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Nowadays, one of the challenges we face when carrying out modeling of epidemic spreading is
to develop methods to control disease transmission. In this article we study how the spreading
of knowledge of a disease affects the propagation of that disease in a population of interacting
individuals. For that, we analyze the interaction between two different processes on multiplex
networks: the propagation of an epidemic using the susceptible-infected-susceptible dynamics and
the dissemination of information about the disease –and its prevention methods– using the unaware-
aware-unaware dynamics, so that informed individuals are less likely to be infected. Unlike previous
related models where disease and information spread at the same time scale, we introduce here a
parameter that controls the relative speed between the propagation of the two processes. We study
the behavior of this model using a mean-field approach that gives results in good agreement with
Monte Carlo simulations on homogeneous complex networks. We find that increasing the rate of
information dissemination reduces the disease prevalence, as one may expect. However, increasing
the speed of the information process as compared to that of the epidemic process has the counter
intuitive effect of increasing the disease prevalence. This result opens an interesting discussion about
the effects of information spreading on disease propagation.

PACS numbers:

I. INTRODUCTION

Mathematical modeling of contagious disease spread-
ing has become an important tool to estimate the extent
of an epidemic [1, 2], and it is regaining attention with the
actual coronavirus worldwide pandemic. The knowledge
or information we handle about a virus and its transmis-
sion among individuals plays a fundamental role in the
containment of an epidemic. This knowledge may lead to
adopt strategies that change human behavior, with direct
consequences on disease spreading, which has represented
an intense research topic over the last years [1–4]. It is
known that the information about a disease and how this
can contribute to epidemic spreading might help to de-
velop more effective prevention methods [5–9]. Some of
these methods can significantly reduce the full extent of
an epidemic, as shown in previous studies [10–12]. To ex-

plore the influence of human behavior on the spread of an
epidemic, these works have used a model for the spread-
ing of rumors to simulate the spread of knowledge about
the disease (and its methods of prevention) by word of
mouth. In this way, the rumors –also called information–
and the epidemic are considered as two diffusion pro-
cesses that interact with each other. Some pioneer works
on interacting spreading processes have already consid-
ered the dynamical interaction between two epidemics
that propagate on single [13–15] and overlay [16] net-
works. Other more recent studies have also analyzed the
impact of the information on the spread of epidemics in
a population of interacting individuals [17–23].

These systems with two interacting spreading dynam-
ics can be studied using the topology of a multiplex net-
work, where the disease and the information to prevent
transmission spread in two different layers. The disease
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layer may represent physical or proximity contacts for
the spread of airborne diseases in people who interact
regularly (family, coworkers, etc.) or occasionally (peo-
ple who share public transport). The information layer
represents contacts between people who exchange infor-
mation face-to-face or in a virtual way by means of social
networks. To model the spreading of awareness (informa-
tion) in this entangled epidemic-information processes,
Granell et al. [11, 12] implemented the susceptible-
infected-susceptible (SIS) dynamics, while Wang et al.
[18, 19] used the susceptible-infected-recovered (SIR) dy-
namics. In [11, 12] they showed that the degree of immu-
nization of the informed individuals and the mass media
change the critical aspects of disease spreading. Besides,
in [18, 19] the authors showed that there is an optimal
information transmission rate that minimizes the disease
spreading. These works, however, assumed that the time
scales associated to the propagation of the epidemic and
the awareness processes are the same, while in principle
one may expect that in real life epidemics and informa-
tion does not necessarily spread at the same speed.

In this context, we introduced in a recent article [23]
a new model of epidemic spreading with awareness con-
sidering the SIS dynamics for disease transmission and
the dynamics of the Maki-Thompson rumor model [24]
for rumor dissemination. We also considered an external
parameter π that allows to control the relative timescales
between the disease and rumor propagation processes. A
remarkable result of this model is that the prevalence of
the disease increases with π, that is, as the transitions
of the rumor process happen faster than those of the
epidemic process. This is a counter intuitive behavior,
as one would expect that a faster informational process
should be more efficient in reducing the disease propaga-
tion and prevalence. We note that in a previous work [15]
the authors studied a model for the interplay between two
competing epidemics that propagate at different speeds,
which are controlled by the time step ∆t of each pro-
cess. However, unlike the model studied by Ventura et.
al. [23] that uses an SIS-type dynamics on a two-layer
network and individuals can be in the infected and in-
formed states at the same time, the work in [15] assumes
that the two diseases spread on a single network follow-
ing the susceptible-infected-recovered dynamics and that
each individual can catch at most one of the two diseases
(cross-immunity).

