f: A \to A'$ is a morphism of TM-algebras such that $f(S \cap \nabla(A)) = \{1\}$, then there is an unique morphism of TM-algebras $f': A[S] \to A'$ such that the diagram

commutes (i.e. $f' \circ p_S = f$).

Remark 3.2. The previous theorem allows us to call A[S] the TM-algebra of fractions relative to the \land -closed system S.

Example 3.1.

- (1) If $S = \{1\}$ or is such that $1 \in S$ and $S \cap (\nabla(A) \setminus \{1\}) = \emptyset$, then for $x, y \in A$, $(x, y) \in \theta_S \Leftrightarrow 1 \land x = 1 \land y \Leftrightarrow x = y$, hence in this case A[S] = A.
- (2) If S is an \land -closed system such that $0 \in S$ (for example S = A or $S = \nabla(A)$), then for every $x, y \in A$, $(x, y) \in S$ (since $x \land 0 = y \land 0$ and $0 \in S \cap \nabla(A)$), hence in this case $A[S] = \{[0]_S\}$.

4. Topologies on TM-Algebras

Definition 4.1. An ideal of a TM-algebra A is a subset I of A satisfying the following conditions:

- (I1) $0 \in I$,
- (I2) If $x \in I$, $y \in A$ and $y \leq x$, then $y \in I$.
- (I3) If $x, y \in I$, then $x \vee y \in I$.

We shall denote by $\mathcal{I}(A)$ the lattice of all ideals of A.

Definition 4.2. A nonempty set \mathcal{F} of ideals of A will be called a topology on A if the following properties hold:

- (T1) If $I_1 \in \mathcal{F}$, $I_2 \in \mathcal{I}(A)$ and $I_1 \subseteq I_2$, then $I_2 \in \mathcal{F}$ (hence $A \in \mathcal{F}$),
- (T2) If $I_1, I_2 \in \mathcal{F}$, then $I_1 \cap I_2 \in \mathcal{F}$.

Clearly, if \mathcal{F} is a topology on A, then $(A, \mathcal{F} \cup \{\emptyset\})$ is a topological space. Any intersection of topologies on A is a topology, hence the set T(A) of all topologies of A is a complete lattice with respect to inclusion. \mathcal{F} is a topology on A if and only if \mathcal{F} is a filter of the lattice of power set of A, for this reason, a topology on A is usually called a Gabriel filter on $\mathcal{I}(A)$.

Example 4.1. $\mathcal{F}_S = \{I \in \mathcal{I}(A) : I \cap S \cap \nabla(A) \neq \emptyset\}$ is a topology on A, for every $S \in S(A)$.

Definition 4.3. The topology \mathcal{F}_S is called the topology associated with the \land -closed system S.

5. \mathcal{F} -Multipliers and Localization of TM-Algebra

Let \mathcal{F} be a topology on A. We consider the relation $\theta_{\mathcal{F}}$ of A $(x,y) \in \theta_{\mathcal{F}}$ if and only if there exists $I \in \mathcal{F}$ such that $e \wedge x = e \wedge y$ for every $e \in I \cap \nabla(A)$.

Lemma 5.1. $\theta_{\mathcal{F}}$ is a congruence on A.

Proof. We need only to prove that $\theta_{\mathcal{F}}$ is compatible with \sim and ∇ . Let $(x,y) \in \theta_{\mathcal{F}}$. Then there is $I \in \mathcal{F}$ such that $e \wedge x = e \wedge y$ for every $e \in I \cap \nabla(A)$. Let $e \in I \cap \nabla(A)$, then $e \wedge x = e \wedge y$. From this last assertion and (M15), we deduce that $\sim x \wedge e = (\sim x \wedge \nabla e) \vee (\sim \nabla e \wedge \nabla e) = (\sim x \vee \sim \nabla e) \wedge \nabla e = (\sim y \vee \sim \nabla e) \wedge \nabla e = (\sim y \wedge \nabla e) \vee (\sim \nabla e \wedge \nabla e) = \sim y \wedge \nabla e$. Therefore, $(\sim x, \sim y) \in \theta_{\mathcal{F}}$. On the other hand, from (M13), we have that $\nabla x \wedge e = \nabla x \wedge \nabla e = \nabla (x \wedge \nabla e) = \nabla (x \wedge e) = \nabla (y \wedge e) = \nabla (y$

