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1 INTRODUCTION

Let G be an LCA group, i. e. a locally compact abelian group with Hausdorff topology, whose group
operation is written additively. Let U be a topological Hausdorff space and B(U) the Borel σ-algebra of U .
The symbol 1S stands for the indicator function of the set S. Denote by Γ the dual group of G and by �γ, x�
the value of γ ∈ Γ at x ∈ G. Let mG denote the Haar measure on G, i.e. the unique invariant measure
with respect to the group operation ‘+’. The respective Lebesgue spaces of functions, for p ∈ [1,∞], are
denoted by Lp(G). If f ∈ L1(G), its Fourier Transform at γ ∈ Γ is defined by

Ff(γ) = f̂(γ) =

�

G

f(x)�γ, x�dmG(x) .

In a similar manner one can define a Haar measure mΓ over (Γ,B(Γ )), and then the inverse Fourier trans-
form for g ∈ L1(Γ ) at x ∈ G is given by: F−1g(x) = g∨(x) =

�
Γ

g(γ)�γ, x�dmΓ (γ) . A classical example

is G = Rd with its usual addition operation +, and its dual Γ = Rd. In this case �γ, x� = eiγ.x with
mG and mΓ the ordinary Lebesgue measure on Rd. Another very known example is the torus G = T and
its dual Γ = Z. In this case, �γ, x� = eiγ.x with mG again the Lebesgue measure and mΓ the counting
measure. With these basic definitions in hand, the most relevant results for these classical cases, such as
Plancherel’s formula, can be extended with no difficulty to the general abstract setting of an LCA group
G [4]. A key result in Harmonic Analysis and Signal Processing for G = Rd is the so called Whittaker-
Kotel’nikov-Shannon (WKS) sampling theorem which gives conditions to reconstruct (interpolate) a band
limited L2(Rd) function from its discrete samples taken at a uniform and appropriate rate. The WKS theo-
rem was extended to L2(G), with G an LCA group, by Kluvánek [5]. In addtion to its elegance, Kluvanek’s
result provides an example of a unified theory which gives a positive answer to several similar problems that
may seem different at first glance. The WKS theorem and its abstract version by Kluvanek, are examples
of uniform sampling theorems. In practice, this means that if f represents a signal its samples are taken
at equidistant points, in the abstract setting this traduces in evaluating f over a discrete subgroup H ⊂ G.
However, in some applications, non uniform sampling may be preferable to the uniform sampling approach.
An interesting case arises when the sample points are chosen randomly. Several authors studied the case of
sampling points given by a Poisson point process over Rd, see e.g.[8]. Poisson point processes or related
Random measures can be defined over general σ-finite measure spaces [6]. In particular one can consider
the measure space (G,B(G),mG). Here, we shall study some results for this abstract sampling setting and
then we will apply these to the particular case of G = R×T arising in the context of the Radon transform.
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2 SOME PRELIMINARIES

We begin by recalling some definitions. Let G be a LCA group. Analogously to the Rd case, for a
measurable S ⊂ Γ, one can define the Paley-Wiener spaces of S-band limited functions as: PWS = {f ∈
L2(G) : supp(f̂) ⊂ S} . If mΓ (S) < ∞, we call kS := F−11S . Then the orthogonal projection over PWS

is the operator TS : L2(G) −→ L2(G) defined as

TSf(x) = kS ∗ f(x) =
�

G

f(t)kS(x− t)dmG(t) =

�

S

f̂(γ)�γ, x�dmΓ (γ) .