In this article we consider a simplified version of the
model studied in [23], in order to understand the sur-
prising influence of information awareness on the epi-
demic prevalence. Our simulation results on multilayer
networks turn to be qualitatively the same as those ob-
tained in [23]. However, we provide a continuous time for-
mulation and a more complete theoretical analysis than
performed before. We show that the resulting effects of
varying the relative speed of infection and information
processes are robust under models with a cyclic dynam-
ics, which adds more evidence for the universal behavior
of dynamical processes on multilayer networks [25]. A

FIG. 1: Schematic illustration of a multiplex structure used
for the SIS-UAU model. In the information layer, nodes have
two possible states: unaware (U) and aware (A) of the disease.
In the epidemic layer, nodes represent the same individuals as
in the top layer and can be either susceptible (S) or infected
(I).

mean-field (MF) approach helps to elucidate the mecha-
nisms at play that give rise to some of the non-intuitive
behavior mentioned above.

The article is organized as follows: In section II, we
introduce the multiplex framework and the dynamics of
the model on each layer. We present numerical results
in section III and develop an analytical approach in sec-
tion IV. Finally, in section V we give a summary and
conclusions.

II. THE MODEL

We consider a two-layer network made of an epidemic
layer, where the disease propagates, and an information
layer, where the disease awareness takes place, as shown
in Fig. 1. In the epidemic layer, nodes can be either
Susceptible (S) or Infected (I), while in the information
layer nodes are either in the Unaware (U) state (an in-
dividual not aware of the disease) or in the Aware (A)
state (subjects who are aware of the disease). We repre-
sent the composite state of a node with two capital let-
ters, the first one for the epidemic state and the second
one for the information state, i.e., Susceptible–Unaware

(SU), Susceptible–Aware (SA), Infected–Unaware (IU),
and Infected–Aware (IA).

The basic SIS dynamics, in which infected nodes trans-
mit the disease to susceptible neighbors with rate β and
recover from the disease at rate µ, is modified to intro-
duce the interaction between information and epidemics.
The information is considered as the knowledge of the
prevention methods that aware individuals have to re-
duce the probability of contracting the disease. This is
modeled as a reduction in the contagion rate by a factor
Γ (0 ≤ Γ ≤ 1) if the susceptible node is aware. Then, an
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FIG. 2: Schematic representation of the transitions between
node states and their associated rates.

infected node infects an SU neighbor with rate β, while
the infection rate is reduced to Γβ ≤ β if the neighbor is
in the SA state. The dynamics on the information layer
is quite similar to that of the SIS model, i.e., an un-
aware node becomes aware with rate γ by contacting an
aware neighbor, and aware nodes forget the information
–or simply lose interest on it– and go back to the unaware
state at rate α. Besides, the existence of infected nodes
reinforces the information about the disease, which is in-
cluded in the model as a "self-awareness” of the infected
people, where IU nodes spontaneously become aware at
rate κ.

As mentioned before, in real life it is expected that
both the epidemic and information dynamics do not nec-
essarily evolve at the same speed. For this reason we
introduce a parameter π (0 ≤ π ≤ 1) that tunes the rel-
ative timescales associated with the disease and rumor
propagation processes, by making the information and
disease transitions proportional to π and (1− π), respec-
tively. That is, π increases the speed of the information
process as compared to the infection process, so that the
final form of state transitions and their rates are:

Ix+ SU
(1 − π)β
−−−−−→ Ix+ IU,

Ix+ SA
(1 − π)Γβ
−−−−−−→ Ix+ IA,

Ix
(1 − π)µ
−−−−−→ Sx,

for the epidemic process, where x = U,A represent an
arbitrary information state, and

yU + yA
πγ
−−→ yA+ yA,

yA
πα
−−→ yU,

IU
πκ
−−→ IA,

for the information process, where y = I, S represent an
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FIG. 3: Average stationary density of infected nodes 〈ρ∗i 〉 vs
information speed π, for γ = 0.0 (circles), 0.1 (squares) and
0.3 (triangles), and for the values of κ and Γ indicated in
each panel. Other parameter values are β = 0.3, µ = 0.9 and
α = 0.6. Symbols correspond to MC simulation results while
solid lines represent the analytical approximation, derived in
section IV. The results are averaged over 104 independent re-
alizations of the spreading process starting from a density of
infected nodes ρi = 0.5 and aware nodes ρa = 0.5 uniformly
distributed over the epidemic and the information layer, re-
spectively. Each layer is an Erdös-Renyi network of mean
degree 〈k〉 = 20 and N = 1000 nodes.

arbitrary epidemic state. All these transitions are shown
in Fig. 2.