We shall denote by $[x]_{\theta_{\mathcal{F}}}$ the congruence class of an element $x \in A$, by $A/\theta_{\mathcal{F}}$ the quotient TM-algebra and by $p_{\mathcal{F}}: A \longrightarrow A/\theta_{\mathcal{F}}$ the canonical morphism of TM-algebras.

Lemma 5.2. For $a \in A$, $[a]_{\theta_{\mathcal{F}}} \in \nabla(A/\theta_{\mathcal{F}})$ if and only if there exists $I \in \mathcal{F}$ such that $e \wedge \nabla a = e \wedge a$ for every $e \in I \cap \nabla(A)$. So, if $a \in \nabla(A)$, then $[a]_{\theta_{\mathcal{F}}} \in \nabla(A/\theta_{\mathcal{F}})$.

Proof. For $a \in A$, $[a]_{\theta_{\mathcal{F}}} \in \nabla(A/\theta_{\mathcal{F}})$ if and only if $\nabla[a]_{\theta_{\mathcal{F}}} = [a]_{\theta_{\mathcal{F}}}$ if and only if $[\nabla a]_{\theta_{\mathcal{F}}} = [a]_{\theta_{\mathcal{F}}}$. So, $(\nabla a, a) \in \theta_{\mathcal{F}}$, that is, there exists $I \in \mathcal{F}$ such that $e \wedge \nabla a = e \wedge a$ for every $e \in I \cap \nabla(A)$. So, if $a \in \nabla(A)$, then for every $I \in \mathcal{F}$ and $e \in I \cap \nabla(A)$, $e \wedge \nabla a = e \wedge a$, hence $[a]_{\theta_{\mathcal{F}}} \in \nabla(A/\theta_{\mathcal{F}})$.

Definition 5.1. Let \mathcal{F} be a topology on A. By an \mathcal{F} -multiplier on A, we means a map $f: I \to A/\theta_{\mathcal{F}}$, which verifies the following condition:

$$f(e \wedge x) = [e]_{\theta_{\mathcal{F}}} \wedge f(x)$$
, for all $e \in \nabla(A)$ and $x \in I$.

Example 5.1. The maps $\mathbf{0}, \mathbf{1}: A \longrightarrow A/\theta_{\mathcal{F}}$ defined by $\mathbf{0}(x) = [0]_{\theta_{\mathcal{F}}}$ and $\mathbf{1}(x) = [x]_{\theta_{\mathcal{F}}}$ for every $x \in A$ are \mathcal{F} -multipliers. Also, for $a \in \nabla(A)$ and $I \in \mathcal{F}$, $f_a: I \longrightarrow A/\theta_{\mathcal{F}}$ defined by $f_a(x) = [a]_{\theta_{\mathcal{F}}} \wedge [x]_{\theta_{\mathcal{F}}}$ is an \mathcal{F} -multiplier.

Lemma 5.3. For each \mathcal{F} -multiplier $f: I \to A/\theta_{\mathcal{F}}$, the following properties hold:

- (1) $f(x) \leq [x]_{\theta_{\mathcal{F}}}$ for all $x \in I$,
- (2) $f(x \wedge y) = f(x) \wedge f(y)$,
- (3) $[x]_{\theta_F} \wedge f(y) = [y]_{\theta_F} \wedge f(x)$.

Proof. It is routine.

