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The main aim of this paper is to define the localization of a tetravalent modal algebra A
with respect to a topology F on A. In Sec. Bl we prove that the tetravalent modal algebra
of fractions relative to a A-closed system (defined in Definition BJl) is a tetravalent modal
algebra of localization.
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1. Introduction

A remarkable construction in ring theory is the localization ring Ax associated with
a Gabriel topology F on a ring A (see [18, 19]). In Lambek’s book [11], it introduces
the notion of complete ring of quotients of a commutative ring, as a particular case
of localization ring (relative to the topology of dense ideals).
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Starting from the example of the rings, Schmid introduced in the notion
of maximal lattice of quotients for a distributive lattice. The central role in this
construction is played by the concept of multipliers defined by Cornish in [5].

Using the model of localization ring, in [I0], Georgescu defined the localization
lattice Ax for a bounded distributive lattice A with respect to a topology F on A
and prove that the maximal lattice of quotients for a distributive lattice is a lattice
of localization (relative to the topology of regular ideals). Analogous results we have
for lattices of fractions of bounded distributive lattices relative to A-closed systems.

In 1978, Monteiro introduced tetravalent modal algebras as a very interesting
generalization of three-valued Lukasiewicz—Moisil algebras. These algebras do really
offer a genuine interest, both from the point of view of algebra and from that of
logic, and specially from the one of Algebraic Logic (see [§]). An algebraic study of
tetravalent modal algebras can be found in [T2HT5H] and [4] 6] [7].

The main aim of this paper is to develop a theory of localization for tetravalent
modal algebras. Since three-valued Lukasiewicz—Moisil algebras is a particular case
of tetravalent modal algebra (see [I]), the results of this paper generalize a part of
the results from [2] Bl U] (for LMs-algebras).

2. Preliminaries

In 1978, Monteiro introduced the tetravalent modal algebras (or TM-algebras) as
algebras (A, V, A, ~,V, 1) of type (2,2,1,1,0) which verify:

(M1) A (xVy) ==z,

M2) zA(yVz)=(zAz)V(zAYy),
(M3) ~~z =z,

(Md) ~ (v y) =~ 2A ~ 3,

(M5) Vav ~z =1,

(

We denote by TM the category of TM-algebras.
It is easy to see that every TM-algebra satisfies:

(M7) 1vz=1.

From M1, M2, M7, M3, M4 it follows that (A,A,V,~,1,0) is a De Morgan
algebra with greatest element 1 and least element 0 =~ 1. Taking into account
[16, T7], we have that three-valued Lukasiewicz—Moisil algebras (or LMjs-algebras)
are TM-algebras which, moreover, satisfy:

(M6') V(x Ay) =V AVy.

The results announced here for TM-algebras will be used throughout the paper

(M8) x < Vu,
(M9) V0 = 0,
(M10) V1 =1,
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(M11) VVz =Vz

(M12) V(z Vy)=VzV Vy,

(M13) V(z AVy) =Va AVy,

(M14) z € V(A) if and only if Vo =z,

(M15) Vz and ~ Vz are Boolean complements,
(M16) V ~ Vz =~ Vz.

From (M8), (M9), (M13) and (M16), we have that V is an existential quantifier
in the sense of Halmos.

3. TM-Algebra of Fractions Relative to an A-Closed System

Definition 3.1. A nonempty subset S of a TM-algebra A is called A-closed system
in A if:

(S1) 1€ 5,
(S2) x,y € S implies x Ay € S.

We denote by S(A) the set of all A-closed systems of A.

Lemma 3.1. Let S be a A-closed system of a TM-algebra A. Then, the relation g
defined by (x,y) € s if and only if there is s € SNV(A) such that xt Ns =y A s is
a congruence on A.