III. NUMERICAL SIMULATION RESULTS

We perform numerical simulations of the model de-
scribed in section II using a two-layer network made of
two Erdös-Rényi networks that represent the informa-
tion and the epidemic layer, each one with N = 1000
nodes and mean degree 〈k〉 = 20 (the typical number of
different contacts per person reported in various surveys
[26]). The nodes in different layers represent the same
individuals but their connections may differ in both lay-
ers. We analyze the behavior of the stationary density of
infected nodes ρ∗i (disease prevalence) and the stationary
density of aware nodes ρ∗a. We are particularly interested
in studying how these two magnitudes are affected by the
parameter π, which increases the speed of the informa-
tion process as compared to that of the infection process.

In Fig. 3 we show simulation results for the average
value of ρ∗i over 104 independent realizations of the dy-
namics as a function of π, for various parameter values.
By comparing the top–left for panel with the bottom–
left panel for κ = 0.5, we notice that 〈ρ∗i 〉 is larger for
Γ = 0.5 than for Γ = 0. We can see a similar behavior if
we compare top–right and bottom–right panels for κ = 1.
In general, we have verified that 〈ρ∗i 〉 increases as Γ in-
creases. This is because the infection rate of SA nodes
increases with Γ, increasing the overall infection rate and
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FIG. 4: Top panels: 〈ρ∗i 〉 vs self-awareness rate κ for γ = 0.1,
β = 0.3, and (a) Γ = 0.0 and (b) Γ = 0.5. Bottom panels:
〈ρ∗i 〉 vs infection rate β for γ = 0.1, κ = 0.5, and (c) Γ = 0.0

and (d) Γ = 0.5. Curves correspond to π = 0.1 (circles), 0.5
(squares) and 0.9 (triangles).

so the disease prevalence. The second and less intuitive
result shown in this figure is that the prevalence increases
monotonically with π in all panels, which seems to be
a quite robust behavior, independently on the parame-
ter values. Indeed, a similar behavior was also observed
in our previous work [23] using a more complex model,
suggesting that this phenomenology may be universal in
these type of models. That is, speeding up the informa-
tion dynamics with respect to the infection dynamics by
increasing π, leads to a larger number of infected individ-
uals at the stationary state. This result result does not
seem obvious given that we would expect that a faster in-
formation dynamics would be more efficient in reducing
the number of infections. By a "faster information dy-
namics" we mean that both information transmission and
forgetting happen at higher rates, which are proportional
to π. In the next section we develop a MF approach that
helps to elucidate this apparently contradictory result.

We also notice in Fig. 3 that the increase of the preva-
lence with π is less pronounced for Γ = 0.5, and we
have verified that the curves become independent of π
for Γ = 1. When Γ = 1, the infection and recovery
rates (1 − π)β and (1 − π)µ, respectively, are the same
for both, unaware and aware nodes. Therefore, the dy-
namics becomes equivalent to that of the standard SIS
model, with a stationary density of infected nodes in a
MF set up given by the expression ρ∗i = βη−µ

βη
= 0.85,

which is independent of π because the infection and re-
covery rates are both proportional to 1−π. Here η is the
mean degree of the network (see section IV). For Γ = 0
and γ = 0.3 the prevalence vanishes for all π values (tri-
angles in top panels), and thus the system is reduced to
a standard cyclic UAU dynamics akin to that of the SIS
model, with transmission and recovery information rates
γ and α, respectively, giving a stationary density of aware
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FIG. 5: Phase diagram on the β−γ plane showing the transi-
tion line between the healthy and endemic phases, for µ = 0.9,
α = 0.6, κ = 0.5, Γ = 0.1 and π = 0.5. Squares correspond to
simulation results while the solid line represents the analyti-
cal approximation from Eq. (20). The inset is a zoom of the
region indicated by a square, showing the analytical behavior
of the transition line for small γ.

nodes in MF ρ∗a = γη−α
γη

= 0.9.

In Fig. 4 we show the behavior of the prevalence for
two values of Γ and three values of π, as indicated in
the legends. Panels (a) and (b) show the prevalence
as a function of the self-awareness rate κ. We observe
that the prevalence decreases with κ, confirming that the
self-awareness is an effective method in reducing disease
propagation. However, for Γ = 0.5 the impact of κ on
the prevalence is very small, and also the prevalence is
almost independent on π [panel (b)]. Panels (c) and (d)
show the prevalence as a function of the infection rate
β. As it happens in panel (b), the prevalence barely
varies with π for Γ = 0.5 [panel (d)]. We also observe a
transition from a healthy phase (epidemic extinction) to
an endemic phase (epidemic propagation) at a threshold
value βc, which is reminiscent of that found in the SIS
model.

