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Abstract: Parametric spectral estimation techniques are widely used to estimate the parameters of sums of complex sinusoids
corrupted by noise. In this work, the authors show that the numerical stability of the estimated frequencies not only depends on
the size of the amplitudes associated with the real frequencies, but also to the distance among frequencies. Therefore, for
closely spaced frequencies, the estimates are vulnerable to large deviate from their true values. To overcome this problem, they
propose a strategy to artificially increase the frequency separation by downsampling the baseband equivalent of the noisy signal
before applying a spectral estimation technique. This methodology significantly improves the estimation performance especially
in the low signal to noise ratio regime. The performance of the technique is assessed in terms of the root mean square error and
it is compared to results obtained in previous publications.

1 Introduction
Problems dealing with a mixture of closely spaced damped
sinusoidal signals in a noisy environment are regularly observed in
engineering. This is a problem of major significance in applications
such as seismic exploration, communication, radar, and sonar, to
name but a few. In those cases, the signal of relevance contains
unknown parameters such as amplitude, phase, and frequency of
each mode. This path led in the past to developing parametric
spectral estimation techniques, in particular, the family of subspace
methods. These algorithms generate frequency component
estimates of a given signal based on the decomposition of an
observation vector space into two subspaces: one associated with
the signal and the other with the noise [1, 2]. A major concern
when developing these techniques was to cope with noise and
model uncertainties, in particular, the unknown order of the model
that corresponds to the dimension of the signal subspace. Different
strategies for obtaining this magnitude have been worked in the
past [3, 4]. Lately, novel optimisation techniques have been
proposed to estimate the model order. This method, which relies on
Kronecker's theorem for Hankel operators, was used to formulate
an appropriate non-linear least squares problem in terms of a rank
constraint on the Hankel matrix associated with the observed signal
[5].

Given the model order, the frequencies making up the observed
signal are estimated on a second step. A largely used technique,
known as ESPRIT (Estimation of Signal Parameters by Rotational
Invariance Technique) [6], exploits the structure of the signal space
and it formulates a generalised eigenvalue problem to obtain the
frequency estimates. An alternative approach, known as the Matrix
Pencil Method (MPM), has its roots in the Vandermonde
decomposition of the Hankel matrix built from the observed signal
[7]. A more recent approach based on the Hankel matrix associated
with the observation was proposed in [8], where the parameter
estimation is performed by minimising the nuclear norm of the
Hankel matrix.

A different path was followed in [9], where the authors
considered sums of undamped complex exponentials and they
exploited a sparse description for them. In this case, using a
previously defined set of discrete frequencies, compressed sensing
techniques are used to estimate the unknown parameters. An
improvement to this approach was presented in [10, 11]. There, the
solution is obtained by minimising the atomic norm of the

estimated signal. It was shown that, in this case, the exact recovery
of the observed signal is guaranteed when the frequencies are
adequately separated [12]. Unfortunately, these methods are not
suitable for a sum of damped complex exponentials.

The numerical conditioning of the estimates when recovering a
sum of undamped complex exponentials was analysed in [13]. In
this work, an upper bound of the condition number of the related
Vandermonde matrix was provided, and a decimative approach for
a single cluster of frequencies was proposed. As it was pointed out
in [14] the performance of spectrum estimation methods such as
ESPRIT, MPM, etc., degrades for closely spaced complex
exponentials. To overcome this problem, the frequency separation
was artificially increased by decimating the signal and then
applying ESPRIT. In [15], a decimation approach is applied, and a
total least squares problem is solved. However, in [14, 15], the
downsampling factor is chosen to make sure that no aliasing is
introduced. To overcome this restriction, the original signal was
oversampled.

On a different angle, the authors of [16] analyse the spectral
content of geophysical time series by frequency shifting and later
filtering the observed signal. By doing so, they were able to
identify the resonant frequencies contained in the observed signal.

Nevertheless, accurate estimation of spectral parameters for
sums of damped complex exponentials is performed via the
solution of generalised eigenvalue problems. These eigenvalue
problems are usually ill-conditioned and non-square. Solving
generalised eigenvalue problems of these characteristics is a
challenge from an algorithmic perspective. This difficulty turns to
be harder when the number of frequencies in the original mixture is
very large and the frequencies are clustered in small regions of the
complex plane [17, 18]. Our focus is to analyse the behaviour of
the frequency estimation step when the observed data is subject to
small perturbations. In particular, we study the numerical stability
of the generalised eigenvalue problem that is built from the Hankel
matrix associated to the observed signal. A related problem has
been addressed before [19, 20]. In particular, it has been observed
that the sensitivity of each eigenvalue is inversely proportional to
the inner product of the left and right generalised eigenvectors
weighted by the Hankel matrix. This inner product is proportional
to the amplitude of the damped oscillation corresponding to the
analysed eigenvalue.