Proof. We need only to prove that g is compatible with ~ and V. Let (z,y) € 0s.
Then there is s € SN V(A) such that (1) z As = y A s. Thus, (2) Vs = s by
(M14) and ~ 2V ~ s =~ yV ~ s. From this assertion and (M15), we get that
~ A Vs =~y AVs. Hence, by (2), we obtain that (~ z,~ y) € 5. On the other
hand, from (1), (2) and (M13), we have that (3) VA Vs = Vy A Vs. Besides, from
(2), we deduce that Vs € S N V(A). Therefore, from (3), we conclude that (Vz,
Vy) € 0s. |

Let A € TM. For x € A, we denote by [z]s the equivalence class of x relative
to Og and by A[S] = A/6s.

By ps : A — A[S], we denote the canonical map defined by pg(z) = [z]s, for
every x € A.

Remark 3.1. Since for every s € SNV(A), sAs = sA1, we deduce that [s]s = [1]g,
hence ps(SNV(A)) = {[1]s}.

Proposition 3.1. If a € A, then [als € V(A[S]) if and only if there exists s €
SNV(A) such that a A s € V(A). So, if a € V(A), then [a]s € V(A[S]).

Proof. For a € A, we have [a]s € V(A[S]) if and only if V]a]s = [a]s, that is,
[Vals = [a]s. So, (Va,a) € g, which it means that there exists s € SN V(A) such
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that Va A s = a A s, that is, V(a A s) = V(VaAs) =VaAVs=VaAs=aAs,
hence a A s € V(A). If a € V(A), since 1 € SNV(A) and a A1l =a € V(A), we
deduce that [a]s € V(A[S]). O

Theorem 3.1. If A is a TM-algebra and f : A — A’ is a morphism of TM-algebras
such that f(SNV(A)) = {1}, then there is an unique morphism of TM-algebras
' A[S] — A’ such that the diagram

A Al

Ps I

A[S]
commutes (i.e. f'ops = f).

Remark 3.2. The previous theorem allows us to call A[S] the TM-algebra of
fractions relative to the A-closed system S.

Example 3.1.

(1) If S = {1} or is such that 1 € S and SN (V(A4)\ {1}) = 0, then for z,y € A,
(x,y) €0s = 1Az =1Ay < x =y, hence in this case A[S] = A.

(2) If S is an A-closed system such that 0 € S (for example S = A or S = V(4)),
then for every x,y € A, (z,y) € S (since t A0 =yA0and 0 € SNV(A)), hence
in this case A[S] = {[0]s}-

4. Topologies on TM-Algebras

Definition 4.1. An ideal of a TM-algebra A is a subset I of A satisfying the
following conditions:

(I1) 0 €1,
(I12) Ifzel,ye Aand y <z, then y € I.
(I13) f z,y € I, thenx Vy € I.

We shall denote by Z(A) the lattice of all ideals of A.

Definition 4.2. A nonempty set F of ideals of A will be called a topology on A if
the following properties hold:

(T1) It I, € F, I, e Z(A) and I C I, then I, € F (hence A € F),
(T2) IfI1,Io € F,then 1 NI, € F.
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Clearly, if F is a topology on A, then (A, F U {0}) is a topological space. Any
intersection of topologies on A is a topology, hence the set T'(A) of all topologies
of A is a complete lattice with respect to inclusion. F is a topology on A if and
only if F is a filter of the lattice of power set of A, for this reason, a topology on A
is usually called a Gabriel filter on Z(A).

Example 4.1. Fg={I € Z(A): INSNV(A) # (0} is a topology on A, for every
S € S(A).

Definition 4.3. The topology Fgs is called the topology associated with the A-
closed system S.

5. F-Multipliers and Localization of TM-Algebra

Let F be a topology on A. We consider the relation x of A
(z,y) € 05 if and only if there exists I € F such that e Ax = e Ay for every
ecINV(A).

Lemma 5.1. 0x is a congruence on A.