To explore how the transition value βc depends on
the information transmission rate γ, we calculated βc for
π = 0.5, Γ = 0.1 and various values of γ in the interval
(0, 1). Results are shown in the two-dimensional β − γ
phase diagram of Fig. 5, where the square symbols repre-
sent the transition values that separate the healthy and
endemic phases, calculated numerically. For a given γ,
we simulated the quasi-stationary state as proposed by
Ferreira and others in [27], for several equally spaced val-
ues of β. The critical point βc was estimated as the value
of β that maximized the prevalence susceptibility, calcu-
lated as χ = N

(

〈ρ2i 〉 − 〈ρi〉
2
)

/〈ρi〉, where 〈•〉 represents
an average over 1000 independent realizations of the dy-
namics. Starting from a population in the endemic phase
with β . 0.35 and increasing γ while keeping β fixed,
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the system undergoes a transition to a healthy phase
as γ overcomes a threshold value γc(β). However, for
β & 0.35 the system remains in the endemic phase for all
γ values. This means that, as long as the infection rate is
low enough, the epidemics can be stopped by increasing
the rate at which the information is transmitted between
individuals but, strikingly, the information spreading is
not able to stop the disease propagation when the infec-
tion rate is high enough.

We also run simulations for other values of π and Γ
(see Fig. 2 of the Supplementary Information). These
simulations reveal that the transition lines are indepen-
dent of π. Besides, the transition line (βc, γc) becomes
more vertical as Γ increases, until for Γ = 1.0 it becomes
the perfect vertical line βc ≃ 0.05, independent of γ and
π. An insight into these quite remarkable behaviors is
given in section IV.

Summarizing the behavior of the model with respect to
the parameters we can say that, on the one hand, the dis-
ease prevalence decreases when the information spreading
rates increase through γ and κ, or when the disease re-
covery rate µ increases. On the other hand, the disease
prevalence increases when the information recovery rate
α decreases, or when the infection rate increases through
β and Γ. These results are expected by model construc-
tion. However, the prevalence increase with π turns to
be an unexpected and a striking result that seems harder
to understand. In section IV we develop a MF approach
that helps to gain an insight into these results.

IV. MEAN-FIELD APPROACH

We study the behavior of the SIS/UAU model using
a mean-field approximation that assumes that, at every
infinitesimal time step dt of the dynamics, each node in-
teracts with η neighbors chosen at random among the
nodes of the entire population (annealing approxima-
tion). This approach neglects correlations that appear
between the states of neighboring nodes in a static net-
work, and should work reasonably well for random net-
works with homogeneous degree distributions and with-
out degree correlations, such as the Erdös-Rényi net-
works. Then, the densities of nodes in each of the four
states evolve according to the following set of coupled

rate equations:

dρiu
dt

= (1− π)βηρsuρi + παρia − (1− π)µρiu

− πκρiu − πγηρiuρa, (1a)

dρsu
dt

= (1− π)µρiu + παρsa − (1− π)βηρsuρi

− πγηρsuρa, (1b)

dρia
dt

= πγηρiuρa + πκρiu + (1− π)Γβηρsaρi

− παρia − (1− π)µρia, (1c)

dρsa
dt

= πγηρsuρa + (1− π)µρia − παρsa

− (1− π)Γβηρsaρi, (1d)

where ρxy is the density of nodes in state xy (x = i, s and
y = u, a), ρi = ρiu + ρia is the density of infected nodes,
and ρa = ρia + ρsa is the density of aware nodes. Also,
the conservation relation for the total number of nodes
ρiu + ρsu + ρia + ρsa = ρi + ρs = ρa + ρu = 1 holds at
any time. The gain and loss terms of Eqs. (1) correspond
to the respective incoming and outgoing arrows at each
of the four node states of Fig. 2. For instance, the gain
term (1 − π)βηρsuρi in Eq. (1a) describes the fraction
of nodes in state SU that make the transition to state
IU per unit of time dt: an SU node is infected at rate
(1 − π)β by each of its infected neighbors, which are a
total of ηρi in average.

A. Stationary states

In this section we obtain solutions of the system of
Eqs. 1 at the stationary state. We are particularly in-
terested in the behavior of ρ∗i with π, which is the most
intriguing as we showed in section III. Given that Eqs. 1
are a system of non-linear (quadratic) equations, explicit
formulas for its stationary solutions can not be obtained
with standard methods. Therefore, it is hard to obtain
closed expressions for the densities as a function of the
parameters. Instead, we derive here parametric equa-
tions that relate ρ∗i and π through ρ∗a (the "parameter"),
which is an indirect form of expressing ρ∗i as a function
of π. For that, we obtain expressions for the different
stationary densities ρ∗iu, ρ∗i , ρ

∗

su and ρ∗sa as a function of
ρ∗a, as we show bellow.