In this paper, we extend these results and we show that the first-
order approximation of the perturbed eigenvalues not only depends
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on the amplitudes associated with the eigenvalues, but also on the
distance among eigenvalues. Therefore, the eigenvalues that are
close to each other are prone to exhibit large deviations from their
actual values, even when the observed signal is only lightly
perturbed. Similar results were obtained for a different context by
the authors of [21].

Based on the analytical results, we propose a strategy to pre-
processed the observed signal using multi-rate processing. This has
the ability to accommodate the complex frequencies for more
stable computation. The idea is validated with numerical
experiments and compared to the results obtained in previous
publications.

The paper is organised as follows. In Section 2, we make a brief
introduction to subspace methods, in particular, ESPRIT and
MPM. In Section 3, we study the numerical stability of the non-
square generalised eigenvalue problem and we obtain a new bound
for the first-order derivative of the generalised eigenvalue. A
method to obtain better numerical stability and improved frequency
estimation is presented in Section 4. Finally, numerical
experiments are presented in Section 5 and conclusions are given
Section 6.

Throughout the paper, we use the standard notation: the lower
case (v) for scalars, boldface lower case (v) for vectors, uppercase
bold face A for matrices. The kth entry of a vector v is denoted (v)k.
Given a matrix A, we denote its transpose, Hermitian, and Moore–
Penrose pseudo-inverse as AT, AH, A†, respectively. [A]i j refers to
the element in row i and column j of a matrix A. ∥ A ∥F refers to
the Frobenius norm of the matrix A, ∥ A ∥ is reserved for the
induced 2-norm. Finally, the notation Im is used for the m × m
identity matrix.

2 Spectrum estimation methods
2.1 Background

Spectrum estimation techniques are usually treated as a two-step
procedure. In the first step, the model order is estimated and the
observed signal is cleaned up from the perturbing noise. In the
second step, the values for the complex frequencies and their
amplitudes are obtained [2]. This paper is focused on the analysis
of this second step and how sensitive the estimated complex
frequencies are when the observed signal is subject to small
perturbations. To begin with, the description of the traditional
techniques, consider a noiseless discrete-time signal composed by a
sum of damped complex exponential as follows:

xk = ∑
i = 1

n
cizi

k k = 0, 1, …, (1)

where n is the number of exponential terms, zi ∈ ℂ is a complex
resonant frequency, and ci ∈ ℂ the amplitude associated to it. We
assume that zi are all mutually distinct and ci ≠ 0 for all i. In the
first approach, we assume that n is known. This assumption is
revised in Section 2.2.

Given m ≥ n > 0, define the following ((m + 1) × n)-complex
Hankel matrix

H =

x0 x1 ⋯ xn − 1

x1 x2 ⋯ xn

⋮ ⋮ ⋱ ⋮
xm xm + 1 ⋯ xm + n − 1

(2)

and the complex vector xn = [xn⋯xm + n]T. The solution to the linear
system of equations

Hq = − xn, (3)

is a complex vector q = [q0⋯qn − 1]T whose entries are the
coefficients of the polynomial

q(z) = ∏i = 1
n (z − zi) = zn + ∑k = 0

n − 1 qkzk. This simple setup is the
starting point for classical Prony's method [22]. Unfortunately, H is
an ill-conditioned matrix, and solving (3) for q could be very
sensitive to noise in the data. Moreover, obtaining zi as the roots of
q(z) is also a challenging task to perform when (1) is perturbed by
noise.

More robust approaches have been proposed by exploiting the
Vandermonde decomposition of H. Let us define the ((l + 1) × n)-
Vandermonde matrix as

Zl =

1 ⋯ 1
z1 ⋯ zn

⋮ ⋮
z1

l ⋯ zn
l

. (4)

Then, the Vandermonde decomposition of H is

H = ZmDZn − 1
T , (5)

where D = diag(c1, …, cn). Consider the singular value
decomposition of H = PSQH, where the columns of P span the
range of H and they are identified with the signal subspace in
ℂm + 1. Since zi are distinct and m ≥ n, rank(Zm) = rank(Zn − 1) = n,
and from (5), we see that the columns of Zm also span the signal
subspace. Then, there exists an invertible matrix G ∈ ℝn × n such
that

Zm = PG . (6)

Define now the following (m × n) complex matrices:

Zm, l =
Im − 1

01 × m − 1

T
Zm, Zm, f =

01 × m − 1

Im − 1

T
Zm,

Pl =
Im − 1

01 × m − 1

T
P, Pf =

01 × m − 1

Im − 1

T
P .

