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ABSTRACT. In this paper we study a general separation property for sub-
systems GG, whose attractor K¢ is a sub-self-similar set. This is a generaliza-
tion of the Lau-Ngai weak separation property for the bounded distortion
case. For subsystems with positive Hausdorfl measure in its similarity di-
mension, we characterize the subsets of K¢ with positive measure where
the separation property may fail. We exhibit two examples of fractal sets.
One such that do not satisfy the weak separation property and whose ex-
istence was questioned by Zerner. The other one such that have positive
Hausdorff measure in its similarity dimension an the separation property

fails in a subset of positive measure.

1. INTRODUCTION

Let X be a non empty closed subset of R” and let I' = {1,... ¢} a finite
index alphabet, ¢ > 1. An iterated function system (IFS) consists of a family
{pi}ticn of contractions on X. That is, for i € I' we have ¢; : X — X such
that

lpi(x) — @i(y)| < rilx —y| forall 2,y € X,

where 0 < Tyin < 7 < Tmax < 1, and | - | represents the euclidean norm in R”™.

An IFS determines a unique non empty compact set K satisfying
K= U SOi(K ) )
et
which is in general a fractal set [8, 6]. We will denote by I* the set of all words

of length k, w = wiws ... wy, w; € I', and by I* = U, I* the set of all finite

words, for w € I* we will denote by |w| the length of w. For w = w; ...wy € I*



we will denote ry, = 7, ... Twy, Yo = Gy © - 0 Py, and K, = p,(K). We
remark that K, C K,, for all w, A € I*.
We consider the general class of IF'S of bounded distortion (BD) [6], that is,

we assume that there are constants M, M; > 0 such that
(1.1) Mo| Ko ||z — y| < [pu(z) — pu(y)| < Mi|Kyllz -yl

forallw € I'*, z,y € X; where |K,| represents the diameter of the compact set
K. The BD property (1.1) is satisfied if the ¢;’s are conformal maps [14, 10],

and in particular for contracting similitudes.

Let us denote by I the space of infinite successions w = wiwy ..., w; € I*
with the usual metric: d(w,\) = > 377, Iw@)‘ﬂ, for all w,\ € I. We consider

the natural projection map Il : I — X defined by
M(w) = (] Kur.aon -
n=1

It is clear that d(w,\) < ein if wj = A; for all j = 1...n and, conversely,

d(w,\) < ein implies w; = A; for all j = 1...n. Thus II is a continuous map
and II(I) = Ugerll(w) = K. For a general subset of successions G C I, we
will denote by G* the set of words of length k, w € I* for which there is A\ € I
such that w\ € G; also G* = U2, G*.

We say that G C I is a subsystem of I if G is compact and shift invariant,
that is if w = wjwaws--+ € G, then wows--- € G. Then the compact subset
Ke = 1I(Q) is a sub-self-similar set satisfying Kg C Ujengi(Kg). Such
constructions were studied by Falconer [7] for similitudes.

For a subsystem G let us define the similarity dimension of G by the unique
solution s of the pressure equation pe(se) = 0, where p(s) is defined by

o1
pols) = lim - loa(Yeqn [KLl).

k—o00

Separation properties are needed to find formulas for the Hausdorff dimen-
sions of K and K. If the IFS [ satisfy a strong separation property like the
Open Set Condition then the Hausdorff dimension of K coincides with the



similarity dimension of I, dim K = s; and H* (K) > 0 [8]. This result extends
for general subsystems as was showed by Falconer [7] and we recall below. On
the other hand if I satisfy the weak separation property of Lau and Ngai [9]
then dim K coincides with the growth dimension of I [16], which is in general
smaller than s;.

In this work we study the following separation property. Let G' a subsystem
of bounded distortion, for a non empty compact set A C X, we will denote by

G(A) the family of finite words
GA) ={w=wi...w, € G": |K,| < |A| <Ky, v, ; KoNAFD}.

We will say that a subsystem G is separated if there exists M > 0 such that
8(G(A)) < M for all compact A, where #(-) denotes the cardinal (number of
elements).

For G = I the separate condition is a reformulation of the Bandt-Graft
condition [1] which is equivalent to the Open Set Condition. See [15] for
contracting similitudes and [13] for conformal IFS. However is easy to see that
our separation property does not implies the Bandt-Graft condition for general
subsystems.