We shall denote by $M(I, A/\theta_{\mathcal{F}})$ the set of all the \mathcal{F} -multipliers having the domain $I \in \mathcal{F}$ and

$$M(A/\theta_{\mathcal{F}}) = \bigcup_{I \in \mathcal{F}} M(I, A/\theta_{\mathcal{F}}).$$

If $I_1, I_2 \in \mathcal{F}$, $I_1 \subseteq I_2$, we have a canonical mapping $\varphi_{I_1,I_2} : M(I_2, A/\theta_{\mathcal{F}}) \to M(I_1, A/\theta_{\mathcal{F}})$ defined by $\varphi_{I_1,I_2}(f) = f_{|I_1}$ for $f \in M(I_2, A/\theta_{\mathcal{F}})$.

Let us consider the directed system of sets

$$\langle \{M(I, A/\theta_{\mathcal{F}})\}_{I \in \mathcal{F}}, \{\varphi_{I_1, I_2}\}_{I_1, I_2 \in \mathcal{F}, I_1 \subset I_2} \rangle$$

and denote by $A_{\mathcal{F}}$ the direct limit (in the category of sets):

$$A_{\mathcal{F}} = \lim_{\vec{l} \in \mathcal{F}} M(I, A/\theta_{\mathcal{F}}).$$

For any \mathcal{F} -multiplier $f: I \to A/\theta_{\mathcal{F}}$, we shall denote by $\widehat{(I,f)}$ the equivalence class of f in $A_{\mathcal{F}}$.

Remark 5.1. We recall that if $f_i: I_i \to A/\theta_{\mathcal{F}}$, i = 1, 2, are \mathcal{F} -multipliers, then $\widehat{(I_1, f_1)} = \widehat{(I_2, f_2)}$ (in $A_{\mathcal{F}}$) if and only if there exists $I \in \mathcal{F}$, $I \subseteq I_1 \cap I_2$ such that $f_{1|I} = f_{2|I}$.

Definition 5.2. If $I_1, I_2 \in \mathcal{I}(A)$ and $f_i \in M(I_i, A/\theta_{\mathcal{F}}), i = 1, 2$, we define

$$f_1 \wedge f_2, f_1 \vee f_2 : I_1 \cap I_2 \to A/\theta_{\mathcal{F}}$$

by

$$(f_1 \wedge f_2)(x) = f_1(x) \wedge f_2(x),$$

 $(f_1 \vee f_2)(x) = f_1(x) \vee f_2(x),$

for every $x \in I_1 \cap I_2$.

Let
$$\widehat{(I_1,f_1)} \wedge \widehat{(I_2,f_2)} = (I_1 \cap \widehat{I_2,f_1} \wedge f_2)$$
 and $\widehat{(I_1,f_1)} \vee \widehat{(I_2,f_2)} = (I_1 \cap \widehat{I_2,f_1} \vee f_2)$.

Definition 5.3. Let $I \in \mathcal{I}(A)$ and $f \in M(I, A/\theta_{\mathcal{F}})$, we define $f^* : I \to A/\theta_{\mathcal{F}}$ by

$$f^*(x) = [x]_{\theta_{\mathcal{T}}} \wedge \sim f(\nabla x)$$

for any $x \in I$.

Let
$$\widehat{(I,f)}^* = \widehat{(I,f^*)}$$
.

Lemma 5.4. If $I_1, I_2 \in \mathcal{I}(A)$ and $f_i \in M(I_i, A/\theta_F)$, i = 1, 2, then $f_1 \wedge f_2, f_1 \vee f_2 \in M(I_1 \cap I_2, A/\theta_F)$.

Proof. It is routine.

Remark 5.2. For $x \in A$, we have $\mathbf{0}^*(x) = [x]_{\theta_{\mathcal{F}}} \wedge \sim [0]_{\theta_{\mathcal{F}}} = [x]_{\theta_{\mathcal{F}}} \wedge [1]_{\theta_{\mathcal{F}}} = [x]_{\theta_{\mathcal{F}}}$, that is, $\mathbf{0}^* = \mathbf{1}$, and similarly $\mathbf{1}^* = \mathbf{0}$.