Proof. We need only to prove that 6 is compatible with ~ and V. Let (z,y) €
0r. Then there is I € F such that e Ao = e Ay for every e € I N V(A). Let
e € INV(A), then e Ax = e Ay. From this last assertion and (M15), we deduce
that ~ x Ae = (~ x AVe)V (~ VeAVe) = (~ oV ~ Ve) A Ve = (~ yV ~
Ve) AVe = (~yAVe)V (~ Ve A Ve) =~ y A Ve. Therefore, (~ z,~ y) € Or.
On the other hand, from (M13), we have that Vo Ae = Vo A Ve = V(z A Ve) =
V(zAe)=V(yANe)=V(yAVe)=VyA Ve. Therefore, (Vz,Vy) € 0. m|

We shall denote by [z]g, the congruence class of an element x € A, by A/6r
the quotient TM-algebra and by pr : A — A/0r the canonical morphism of
TM-algebras.

Lemma 5.2. Fora € A, [alo, € V(A/0F) if and only if there exists I € F such
that e A\Va = e Aa for every e € INV(A). So, if a € V(A), then [alg, € V(A/OF).

Proof. For a € A, [alo, € V(A/0F) if and only if V(alg, = [a]g, if and only if
[Valg, = [a]o,- So,(Va,a) € 0, that is, there exists I € F such that e AVa =eAa
for every e € INV(A). So, if a € V(A), then for every I € F and e € I N V(A),
e ANVa = e Aa, hence [a]g, € V(A/0F). O

Definition 5.1. Let F be a topology on A. By an F-multiplier on A, we means a
map f: I — A/Ox, which verifies the following condition:

flenz)=[elo, AN f(z), forallee V(A) and z€l.
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Example 5.1. The maps 0,1 : A — A/07 defined by 0(x) = [0]p, and 1(z) =
[]o, for every x € A are F-multipliers. Also, for a € V(A) and I € F, fo: [ —
A/0F defined by fo(x) = [alo, A [x]e, is an F-multiplier.

Lemma 5.3. For each F-multiplier f : I — A/0x, the following properties hold:

(1) f(z) <|[z]gs for allx €1,
(2) flxzAy) = fz) A f(y),
@) [zlor A f(y) = ylos A f()-

Proof. It is routine. O

We shall denote by M(I, A/6z) the set of all the F-multipliers having the
domain I € F and

M(A/6F) = | ) M(I,A/07).
IeF

If I1,I, € F, I C I, we have a canonical mapping ¢r, 1, : M(I2, A/0Fr) —
M(I, A/0F) defined by o1, 1,(f) = fir, for f € M(I2, A/0F).
Let us consider the directed system of sets

<{M<Iv A/G}')}Ie}" {9011,12}11,126.77,11212>
and denote by Az the direct limit (in the category of sets):
A}' = lim ]\4([7 A/G;}:)
IEF

—

For any F-multiplier f : I — A/0r, we shall denote by (I, f) the equivalence
class of f in Ar.

Remark 5.1. We recall that if f; : I; — A/0x, i = 1,2, are F-multipliers, then
(I, f1) = (I2, f2) (in Ag) if and only if there exists I € F, I C I; N Iy such that
fur = far-
Definition 5.2. If I, I € Z(A) and f; € M(I;, A/0F), i = 1,2, we define
finfo, iV Nl — A/0F

by

(fi N f2)(x) = fi(z) A fa(@),

(frV f2)(z) = fi(@) V fa(2),
for every x € I N I5.

Let (11, fi)A(l2, f2) = (11 N 12, f1 A f2) and (11, f1)V (12, f2) = (11 N 12, f1 V f2).
Definition 5.3. Let I € Z(A) and f € M(I,A/0F), we define f*: I — A/0r by
J*(@) = [aloy A ~ f(Va)

for any = € I.
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Let (I, f) = (L, f*).
Lemma 5.4. If 1,1, € I(A) and f; € M(I“A/ej:), 1=1,2, then fi AN fa, f1V fo €
M(Il N1, A/Q]:)
Proof. It is routine. O
Remark 5.2. For z € A, we have 0*(z) = [z]o,A ~ [0lo, = [z]o> A L]0, = [2]o-,
that is, 0* = 1, and similarly 1* = 0.