In the next section, we prove the dimension formula for sub-self-similar
sets and some complementary results. The principal result of this section
(Theorem 2.2) was proved by Falconer [7] but we give a different proof here.
Sections 3 and 4 contains original results and examples. In Section 3 we
characterize the weak separation property and the growth dimension of K
through a subsystem W. We propose a generalized weak separation property
and give an example of a fractal set that satisfy the generalized property
but not the weak separation property. The existence of such fractal set was
questioned in Zerner [16]. Finally, in Section 4, we study subsystems for which
H*¢(Kg) > 0. For G = I this implies separation but we show that this
is not the case for general subsystems. The principal result (Theorem 4.3)

characterizes the subsets of Kg with positive measure where the separation



property fails. In the example of this section we show a fractal set where we

can find such a subset explicitly.

2. SIMILARITY DIMENSION AND SEPARATE SUBSYSTEMS

Let G a subsystem, A C X a compact set and k, s > 0, we will denote

CGu= ) MK and cgu(A) = Y K
weGHk weGH
K,NAZ)
Taking into account the bounded distortion and the shift invariance of G is
easy to see that

(2.1) CGotm = Z [Kon|® < MY ¢t g, CGm -

nAEGE+T™
[n|=k,|Al=m

Thus log(cg, ;) is a subadditive succession, the limit pe(s) = limy_,o ¢ log(cg )

exists and
(2.2) My® e < ¢, .

Moreover, we know that pg(s) is a continuous decreasing function of s and
there exists a unique sg > 0 such that pg(sg) = 0 which is the similarity
dimension of G. The following conditions are trivial consequences, of the

definition, see [7, Proposition 3.2].
Proposition 2.1. Let sg the similarity dimension of G, then

o o
sg =1inf{s > 0: Zcék < oo} =sup{s >0: chGk =00},
k=1 k=1

sg =1inf{s > 0: klim Car = 0} =sup{s > 0: lim cg, = co}.
—00 k—oo
It is not true, in general, that cg ., > Ccg ¢, for some constant C' > 0.
However, for G = I, it is easy to see that ¢, > Mg ¢t e, and
(2.3) M® ekrr(s) < C?k < M;*® ekpr(s)

We remark that if H,G are subsystems, H C G C I, then ¢} < gy < ¢y,

pr(s) < pa(s) < pi(s), for all k,s > 0, and sy < s < s1.



The following theorem relates dim Ko with sg. The first part is standard
whereas second part was proved in [7] for similitudes. Falconer’s proof extends
to the bounded distortion case but we offer a different proof here to keep
this work self-contained and because it contains techniques that we will use

repeatedly.

Theorem 2.2. Let G a subsystem, then dim Kg < sqg. If, in addition, G is
separated then dim K¢g = sg and H*¢ (Kg) > 0.

Proof. Let t > sq, then pg(t) < 0. For large k we have %log ctGJC < —-e<0
and cf;;, < e < 1. This implies that the t-dimensional Hausdorff measure
of K¢ is finite, H'(K¢g) < oo, for all t > sg, and thus dim K¢g < sg.

Assume now that G is separated, we prove that sg < dim Kg. If dim Kg >
sy there is nothing to prove, since we have s; < dim Ko < s¢ < s7.

Suppose dim K < sy and let ¢ be such that
(24) dim Kg <t<sy.

We want to prove that there is B > 0 such that c;, < B for all &. Then
pe(t) < 0 which implies s¢ < ¢ and thus, since this is true for all ¢ satisfying
(2.4), we have sg < dim Kg.

By (2.4) H'(Kg) = 0 thus, for all € > 0 and taking into account that Kg
is compact, there exists a finite cover K¢ C |JU; such that Y |U;|* < e. We
set € < M{"M~1, where M is the separation constant, and let [ such that

rlo JK| < |Uj] for all j. We use induction to prove that

(2.5) chp < Mytelori®

for all k.
For k <ly we have that

Cth',k) S Cl}’k S Mo_tekpl(t) S Mo—telopl(t) 7



by (2.3) and since p;(t) > 0 by (2.4). Now, suppose [ > [y and that (2.5) is
true for all k < [, we evaluate
U= K"
weG!
K,NU;#0
We remark that for each w € G!, K, N U # 0, we have |Ky, o] <
Torow | K| <LK < vl | K| < |Uj], then w has an initial word 1, w = nA,

such that n € G(U;). Thus

CtG,l(Uj)S Z Z [Kop|" < Z Z [ Kol

n€G(Uj) nheG! n€G(Uj) AeGl=Inl
t t ot
< M; E | K|" ey
neG(Uj)