Lemma 5.5. If $I \in \mathcal{I}(A)$ and $f \in M(I, A/\theta_{\mathcal{F}})$, then $f^* \in M(I, A/\theta_{\mathcal{F}})$.

Proof. If $x \in I$ and $e \in \nabla(A)$, then

$$f^{*}(e \wedge x) = [e \wedge x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla(e \wedge x))$$

$$= [e \wedge x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla e \wedge \nabla x)$$

$$= [e]_{\theta_{\mathcal{F}}} \wedge [x]_{\theta_{\mathcal{F}}} \wedge \sim (\nabla[e]_{\theta_{\mathcal{F}}} \wedge f(\nabla x))$$

$$= [e]_{\theta_{\mathcal{F}}} \wedge [x]_{\theta_{\mathcal{F}}} \wedge (\sim \nabla[e]_{\theta_{\mathcal{F}}} \vee \sim f(\nabla x))$$

$$= ([e]_{\theta_{\mathcal{F}}} \wedge [x]_{\theta_{\mathcal{F}}} \wedge \sim \nabla[e]_{\theta_{\mathcal{F}}}) \vee ([e]_{\theta_{\mathcal{F}}} \wedge [x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla x))$$

$$= [0]_{\theta_{\mathcal{F}}} \wedge ([e]_{\theta_{\mathcal{F}}} \wedge [x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla x))$$

$$= [e]_{\theta_{\mathcal{F}}} \wedge f^{*}(x).$$

Definition 5.4. For $I \in \mathcal{I}(A)$, we define $\widetilde{\nabla} : M(I, A/\theta_{\mathcal{F}}) \to M(I, A/\theta_{\mathcal{F}})$, by

$$\widetilde{\nabla}(f)(x) = [x]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla x)$$

for every $f \in M(I, A/\theta_{\mathcal{F}})$ and $x \in I$.

Lemma 5.6. If $I \in \mathcal{I}(A)$, $f \in M(I, A/\theta_{\mathcal{F}})$, then $\widetilde{\nabla}(f) \in M(I, A/\theta_{\mathcal{F}})$.

Proof. If $x \in I$ and $e \in \nabla(A)$, then we have

$$\widetilde{\nabla}(f)(e \wedge x) = [e \wedge x]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla(e \wedge x))$$

$$= [e \wedge x]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla e \wedge \nabla x))$$

$$= [e]_{\theta_{\mathcal{F}}} \wedge [x]_{\theta_{\mathcal{F}}} \wedge \nabla(\nabla[e]_{\theta_{\mathcal{F}}} \wedge f(\nabla x))$$

$$= [e]_{\theta_{\mathcal{F}}} \wedge [x]_{\theta_{\mathcal{F}}} \wedge \nabla[e]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla x)$$

$$= [e]_{\theta_{\mathcal{F}}} \wedge [x]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla x)$$

$$= [e]_{\theta_{\mathcal{F}}} \wedge \widetilde{\nabla}(f)(x).$$

Let $\nabla^{\mathcal{F}}: A_{\mathcal{F}} \to A_{\mathcal{F}}$ defined by $\nabla^{\mathcal{F}}(\widehat{(I,f)}) = \widehat{(I,\nabla(f))}$.

Proposition 5.1. $\langle A_{\mathcal{F}}, \wedge, \vee, *, \nabla^{\mathcal{F}}, \mathbf{0}, \mathbf{1} \rangle$ is a TM-algebra.

