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Abstract. In this paper we study a general separation property for sub-

systems G, whose attractor KG is a sub-self-similar set. This is a generaliza-

tion of the Lau-Ngai weak separation property for the bounded distortion

case. For subsystems with positive Hausdorff measure in its similarity di-

mension, we characterize the subsets of KG with positive measure where

the separation property may fail. We exhibit two examples of fractal sets.

One such that do not satisfy the weak separation property and whose ex-

istence was questioned by Zerner. The other one such that have positive

Hausdorff measure in its similarity dimension an the separation property

fails in a subset of positive measure.

1. Introduction

Let X be a non empty closed subset of Rn and let I1 = {1, . . . , `} a finite

index alphabet, ` > 1. An iterated function system (IFS) consists of a family

{ϕi}i∈I1 of contractions on X. That is, for i ∈ I1 we have ϕi : X → X such

that

|ϕi(x)− ϕi(y)| ≤ ri|x− y| for all x, y ∈ X ,

where 0 < rmin ≤ ri ≤ rmax < 1, and | · | represents the euclidean norm in Rn.

An IFS determines a unique non empty compact set K satisfying

K =
⋃
i∈I1

ϕi(K) ,

which is in general a fractal set [8, 6]. We will denote by Ik the set of all words

of length k, ω = ω1ω2 . . . ωk, ωj ∈ I1, and by I∗ = ∪∞i=1I
k the set of all finite

words, for ω ∈ I∗ we will denote by |ω| the length of ω. For ω = ω1 . . . ωk ∈ Ik
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we will denote rω = rω1 . . . rωk , ϕω = ϕω1 ◦ · · · ◦ ϕωk , and Kω = ϕω(K). We

remark that Kλω ⊆ Kλ, for all ω, λ ∈ I∗.

We consider the general class of IFS of bounded distortion (BD) [6], that is,

we assume that there are constants M0,M1 > 0 such that

(1.1) M0|Kω||x− y| ≤ |ϕω(x)− ϕω(y)| ≤M1|Kω||x− y| ,

for all ω ∈ I∗, x, y ∈ X; where |Kω| represents the diameter of the compact set

Kω. The BD property (1.1) is satisfied if the ϕi’s are conformal maps [14, 10],

and in particular for contracting similitudes.

Let us denote by I the space of infinite successions ω = ω1ω2 . . . , ωj ∈ I1

with the usual metric: d(ω, λ) =
∑∞

j=1
|ωj−λj |
`j

, for all ω, λ ∈ I. We consider

the natural projection map Π : I → X defined by

Π(ω) =
∞⋂
n=1

Kω1...ωn .

It is clear that d(ω, λ) ≤ 1
`n

if ωj = λj for all j = 1 . . . n and, conversely,

d(ω, λ) < 1
`n

implies ωj = λj for all j = 1 . . . n. Thus Π is a continuous map

and Π(I) = ∪ω∈IΠ(ω) = K. For a general subset of successions G ⊂ I, we

will denote by Gk the set of words of length k, ω ∈ Ik for which there is λ ∈ I

such that ωλ ∈ G; also G∗ = ∪∞k=1G
k.

We say that G ⊆ I is a subsystem of I if G is compact and shift invariant,

that is if ω = ω1ω2ω3 · · · ∈ G, then ω2ω3 · · · ∈ G. Then the compact subset

KG = Π(G) is a sub-self-similar set satisfying KG ⊆ ∪i∈I1ϕi(KG). Such

constructions were studied by Falconer [7] for similitudes.

For a subsystem G let us define the similarity dimension of G by the unique

solution sG of the pressure equation pG(sG) = 0, where pG(s) is defined by

pG(s) = lim
k→∞

1

k
log(

∑
ω∈Gk |Kω|s) .

Separation properties are needed to find formulas for the Hausdorff dimen-

sions of K and KG. If the IFS I satisfy a strong separation property like the

Open Set Condition then the Hausdorff dimension of K coincides with the
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similarity dimension of I, dimK = sI and HsI (K) > 0 [8]. This result extends

for general subsystems as was showed by Falconer [7] and we recall below. On

the other hand if I satisfy the weak separation property of Lau and Ngai [9]

then dimK coincides with the growth dimension of I [16], which is in general

smaller than sI .

In this work we study the following separation property. Let G a subsystem

of bounded distortion, for a non empty compact set A ⊆ X, we will denote by

G(A) the family of finite words

G(A) = {ω = ω1 . . . ωk ∈ G∗ : |Kω| < |A| ≤ |Kω1...ωk−1
|;Kω ∩ A 6= ∅} .

We will say that a subsystem G is separated if there exists M > 0 such that

](G(A)) ≤ M for all compact A, where ](·) denotes the cardinal (number of

elements).