< M telorr® ppt Z |K,|", by the inductive hypothesis
neG(Uj;)

< Myt O ML U,

since |K,| < |U;| and §(G(U;)) < M by the separation property. Thus, since
{U;} is a finite cover of K¢,

CtG,z < Z CtG,z(Uj)
J

< Mg telrr® b g Z U, [t

J

< Mo—telop[(t) Mf Me< Mo—telopf(t) 7

since Y |U;" < e < My *M~". This complete the proof of (2.5) and hence
dim K¢ = sg. Now, to prove that H*¢(Kqg) > 0, we simply remark that

the separation property implies the conditions of Falconer [5, Theorem 2] for

Kg. 0J

Recurrent sets and graph-directed sets [2, 11] are standard generalizations
of IF'S that corresponds to particular types of subsystems [7]. In the context
of this work we consider the following definition. We will call restriction to

a subset of words of length n, R C I", and consider the subset [I|R] of all



successions w = wiws - -+ € I such that w; wiio...wi, € R for all 4. It is
easy to see that [I|R] is in fact a subsystem of I and we say that [[|R] is a
recurrent subsystem defined by the restriction R.

We associate [I|R] with a directed graph. Let [I|R]"~! be the vertex set, and
we draw an edge from A to 7 if and only if A\np € [I|R]*. If this directed graph is
strongly connected (i.e. every two vertices can be connected through a directed
path) we say that [I|R] is a connected recurrent subsystem. The classical theory
of IFS extends to connected recurrent subsystems and separation properties
were studied in that case [3].

If G is a subsystem we consider the recurrent subsystems [I|G*]. It is clear
that [I|G*] 2 [I|G*] D G for all k and G = NX,[I|G*] by compacity.

Moreover si7qr tends to sg as we would expect.
Proposition 2.3. limy . sj7jax = Sa-

Proof. 1t is clear that sjjg+) is a non increasing succession syjgr) > Sipjgr+1] =

sq, then limy oo S[igk) = t > sq. Let s > s¢g, then
s s(m—=1) ¢ s m —s s s m
CligH pm < My (C[I\Gk],k) = M, <M1 CG,k) ;

by (2.1) and taking into account that [I|G*]* = G*. Proposition 2.1 implies
that Mycg, < 1 for k great enough, then ¢y, = 0 when m — oo which

implies t < S < 8 and thus ¢t = sg. O

In some cases, we need to approximate G through a family of systems which
are not necessarily subsystems of I. More precisely, let {J!} a family of finite
subsets J} C G* indexed by a positive real or integer parameter h. We say
that {J}} approaches G if for each h there are positive integer numbers kq(h)
and k;(h) such that: ko(h) < |[A| < ky(h) for all X € J}; ko(h) — oo when
h — oo and, for all w € G*( | there exists at least one A € J}! such that

W= An.



Each J! is in fact an alphabet for a system .J, which is not a subsystem
of I according to our definition. However, we have the following result which

relates the similarity dimensions of I and Jj,.

Proposition 2.4. Let {J}} a family that approaches G, then sg < s;, for all

h and limy,_, 55, = S¢.

Proof. We show first that s¢ < s;. For m € N, we remark that for each
w € GF1WM there exists at least one o € J; such that w = a8 with |B] < ky(h),
thus

CG ey (hym < Z | Kagpl®

where |af| = ki(h)m, a € J; and |B]| < k:l(h). Then if o € JJ! it results that
m—1<mn < (ki(h)/ko(h))m. Let m’ the integer part of (ki(h)/ko(h))m and
M = max{c, : k < ki(h)}, then

I

Cle(h)m < MSMZ|K * < MSMZCJhn

n=m

If s > sy, then Zf;m ¢y, » — 0 when m — oo by Proposition 2.1. Thus
lim,,, 00 €55 ket (h)ym = 0 for all s > s, and sg < s,.