Proof. We verify the axioms of TM-algebras. In the following, we work with $f \in M(I, A/\theta_{\mathcal{F}})$, where $I \in \mathcal{I}(A)$. It is easy to verify that $\langle A_{\mathcal{F}}, \wedge, \vee, \mathbf{0}, \mathbf{1} \rangle$ is a bounded distributive lattice.

$$(M3) \quad (f^*)^*(x) = [x]_{\theta_{\mathcal{F}}} \wedge \sim f^*(\nabla x),$$

$$= [x]_{\theta_{\mathcal{F}}} \wedge \sim ([\nabla x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla \nabla x))$$

$$= [x]_{\theta_{\mathcal{F}}} \wedge (\sim [\nabla x]_{\theta_{\mathcal{F}}} \vee f(\nabla x))$$

$$= ([x]_{\theta_{\mathcal{F}}} \wedge \sim \nabla [x]_{\theta_{\mathcal{F}}}) \vee ([x]_{\theta_{\mathcal{F}}} \wedge f(\nabla x))$$

$$= [0]_{\theta_{\mathcal{F}}} \vee ([x]_{\theta_{\mathcal{F}}} \wedge f(\nabla x))$$

$$= [x]_{\theta_{\mathcal{F}}} \wedge f(\nabla x)$$

$$= [x]_{\theta_{\mathcal{F}}} \wedge f(\nabla x)$$

$$= f(x).$$

$$(M4) \quad (f_1 \vee f_2)^*(x) = [x]_{\theta_{\mathcal{F}}} \wedge \sim (f_1 \vee f_2)(\nabla x)$$

$$= [x]_{\theta_{\mathcal{F}}} \wedge \sim (f_1(\nabla x) \vee f_2(\nabla x))$$

$$= [x]_{\theta_{\mathcal{F}}} \wedge \sim f_1(\nabla x) \wedge \sim f_2(\nabla x)$$

$$= f_1^*(x) \wedge f_2^*(x)$$

$$= (f_1^* \wedge f_2^*)(x).$$

For $x \in I$, we have

(M5)
$$\widetilde{\nabla}(f)(x) \vee f(x) = ([x]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla x)) \vee ([x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla x))$$

$$= [x]_{\theta_{\mathcal{F}}} \wedge (\nabla f(\nabla x) \vee \sim f(\nabla x))$$

$$= [x]_{\theta_{\mathcal{F}}} \wedge [1]_{\theta_{\mathcal{F}}}$$

$$= [x]_{\theta_{\mathcal{F}}},$$

hence $\widetilde{\nabla}(f) \vee f = \mathbf{1}$, that is, $\nabla^{\mathcal{F}}\widehat{(I,f)} \vee \widehat{(I,f)} = \widehat{(A,\mathbf{1})}$. For $x \in I$, then

(M6)
$$\widetilde{\nabla}(f)(x) \wedge f^{*}(x) = [x]_{\theta_{\mathcal{F}}} \wedge \nabla f(\nabla x) \wedge [x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla x)$$
$$= [x]_{\theta_{\mathcal{F}}} \wedge f(\nabla x) \wedge [x]_{\theta_{\mathcal{F}}} \wedge \sim f(\nabla x)$$
$$= f(x \wedge \nabla x) \wedge f^{*}(x)$$
$$= f^{*}(x) \wedge f(x),$$

hence
$$\nabla^{\mathcal{F}}(f) \wedge f^* = f^* \wedge f$$
, that is, $\nabla^{\mathcal{F}}(\widehat{I,f}) \wedge \widehat{(I,f)}^* = \widehat{(I,f)}^* \wedge \widehat{(I,f)}$.

Definition 5.5. The TM-algebra $A_{\mathcal{F}}$ will be called the localization TM-algebra of A with respect to the topology \mathcal{F} .

Lemma 5.7. If \mathcal{F}_S is the topology associated with the \land -closed system $S \subseteq A$, then $\theta_{\mathcal{F}_S} = \theta_S$.