(7)

Matrices Zm, f  and Zm, l are obtained from Zm by deleting its first
and last rows, respectively. Analogously, we define P f  and Pl from
P. Using these definitions, it is easy to verify the rotational
invariance property that says that

Zm, f = Zm, lZ, (8)

where Z = diag(z1, …zn). By replacing (6) in (7), we have that
Zm, l = PlG and Zm, f = P f G. Therefore, we obtain from (8) that

P f G = PlGZ . (9)

This equation leads to a generalised eigenvalue problem that
obtains the unknown frequencies z1, …, zn and characterises the
algorithm known as ESPRIT [6].

A related technique exploits the relationship between H f  and
Hl, which are defined in accordance with (7) using the Hankel
matrix H. Notice that Zm, l = Zm − 1. Then, using (5) and (8), we
obtain

Hl = Zm − 1DZn − 1
T , H f = Zm − 1ZDZn − 1

T . (10)

Now for any z ∈ ℂ, we have that

H f − zHl = Zm − 1(Z − zI)DZn − 1
T . (11)

Since Zm − 1, D, and Zn − 1 are all full rank matrices, the unknown
diagonal entries of Z are the solutions to the generalised eigenvalue
problem
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H f v = zHlv . (12)

Equation (12) is known as the Matrix Pencil Method [7] because
the set {H f − zHl; z ∈ ℂ} constitutes a matrix pencil. Notice that in
the noiseless case, when the model order n is known, (9) and (12)
are equivalent, and MPM and ESPRIT obtain the same result.

General matrix pencils {A − λB; λ ∈ ℂ} do not always have
eigenstructures (λ, x) that satisfy Ax = λBx. However, the pencil
defined in (9) or (12) will always have a solution as long as zi, are
all distinct and ci ≠ 0, i = 1, …, n. This becomes clear by observing
(11). Notice that for all zi, i = 1, …, n, (Z − ziI)ei = 0, where
ei ∈ ℝn is the ith unit vector. Let vi ∈ ℂn be the solution to an
under-determined system of equations ei = DZn − 1

T vi. Clearly, (zi, vi)
satisfies the matrix pencil in (12). Similarly, we find the set of left
eigenvectors by solving ei

T = wi
HZm − 1D.

2.2 Signals with noise

When working with noisy signals, we deal with the following
model:

yk = xk + wk, k = 0, 1, …, (13)

where xk is given in (1) and wk is an additive noise term. We
assume that wk is a circularly symmetric complex Gaussian process
with identically distributed zero-mean uncorrelated real and
imaginary parts whose variance is σw

2 /2. Generally, the order model
n is unknown and it needs to be estimated from the collected data
before solving the estimation problem. Even when n is known, the
observed data yk needs to be processed to mitigate the effect of wk
on xk. For that, several procedures have been proposed in the past
to denoise yk before proceeding to the spectral estimation step.
When n is unknown, a first Hankel matrix H

~
 is built using n~ > n.

A first simple approach searches for the dominant singular
values of H

~
 and defines n as their number [23]. Then, to perform

the spectral estimation procedure, H
~

 is replaced by its truncation to
the first n singular directions. Unfortunately, the resulting
approximation does not preserve the Hankel structure. However,
Kronecker's theorem [24] states that there is a one-to-one
correspondence between a linear combination of n complex
exponentials and a Hankel matrix with rank n. Then, accuracy is
lost when a simple truncation of the Hankel matrix is performed.

This problem was observed in [18, 25] where an iterative
procedure that is performed in two steps was proposed. For each
iteration, the first step consists of performing the matrix truncation
to the first n singular directions of H

~
. In the second step, the

truncated matrix is modified by forcing a Hankel structure on it.
Both steps are repeated until a stopping criterion is satisfied. An
alternative solution performs a search on ℋ, the space of Hankel
matrices [26]. For a given n, it is possible to formulate the
following optimisation problem:

min
rank(H) = n

H ∈ ℋ
∥ H

~ − H ∥F , (14)

In [27, 28], this problem was tackled by solving a total least square
problem. Recently, a new denoising technique was proposed in [5]
by revising Kronecker's theorem, which states that the Hankel
matrix generated by a signal xk has a rank n, if and only if xk
coincides with a function that is a linear combination of n
exponential functions. Let H(y~) be the Hankel matrix obtained
from the sequence y~ = [y~0, y~1, …, y~m + n − 1]. Now, the following
optimisation problem returns an approximate signal y~k that
satisfies:

min
y~

∑
k = 0

m + n − 1
yk − y~k

2

s . t . rank[H(y~)] = n
(15)