Now let s > s and observe that

m kl(h) m
o < ()" (XD 1) <M (M Y ki)
)\EJ,i n=ko(h)

By Proposition 2.1 Zn ko(h) Con < M, for all h great enough, then c;, ,,, = 0

when m — oo and this implies that s;, <s. Thus limj,_,~ sj, = s¢- O

3. WEAK SEPARATION PROPERTIES

In this section, we will relate the weak separation property (WSP) of Lau
and Ngai [9, 16] with the existence of a separate subsystem and propose a
generalization for IFS of bounded distortion. First, we make the following

general observation whose proof is left to the reader.



Proposition 3.1. Suppose we have a succession of subsets G C I', Gy C
I?.... such that, for all word wiws ...w, € Gy, we have that wy . ..w, € G,_1.
Then G = {w € I : wiws...w, € Gy, foralln} is a subsystem of I and
G" C G,.

Now, we introduce a total order on I* by setting A < w if |A\| < |w|, and the

lexicographic order if |\| = |w|. Let us define a subsystem W by
W,={wel: ¢, #¢py; foral A\ <w},

and W ={wel:w...w, €W,, foralln}. This is a subsystem by the
preceding proposition (we will sketch the argument in Theorem 3.3), moreover
it is easy to see that and Ky = K.

We recall now some definitions of Zerner [16]. In that follows we assume
that the ¢;’s are similitudes and K is in general position. For a,b > 0 and

A, U C R" let us define

F={pp:wel}t={p, :weW},
F,={¢,€F:r, € (brmm,b]}, and

Fa,U,M = {900.) € Fa\U| : (pw(M)ﬂU 7é (Z)}

It is clear that there is a one to one correspondence between F' and W*. The
growth dimension B of I is defined as the exponential growth rate of §(Fy) for
b — 0. In our notation, consider the family {J!} where J! = {w € W* : r, €
(3 Pmin, £} for h > 0, then Fy), = {p, : w € Ji} and B = limy, o 55, [16,
Theorem 2]. Setting a > 0 and M C R™ non empty, we say that I satisfy WSP
if and only if §(F, ) is bounded for all U C R™ [16, Theorem 1]. In that
case dim K = ;. With respect to the subsystem W, we have the following

result.

Theorem 3.2. 57 = sy and I satisfy WSP if and only if W is separated. In
that case dim K = sy and H*V (K) > 0.



Proof. First we observe that {J}} is a family that approaches W, then 3; =

limy_, 55, = sw by Proposition 2.4. Now, we set a = ﬁ, and M = K, then

by the one to one correspondence between F' and W*,
t(Fapm) =Hw € Wi rmn|U| < |Ko| < |UJ; K,NU # 0},

since |K,| = r,|K| for similitudes. We denote by Wy the right set, and
compare it with W(U). Let w € W(U), then |U| < |Ky,. w,_,| and ryin|U] <
| K| If rmin|U| < | K| then w € Wy, on the other hand if 7, |U| = | K|, then
Tmin| U] < [ Koy woy] = |U| and wy ... wi—1 € Wy. Conversely let w € Wy, If
|K,,| < |U| then there is a h < k such that |K,, o, | < |U| < |Ky, . w,_,
wi...wy, € W(U), on the other hand if |K,| = |U|, then |K,;| < |U| and
wj € W(U) for some j € I.

Thus #(F,ua) is bounded if and only if §(W(U)) is bounded, i.e. if and

| and

only if W is separated. The last assertion follows directly from Theorem 2.2

since Ky = K. O

Now, we move to the bounded distortion case to generalize WSP. The sub-
system W was constructed by eliminating words w such that K, = K,, for
some word A < w. We propose a direct generalization by eliminating words
w such that K, C Ky U - U K@) for some words A(1),...,A(k) < w.
Specifically, we define:

GWRI{MEITL:KWSZKA(l)U”'UKA(k); forall)\(l),...,)\(k:)<w},
and GW ={wel:w...w, € GW,, foralln }.

Theorem 3.3. GW is a subsystem with Kqw = K. If GW s separated then
dim K = sgw and H*WV (K) > 0.

Proof. We will prove that GW is a subsystem by using Proposition 3.1. That
Kaow = K is clear from the definition and then the theorem follows from

Theorem 2.2. Let wyws...w, € GW, and suppose that wy...w, ¢ GW,_1,

10



then there are A(1),...,A(k) < wa...wy, such that K, ., C Kyq)U---UKyg).