Proof. Let $x, y \in A$. If $(x, y) \in \theta_{\mathcal{F}_S}$, then there exists $I \in \mathcal{F}_S$ such that $x \wedge e = y \wedge e$ for any $e \in I \cap \nabla(A)$. Since $I \cap S \cap \nabla(A) \neq \emptyset$ there exists $e_o \in I \cap S \cap \nabla(A)$ such that $x \wedge e_o = y \wedge e_o$, that is, $(x, y) \in \theta_S$. So, $\theta_{\mathcal{F}_S} \subseteq \theta_S$. If $(x, y) \in \theta_S$, there exists $e_o \in S \cap \nabla(A)$ such that $x \wedge e_o = y \wedge e_o$. If we set $I_o = \{x \in A : x \leq e_o\}$, then $I_o \in \mathcal{I}(A)$. Since $e_o \in I_o$, we have that $e_o \in I_o \cap S \cap \nabla(A)$, hence $I_o \cap S \cap \nabla(A) \neq \emptyset$, that is, $I_o \in \mathcal{F}_S$. For every $e \in I_o$, $e \leq e_o$, then $e = e \wedge e_o$, so $x \wedge e = x \wedge (e \wedge e_o) = (x \wedge e_o) \wedge e = (y \wedge e_o) \wedge e = y \wedge (e \wedge e_o) = y \wedge e$, hence $(x, y) \in \theta_{\mathcal{F}_S}$, that is, $\theta_S \subseteq \theta_{\mathcal{F}_S}$.

Thus, $A/\theta_{\mathcal{F}_S} = A[S]$, hence an \mathcal{F}_S -multiplier can be considered in this case as a mapping $f: I \longrightarrow A[S]$ ($I \in \mathcal{F}_S$) having the property

$$f(e \wedge x) = [e]_S \wedge f(x)$$

for every $x \in I$ and $e \in \nabla(A)$.

Theorem 5.1. If \mathcal{F}_S is the topology associated with the \land -closed system $S \subseteq A$, then the TM-algebra $A_{\mathcal{F}_S}$ is isomorphic in **TM** with A[S].

Proof. If $\widehat{(I_1,f_1)}$, $\widehat{(I_2,f_2)} \in A_{\mathcal{F}_S} = \lim_{I \in \mathcal{F}} M(I,A[S])$ and $\widehat{(I_1,f_1)} = \widehat{(I_2,f_2)}$ then there exists $I \in \mathcal{F}_S$ such that $I \subseteq I_1 \cap I_2$ and $f_{1|I} = f_{2|I}$. Since $I,I_1,I_2 \in \mathcal{F}_S$, there exists $e \in I \cap S \cap \nabla(A)$, $e_1 \in I_1 \cap S \cap \nabla(A)$ and $e_2 \in I_2 \cap S \cap \nabla(A)$. We shall prove that $f_1(e_1) = f_2(e_2)$. If we denote $e' = e \wedge e_1 \wedge e_2$, then $e' \in I \cap S \cap \nabla(A)$ and $e' \leq e_1, e_2$. Since $e_1 \wedge e' = e_2 \wedge e' \in I$ then $f_1(e_1 \wedge e') = f_2(e_2 \wedge e')$, hence $f_1(e_1) \wedge [e']_S = f_2(e_2) \wedge [e']_S$, so $f_1(e_1) \wedge [1]_S = f_2(e_2) \wedge [1]_S$, that is, $f_1(e_1) = f_2(e_2)$. In a similar way, we can show that $f_1(e_1) = f_2(e_2)$ for any $e_1, e_2 \in I \cap S \cap \nabla(A)$. In accordance with these considerations, we can define the mapping:

$$\alpha: A_{\mathcal{F}_S} \to A[S]$$

by putting

$$\alpha(\widehat{(I,f)}) = f(s),$$

where $s \in I \cap S \cap \nabla(A)$.

We have $\alpha(\mathbf{1}) = \alpha(\widehat{(A, \mathbf{1})}) = \mathbf{1}(s) = [s]_S = \mathbf{1}$ for every $s \in S \cap \nabla(A)$.