Due to the constraint on the Hankel matrix, this is a non-convex
problem that may be reformulated as

min
A, y~

ℛn(A) + ∑
k = 0

m + n − 1
yk − y~k

2

s . t . A = H(y~),
(16)

where ℛn(A) is an indicator function for matrices that are defined
such that ℛn(A) = ∞ if rank(A) > n and 0 otherwise. In [5], the
authors propose to solve the problem using the Alternative
Direction Method of Multiplier (ADMM) [29]. This is an efficient
technique for solving non-convex optimisation problems. The
formulation of ADDM associates an augmented Lagrangian
associated with the original problem (16)

ℒ(A, y~, Λ) = ℛn(A) + ∑
k = 0

m + n − 1
yk − y~k

2

+⟨Λ, A − H(y~)⟩ + ρ
2 ∥ A − H(y~) ∥F

2 ,
(17)

where Λ ∈ ℝm × n is the Lagrange multiplier matrix and ρ is a
constant penalty parameter. The solution is obtained performing the
following steps until convergence:

Ai + 1 = min
A

ℒ(A, y~i, Λi),

y~i + 1 = min
y~

ℒ(Ai + 1, y~, Λi),

Λi + 1 = Λi + ρ(Ai + 1 − H(y~i + 1)) .

(18)

The final estimate y~ is obtained by averaging the anti-diagonal
terms of the matrix A.

We notice that the goal of these procedures is always to obtain
an approximated sequence y~ and its associated Hankel matrix
A = H(y~). Then, for estimating zi, i = 1, …, n, a second step is
performed by solving (9) or (12).

Even when the first step that mitigates the effect of noise is
successful, the computation of the generalised eigenvalues in (9) or
(12) may be unstable. This problem is particularly acute when the
number of oscillation modes is very large or the complex
frequencies are close to each other in the plane.

3 Numerical stability
3.1 Derivatives of generalised eigenvalues

Suppose that λi is the ith generalised eigenvalue of the pair
(A, B) ∈ ℂm × n with associated right and left eigenvectors υi ∈ ℂn

and ψi ∈ ℂm, respectively. We assume further that A and B are full
rank and λi are all distinct. By definition

Aυi = λiBυi, ψi
HA = λiψi

HB . (19)

Now, consider smooth variations of the matrices A and B with a
real parameter ε in a neighbourhood of the origin, i.e. ε ∈ ℬ(0).
Assume that there exist differentiable functions υi(ε), ψi(ε),
λ1(ε)…λn(ε), so that ∀ε ∈ ℬ(0)

A(ε)υi(ε) = λi(ε)B(ε)υi(ε),
ψi

H(ε)A(ε) = λi(ε)ψi
H(ε)B(ε),

(20)

where λi(0) = λi, υi(0) = υi, ψi(0) = ψi, i = 1, …, n.
 

Theorem 1: Given A(ε), B(ε) ∈ ℂm × n that satisfy (20) for all
ε ∈ ℬ(0), we have that
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λ̇i = dλi
dε = ψi

H[Ȧ − λiḂ]υi

ψi
HBυi

. (21)

Here, Ȧ and Ḃ are the first derivatives with respect to ε of A(ε) and
B(ε).
 

Proof: See the Appendix. □
The eigenvalue λi will be ill-posed, i.e. small perturbations of A

and B produce large deviations of λi from its unperturbed value, if
wi

HBvi is small. This is the case when ψi is close to perpendicular to
Bυi. The product ψi

HBυi has been associated with the numerical
condition of λi [30, ch. 7]

3.2 Perturbations on H

When analysing (12), the perturbed matrices Hl(ε) and H f (ε) are
obtained from H(ε), where ε is a scalar parameter. In that case, we
can formulate the following corollary:
 

Corollary 1: Let H f (ε) and Hl(ε) be differentiable functions that
represent perturbed versions of the pencil (H f , Hl). Assume that for
each ε ∈ ℬ(0), the eigenvalues zi(ε), and the left and right
eigenvectors vi(ε) and wi(ε) exist and they satisfy (20). Then

żi = dzi
dε ≤ E

(1 + zi )
ci

εi

Pi(zi) 2 , i = 1, …, n (22)

where E = max ( ∥ Ḣ f ∥ , ∥ Ḣl ∥ ), Pi(z) = ∏l = 1, l ≠ i
n (z − zl) is a

polynomial in z of degree n − 1, and εi = 1
2π ∫π

π Pi(ejω) 2 dω.
 

Proof: Applying Theorem 1 to the pencil (H f , Hl), we obtain

żi ≤ ∥ Ḣ f − ziḢl ∥∥ wi ∥∥ vi ∥
wi

HHlvi

≤ max ( ∥ Ḣ f ∥ , ∥ Ḣl ∥ )(1 + zi ) ∥ wi ∥∥ vi ∥
wi

HHlvi
,

(23)

where wi and vi are left and right eigenvectors of the pencil
(H f , Hl).