We then remark that wiws . ..w, > wiA(7) and

Korwnon = P (K. 0n) C Py (K)\(l) u---uU KA(k))
C Yoy (Kx)) U -+ U o (Kagy) = Koy U U Ko
which is a contradiction. Thus ws . ..w, € GW,,_; and GW is a subsystem. [

If GW is separated we say that I satisfy GWSP. The next example shows a
system which satisfy GWSP but do not satisfy WSP.

Example 3.4. Let X = [0,1] x [0,1] the unit square in R?. Let I' =
{1,2,3,4,5,6,7};

pr(x) =324+ (0,2), pa(x) = 52+ (5,3), ws(a) = 52+ (3,3)

It is easy to see that K = [0, 1] x C, where C'is the usual Cantor set. Now we
consider the subsystems W and GW. First we observe that if w =w;...wy €

I*, then
SOW($> = (%)k’x + (ql + Q257 QS) )

where ¢1, ¢o, g3 are rational numbers, 0 < ¢;,q93 < 1 and 0 < g5 < % Moreover

@p=1"+3)"+ -+ (% , where e; =

lifw, =7
Taking this into account we can see that ¢, = ¢, if and only if w = A for all
w, A € I*. Indeed, if ¢, = @), then w; = 7 if and only if \; = 7 and then must
be w = A. Therefore W = I which is not separated, that is I do not satisfy
WSP.
On the other hand GW; = GW! = {1,2,3,4,5,6} since K; C K;UKj, then
GW ={1,2,3,4,5,6}° which is separated (satisfy OSC) and I satisfy GWSP.

In Figure 1 we schematize the seven transformations over the unit square X

11
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FIGURE 1. A system satisfying GWSP but not WSP

and the subset U e3¢, (X) (on the right) which approximates K and shows
the overlapping effect.

We remark that K is a self-similar set in general position satisfying dim K =

_ log6 log 7
SGW = log3 log3

Zerner [16].

= sy < dim X = 2, whose existence was questioned in

4. POSITIVE HAUSDORFF MEASURE

In this section we study subsystems with #H*¢(Kg) > 0. We know that
H¢(K¢g) > 0 implies that G is separated if G = I (see [15] and [12] for simil-
itudes and [13] for conformal systems), and it is also true if G is a connected
recurrent subsystem.

To analyze the general case we must introduce some notation. Let Z C
K¢ the set of points where the separation property fails: 7 = {z € Kg :
for all N > 0 there exists a closed set A such that z € A and §(G(A)) > N}.
It is easy to see that G is separated if and only if Z = 0.

12



For w € GG let us define:

b(w,n) = lim inf > KA, b(w) = inf b(w, n)
xeqm
W1 ...wp AEGMT™
b(w,n) = limsup Z |K,\|%¢, b(w) = sup b(w, n)
m—0o0 n

AEG™
w1 ...wn)\EG”er

We remark that 0 < b(w) < b(w,n) < b(w,n) < b(w) < 4+o00. The functions

b(w) and b(w) are not continuous in general, but we have the following

Proposition 4.1. Let w € G and € > 0.

(1) There is § > 0 such that b(n) < b(w) + € for all n € G such that
d(w,n) < 6.

(2) If b(w) > N, then there is § such that b(n) > N — ¢ for alln € G such
that d(w,n) < 0.

Proof. To prove (1), let ng such that b(w, ng) < b(w)+e, then if d(w,n) < 1/m

we have that wy...wy, =m1 ... 7y, and
b(n) < b(n, ne) = blw,no) < b(w) +e.
The proof of (2) follows in a similar way. O

Next, we will characterize subsets of Z with null and positive sg-Hausdorff
measure using these functions. First we will see, in the following example, that

is not true in general that H*¢(Kq) > 0 implies H*¢(Z) = 0.

Example 4.2. We consider the system [ = {1,2,3,4} and the restrictions
R1 = {11,12,21,22}, R2 = {33,34,43,44} and R = R1UR2U{13, 14, 23, 24}.
Let G1 = [I|R1], G2 = [I|R2] and G = [I|R] the corresponding recurrent sub-
systems, G'1 and G2 are connected whereas G is not. The associated directed

graphs are drawn in Figure 2.