Also, for every $(I_i, f_i) \in A_{\mathcal{F}_S}$, i = 1, 2, we have

$$\alpha(\widehat{(I_1, f_1)} \wedge \widehat{(I_2, f_2)}) = \alpha((I_1 \cap \widehat{I_2, f_1} \wedge f_2))$$

$$= (f_1 \wedge f_2)(s) = f_1(s) \wedge s_2(s)$$

$$= \alpha(\widehat{(I_1, f_1)}) \wedge \alpha(\widehat{(I_2, f_2)}),$$

and

$$\alpha(\widehat{(I_1, f_1)} \vee \widehat{(I_2, f_2)}) = \alpha(\widehat{(I_1 \cap I_2, f_1} \vee f_2))$$

$$= (f_1 \vee f_2)(s) = f_1(s) \vee s_2(s)$$

$$= \alpha(\widehat{(I_1, f_1)}) \vee \alpha(\widehat{(I_2, f_2)}),$$

with $s \in I_1 \cap I_2 \cap \nabla(A)$.

A. V. Figallo & G. Pelaitay

If $\widehat{(I,f)} \in A_{\mathcal{F}_S}$, we have

$$\alpha(\widehat{(I,f)}^*) = \alpha(\widehat{(I,f^*)}),$$

$$= f^*(s)$$

$$= [s]_S \land \sim f(s),$$

$$= [1]_S \land \sim f(s),$$

$$= \sim f(s)$$

$$= \sim \alpha(\widehat{(I,f)}),$$

where $s \in I \cap S \cap \nabla(A)$.

If $\widehat{(I,f)} \in A_{\mathcal{F}_S}$ and $s \in I \cap S \cap \nabla(A)$, we have

$$\begin{split} \alpha(\nabla^{\mathcal{F}}\widehat{((I,f))}) &= \alpha(\widehat{(I,\nabla f)}) \\ &= \widetilde{\nabla}(f)(s) \\ &= [s]_S \wedge \nabla f(s) \\ &= [1]_S \wedge \nabla f(s) \\ &= \nabla f(s) \\ &= \nabla \alpha(\widehat{(I,f)}). \end{split}$$

Therefore, this mapping is a morphism of TM-algebras.

We shall prove that α is injective and surjective. To prove injectivity of α , let $(I_1, f_1), (I_2, f_2) \in A_{\mathcal{F}}$ such that $\alpha((I_1, f_1)) = \alpha((I_2, f_2))$. Then for any $s_1 \in$ $I_1 \cap S \cap \nabla(A), e_2 \in I_2 \cap S \cap \nabla(A)$ we have $f_1(e_1) = f_2(e_2)$. If $f_1(e_1) = [x]_S$ and $f_2(e_2) = [y]_S$ with $x, y \in A$, since $[x]_S = [y]_S$, there exists $e \in S \cap \nabla(A)$ such that $x \wedge e = y \wedge e$. If we consider $e' = e \wedge e_1 \wedge e_2 \in I_1 \cap I_2 \cap S \cap \nabla(A)$, we have $x \wedge e' = y \wedge e'$ and $e' \leq e_1, e_2$. If follows that $f_1(e') = f_1(e' \wedge e_1) = f_1(e_1) \wedge [e']_S = f_1$ $[x]_S \wedge [1]_S = [x]_S = [y]_S \wedge [1]_S = f_2(e_2) \wedge [e']_S = f_2(e_2 \wedge e') = f_2(e')$. If we denote $I = \{x \in A : x \leq e'\}$ (since $e' \in \nabla(A)$), then we obtain that $I \in \mathcal{F}_S$, $I \subseteq I_1 \cap I_2$ and $f_{1|I} = f_{2|I}$, hence $(I_1, f_1) = (I_2, f_2)$, that is, α is injective. To prove the surjectivity of α , let $[a]_S \in A[S]$ (hence there exists $e_o \in S \cap \nabla(A)$ such that $a \wedge e_o \in \nabla(A)$). We consider $I_o = (e_o] = \{x \in A : x \leq e_o\}$ (since $e_o \in I_o \cap S \cap \nabla(A)$, then $I_o \in \mathcal{F}_S$) and define $f_a : I_o \to A[S]$ by putting $f_a(x) = [a]_S \wedge [x]_S = [a \wedge x]_S$ for every $x \in I_o$. It is easy to see that f_a is an \mathcal{F}_S -multiplier and $\alpha((\widehat{I}_o, \widehat{f_a})) =$ $f_a(s) = [a \wedge s]_S = [a]_S \wedge [s]_S = [a]_S \wedge [1]_S = [a]_S$, where $s \in S \cap \nabla(A)$. So α is surjective. Therefore, α is an isomorphism of TM-algebras.