For G = I the separate condition is a reformulation of the Bandt-Graft

condition [1] which is equivalent to the Open Set Condition. See [15] for

contracting similitudes and [13] for conformal IFS. However is easy to see that

our separation property does not implies the Bandt-Graft condition for general

subsystems.

In the next section, we prove the dimension formula for sub-self-similar

sets and some complementary results. The principal result of this section

(Theorem 2.2) was proved by Falconer [7] but we give a different proof here.

Sections 3 and 4 contains original results and examples. In Section 3 we

characterize the weak separation property and the growth dimension of K

through a subsystem W . We propose a generalized weak separation property

and give an example of a fractal set that satisfy the generalized property

but not the weak separation property. The existence of such fractal set was

questioned in Zerner [16]. Finally, in Section 4, we study subsystems for which

HsG(KG) > 0. For G = I this implies separation but we show that this

is not the case for general subsystems. The principal result (Theorem 4.3)

characterizes the subsets of KG with positive measure where the separation
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property fails. In the example of this section we show a fractal set where we

can find such a subset explicitly.

2. Similarity dimension and separate subsystems

Let G a subsystem, A ⊆ X a compact set and k, s > 0, we will denote

csG,k =
∑
ω∈Gk

|Kω|s , and csG,k(A) =
∑
ω∈Gk

Kω∩A 6=∅

|Kω|s .

Taking into account the bounded distortion and the shift invariance of G is

easy to see that

(2.1) csG,k+m =
∑

ηλ∈Gk+m
|η|=k,|λ|=m

|Kηλ|s ≤M s
1 c

s
G,k c

s
G,m .

Thus log(csG,k) is a subadditive succession, the limit pG(s) = limk→∞
1
k

log(csG,k)

exists and

(2.2) M−s
1 ekpG(s) ≤ csG,k .

Moreover, we know that pG(s) is a continuous decreasing function of s and

there exists a unique sG ≥ 0 such that pG(sG) = 0 which is the similarity

dimension of G. The following conditions are trivial consequences, of the

definition, see [7, Proposition 3.2].

Proposition 2.1. Let sG the similarity dimension of G, then

sG = inf{s ≥ 0 :
∞∑
k=1

csG,k <∞} = sup{s ≥ 0 :
∞∑
k=1

csG,k =∞} ,

sG = inf{s ≥ 0 : lim
k→∞

csG,k = 0} = sup{s ≥ 0 : lim
k→∞

csG,k =∞} .

It is not true, in general, that csG,k+m ≥ C csG,k c
s
G,m for some constant C > 0.

However, for G = I, it is easy to see that csI,k+m ≥M s
0 c

s
I,k c

s
I,m and

(2.3) M−s
1 ekpI(s) ≤ csI,k ≤M−s

0 ekpI(s) .

We remark that if H,G are subsystems, H ⊆ G ⊆ I, then csH,k ≤ csG,k ≤ csI,k,

pH(s) ≤ pG(s) ≤ pI(s), for all k, s > 0, and sH ≤ sG ≤ sI .
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The following theorem relates dimKG with sG. The first part is standard

whereas second part was proved in [7] for similitudes. Falconer’s proof extends

to the bounded distortion case but we offer a different proof here to keep

this work self–contained and because it contains techniques that we will use

repeatedly.

Theorem 2.2. Let G a subsystem, then dimKG ≤ sG. If, in addition, G is

separated then dimKG = sG and HsG(KG) > 0.

Proof. Let t > sG, then pG(t) < 0. For large k we have 1
k

log ctG,k ≤ −ε < 0

and ctG,k ≤ e−kε < 1. This implies that the t-dimensional Hausdorff measure

of KG is finite, Ht(KG) <∞, for all t > sG, and thus dimKG ≤ sG.

Assume now that G is separated, we prove that sG ≤ dimKG. If dimKG ≥

sI there is nothing to prove, since we have sI ≤ dimKG ≤ sG ≤ sI .

Suppose dimKG < sI and let t be such that

(2.4) dimKG < t < sI .

We want to prove that there is B > 0 such that ctG,k ≤ B for all k. Then

pG(t) ≤ 0 which implies sG ≤ t and thus, since this is true for all t satisfying

(2.4), we have sG ≤ dimKG.

By (2.4) Ht(KG) = 0 thus, for all ε > 0 and taking into account that KG

is compact, there exists a finite cover KG ⊂
⋃
Uj such that

∑
|Uj|t < ε. We

set ε < M−t
1 M−1, where M is the separation constant, and let l0 such that

rl0max|K| < |Uj| for all j. We use induction to prove that

(2.5) ctG,k ≤M−t
0 el0pI(t) ,

for all k.