Recalling the decomposition in (10), we have that vi ∈ ℂn and
wi ∈ ℂm satisfy

Zn − 1
T vi = 1i, wi

HZm − 1 = 1i
T, (24)

where 1i is the ith unitary vector in ℝn. Moreover

wi
HHlvi = wi

HZm − 1DZn − 1
T vi = ci . (25)

Since Zm − 1
T = [Zn − 1

T MT], with M ∈ ℂ(m − n) × n, one may choose
wi

T = [vi
T 01 × (m − n)] to satisfy (24). On the other hand, and since

Zn − 1 is an invertible matrix, (24) implies that vi, is the ith column
of Zn − 1

−T . Then, using the result given in [31], we have that for
k = 1, …, n

(vi)k = ( − 1)k − 1 (αi)k

∏l = 1, l ≠ i
n (zl − zi)

,

(αi)k = ∑
l = 1

n − 1
n − k

zs1⋯zsn − k,

(26)

where s1⋯sn − k is a combination of n - k elements taken from
{1, …, i − 1, i + 1, …, n}. Given a choice for the left eigenvector,
∥ wi ∥ = ∥ vi ∥. Then

∥ wi ∥∥ vi ∥ =
∑k = 1

n (αi)k
2

∏l = 1, l ≠ i
n zl − zi

2 . (27)

Notice that (αi)k is the kth coefficient of the polynomial
Pi(z) = ∏l = 1, l ≠ i

n (z − zl). Re-arranging terms, we have that

z−(n − 1)Pi(z) = ∑
k = 0

n − 1
(αi)n − 1 − kz−k .

Then, the Parseval's theorem between the sequence αn − 1 − k and its
discrete-time Fourier transform states that

∑
k = 0

n − 1
(αi)k

2 = 1
2π∫−π

π
Pi(ejω) 2 dω = εi, (28)

where to compute the integral, we have evaluated Pi(z) in the unit
circle, z = ejω. Replacing this equation in (27), and its result
together with (25) into (23), we obtain

żi ≤ E
(1 + zi )

ci

εi

∏l = 1, l ≠ i
n zl − zi

2 . ◻ (29)

Corollary 1 shows that when performing spectral estimation, the
estimation of zi is sensitive to ci  but also to minl zl − zi . The
constant ci represents the residue associated with zi and it is related
to the observed strength of the complex frequency. As one may
suspect, small ci  lead to an associated eigenvalue that can be
easily perturbed. On the other hand, when an eigenvalue is located
inside a cluster of eigenvalues, żi may take a large value. Then, the
sensitivity to numerical errors of the estimated frequency zi is
affected not only by its strength in the mixture, but also by its
proximity to the other complex frequencies. In the next section, we
present a technique to cope with this problem.

4 Downsampling the base-band equivalent
Consider that yk in (13) is obtained after uniformly sampling a
continuous-time version

y(t) = ∑
i = 1

n
cie

ξit + w(t),

where ξi = (γi + j2πνi). In this case, yk = y(kTs), where Ts is the
sampling period, and zi = eξiTs. Clearly, the location of zi in the
complex plane may be controlled by judiciously adjusting the
sampling time. However, the selection of Ts responds to several
constraints when designing the signal acquisition system, and
adding additional requirements may not be feasible. Nevertheless,
the location of zi may also be changed by the decimation of the
observed signal [32].

Suppose that the observed signal has its spectral content
concentrated on Υ = [νmin, νmax], i.e. for i = 1, …, n

zi = eγiTs[cos(2πνiTs) + jsin(2πνiTs)], νi ∈ Υ . (30)

According to Section 3, one would like to ‘zoomed in’ Υ before
performing the estimation of zi to improve the performance of the
estimation algorithm. For that, we proceed as follows. Let
νc = ((νmax − νmin)/2) and define

yk
bb = yk e− jνckTs .

The signal yk
bb is known as the baseband equivalent of yk. Consider

a scalar Q such that ΥQ ≤ (2π /Ts). Then, using Fig. 1, we
construct yk

bb, D after filtering and decimating yk
bb. To avoid aliasing,

yk
bb is filtered before decimation with a linear phase finite impulse
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response filter [33]. Now, we apply the frequency estimation
procedure to yk

bb, D and shift back the estimated modes. The final
structure is shown in Fig. 1. We refer to this estimation strategy as
a shift-and-zoom technique.

Using the decimated baseband signal yk
bb, D, we construct a

Hankel matrix as in (2) and estimate the complex frequencies as in
Section 2. Let zi

bb, D be the frequency estimates obtained from yk
bb, D.

Clearly

zi = (zi
bb, D)1/Q ejνcTs .