Let (Ω,A,P) be a probability space and X a random variable defined on it. If ϕ is any Borel measurable
real function, we denote E(ϕ(X)) the expectation of ϕ(X). If B0(G) = {A ∈ B(G) : mG(A) < ∞}
and λ > 0, we can define a Poisson random measure [6] N : B0(G) −→ L2(Ω,G,P), where G is the
sub σ-algebra of A generated by the familty of random variables {N(A), A ∈ B0(G)} and such that
E(N(A)) = λmG(A) and V ar(N(A)) = λmG(A). We aim to define an stochastic integral for some
suitable random integrands. Let F be a sub σ-algebra of A and independent of G. If p > 0, we define the
spaces

Lp(F) = {f : Ω×G −→ C is F ⊗B(G)- measurable and �f�Lp < ∞} ,
where �f�pLp = E �f�pLp(G). Now, let R = {R = F ×B, F ∈ F , B ∈ B0(G)} be the class of measurable
rectangles. From N we define a new random measure M : R −→ L2(Ω,σ(F ∪ G),P), by

M(R) = M(F ×B) = N(B)1F . (1)

If f is a R-simple function, f =
�N

i=i ai1Ri with ai ∈ C and the Ri ∈ R disjoint, we define the stochastic
integral of f with respect to M as the random variable:

�

G
f(x)dM(x) :=

N�

i=i

aiM(Ri) .

The integral
�
G f(x)dM(x) verifies the following properties:

Lemma 1 Let f be a R- simple function, then:
i) E

��
G f(x)dM(x)

�
= λ

�
GE(f(x))dmG(x).

ii) E
��

G f(x)dM(x)− λ
�
GE(f(x))dmG(x)

�2
= λ

�
GE|f(x)|2dmG(x) .

By a limiting process, (ii) allows to extend the definition of
�
G f(x)dM(x) for any f ∈ L1(F)

�
L2(F).

Moreover, Lemma 1 remains true for f ∈ L1(F)
�
L2(F).

3 RANDOM SAMPLING ON G
Let {Gn}n∈N0 be a sequence of independent sub σ-algebras of A, and let {Fn}n∈N be the sequence of

sub σ-algebras defined as Fn = σ(∪n
j=0Gj). Let {Nn}n∈N be a sequence of Poisson random measures of

parameter λ > 0 such that Nn is Gn-measurable, and let Mn be defined as in equation (1), for each n. If
mΓ (S) < ∞ , then for f ∈ L2(Fn−1), we define:

TnSf(x) =
1

λ

�

G

f(t)kS(x− t)dMn(t), (2)

for each n ∈ N. We summarize the main facts about TnS in the following results:

Theorem 1 Let f, g ∈ L2(Fn−1) then:
i) TnSf ∈ L2(Fn) and TnSf ∈ PWS a.s..
ii) If γ > 0 then:

E �f − γTnSg�2L2(G) = E �f − γTSg�2 +
γ2mΓ (S)

λ
E �g�2L2(G) .
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Note that for fixed n, if f = g ∈ PWS a.s. and γ = 1 then

E �f − TnSf�2L2(G) =
mΓ (S)

λ
E �f�2L2(G) .

In this case, note that if λ −→ ∞ then �f − TnSf�L2(G) → 0, in the mean square sense and in probability.
Therefore TnSf is an unbiased estimator of f . However, to ensure a good approximation of f the average
number of samples determined by λ should be considerably large. Theorem 1 and its consequent derivations
lead to an improvement by considering an iterative method. For determinstic f ∈ L2(G), define a sequence
of functions {fn}n∈N0 , fn ∈ L2(Fn) ∩ PWS by: If n = 0, take f0 = 0 and if n ≥ 1:

fn+1 = fn + γTn+1S(f − fn) . (3)

The main result then reads:

Theorem 2 Let f ∈ PWS (deterministic) and fn be defined by equation (3) then:

E �f − fn�2L2(G) ≤ δ(γ)n �f�2L2(G) , (4)

where 0 < δ(γ) =
�
(1− γ)2 + γ2mΓ (S)

λ

�
. In particular, for fixed λ > 0, γ can be chosen such that

δ(γ) < 1 and thus equation (4) tends to 0 exponentially when n −→ ∞.