For k ≤ l0 we have that

ctG,k ≤ ctI,k ≤M−t
0 ekpI(t) ≤M−t

0 el0pI(t) ,
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by (2.3) and since pI(t) > 0 by (2.4). Now, suppose l > l0 and that (2.5) is

true for all k < l, we evaluate

ctG,l(Uj) =
∑
ω∈Gl

Kω∩Uj 6=∅

|Kω|t .

We remark that for each ω ∈ Gl, Kω ∩ Uj 6= ∅, we have |Kω1...ωl−1
| ≤

rω1...ωl−1
|K| ≤ rl−1

max|K| ≤ rl0max|K| < |Uj|, then ω has an initial word η, ω = ηλ,

such that η ∈ G(Uj). Thus

ctG,l(Uj) ≤
∑

η∈G(Uj)

∑
ηλ∈Gl

|Kηλ|t ≤
∑

η∈G(Uj)

∑
λ∈Gl−|η|

|Kηλ|t

≤M t
1

∑
η∈G(Uj)

|Kη|t ctG,l−|η|

≤M−t
0 el0pI(t) M t

1

∑
η∈G(Uj)

|Kη|t , by the inductive hypothesis

≤M−t
0 el0pI(t) M t

1 M |Uj|t ,

since |Kη| < |Uj| and ](G(Uj)) ≤ M by the separation property. Thus, since

{Uj} is a finite cover of KG,

ctG,l ≤
∑
j

ctG,l(Uj)

≤M−t
0 el0pI(t) M t

1 M
∑
j

|Uj|t

≤M−t
0 el0pI(t) M t

1 M ε ≤M−t
0 el0pI(t) ,

since
∑

j |Uj|t < ε < M−t
1 M−1. This complete the proof of (2.5) and hence

dimKG = sG. Now, to prove that HsG(KG) > 0, we simply remark that

the separation property implies the conditions of Falconer [5, Theorem 2] for

KG. �

Recurrent sets and graph-directed sets [2, 11] are standard generalizations

of IFS that corresponds to particular types of subsystems [7]. In the context

of this work we consider the following definition. We will call restriction to

a subset of words of length n, R ⊆ In, and consider the subset [I|R] of all
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successions ω = ω1ω2 · · · ∈ I such that ωi+1ωi+2 . . . ωi+n ∈ R for all i. It is

easy to see that [I|R] is in fact a subsystem of I and we say that [I|R] is a

recurrent subsystem defined by the restriction R.

We associate [I|R] with a directed graph. Let [I|R]n−1 be the vertex set, and

we draw an edge from λ to η if and only if λη ∈ [I|R]∗. If this directed graph is

strongly connected (i.e. every two vertices can be connected through a directed

path) we say that [I|R] is a connected recurrent subsystem. The classical theory

of IFS extends to connected recurrent subsystems and separation properties

were studied in that case [3].

If G is a subsystem we consider the recurrent subsystems [I|Gk]. It is clear

that [I|Gk] ⊇ [I|Gk+1] ⊇ G for all k and G = ∩∞k=1[I|Gk] by compacity.

Moreover s[I|Gk] tends to sG as we would expect.

Proposition 2.3. limk→∞ s[I|Gk] = sG.

Proof. It is clear that s[I|Gk] is a non increasing succession s[I|Gk] ≥ s[I|Gk+1] ≥

sG, then limk→∞ s[I|Gk] = t ≥ sG. Let s > sG, then

cs[I|Gk],km ≤M
s(m−1)
1

(
cs[I|Gk],k

)m
= M−s

1

(
M s

1c
s
G,k

)m
,

by (2.1) and taking into account that [I|Gk]k = Gk. Proposition 2.1 implies

that M s
1c
s
G,k < 1 for k great enough, then cs

[I|Gk],km
→ 0 when m → ∞ which

implies t ≤ s[I|Gk] ≤ s and thus t = sG. �

In some cases, we need to approximate G through a family of systems which

are not necessarily subsystems of I. More precisely, let {J1
h} a family of finite

subsets J1
h ⊂ G∗ indexed by a positive real or integer parameter h. We say

that {J1
h} approaches G if for each h there are positive integer numbers k0(h)

and k1(h) such that: k0(h) ≤ |λ| ≤ k1(h) for all λ ∈ J1
h; k0(h) → ∞ when

h → ∞ and, for all ω ∈ Gk1(h), there exists at least one λ ∈ J1
h such that

ω = λη.
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Each J1
h is in fact an alphabet for a system Jh which is not a subsystem

of I according to our definition. However, we have the following result which

relates the similarity dimensions of I and Jh.

Proposition 2.4. Let {J1
h} a family that approaches G, then sG ≤ sJh for all

h and limh→∞ sJh = sG.