References

 V. Boicescu, A. Filipoiu, G. Georgescu and S. Rudeanu, Lukasiewicz-Moisil Algebras, Annals of Discrete Mathematics, Vol. 49 (North-Holland Publishing Co., Amsterdam, 1991).

- D. Buşneag and F. Chirtes, LM_n-algebra of fractions and maximal LM_n-algebra of fractions, Discrete Math. 296(2-3) (2005) 143-165.
- 3. F. Chirtes, Localization of LM_n -algebras, Cent. Eur. J. Math. 3(1) (2005) 105–124.
- 4. M. E. Coniglio and M. Figallo, On a four-valued modal logic with deductive implication, *Bull. Sect. Logic Univ. Lodž* **43**(1–2) (2014) 1–17.
- W. H. Cornish, The multiplier extension of a distributive lattice, J. Algebra 32 (1974) 339–355.
- A. V. Figallo, On the congruences in four-valued modal algebras, *Portugaliae Math.* 49(2) (1992) 249–261.
- A. V. Figallo and P. Landini, On generalized I-algebras and 4-valued modal algebras, Rep. Math. Logic 29 (1995) 3-18.
- J. Font and M. Rius, An abstract algebraic logic approach to tetravalent modal logics,
 J. Symbolic Logic 65(2) (2000) 481–518.
- 9. C. Gallardo, C. Sanza and A. Zilianci, \mathcal{F} -multipliers and the localization of $LM_{n\times m}$ -algebras, An. Univ. Ovidius Constanta Ser. Mat. 21(1) (2013) 285–304.
- G. Georgescu, F-multipliers and the localization of distributive lattices, Algebra Universalis 21 (1985) 181–197.
- 11. J. Lambek, Lectures on Rings and Modules (Blaisdell Publishing Company, 1966).
- 12. I. Loureiro, Homomorphism kernels of a tetravalent modal algebra, *Portugal Math.* **39**(1–4) (1980) 371–379.
- I. Loureiro, Prime spectrum of a tetravalent modal algebra, Notre Dame J. Formal Logic 24(3) (1983) 389–394.
- I. Loureiro, Finite tetravalent modal algebras, Rev. Un. Mat. Argentina 31(4) (1984) 187–191.
- I. Loureiro, Principal congruences of tetravalent modal algebras, Notre Dame J. Formal Logic 26(1) (1985) 76–80.
- 16. Gr. C. Moisil, Essais sur les logiques non-chrysippiennes (Academici Bucarest, 1973).
- A. Monteiro, Sur la définition des algébres de Lukasiewicz trivalentes, Bull. Math. Soc. Sci. Math. Phys. R.P.R. 7(55) (1963) 3-12.
- 18. N. Popescu, Categorii Abeliene (Academiei, Bucureşti, 1971).
- N. Popescu, Abelian Categories with Applications to Rings and Modules (Academic Press, New York, 1973).
- J. Schmid, Multipliers on distributive lattices and rings of quotients, Houston J. Math. 6(3) (1980) 401–425.
- J. Schmid, Distributive Lattices and Rings of Quotients, Colloquia Mathematica Societatis Janos Bolyai, Vol. 33, Szeged, Hungary (1980), pp. 675–696.