We start by adding Eqs. (1a) and (1c) on one side,
and Eqs. (1c) and (1d) on the other side, to arrive to the
following rate equations for ρi and ρa, respectively:

dρi
dt

= (1− π) [βη (ρsu + Γρsa)− µ] ρi, (2a)

dρa
dt

= π [γη(1− ρa)− α] ρa + πκρiu. (2b)

A simple stationary solution of Eqs. (2) is obtained by
setting ρi = 0, which leads to [γη(1− ρ∗a)− α] ρ∗a = 0
for π 6= 0. Therefore, there are two trivial station-
ary states corresponding to a totally healthy population
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(ρ∗iu = ρ∗ia = 0, ρ∗s = 1) in which (a) either all individuals
are unaware (ρ∗sa = 0, ρ∗su = 1), or (b) there is a fraction
ρ∗sa = γη−α

γη
of aware individuals. This scenario corre-

sponds to a simple UAU dynamics. At the non-trivial
stationary state ρ∗i 6= 0, with π ∈ (0, 1), we obtain the
equations

βη (ρ∗su + Γρ∗sa)− µ = 0, and (3a)

[γη(1− ρ∗a)− α] ρ∗a + κρ∗iu = 0. (3b)

Using the identities ρ∗su+ρ∗iu = ρ∗u = 1−ρ∗a, ρ
∗

sa+ρ∗ia = ρ∗a
and ρ∗i = ρ∗iu + ρ∗ia we can express ρ∗su and ρ∗sa in terms
of ρ∗i , ρ

∗

a and ρ∗iu as

ρ∗su = 1− ρ∗a − ρ∗iu and (4a)

ρ∗sa = ρ∗a − ρ∗i + ρ∗iu. (4b)

Substituting the expressions Eqs. (4) for ρ∗su and ρ∗sa into
Eq. (3a) and solving for ρ∗i we arrive to

ρ∗i =
βη − µ

Γβη
−

(1− Γ)(ρ∗a + ρ∗iu)

Γ
. (5)

Finally, replacing the expression

ρ∗iu =
[α− γη(1− ρ∗a)] ρ

∗

a

κ
(6)

for ρ∗iu from Eq. (3b) into Eq. (5) we obtain, after doing
some algebra, the following equation that relates ρ∗i with
ρ∗a

ρ∗i =
βη − µ

Γβη
−

(1− Γ) [κ+ α− γη(1− ρ∗a)] ρ
∗

a

Γκ
. (7)

We can also express ρ∗su and ρ∗sa in terms of ρ∗a. Inserting
expression Eq. (6) for ρ∗iu into Eq. (4a) we arrive to

ρ∗su = 1−
[κ+ α− γη(1− ρ∗a)] ρ

∗

a

κ
. (8)

Then, replacing Eqs. (6) and (7) for ρ∗iu and ρ∗i , respec-
tively, into Eq. (4b) we obtain

ρ∗sa =
[κ+ α− γη(1− ρ∗a)] ρ

∗

a

Γκ
−

βη − µ

Γβη
. (9)

Now that we have explicit expressions for the stationary
densities ρ∗iu, ρ∗i , ρ∗su and ρ∗sa in terms of ρ∗a given by
Eqs. (6), (7), (8) and (9), respectively, we can obtain
an expression that relates π with ρ∗a by inserting these
expressions into Eq. (1b) at the stationary state

(1−π)µρ∗iu+παρ∗sa−[(1 − π)βρ∗i + πγρ∗a] ηρ
∗

su = 0, (10)

and solving for π. After doing some algebra, we finally
obtain the following equation that gives π as a function
of the density ρ∗a and the other parameters:

π =
P (ρ∗a)

Q(ρ∗a)
, (11)

where P and Q are polynomial of degree two and four in
ρ∗a given by Eqs. (A3) and (A4), respectively, of Appendix
A. In principle, it is possible to transform Eq. (11) into a
quartic equation in ρ∗a and find its solution, which would
give an expression for ρ∗a as a function of the model’s
parameters and also an expression for ρ∗i by inserting
this expression for ρ∗a into Eq. (7). However, as we can
guess, the resulting expression would be highly compli-
cated and not very useful. Instead, we prefer to state the
analytical relationship between ρ∗i and π in the paramet-
ric form [π(ρ∗a), ρ

∗

i (ρ
∗

a)], where the expressions for π(ρ∗a)
and ρ∗i (ρ

∗

a) are given by Eqs. (11) and (7), respectively.
This parametric solution is plotted by solid lines in Fig. 3
and compared with MC simulation results (symbols). We
observe that the agreement between theory and simula-
tions is quite good for Γ = 0, but some discrepancies arise
for Γ = 0.5.