Proof. We show first that sG ≤ sJh . For m ∈ N, we remark that for each

ω ∈ Gk1(h)m there exists at least one α ∈ J∗h such that ω = αβ with |β| < k1(h),

thus

csG,k1(h)m ≤
∑
α,β

|Kαβ|s ,

where |αβ| = k1(h)m, α ∈ J∗h and |β| < k1(h). Then if α ∈ Jnh it results that

m − 1 < n ≤ (k1(h)/k0(h))m. Let m′ the integer part of (k1(h)/k0(h))m and

M = max{csG,k : k < k1(h)}, then

csG,k1(h)m ≤M s
1M

∑
α

|Kα|s ≤M s
1M

m′∑
n=m

csJh,n .

If s > sJh then
∑m′

n=m c
s
Jh,n
→ 0 when m → ∞ by Proposition 2.1. Thus

limm→∞ c
s
G,k1(h)m = 0 for all s > sJh and sG ≤ sJh .

Now let s > sG and observe that

cJh,m ≤
(
M s

1

)m−1
(∑
λ∈J1

h

|Kλ|s
)m
≤M−s

1

(
M s

1

k1(h)∑
n=k0(h)

csG,n

)m
.

By Proposition 2.1
∑k1(h)

n=k0(h) c
s
G,n < M−s

1 for all h great enough, then cJh,m → 0

when m→∞ and this implies that sJh ≤ s. Thus limh→∞ sJh = sG. �

3. Weak separation properties

In this section, we will relate the weak separation property (WSP) of Lau

and Ngai [9, 16] with the existence of a separate subsystem and propose a

generalization for IFS of bounded distortion. First, we make the following

general observation whose proof is left to the reader.
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Proposition 3.1. Suppose we have a succession of subsets G1 ⊆ I1, G2 ⊆

I2, . . . such that, for all word ω1ω2 . . . ωn ∈ Gn, we have that ω2 . . . ωn ∈ Gn−1.

Then G = {ω ∈ I : ω1ω2 . . . ωn ∈ Gn, for all n} is a subsystem of I and

Gn ⊆ Gn.

Now, we introduce a total order on I∗ by setting λ < ω if |λ| < |ω|, and the

lexicographic order if |λ| = |ω|. Let us define a subsystem W by

Wn = {ω ∈ In : ϕω 6= ϕλ ; for all λ < ω } ,

and W = {ω ∈ I : ω1 . . . ωn ∈ Wn , for all n }. This is a subsystem by the

preceding proposition (we will sketch the argument in Theorem 3.3), moreover

it is easy to see that and KW = K.

We recall now some definitions of Zerner [16]. In that follows we assume

that the ϕi’s are similitudes and K is in general position. For a, b > 0 and

A,U ⊆ Rn let us define

F = {ϕω : ω ∈ I∗} = {ϕω : ω ∈ W ∗} ,

Fb = {ϕω ∈ F : rω ∈ (b rmin, b]} , and

Fa,U,M = {ϕω ∈ Fa|U | : ϕω(M) ∩ U 6= ∅} .

It is clear that there is a one to one correspondence between F and W ∗. The

growth dimension βI of I is defined as the exponential growth rate of ](Fb) for

b→ 0. In our notation, consider the family {J1
h} where J1

h = {ω ∈ W ∗ : rω ∈

( 1
h
rmin,

1
h
]} for h > 0, then F1/h = {ϕω : ω ∈ J1

h} and βI = limh→∞ sJh [16,

Theorem 2]. Setting a > 0 and M ⊆ Rn non empty, we say that I satisfy WSP

if and only if ](Fa,U,M) is bounded for all U ⊆ Rn [16, Theorem 1]. In that

case dimK = βI . With respect to the subsystem W , we have the following

result.

Theorem 3.2. βI = sW and I satisfy WSP if and only if W is separated. In

that case dimK = sW and HsW (K) > 0.
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Proof. First we observe that {J1
h} is a family that approaches W , then βI =

limh→∞ sJh = sW by Proposition 2.4. Now, we set a = 1
|K| , and M = K, then

by the one to one correspondence between F and W ∗,

](Fa,U,M) = ]{ω ∈ W ∗ : rmin|U | < |Kω| ≤ |U | ; Kω ∩ U 6= ∅} ,

since |Kω| = rω|K| for similitudes. We denote by WU the right set, and

compare it with W (U). Let ω ∈ W (U), then |U | ≤ |Kω1...ωk−1
| and rmin|U | ≤

|Kω|. If rmin|U | < |Kω| then ω ∈ WU , on the other hand if rmin|U | = |Kω|, then

rmin|U | < |Kω1...ωk−1
| = |U | and ω1 . . . ωk−1 ∈ WU . Conversely let ω ∈ WU . If

|Kω| < |U | then there is a h ≤ k such that |Kω1...ωh| < |U | ≤ |Kω1...ωh−1
| and

ω1 . . . ωh ∈ W (U), on the other hand if |Kω| = |U |, then |Kωj| < |U | and

ωj ∈ W (U) for some j ∈ I.