Lemma 5.5. If I € Z(A) and f € M(I,A/0F), then f* € M(I,A/0F).

Proof. If z € I and e € V(A), then

)
frlenz) =lenzloN~ f(V(eAr))
A~ f(VeAVz)
x]GF/\ (V[ ]GF A f(VJC))
Joz A (~ VelorV ~ f(Vz))

=leNzxlp,

A~ Velos) V (leox A [zlosA ~ f(Va))
[0]o5 V ([elox A [z]oxN ~ f(V))
= le]or A [zlozA ~ f(Va)
[elo A

Definition 5.4. For I € Z(A), we define V : M (I, A/67) — M(I,A/0), b
V(f)(@) = [x]o, AVF(Va)
for every f € M(I,A/0r) and = € I.

Lemma 5.6. If I € Z(A), f € M(I,A/05), then V(f) € M(I,A/0F).

Proof. If z € I and e € V(A), then we have

V(f)eAz) =
=leAz]o, ANVf(VeAVx))

eNzlg- NVf(V(eNz))

[
[
= le]os A [z]o- A V(Velor A f(Va))
= le]o- A [z]o, A V]elo- AV (V)
= le]o A [z]o, AV (V)
= [e]o, A V(f)(2). O

Let V7 : Ay — Ay defined by VZ((I, f)) = (I, V(f)).
Proposition 5.1. (A, A,V,*,V7,0,1) is a TM-algebra.
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Proof. We verify the axioms of TM-algebras. In the following, we work with f €
M(I,A/0F), where I € T(A). It is easy to verify that (Ax,A,V,0,1) is a bounded
distributive lattice.
M3) () (@) = [zloz N ~ [* (V)

= [1‘]9}_/\ ~ ([V‘T]%-‘/\ ~ f(vvm))

lor A (~ [Valo, V f(Va))
= ([xlozN ~Vlzlos) V ([z]os A f(VE))
0]9}' v ([x]gf A f(V.T))

For x € I, we have

(M5)  V(f)(@)V f(z) = ([elos AVF(V2) V ([2lorA ~ f(Va))

— -

hence V(f) V f =1, that is, VZ (I, f) V (I, f) = (A, 1).
For z € I, then
(M6)  V(f)(@) A f*(x) = [2]o, A VF(Va) A laloA ~ f(Va)
= [x]GF A f(VJC) A [x]GFA ~ f(VJC)
= fx AVz) A f*(x)

= [ (@) A f(2),
hence V7 (f) A f* = f* A f, that is, meAm*:m*/\m. m|

Definition 5.5. The TM-algebra Az will be called the localization TM-algebra of
A with respect to the topology F.

Lemma 5.7. If Fg is the topology associated with the N-closed system S C A, then
Ors, = 0s.
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Proof. Let x,y € A. If (x,y) € O£, then there exists I € Fg such that xAe = yAe
for any e € I N'V(A). Since I NS NV(A) # @ there exists e, € I NS NV(A) such
that © A e, = y A e,, that is, (z,y) € bs. So, 0x, C bg. If (x,y) € Og, there exists
eo € SNV(A) such that x Ae, =y Ae, If weset I, ={x € A:z <e,}, then
I, € I(A). Since e, € I,, we have that e, € I, NSNV(A), hence I, NSNV(A) # 0,
that is, I, € Fg. For every e € I,, e < e,, then e =eAe,,soxANe=xA(eNe,) =
(xNeo) Ne= (yNeo) Ne =yA(eNey) = yAe, hence (x,y) € Or,, that is, 0g C Or,.
Therefore, g = 0r,. O

Thus, A/0r, = A[S], hence an Fg-multiplier can be considered in this case as
a mapping f : I — A[S] (I € Fs) having the property
flena) =[e]s A f(z)
for every x € I and e € V(A).