4 RADON TRANSFORM AND THE GROUP G = R× T
Assume that f ∈ C∞

0 (R2) with compact support. Its Radon Transform Rf : R × [0, 2π) −→ R is
defined by:

Rf(p, θ) =

�

{x: ξ·x=p}

f(x) dx =

�

R2

δ(p− ξ · x)f(x) dx, ξ(θ) = (cos θ, sin θ), p ∈ R.

Briefly, the Radon transform is defined by the integrals of f over the lines {x : ξ · x = p}. Obviously,
R is a linear transformation and, for fixed p, Rf(p, θ) can be viewed as a periodic function. At this point,
following [2, 7], it is possible to apply the tools developed in the previuos section in case of the group
G = R × T. The projection-slice [1] theorem can be used to prove the following approximate inversion
formula [2]:

Theorem 3 Let e ∈ L2(R2) be a radial function such that |t|1/2ê(t) ∈ L2(R2) and ψ the even function
of one variable given ê(t) = (2π)−1ψ(|t|). Let the associated convolution kernel k be given by k̂(r) =
1
2(2π)

−3/2|r|ψ(r). Then:

e ∗ f(x) =
�

R

�

[0,2π)

k(ξ · x− p)Rf(p, θ) dθ dp.

In fact, e ∗ f can be viewed as a filtered or smoothed version of f . If e defines an approximation of the
identity then the formula gives an approximation of f . Generally, this filtered version is easier to recover
from data Rf than the original function f . If F = R × [0, 2π) −→ R and if F1F denotes the Fourier
transform on the first variable, we define the integral operator Tψ, for x ∈ R2 as:

TψF (x) =

�

R

�

[0,2π)

|r|ψ(r)F1F (r, θ) drdθ .

Indeed, one can prove that:
e ∗ f(x) = (TψRf)(x) (5)

Recall that now G = R× T. The key property of Tψ is the following:
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Lemma 2 Let F ∈ L2(G), then |TψF (x)| ≤ (2π)1/2 �|r|ψ(r)�L2(R) �F�L2(G) .

Now, we can combine equation (5) and Lemma 2 with Theorem 2 in the following way. Suppose that
F = Rf ∈ PWS , where S ⊂ Γ = R × Z is such that mΓ (S) < ∞. Note that, in this case, mΓ is the
product measure between the Lebesgue measure mR and the counting measure c, mΓ = mR ⊗ c. Finally
define a sequence {Fn}n as in equation (3), then we can prove:

Theorem 4 Let F = Rf ∈ PWS and Fn be defined by equation (3) then:

E �e ∗ f − TψFn�2L∞(R2) ≤ δ(γ)n(2π)1/2 �|r|ψ(r)�L2(R) �F�L2(G) , (6)

where 0 < δ(γ) is defined as in Theorem 2.

To illustrate the proposed method we include some experimental results. On the top we can see a
smoothed version of CT image of a brain and the sinogrogram of the original image. Below, on the right
side we can see the reconstruction of the original Radon transform after 7 iterations, taking λ = 0.04 and
γ = 0.9. On the left, the final approximation of the smoothed image.
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[5] I. KLUVÁNEK, Sampling theorem in abstract harmonic analysis, Matematicko-Fyzikalny Casopis, 15, 1, pp. 43-47, 1965.
[6] T.G. KURTZ, Lectures on Stochastic Analysis, University of Wisconsin, 2007.

(online:http://www.math.wisc.edu/ kurtz/735/main735.pdf)
[7] F. NATTERER, Sampling in Fan Beam Tomography, SIAM J. Appl. Math. Vol. 53, 2, pp. 358-380, 1993.
[8] A. PAPOULIS AND U. PILLAI, Probability, Random Variables and Stochastic Processes, McGraw-Hill, 2002.

MACI Vol. 8 (2021) M.L. Schuverdt, N.L. Kudraszow, R.P. Vignau, M.D. Sánchez (Eds.)

260