Thus ](Fa,U,M) is bounded if and only if ](W (U)) is bounded, i.e. if and

only if W is separated. The last assertion follows directly from Theorem 2.2

since KW = K. �

Now, we move to the bounded distortion case to generalize WSP. The sub-

system W was constructed by eliminating words ω such that Kω = Kλ, for

some word λ < ω. We propose a direct generalization by eliminating words

ω such that Kω ⊂ Kλ(1) ∪ · · · ∪ Kλ(k) for some words λ(1), . . . , λ(k) < ω.

Specifically, we define:

GWn = {ω ∈ In : Kω * Kλ(1) ∪ · · · ∪Kλ(k) ; for all λ(1), . . . , λ(k) < ω} ,

and GW = {ω ∈ I : ω1 . . . ωn ∈ GWn , for all n }.

Theorem 3.3. GW is a subsystem with KGW = K. If GW is separated then

dimK = sGW and HsGW (K) > 0.

Proof. We will prove that GW is a subsystem by using Proposition 3.1. That

KGW = K is clear from the definition and then the theorem follows from

Theorem 2.2. Let ω1ω2 . . . ωn ∈ GWn and suppose that ω2 . . . ωn /∈ GWn−1,
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then there are λ(1), . . . , λ(k) < ω2 . . . ωn such that Kω2...ωn ⊂ Kλ(1)∪· · ·∪Kλ(k).

We then remark that ω1ω2 . . . ωn > ω1λ(i) and

Kω1ω2...ωn = ϕω1(Kω2...ωn) ⊂ ϕω1(Kλ(1) ∪ · · · ∪Kλ(k))

⊂ ϕω1(Kλ(1)) ∪ · · · ∪ ϕω1(Kλ(k)) = Kω1λ(1) ∪ · · · ∪Kω1λ(k) ,

which is a contradiction. Thus ω2 . . . ωn ∈ GWn−1 and GW is a subsystem. �

If GW is separated we say that I satisfy GWSP. The next example shows a

system which satisfy GWSP but do not satisfy WSP.

Example 3.4. Let X = [0, 1] × [0, 1] the unit square in R2. Let I1 =

{1, 2, 3, 4, 5, 6, 7};

ϕ1(x) = 1
3
x+ (0, 2

3
) , ϕ2(x) = 1

3
x+ (1

3
, 2

3
) , ϕ3(x) = 1

3
x+ (2

3
, 2

3
)

ϕ4(x) = 1
3
x , ϕ5(x) = 1

3
x+ (1

3
, 0) , ϕ6(x) = 1

3
x+ (2

3
, 0) , and

ϕ7(x) = 1
3
x+ (δ, 0) , where 0 < δ < 1

3
is an irrational number.

It is easy to see that K = [0, 1]×C, where C is the usual Cantor set. Now we

consider the subsystems W and GW . First we observe that if ω = ω1 . . . ωk ∈

I∗, then

ϕω(x) = (1
3
)k x+ (q1 + q2δ, q3) ,

where q1, q2, q3 are rational numbers, 0 ≤ q1, q3 ≤ 1 and 0 ≤ q2 ≤ 3
2
. Moreover

q2 = 1e1 +
(

1
3

)e2 + · · ·+
(

1
3

)(n−1)en
, where ei =

0 if ωi 6= 7

1 if ωi = 7
.

Taking this into account we can see that ϕω = ϕλ if and only if ω = λ for all

ω, λ ∈ I∗. Indeed, if ϕω = ϕλ, then ωi = 7 if and only if λi = 7 and then must

be ω = λ. Therefore W = I which is not separated, that is I do not satisfy

WSP.

On the other hand GW1 = GW 1 = {1, 2, 3, 4, 5, 6} since K7 ⊆ K4∪K5, then

GW = {1, 2, 3, 4, 5, 6}∞ which is separated (satisfy OSC) and I satisfy GWSP.

In Figure 1 we schematize the seven transformations over the unit square X
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1 2 3

4 5 6

7

Figure 1. A system satisfying GWSP but not WSP

and the subset ∪ω∈I3ϕω(X) (on the right) which approximates K and shows

the overlapping effect.

We remark that K is a self-similar set in general position satisfying dimK =

sGW = log 6
log3

< log 7
log3

= sW < dimX = 2, whose existence was questioned in

Zerner [16].