When decimating or downsampling yk
bb by a factor Q, the complex

frequencies move in the complex plane. For Q > 1, the frequencies
that were clustered in Υ may spread apart, diminishing the value of
żi, and making the spectral estimation more accurate. It is important
to remark that the low-pass filter included in Fig. 1 modifies the
amplitudes related to the complex modes zi, affecting the value of
the derivative of zi as seen in (22).

Now, suppose that νi ∈ ∪l = 1
L Υl, for all i = 1, …, n, where

Υl = [νlmin, νlmax] are disjoints intervals. In this case, zi are separated
in L different clusters in the complex plane. To improve
performance, the procedure outlined above could be repeated for
each cluster. In particular, since Υl are intervals of unequal lengths,
the decimation factor could be different for each l. The complete
procedure is summarised in Fig. 2. 

5 Numerical experiments
In this section, we evaluate the performance of the shift-and-zoom
procedure outlined in the previous section. For that, we analyse
two examples where sums of complex exponentials are simulated
for different signal-to-noise ratios (SNRs). In both cases, we
estimated the complex modes ξi = γi + jνi and compared the results
using the procedure presented in [5]. To appraise the performance
of each algorithm, we repeat the experiments K times and we
compute the root mean square errors (RMSEs) for the estimated
frequencies and damping factors

σ̂ν = 1
K ∑

k = 1

K

∑
i = 1

n
(νi − ν^ik)

2,

σ̂γ = 1
K ∑

k = 1

K

∑
i = 1

n
(γi − γ^ik)

2,
(31)

where ν^ik and γ^ik are the estimations obtained after the kth Monte
Carlo run.

5.1 Weak modes

As a first example, we consider the sum of four modes described in
Table 1. This example is taken from [5]. We simulate yk using a
sampling interval Ts = 0.0039 s.

When applying the shift-and-zoom technique, we consider three
disjoint frequency intervals, Υ1 = [0 15.39] Hz,
Υ2 = [32.62 48.01] Hz, and Υ3 = [92.14 107.54] Hz. Clearly,
ν1 ∈ Υ1, ν2, ν3 ∈ Υ2, and ν4 ∈ Υ3.

Here, we will assume that the cluster locations are known a
priori. When this information is not available, a preliminary run of
the estimation algorithm can be performed in order to obtain rough
estimates of the frequency bands.

Notice that all three segments have the same bandwidth.
Although this is not a necessary condition for the algorithm, it
simplifies its implementation. Using this fact, we use the same
low-pass filter and downsampling coefficient for all three
frequency segments. In particular, we design an FIR linear phase
filter using a rectangular window of 16 coefficients, with
bandwidth 15.39 Hz. The downsampling coefficient is Q = 4. For
K = 200 we compute σ̂ν and σ̂γ for each SNR. The results are
shown in Fig. 3 as functions of the SNR. In Fig. 4, we also show
the RMSEs of the amplitude and phase. 

For high SNR, shift-and-zoom has a similar performance to [5].
However, for small SNR, the better conditioning of żi becomes
critical, resulting on remarkably better performance of shift-and-
zoom when compared to a more traditional approach. However, it
is important to notice that when we downsample the signal, there is
a tradeoff between the number of samples remaining after
decimation and how far apart the complex modes result.

To evaluate our procedure, we compute the Cramér Rao bound
(CRB) using the expressions in the Appendix [34]. The CRB is a
lower bound on the variance of any unbiased estimator. Although
we have not proved that the proposed estimators are unbiased, we

Fig. 1  Shift-and-zoom scheme for estimating complex modes
 

Fig. 2  Block diagram for processing the signal compound of L clusters
 

Table 1 Parameters for the example taken from [5]
i 1 2 3 4
νi −7.68 39.68 40.96 99.84
γi −0.274 −0.150 0.133 −0.221
ci 0.4 1.2 1.0 0.9
∠ci −0.93 −1.55 −0.83 0.07
 

Fig. 3  RMSE as a function of SNR: dashed lines correspond to [5]; solid
lines correspond to shift-and-zoom
(a) σ̂ν(SNR), (b) σ̂γ(SNR)

 

Fig. 4  RMSE as a function of SNR: dashed lines correspond to [5]; solid
lines correspond to shift-and-zoom
(a) Amplitude RMSE, (b) Phase RMSE
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will use this bound as an indicator of the margin for improvement
in the estimation procedure. Notice that the CRB depends on zi and
not on ξi. Therefore, when downsampling yk

bb, the CRB changes. In
Fig. 5, we compared the ratios σ̂ν/ CRB(ν) and σ̂γ / CRB(γ) for
the estimations obtained through shift-and-zoom and through the
procedure in [5]. 