Theorem 5.1. If Fg is the topology associated with the A-closed system S C A,
then the TM-algebra Az, is isomorphic in TM with A[S].

Proof. If (Il7f1)a (127f2) S A.'Fs = llmléfM(I7A[S]) and (Il7f1) = (Ig,fg) then
there exists I € Fg such that I C Iy N1 and fy; = fo 7. Since I, I, Iz € Fg, there
exists e € INSNV(A),e; € [ NSNV(A) and es € LN SN V(A). We shall
prove that f1(e1) = fa(e2). If we denote ¢ = e Aej Aeg, thene € INSNV(A)
and e’ < ej,es. Since e3 Ae/ = ea A€’ € I then fi(e; Ae') = fa(ea A€’), hence

fi(er)Ale']s = fa(e2) Al€']s, so fi(er) A[l]s = fa(e2) A[l]s, that is, fi(e1) = fa(ez).
In a similar way, we can show that fi(e1) = f2(e2) for any ej,ea € I'NSNV(A).
In accordance with these considerations, we can define the mapping:

a: Arg — A[S]
by putting

where s € I N SOV(A)
We have (1 ): (( 1)) =1(s) = [s]s = 1 for every s € SNV(A).
Also, for every (I“ fi) € Arg, i =

AT, f1) A (Ta, f2)) = (I N T2, i A f)
= (fi A f2)(s) = fi(s) A s2(s)
= a((I1, f1)) A a((I2, f2)),

1,2, we have

and
(T, F1) V (I, 2)) = a((l N T3, f1 V £2))
= (f1V f2)(s) = fi(s) V s2(s)
= o((Ti, 1) v al(T2, o),
with s € I, N I N V(A).
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If(/I,-f\) € Ar,, we have

where s € INSNV(A).
It (I, f) € Ar, and s € IN SN V(A), we have
oV (T, N))) = (1Y)
= V(f)(s)
= [s]s AV f(s)
= [1]s AVf(s)
=V/[(s)

= Va((l, f)).

Therefore, this mapping is a morphism of TM-algebras.

V\Eihall _prove that « is injective aﬂd\surjective./”_[_‘o\ prove injectivity of «,
let (Il7f1),(127f2) S A}‘ such that O[((Il,fl)) = Oé(([g,fg)). Then for any s; €
IL1NSN V(A), ea € IrNSN V(A) we have fl(el) = fg(ez). If fl(el) = [JU]S and
fa(e2) = [y]s with z,y € A, since [z]g = [y]s, there exists e € SN V(A4) such
that z Ae =y Ae. If we consider ¢ =eANe; Aex € [1 NIoNSNV(A), we have
xANe =yNne and e < ey, ey If follows that fi(e) = fi(e/ Aer) = fi(er) A[e']s =
[z]s Als = [z]s = [yls = [yls A [lls = fale2) Ae'ls = falea Ae') = fale!). IE
we denote I = {x € A:x < €'} (since ¢ € V(A)), then we obtain that I € Fg,
I C IiNIy and fi; = fa1, hence (ﬁ) = (m) that is, « is injective. To prove
the surjectivity of «, let [a]s € A[S] (hence there exists e, € S N V(A) such that
aNe, € V(A)). We consider I, = (e,] ={z € A: 2z <e,} (since e, € I,NSNV(A),
then I, € Fg) and define f, : I, — A[S] by putting fo(z) = [a]s A [z]s = [a A 2]g

for every = € I,. It is easy to see that f, is an Fg-multiplier and a((ﬁ)) =
fa(s) = la A sls = [a]ls A [s]ls = [a]s A [l]ls = [a]s, where s € SN V(A4). So « is
surjective. Therefore, « is an isomorphism of TM-algebras. O
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