4. Positive Hausdorff measure

In this section we study subsystems with HsG(KG) > 0. We know that

HsG(KG) > 0 implies that G is separated if G = I (see [15] and [12] for simil-

itudes and [13] for conformal systems), and it is also true if G is a connected

recurrent subsystem.

To analyze the general case we must introduce some notation. Let Z ⊂

KG the set of points where the separation property fails: Z = {z ∈ KG :

for all N > 0 there exists a closed set A such that z ∈ A and ](G(A)) ≥ N}.

It is easy to see that G is separated if and only if Z = ∅.
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For ω ∈ G let us define:

b(ω, n) = lim inf
m→∞

∑
λ∈Gm

ω1...ωnλ∈Gn+m

|Kλ|sG , b(ω) = inf
n
b(ω, n)

b(ω, n) = lim sup
m→∞

∑
λ∈Gm

ω1...ωnλ∈Gn+m

|Kλ|sG , b(ω) = sup
n
b(ω, n)

We remark that 0 ≤ b(ω) ≤ b(ω, n) ≤ b(ω, n) ≤ b(ω) ≤ +∞. The functions

b(ω) and b(ω) are not continuous in general, but we have the following

Proposition 4.1. Let ω ∈ G and ε > 0.

(1) There is δ > 0 such that b(η) ≤ b(ω) + ε for all η ∈ G such that

d(ω, η) < δ.

(2) If b(ω) > N , then there is δ such that b(η) ≥ N − ε for all η ∈ G such

that d(ω, η) < δ.

Proof. To prove (1), let n0 such that b(ω, n0) ≤ b(ω)+ε, then if d(ω, η) < 1/`n0

we have that ω1 . . . ωn0 = η1 . . . ηn0 and

b(η) ≤ b(η, n0) = b(ω, n0) ≤ b(ω) + ε .

The proof of (2) follows in a similar way. �

Next, we will characterize subsets of Z with null and positive sG-Hausdorff

measure using these functions. First we will see, in the following example, that

is not true in general that HsG(KG) > 0 implies HsG(Z) = 0.

Example 4.2. We consider the system I = {1, 2, 3, 4} and the restrictions

R1 = {11, 12, 21, 22}, R2 = {33, 34, 43, 44} and R = R1∪R2∪{13, 14, 23, 24}.

Let G1 = [I|R1], G2 = [I|R2] and G = [I|R] the corresponding recurrent sub-

systems, G1 and G2 are connected whereas G is not. The associated directed

graphs are drawn in Figure 2.
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Figure 2. Directed graphs associated with Example 4.2

We assume that sG2 ≤ sG1 and prove that sG = sG1. In fact, sG1 ≤ sG since

G1 ⊆ G. On the other hand

csG1
G,k =

∑
ω∈G2k

|Kω|sG1 +
k∑

h=1

∑
α∈G1h

β∈G2k−h

|Kαβ|sG1

≤ csG1
G2,k +M sG1

1

k∑
h=1

csG1
G1,h c

sG1
G2,k−h .

Since G1 and G2 are connected recurrent subsystems we know that there

exist D > 0 such that csGiGi,k ≤ D for i = 1, 2 and all k. Moreover, taking into

account that sG2 ≤ sG1, we can choose D such that csG1
G2,k ≤ D for all k (Indeed,

if sG2 < sG1 then csG1
G2,k → 0 when k →∞). Then

csG1
G,k ≤ D + kM sG1

1 D2 ≤ k(D +M sG1
1 D2) and lim

k→∞
1
k

log csG1
G,k ≤ 0 ,

which implies sG ≤ sG1.

Now, we will consider two particular examples in R2 where HsG(Z) > 0 and

we will study the values of b and b. Let R : R2 → R2 the rotation of angle π
4

around the origin and let a, b ∈ R, 0 < a < b <
√

2
2

. Let

ϕ1(x) = r1R(x) , ϕ2(x) = r2R
(
x− (1, 0)

)
+ (1, 0)

ϕ3(x) = r3R(x) , ϕ4(x) = r4R
(
x− (1, 0)

)
+ (1, 0) .

For the first example we set r1 = r4 = b and r2 = r3 = a, then sG2 = sG1 =

sG. Besides we know that G1 is separated, then HsG(KG1) > 0. On the other

14



1

2

3

4

Figure 3. Non separated subsystem: black points are con-

tained in Z and have positive sG-Hausdorff measure

hand G is not separated: it is easy to see that that 0 ∈ Z and then, since

for all β ∈ G, α ∈ G1 we have that αβ ∈ G, it results that KG1 ⊆ Z. Thus

HsG(Z) > 0. In Figure 3 we show the four transformations applied to the unit

square and approximations of KG in gray, and KG1 in black.