Even though the analytical solution presented above
describes numerical data rather well, its complicated
form makes it hard to explore the behavior of the densi-
ties with π. Instead, to gain an insight into the behavior
of ρ∗i with π it proves useful to analyze the simplest non-
trivial case γ = 0 and Γ = 0, where ρ∗i also exhibits the
monotonic increase with π observed for the general case
γ 6= 0 and Γ 6= 0. As we show in Appendix B, the sta-
tionary density of infected nodes for γ = Γ = 0 adopts
the rather simple form

ρ∗i =
α(βη − µ) [π(κ+ α) + (1 − π)µ]

(κ+ α)βη [πα+ (1 − π)µ]
. (12)

We can check from expression Eq. (12) that for κ = 0

is ρ∗i = βη−µ
βη

, which corresponds to the stationary value

of ρi in the SIS model. Indeed, when κ = 0 and γ = 0
there are no transitions to aware states SA and IA, and
thus all nodes are unaware at the steady state (ρ∗su +
ρ∗iu = 1), and subject to the standard SIS dynamics. For
κ > 0, the term π(κ + α) in the numerator of Eq. (12)
grows faster than the term πα in the denominator as π
increases, and thus ρ∗i increases when π increases, as we
have seen already for all parameter values analyzed in
section III.

This result can be understood intuitively with the
help of Fig. 2, by analyzing the stationary flow be-
tween states. On the one hand, we expect that ρ∗sa de-
creases as π increases. This is because the incoming flow
Fia→sa = (1 − π)µρ∗ia (from IA to SA ) decreases with
π, while the outgoing flow Fsa→su = παρ∗sa (from SA to
SU) increases with π. On the other hand, we proved in
Appendix B that ρ∗su is independent of π and given by
the expression

ρ∗su =
µ

βη
. (13)

Therefore, when π increases the density of susceptible
nodes ρ∗s = ρ∗su + ρ∗sa decreases, and thus ρ∗i increases.

It proves instructive to derive Eq. (13) from the anal-
ysis of the flows of Fig. 2. Given that in the steady state
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the incoming and outgoing flows in any node state is the
same, we have that Fia→sa = Fsa→su, and thus we can
think that there is a net flow from IA to SU equal to

Fia→su = (1− π)µρ∗ia. (14)

Therefore, the total incoming flow to SU from infected
states is

Fi→su = Fiu→su + Fia→su (15)

= (1− π)µρ∗iu + (1− π)µρ∗ia = (1 − π)µρ∗i ,

while the outgoing flow from SU to infected nodes is

Fsu→i = Fsu→iu = (1− π)βηρ∗suρ
∗

i . (16)

Then, the dynamics of the system corresponds to that
of an SU → I → SU model, where we know that the
stationary density of SU nodes equals the ratio between
the recovery rate (1−π)µ and the infection rate(1−π)βη,
leading to Eq. (13).

B. Stability analysis

A relevant feature in models of epidemic and infor-
mation spreading is the existence of a transition from a
healthy phase (ρ∗i = 0) to an endemic phase (ρ∗i > 0)
as the infection probability overcomes a threshold value
βc, as we described in section III and showed in Figs. 4
and 5. We want to find an analytical expression for the
transition line βc(γ) of Fig. 5, along which the stability
of the the healthy phase changes, so that it is stable for
β < βc and unstable for β > βc. For that, we perform a
linear stability analysis of the stable fixed points within
the healthy phase, which are

~ρ ∗

1 = (0, 0, 0, 1) for γη < α and

~ρ ∗

2 =

(

0,
γη − α

γη
, 0,

α

γη

)

for γη > α. (17)

where ~ρ ∗

n ≡ (ρ∗iu, ρ
∗

sa, ρ
∗

ia, ρ
∗

su), with n = 1, 2. These are
the two fixed points corresponding to the healthy phase
obtained in section IVA, where the dynamics of aware
nodes is given by Eq. (2b) with ρiu = 0

dρa
dt

= π [γη(1− ρa)− α] ρa.

The linearized form of this equation around ρa = 0 cor-
responding to the fixed point ~ρ ∗

1 is dρa/dt = λρa, with
λ ≡ π(γη − α). Then, ~ρ ∗

1 is stable (unstable) for λ < 0
(λ > 0), as stated in Eqs. (17) assuming π 6= 0.

In Appendix C we perform a linear stability analysis
of the fixed points ~ρ ∗

n = (0, A, 0, 1−A), where

A = 0 for γη < α (n = 1) and

A =
γη − α

γη
for γη > α (n = 2), (18)

FIG. 6: Phase diagram on the β− γ −Γ space obtained from
Eq. (20) for the same parameter values as in Fig. 5.

and show that the following relation must hold at the
transition point:

[(1− π)µ+ π(γη + κ)] [(1 − Γ)βηA+ µ− βη] = 0. (19)

Given that we considered the rates µ, γ and κ to be pos-
itive in simulations, the first term in brackets of Eq. (19)
is positive, thus we have

(1− Γ)βηA+ µ− βη = 0.