Notice that the downsampling factor has an upper bound
determined by the number of samples in the original signal. As was
pointed out in [34], the CRB depends not only on the distance
among frequencies but also on the number of samples. In fact, it is
pointed out that the CRB depends on the product of the number of
samples and the separation among frequencies.

The length of the observed signal is also significant when
estimating the damping factors. This issue becomes critical when
the estimated model order is larger than the actual one. In this case,
erroneous phantom damping factors could affect the estimation of
the actual parameters. A solution in [35] tackles this problem by
using γi′ = γi/(m + n − 1).

To analyse the effect of the downsampling factor Q, we have
computed the residual RMSE between the estimated signal and the
true signal for different values of Q. The results are shown in
Table 2. The minimum RMSE is obtained for Q = 4. As we
increase Q, the RMSE becomes higher because fewer samples are
used. On the other hand, as Q decreases, even though a longer
signal record is analysed, we lose the effect of frequency
separation.

5.2 Clustered modes

In the second example, we consider the sum of 25 damped
oscillations with different complex amplitudes each. This example
that corresponds to data obtained from magnetic resonance
spectroscopy (MRS) was presented in [17]. The sampling interval
is Ts = 0.4883 × 10−3. The parameters are described in Table 4
where frequencies, damping factors, phases and amplitudes are
provided for each complex mode. The authors grouped the 25
modes in 6 disjoint clusters. In Fig. 6, we have plotted the locations
of zi = e(γi + j2πνi)Ts, i = 1, …, 25. 

For the purpose of using the shift-and-zoom procedure, we
consider L = 5 different frequency intervals. Interval limits and
decimation factors are found in Table 3. 

We processed yk with the shift-and-zoom algorithm and
compared the estimations with those obtained with no
preprocessing (shifting and decimation). Figs. 7 and 8 show the
RMSE of the estimated frequencies and damping factors for the
different clusters using both techniques. For a better presentation of
the results, the Cluster IV is separated into two. Cluster IV (a) with
four different frequencies and Cluster IV (b) with three
frequencies.

At low SNR, shift-and-zoom performs better than a more
traditional approach. Since shift-and-zoom increases the frequency
separation, improving żi makes the algorithm more resilient to
noise disturbances. This observation is even more relevant when

Fig. 5  Ratio between RMSE and the CRB. Solid lines correspond to shift-
and-zoom and dashed lines to [5]
(a) Ratio between RMSE and the CRB for ν, (b) Ratio between RMSE and the CRB
for γ

 
Table 2 Residual RMSE as a function of the oversampling
factor
Q 1 2 4 7 9 14 15
RMSE 15.27 15.26 7.82 11.25 12.09 14.54 15.82

 

Fig. 6  Location of the modes described in Table 4 when
Ts = 0.4883 × 10−3

 
Table 3 Frequency segments and decimation factors

νci, Hz νimin, Hz νimax, Hz Qi

Υ1 −349.45 −390.41 −308.49 4
Υ2 −130.29 −191.73 −68.85 3
Υ3 14.95 4.71 25.19 4
Υ4 140.95 100.61 166.45 5
Υ5 436.75 416.27 457.23 6

 

Fig. 7  RMSE for ν̂p as a function of SNR for all clusters. Dashed line
corresponds to [5]; solid lines correspond to shift-and-zoom
(a) Cluster I, (b) Cluster II, (c) Cluster III, (d) Cluster IV (a), (e) Cluster IV (b), (f)
Cluster VI

 

IET Signal Process., 2020, Vol. 14 Iss. 3, pp. 134-141
© The Institution of Engineering and Technology 2019

139

Authorized licensed use limited to: MINCYT. Downloaded on May 22,2020 at 18:55:46 UTC from IEEE Xplore.  Restrictions apply. 



the amplitude ci  is small. This is the case of modes ξ14 to ξ17 in
Cluster IV.

In this example, it was critical to decimate yk
bb instead of yk

directly. Should we have done the latter, the maximum decimation
factor would have been Q = 2 in order to avoid aliasing. Such
value for Q results in a poor estimation of some modes, in
particular, those in Cluster IV (a). By implementing parallel
frequency estimation on each cluster, we could separate further the
complex frequencies, improving the final performance. Using this
approach, we transform a poorly conditioned problem into five
different problems that are better conditioned.