By an argument similar to that used above, we can see that there is a

constant D′ such that

csGG,k ≥ D′ + kM sG
0 D′

2
.

Thus, if ω ∈ G1, b(ω, n) = lim supk→∞ c
sG
G,k = +∞ for all n. Therefore we have

that b(ω) = +∞ for all ω ∈ G1, it is to say KG1 ⊆ Π
(
{ω ∈ G : b(ω) = +∞}

)
.

For the second example we set r1 = b and r2 = r3 = r4 = a, then sG2 <

sG1 = sG. Again G1 is separated, HsG(KG1) > 0 and KG1 ⊆ Z. Now, for

ω ∈ G2, b(ω, n) = lim infk→∞ c
sG
G2,k = 0 for all n. Then b(ω) = 0 for all

ω ∈ G2 and, moreover, b(ω) = 0 for all ω = αβ such that β ∈ G2. But every

succession η ∈ G may be approximated by ω’s such that ω = αβ, β ∈ G2,

then KG1 ⊆ KG = Π
(
{ω ∈ G : b(ω) = 0}

)
.

In these examples we found a subset K ′ of Z with positive sG-Hausdorff

measure and such that K ′ is contained in the closure of a subset where b(ω)

15



is arbitrarily small or b(ω) is arbitrarily large. The next Theorem shows that

such subset always exist when HsG(Z) > 0.

Theorem 4.3. Consider the subset

Z ′ = Π
(
∩ε>0

(
{ω ∈ G : b(ω) ≤ ε} ∪ {ω ∈ G : b(ω) ≥ 1

ε
}
))
,

then HsG(Z − Z ′) = 0.

The proof follows from two lemmas. Let us define

B′(ε) = {ω ∈ G : ε ≤ b(ω), b(ω) ≤ 1/ε} ; and

B(ε) = {ω ∈ B′(ε) : d(Π(ω), KG − Π(B′(ε))) ≥ ε} ,

where d corresponds to the euclidean distance.

Lemma 4.4. Let η ∈ G∗, if there exist β ∈ G such that ω = ηβ ∈ B′(ε), then

ε/2 ≤
∑

λ∈Gk−|η|
ηλ∈Gk

|Kλ|sG ≤ 2/ε ,

for k large enough. In particular, the inequalities follow if η is such that

Kη ∩KG ⊆ Π(B′(ε)).

Proof. From the B′(ε) definition we have that

lim inf
k→∞

∑
λ∈Gk−|η|
ηλ∈Gk

|Kλ|sG = b(ω, |η|) ≥ b(ω) ≥ ε

lim sup
k→∞

∑
λ∈Gk−|η|
ηλ∈Gk

|Kλ|sG = b(ω, |η|) ≤ b(ω) ≤ 1/ε ,

and the lemma results from limit properties. �

Lemma 4.5. HsG(Z ∩ Π(B(ε)) = 0 for all ε > 0 .

Proof. We fix ε > 0 and suppose Z ∩ Π(B(ε)) 6= ∅. For N > 0 let us denote

by AN the family of sets A such that: 0 < |A| < ε/3, A ∩ Z ∩ Π(B(ε)) 6= ∅

and ](G(A)) ≥ N . It is clear that AN is a Vitali family for Z ∩Π(B(ε)). Now,
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for A ∈ AN we define UA =
⋃
η∈G(A) Kη ∩KG, then {UA}A∈AN is also a Vitali

family for Z ∩Π(B(ε)). By the Vitali covering theorem [4, Theorem 1.10], we

have for all ε2 > 0 that there exists a disjoint finite family {UAj} such that

(4.1) HsG(Z ∩ Π(B(ε)) ≤
∑
j

|UAj |sG + ε2 .

Now, we remark that, for k large enough such that |Kω1...ωk−1
| < |Aj| for all j

and all ω ∈ G, we have

csGG,k(UAj) =
∑
ω∈Gk

Kω∩UAj 6=∅

|Kω|sG ≥
∑

η∈G(Aj)

∑
ηλ∈Gk

|Kηλ|sG

≥M sG
0

∑
η∈G(Aj)

|Kη|sG
( ∑
λ∈Gk−|η|
ηλ∈Gk

|Kλ|sG
)
.

We observe that

(4.2) d
(
Kη, KG − Π(B′(ε))

)
≥ ε/3 ,

for all η ∈ G(Aj), since Kη ∩Aj 6= ∅, Aj ∩Π(B(ε)) 6= ∅ and |Kη| < |Aj| < ε/3.