Replacing the values of A from Eqs. (18), we finally ob-
tain the following expression for the critical infection rate:

βc =

{

µ
η

for γη < α and
γµ

γη−(1−Γ)(γη−α) for γη > α.
(20)

In Fig. 5 we observe that the analytical approximation
of the transition line βc(γ) from Eq. (20) (solid line)
agrees quite well with the transition points obtained from
simulations (squares). We can also check that βc ap-
proaches the value µ/(Γη) = 0.45 in the γ → ∞ limit
(for µ = 0.9,Γ = 0.1 and η = 20), confirming that for
high enough values of β the information is not able to
stop the epidemics, as mentioned in section III. We also
see that for Γ = 1 is βc = µ/η = 0.045 for all γ, which is
in agreement with MC results (see section I of the Supple-
mentary Information). Given that performing numerical
simulations for various values of γ and Γ are very costly,
we also implemented Eq. (20) to build a transition plane
in the β − γ − Γ space. Results are shown in the phase
diagram of Fig. 6.

V. CONCLUSIONS

We have explored the interplay between the prop-
agation of an epidemic disease using the susceptible-
infected-susceptible dynamics and the dissemination of
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information about the knowledge of the disease using the
unaware-aware-unaware dynamics, as a simplified model
from a recent study [23]. For that, we assumed that the
disease and the information spread on two coupled Erdös-
Rényi networks where these two processes interact with
each other, and whose relative propagation speeds are
controlled by an external parameter π. We have ver-
ified that the information helps to reduce the disease
prevalence and increase the epidemic threshold of the dis-
ease. We have also observed that self-awareness, which
keeps infected individuals aware of their condition, is a
very effective mechanism for reducing the disease preva-
lence. Surprisingly, the prevalence increases with π, that
is, as the information dynamics is faster. This seem-
ingly counter intuitive result was also obtained in a more
complex model studied in our previous work [23] and,
therefore, it seems to be universal and independent of
the model details. However, it was not fully explored
and understood.

In order to gain an insight into this phenomenon, we
developed a MF approach to study the dynamics of the
model. We found a good agreement between simulations
of the model and analytical MF results. We showed that
the SIS/UAU dynamics in MF exhibits a behavior that is
qualitatively the same to that found in the SIS/UAU and
SIS/UARU models using the Markov chain approach and
Monte Carlo simulations [23], in particular, the increase
of the prevalence with π. Besides, the MF approach al-
lowed for the detailed study of a simple non-trivial case
where the relation between the prevalence and π was an-
alyzed in terms of probability flows between states.

It is interesting to note that the non-trivial relation
between disease propagation and information spreading
described in this article calls for a careful analysis of the
impact of information management on disease spreading
in a real society, something very pertinent in the cur-
rent global pandemic. Given that these results seem to

hold for cyclic (SIS-like) spreading dynamics, both for
disease and information processes, it would be worth-
while to explore whether a similar phenomena is observed
in models where two non-cyclic (SIR-type) dynamics in-
teract, with controllable relative speeds. It might also be
worth studying the behavior of the model on multilayer
networks with more complex topologies than the Erdös-
Renyi networks used in this work, such as scale-free net-
works or contact networks with a structure obtained from
real data.
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Appendix A: Complete form of polynomial P and Q

Solving for π from Eq. (10) we obtain

π =
βηρ∗i ρ

∗

su − µρ∗iu
ρ∗su(βηρ

∗

i − γηρ∗a)− µρ∗iu + αρ∗sa
, (A1)

which, after inserting expressions for ρ∗iu, ρ∗i , ρ
∗

su and ρ∗sa from Eqs. (6), (7), (8) and (9), respectively, becomes

π =
P (ρ∗a)

Q(ρ∗a)
, (A2)

with

P (ρ∗a) =
βη

Γ

[

βη − µ

βη
− (1− Γ)

(

ρ∗a +
[α− γη(1− ρ∗a)] ρ

∗

a

κ

)]

−
µ [α− γη(1− ρ∗a)] ρ

∗

a

κ
, (A3)

and

Q(ρ∗a) =

(

1− ρ∗a +
[α− γη(1− ρ∗a)] ρ

∗

a

κ

){

βη

Γ

[

βη − µ

βη
− (1 − Γ)

(

ρ∗a +
[α− γη(1− ρ∗a)] ρ

∗

a

κ

)]

− γηρ∗a

}

−
µ [α− γη(1− ρ∗a)] ρ

∗

a

κ
+

α

Γ

[

ρ∗a +
Γ [α− γη(1− ρ∗a)] ρ

∗

a

κ2
−

βη − µ

βη

]

. (A4)
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Appendix B: Solution for γ = 0 and Γ = 0

For γ = 0 and Γ = 0 Eqs. (1) are reduced to the simpler
form

dρiu
dt

= (1 − π)βηρsuρi + παρia − (1− π)µρiu − πρiu,

(B1a)

dρsu
dt

= (1 − π)µρiu + παρsa − (1− π)βηρsuρi, (B1b)

dρia
dt

= πρiu − παρia − (1− π)µρia, (B1c)

dρsa
dt

= (1 − π)µρia − παρsa. (B1d)