6 Conclusion
We have analysed the performance of spectrum estimation
techniques when the complex frequencies are close to each other.
We have shown that the estimations become vulnerable to small
perturbations in the observed data when the modes have small
energy and/or the distance among them is small. Shift-and-zoom is
a technique to cope with this problem when some a priori
information is available. In those cases, we have shown that it
outperforms Hankel-based direct approaches that do not benefit
from the enhancement spacing among complex modes introduced
in shift-and-zoom. In particular, we have shown that the proposed
scheme is more efficient than traditional schemes when working
under a low-SNR regime. When the SNR is high, the shift-and-
zoom is as efficient as a more traditional method. In this case, the
decrease in the number of samples due to the decimation step
becomes relevant, and shift-and-zoom requires a longer data stream
to converge to the CRB. Finally, with the shift-and-zoom
technique, we overcome the problem of introducing aliasing when
we make the downsampling. However, as we mentioned earlier
there exists a trade-off between the number of samples and the
decimation factor.
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8 Appendix
 
8.1 Computation of λ̇i

Let V = [v1, …, vn] ∈ ℂn × n and WH = [w1
H, …, wn

H]T ∈ ℂn × m be two
matrices containing the right and left eigenvectors, and
Λ = diag(λi) the diagonal matrix of eigenvalues. Then, (19) can be
rewritten as

AV = BVΛ (32)

WHA = ΛWHB (33)

Multiplying both sides of (32) by WH, we obtain
WHAV = WHBVΛ = ΛWHBV, where the last equality comes from
(33). Since the diagonal matrix Λ commutes with WHBV, this last
matrix is diagonal and so is WHAV.

Now, considering the small perturbations defined in (20) and
differentiating with respect to ε, we obtain

ȦV + AV̇ = ḂVΛ + BV̇Λ + BVΛ̇ (34)

Since V spans ℂn, any vector in that space can be formulated as a
linear combination of vi. Then, v̇ j = ∑i ri jvi. Let R = [ri j] ∈ ℂn × n

be such that V̇ = VR. Then, replacing in (34) and left multiplying
both sides of the equation by WH, we obtain

WHȦV + WHAVR = WHḂVΛ + WHBVRΛ + WHBVΛ̇ (35)

Notice that WHAVR − WHBVRΛ = WHBV[ΛR − RΛ]. The
diagonal elements of [ΛR − RΛ] are zeros, because Λ is a diagonal
matrix. Moreover, since WHBV is also a diagonal matrix,
WHBV[ΛR − RΛ] has zeroes in its diagonal too.

Equality (35) defines m × n scalar equations. Evaluating those
corresponding to the diagonal elements, we obtain

wk
HBvkλ̇k = wk

H Ȧ − λkḂ vk

as in (21).

8.2 Parameters for numerical example from [17]

See Table 4. 

8.3 Expression of the CRB

Following [34] the CRB for the frequencies and damping factors is

CRB(νi) = [Q~]ii
SNRi

, i = 1, …, M (36)

CRB(γi) = [Q~](i + M)(i + M)

SNRi
, i = 1, …, M, (37)

where SNRi = ci
2 /σw

2 , with σw
2  the variance of the noise signal,

and Q
~ = [2Re(ZZH)]−1. Here

Z =

jΘTZN − 1

−ΘTZN − 1

ΘZN − 1

jΘZN − 1

, Θ = diag[ej∠c1⋯ej∠cM],

T = diag[0 1⋯N − 1],

ZN − 1 is as defined in (4), and N is the length of the signal in (13).
When the complex frequencies come close to each other, ZN − 1ZN − 1

H

are near singular. Therefore, since the CRB is inversely
proportional to the determinant of ZN − 1ZN − 1

H , the value of the CRB
increases.

Table 4 Signal contains 25 complex modes clustered in 5
regions
Cluster i γi νi ci ∠ci

I 1 −0.07 −353.90 0.77 0.15
2 −0.132 −352.02 6.2 0.0
3 −0.1 −349.42 0.98 0.3
4 −0.11 −348.01 5.4 0.9
5 −0.12 −347.01 6.1 0.7
6 −0.081 −345.00 0.95 0.2

      
II 7 −0.106 −132.50 4.71 0.12

8 −0.129 −131.40 3.9 0.1
9 −0.203 −130.01 7.0 −0.234
10 −0.16 −129.17 5.43 0.2
11 −0.19 −128.09 4.4 −0.52

      
III 12 −0.102 14.10 3 0.21

13 −0.127 15.81 3 −0.8
      

IV 14 −0.076 107.70 0.39 −0.3
15 −0.091 110.24 0.37 −0.8
16 −0.1 112.50 0.36 0.1
17 −0.08 114.00 0.3 0.9
18 −0.21 124.01 3.2 −0.106
19 −0.15 125.62 5.53 0.2
20 −0.173 126.98 4.7 −0.3

      
V 21 −0.11 434.00 1 −0.15

22 −0.12 435.38 5 0.26
23 −0.157 436.19 6.1 −0.2
24 −0.12 437.97 5.1 0.0
25 −0.18 439.51 6 −0.1
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