Thus Kη ∩KG ⊆ Π(B′(ε)) and using the previous lemma we find that

csGG,k(UAj) ≥
M sG

0 ε

2

∑
η∈G(Aj)

|Kη|sG ≥ C
∑

η∈G(Aj)

|UAj |sG

≥ C N |UAj |sG ,

where C =

(
M sG

0

)2
ε rsGmin

2.3sG
. Since |Kη| ≥ rminM0|Aj| ≥ rminM0(|UAj |/3) and

](G(Aj)) ≥ N . Therefore,

(4.3)
∑
j

|UAj |sG ≤
1

CN

∑
j

csGG,k(UAj) ≤
1

CN
csGG,k

(
Π(B(ε/3))

)
,

for k large enough since UAj are disjoint sets and UAj ⊂ Π(B(ε/3)) which

follows from (4.2).
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Now, let m such that |Kη| < ε/3 for all η ∈ Gm. If Kη∩Π(B(ε/3)) 6= ∅ then

Kη ∩KG ⊂ Π(B′(ε/3)) and we have that

csGG,k
(
Π(B(ε/3))

)
≤M sG

1

∑
η∈Gm

Kη∩Π(B(ε/3))6=∅

|Kη|sG
( ∑
λ∈Gk−m
ηλ∈Gk

|Kλ|sG
)

≤M sG
1

ε

6

( ∑
η∈Gm

Kη∩Π(B(ε/3))6=∅

|Kη|sG
)
,

for k large enough. Combining this inequality with (4.1) and (4.3) we obtain

HsG(Z ∩ Π(B(ε)) ≤ C ′

N
+ ε2 ,

for some constant C ′ > 0 which depends on ε but is independent of N and ε2.

Thus HsG(Z ∩ Π(B(ε)) = 0. �

Proof of Theorem 4.3. The previous lemma implies that

HsG
(
Z ∩ ∪ε>0Π(B(ε))

)
= 0 .

Then we only need to show that KG − ∪ε>0Π(B(ε)) = Z ′. Let x ∈ KG,

x = Π(ω) such that x /∈ ∪ε>0Π(B(ε)), then either ω /∈ B′(ε) for all ε or

ω ∈ Π(B′(ε)) but d(x,KG − Π(B′(ε))) < ε for all ε ≤ ε0. In the first case,

either b(ω) = 0 or b(ω) = ∞ and then x ∈ Z ′. In the second case, let

δ = d(x,KG − Π(B′(ε))). If 0 < δ < ε then ω ∈ B(δ), since ω ∈ B′(ε) ⊂ B′(δ)

and d(x,KG − Π(B′(δ)) ≥ d(x,KG − Π(B′(ε)) = δ, which is a contradiction.

Thus must be δ = 0 for all ε ≤ ε0 which implies x ∈ Z ′. �

At last, we consider connected subsystems, which generalize connected re-

current subsystems. We say that G is a connected subsystem if there exists

T > 0 such that, for all α, β ∈ G∗ there is a λβα ∈ G∗, |λβα| ≤ T , such that

αλβαβ ∈ G∗.

For α ∈ G∗ we introduce the notation c(α)sG,k =
∑

λ∈Gk
αλ∈G∗

|Kλ|s. Now, we can

state the following result whose proof uses standard techniques and inequalities

like (2.1) and (2.2).
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Proposition 4.6. If G is a connected subsystem then there are constants C0,

C1 such that

C−s1 ekpG(s) ≤ c(α)sG,k ≤ C−s0 ekpG(s) ,

for all α ∈ G∗.

Theorem 4.7. Let G a connected subsystem. If HsG(KG) > 0 then G is

separated.

Proof. The previous proposition implies that C−sG1 ≤ c(α)sGG,k ≤ C−sG0 for all

α ∈ G∗. Therefore C−sG1 ≤ b(ω) ≤ b(ω) ≤ C−sG0 for all ω ∈ G, Z ′ = ∅ and

HsG(Z) = 0 from Theorem 4.3. We want to prove that Z = ∅. Suppose Z 6= ∅,

let x ∈ Z and for all N > 0 let AN be a closed set such that x ∈ AN and

](G(AN)) ≥ N . Let α ∈ G∗, Λ = {λ ∈ G∗ : |λ| ≤ T} and M = ](Λ). As

G is connected, we have that for each η ∈ G(AN) there is a λ ∈ Λ such that

αλη ∈ G∗. If N > M then there exists a λ ∈ Λ such that ]
(
{η ∈ G(AN) :

αλη ∈ G∗}
)
≥ N

M
, thus ]

(
G(ϕαλ(AN)

)
≥ N

M
. We can see in consequence that

for all α ∈ G∗ there is a ω ∈ G such that z = Π(αω) ∈ Z, therefore must be

HsG(Z) > 0 which is a contradiction. Then Z = ∅ and G is separated. �
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