13



G1 G2

FI1GURE 2. Directed graphs associated with Example 4.2

We assume that sge < sg1 and prove that sg = sg1. In fact, sg1 < sg since

(G1 C . On the other hand

k
= 2 Kl Y Kl

wEG2k h=1 qeG1h
BeG2k—h

k
SG1 SG1 SG1 SG1
< oo + My § :CGl,h CG2k—h -
h=1

Since G'1 and G2 are connected recurrent subsystems we know that there
exist D > 0 such that ¢, < D for i = 1,2 and all k. Moreover, taking into
account that sge < sg1, we can choose D such that ¢!, < D for all k (Indeed,

if sg9 < s then CSGC"Qlk — 0 when k& — 00). Then
c‘éG,i <D+ ]ngan? < k(D + MfGlDz) and kh_)rgo % log CZG;: <0,

which implies s¢ < sg1.
Now, we will consider two particular examples in R? where H*¢(Z) > 0 and
we will study the values of b and b. Let R : R* — R? the rotation of angle %

around the origin and let a,b € R, 0 < a < b < ‘/75 Let

o1(x) =rmR(z), ea(x) = TQR(x — (1,0)) + (1,0)

p3(x) = r3R(x), @a(x) = 7"4R(x — (1, O)) +(1,0).

For the first example we set 1y = r, = b and 9 = r3 = a, then sgs = sg1 =

si. Besides we know that G1 is separated, then H*¢ (K1) > 0. On the other

14



FIGURE 3. Non separated subsystem: black points are con-

tained in Z and have positive sg-Hausdorff measure

hand G is not separated: it is easy to see that that 0 € Z and then, since
for all 5 € G, o € G1 we have that af € G, it results that K5 C Z. Thus
H*c(Z) > 0. In Figure 3 we show the four transformations applied to the unit
square and approximations of K¢ in gray, and K¢y in black.

By an argument similar to that used above, we can see that there is a

constant D’ such that
ct%, > D'+ kM D",

Thus, if w € G1, b(w,n) = limsup,,_,, gy = oo for all n. Therefore we have
that b(w) = +oo for all w € G1, it is to say Kg1 C II({w € G : b(w) = +oc}).

For the second example we set 1 = b and ry = r3 = r4 = a, then sg <
sg1 = Sg. Again G1 is separated, H*¢(Kg1) > 0 and K¢ € Z. Now, for
w € G2, b(w,n) = liminfy gy, = 0 for all n. Then b(w) = 0 for all
w € G2 and, moreover, b(w) = 0 for all w = o such that 5 € G2. But every
succession 17 € GG may be approximated by w’s such that w = af, § € G2,
then K¢ C Ke =II({w € G : b(w) = 0}).

In these examples we found a subset K’ of Z with positive sg-Hausdorff

measure and such that K’ is contained in the closure of a subset where b(w)

15



is arbitrarily small or b(w) is arbitrarily large. The next Theorem shows that

such subset always exist when H*¢(Z) > 0.

Theorem 4.3. Consider the subset

7 = H(ﬂe>0({w €G bw) <etU{we G bw) > %})) ,
then H*¢(Z — Z') = 0.
The proof follows from two lemmas. Let us define
Bl) = {we G e <bw), bw) <1/e}; and
B(e) ={w € B'(¢) : d(Il(w), K¢ = II(B'(€))) = e},
where d corresponds to the euclidean distance.

Lemma 4.4. Let n € G*, if there exist 5 € G such that w = np € B'(¢), then

e/2< > K0 <2/,

AeGk—Inl
NAEGF

for k large enough. In particular, the inequalities follow if n is such that

K, N Kg CTI(B(e)).

Proof. From the B'(€) definition we have that

lim inf |K5[°¢ = b(w, |n]) > b(w) > €
k—o0 eghtrl
nAEGF
limsup  »  |[Ky|*¢ = b(w, |n]) < b(w) < 1/e,
k—o0 G-Il
nAeGF
and the lemma results from limit properties. 0

Lemma 4.5. H*¢(Z N1I(B(€)) =0 for all e > 0.