The trivial fixed point of this system of equations is
ρ∗su = 1.0, corresponding to a totally healthy and un-
aware population. The non-trivial fixed point corre-
sponds to the stationary densities

ρ∗iu =
α(βη − µ)

(κ+ α)βη
(B2)

ρ∗ia =
πακ(βη − µ)

(κ+ α)βη [πα + (1− π)µ]
(B3)

ρ∗su =
µ

βη
(B4)

ρ∗sa =
(1− π)µκ(βη − µ)

(κ+ α)βη [πα + (1− π)µ]
. (B5)

The expression for the disease prevalence is

ρ∗i =
α(βη − µ) [π(κ+ α) + (1− π)µ]

(κ+ α)βη [πα+ (1− π)µ]
(B6)

Equation (B6) predicts that the prevalence takes the
value ρ∗i = α(βη−µ)/[(1+α)βη] = 0.1875 and ρ∗i = (βη−
µ)/βη = 0.5 in the π = 0 and π = 1 limits, respectively.
However, these extreme cases are pathological because
the above limiting values do not correspond to the value
of ρ∗i at those points. That is, ρ∗i exhibits a discontinuity
at π = 0 and at π = 1. To see that we rewrite Eqs. (B1)
for π = 0

dρiu
dt

= βηρsuρi − µρiu,

dρsu
dt

= µρiu − βηρsuρi, (B7)

dρia
dt

= −µρia,

dρsa
dt

= µρia,

whose non-trivial stationary solution is ρ∗iu = C0−µ/βη,
ρ∗ia = 0, ρ∗su = µ/βη and ρ∗sa = 1 − C0, where C0 =
ρu(t = 0) is a constant. Assuming that all individuals
are unaware initially, C0 = 1, leads to a prevalence ρ∗i =
(βη − µ)/βη = 0.5 at π = 0, which is higher by a factor

(1 + α)/α = 2.66 than the limit π → 0 from Eq. (B6).
For π = 1 Eqs. (B1) are reduced to

dρiu
dt

= αρia − ρiu,

dρsu
dt

= αρsa, (B8)

dρia
dt

= ρiu − αρia,

dρsa
dt

= −αρsa,

whose stationary solution is ρ∗iu = αC1/(1 + α), ρ∗ia =
C1/(1+α), ρ∗su = 1−C1 and ρ∗sa = 0, where C1 = ρi(t =
0). That is, the fraction of infected nodes stays constant
over time. If there is one infected individual initially,
then the prevalence is ρ∗i = 1/N ≪ 1 for large N .

We note that the stationary density of aware nodes
ρ∗a = (βη − µ)/[βη(1 + α)] is independent on π, while ρ∗i
does depend to π. This means that both SIS and UAU
dynamics are cyclic but not equivalent. This equivalence
is broken by the term κπ in the spontaneous transition
IU → IA. Indeed, for the κ = 0 case we obtain that
ρ∗i = (βη−µ)/βη independent on π. This gives an insight
into the non-intuitive behavior of ρ∗i , as we describe in
section IVA.

Appendix C: Linear stability analysis

To better handle calculations, we write the fixed points
of Eqs. (17) in the general form ~ρ ∗

n = (0, A, 0, 1 − A),
where

A = 0 for γη < α (n = 1) and

A =
γη − α

γη
for γη > α (n = 2), (C1)

and study their stability under a small perturbation by
means of Eqs. (1). For that, we linearize Eqs. (1) around
the fixed point ~ρ ∗

n by setting ρiu = ǫ1, ρsa = A + ǫ2 and
ρia = ǫ3, with |ǫk| ≪ 1 (k = 1, 2, 3), and study their time
evolution (the evolution of ρsu is obtained from the other
three densities). Neglecting terms of order ǫ2k, we obtain

d~ǫ

dt
= M~ǫ (C2)

where

M ≡





a 0 b
c d e
f 0 g



 and ~ǫ ≡
(

ǫ1, ǫ2, ǫ3
)

,
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with

a = (1− π) [βη(1−A)− µ]− π [κ+ ηγA] ,

b = (1− π)βη(1 −A) + πα,

c = − [πγη + (1− π)Γβη]A,

d = π [γη(1− 2A)− α] ,

e = πγη(1− 2A) + (1− π) [µ− ΓβηA] ,

f = π [γηA+ κ] + (1− π)ΓβηA,

g = (1− π) [ΓβηA− µ]− πα.

At the critical point, the determinant of matrix M

det(M) = d(ag − fb)

must be zero, from where obtain after doing some algebra
the relation quoted in Eq. (19) of the main text.
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