Proof. We fix € > 0 and suppose Z NTI(B(e)) # 0. For N > 0 let us denote
by Ay the family of sets A such that: 0 < |A| < €/3, ANZNII(B(e)) # 0
and §(G(A)) > N. It is clear that Ay is a Vitali family for ZNII(B(e)). Now,
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for A € Ay we define Uy = UneG(A) K, N K¢, then {Ua}aca, is also a Vitali
family for Z NII(B(€)). By the Vitali covering theorem [4, Theorem 1.10], we
have for all e; > 0 that there exists a disjoint finite family {Uy,} such that

(4.1) H(ZNI(B(e) < Y |Ua, " + €2

Now, we remark that, for k large enough such that [K,, ., ,| <|4;| for all j

and all w € G, we have

cep(Ua;) = Z |Ko|*¢ = Z Z RO

weGk nEG(A;) nA\eGFk
KwﬂUAJ?é@
> Yl (X IKpe).
n€G(Aj) AeGk=Inl
nAEGF
We observe that
(4.2) d(K,, Ke —11(B'(€)) > €¢/3,

for all n € G(4;), since K,,NA; # 0, A;NII(B(e)) # 0 and |K,| < |4;] < €/3.
Thus K, N K¢ C II(B'(€)) and using the previous lemma we find that

M€ € s s
V)2 TS ez 0 (U P

neG(A;) neG(A;)

> O N Uy,

(M5°) erifa
where C' = Sge Since |Ky| > TminMo|Aj| > rminMo(|Ua,|/3) and

8(G(A;)) > N. Therefore,
43 Dapes . 7Dl < )€ o TB/3)

for k large enough since Uy, are disjoint sets and Us, C II(B(e/3)) which
follows from (4.2).
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Now, let m such that |K,| < ¢/3 for all n € G™. If K, N1I(B(e/3)) # 0 then
K, N K¢g C II(B'(¢/3)) and we have that

o (I(B(e/3) < Mie Y |Kn|SG( 3 |KA|SG)

neGgm™ AeGk—m
K,NII(B(e/3))#0 nAEGF
€ s
cut(X I,
neG™
KaOTI(B(e/3)) 20

for k large enough. Combining this inequality with (4.1) and (4.3) we obtain

/

H¢(ZNIL(B(e)) < % + €,

for some constant C’ > 0 which depends on e but is independent of N and es.

Thus H*¢(Z N1I(B(e)) = 0. OJ
Proof of Theorem 4.3. The previous lemma implies that
H* (Z N Uesoll(B(e))) = 0.

Then we only need to show that Kg — Usoll(B(e)) = Z'. Let ¢ € Kg,
x = II(w) such that x ¢ Ucoll(B(€)), then either w ¢ B'(e) for all € or
w € II(B'(€)) but d(z, Kg — II(B'(¢))) < € for all € < €. In the first case,
either b(w) = 0 or b(w) = oo and then x € Z’. In the second case, let
d=d(z,Kg —II(B'(€))). If 0 < d < € then w € B(4), since w € B'(¢) C B'(0)
and d(x, Kg — II(B'(0)) > d(x, Kg — II(B'(€)) = 9, which is a contradiction.
Thus must be § = 0 for all € < ¢y which implies = € Z’. O

At last, we consider connected subsystems, which generalize connected re-
current subsystems. We say that G is a connected subsystem if there exists
T > 0 such that, for all a, 3 € G* there is a A2 € G*, |\3] < T, such that
aNp e G*.

For a € G* we introduce the notation c(a)g;, = > AEGH |K,|*. Now, we can
state the following result whose proof uses standard teoé?lerﬁques and inequalities

like (2.1) and (2.2).
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Proposition 4.6. If G is a connected subsystem then there are constants Cy,
Cy such that

cr® ekpa(s) <cla)y, < C5° ekpa(s) ’

for all « € G*.

Theorem 4.7. Let G a connected subsystem. If H*¢(Kg) > 0 then G is

separated.

Proof. The previous proposition implies that C7°¢ < c(a)qf, < Cp°¢ for all
o € G*. Therefore O;°¢ < b(w) < b(w) < Cy°¢ for all w € G, Z' = ) and
H*c(Z) = 0 from Theorem 4.3. We want to prove that Z = (). Suppose Z # (),
let x € Z and for all N > 0 let Ay be a closed set such that + € Ay and
8(G(AN)) > N. Let a € G*, A ={\ € G*: |A\| < T} and M = §(A). As
G is connected, we have that for each n € G(Ay) there is a A € A such that
aln € G*. If N > M then there exists a A € A such that §({n € G(Ay) :
an € G*}) > %, thus ﬁ(G(gpa,\(AN)) > % We can see in consequence that
for all & € G* there is a w € G such that z = II(aw) € Z, therefore must be
H*c(Z) > 0 which is a contradiction. Then Z = () and G is separated. O
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