Engineering Science and Technology, an International Journal 24 (2021) 22-34

HOSTED BY

journal homepage: www.elsevier.com/locate/jestch e

Contents lists available at ScienceDirect

Engineering Science and Technology,

an International Journal

Al

Full Length Article

Computer-aided design for building multipurpose routing processes n

Check for

in discrete event simulation models

Maria Julia Blas *, Silvio Gonnet

Instituto de Desarrollo y Diseiio INGAR CONICET-UTN, Avellaneda 3657, Santa Fe 3000, Argentina

ARTICLE INFO

Article history:

Received 29 July 2020
Revised 30 October 2020
Accepted 2 December 2020

Keywords:

Discrete Event System Specification (DEVS)
Computer-aided design

Model-driven engineering

Routed DEVS

Meta-modeling

ABSTRACT

Good domain-modeling enables an appropriate separation of concerns that improves quality properties
in the simulation models, such as modifiability and maintainability. In this paper, the interplay of
abstraction and concreteness in advancing the theory and practice of Modelling and Simulation is
improved using the Model-Driven Engineering levels for building simulation models devoted to routing
processes. The definition of this type of processes is detailed as a domain-model conceived as an abstrac-
tion defined in a graph model. Such abstraction turns into a set of formal simulation models that are
(later) translated into an executable implementation. The final simulation models are specified using
Routed DEVS formalism. The methodological proposal is accomplished with the development of a
Modelling and Simulation graphical software tool that uses the set of models (defined in terms of the
Model-Driven Engineering approach) as the core of its operation. This graphical software tool is devel-
oped as a plug-in for Eclipse Integrated Development Environment with aims to take advantage of exis-
tent Modeling and Simulation software. Therefore, the usefulness of graphical modeling for supporting
the development of the simulation models is empowered with a Model-Driven Engineering process.
The main benefit obtained when the Model-Driven Engineering approach is used for modeling an
abstraction of the final simulation model is a clear reduction of formalization and implementation times.
© 2020 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

In the last years, the Modeling and Simulation (M&S) field has
grown becoming a discipline by itself. A good conceptual model
lays a strong foundation for successful simulation modeling and
analysis [1]. According to Guizzardi and Wagner [2] the terms ‘do-
main model’ and ‘conceptual model’ are equivalent. In this sense,
conceptual modeling serves as a bridge between the problem
owner and the simulation modeler.

Frequently, simulation models attempt to solve situations
where a specific set of components send/receive interactions (e.g.
messages or events) employing a selective mechanism. These situ-
ations are commonly found in domain areas such as telecommuni-
cation, supply chain, business process management, mobile
applications, social networks, and so on. For well-defined mecha-
nisms (for example, publish-subscribe protocol [3]) several well-
established implementations exist. However, when the selective
mechanism is defined as part of the situation description, new

* Corresponding author.
E-mail address: mariajuliablas@santafe-conicet.gov.ar (M.]. Blas).
Peer review under responsibility of Karabuk University.

https://doi.org/10.1016/j.jestch.2020.12.006
2215-0986/© 2020 Karabuk University. Publishing services by Elsevier B.V.

modeling strategies should be applied. In these cases, the modeler
designs the simulation model as a combination between its
domain components and the selective mechanism description
(i.e., a routing process description).

The Discrete-Event System Specification (DEVS) formalism [4] is
a modeling formalism based on systems theory that provides a
general methodology for the hierarchical construction of reusable
models in a modular way. Over the years, DEVS has found an
increasing acceptance in the model-based simulation research
community becoming one of the preferred paradigms to conduct
modeling and simulation enquiries [5]. When DEVS is applied for
modeling situations that involve their own selective mechanism,
DEVS-modelers use one of the following strategies: i) “pre-
wired” connections (i.e., an implicit routing formulation), or ii)
“handlers” (i.e., an explicit simulation component that manages
the routing functionality). One way or another, the modeler solves
the situation using its knowledge regarding DEVS formalism.
Therefore, its design is based on the formalism itself (not in the
domain study). This is because, by nature, simulation is a technical
field [6].

However, the design of the simulation model impacts all
aspects of the study, in particular the data requirements, the speed

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jestch.2020.12.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jestch.2020.12.006
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:mariajuliablas@santafe-conicet.gov.ar
https://doi.org/10.1016/j.jestch.2020.12.006
http://www.sciencedirect.com/science/journal/22150986
http://www.elsevier.com/locate/jestch

Maria Julia Blas and S. Gonnet

with which the model can be developed, the validity of the model,
the speed of experimentation, and the confidence that is placed in
the model results [7]. Then, conceptual modeling can be used as a
guideline when building DEVS simulation models that involve
routing functionality.

According to Robinson [8], conceptual modeling is about mov-
ing from a problem situation, through model requirements to a
definition of what is going to be modeled and how. Moreover, from
the modeling perspective, a simulation model is similar to a soft-
ware system model because both kinds of models can be devel-
oped from a conceptual system model [9]. In Software
Engineering (SE), this approach is called Model-Driven Engineering
(MDE). MDE is based on several principles that involve the con-
cepts of model, metamodel, meta-metamodel, and model transfor-
mations to provide a process that enables the automated
development of a system [10]. However, in the M&S field, there
is no common understanding on how to apply these modeling
levels when building simulation models.

Given that MDE produces well-structured and maintainable
systems and increases the level of abstraction [11], it is our
research goal to use MDE as a mechanism for improving the M&S
of routing processes. Several authors have studied different types
of processes using DEVS (or variants of DEVS) as support M&S
mechanism. Frequently, these researches are based on domain-
models and Model-Driven approaches. For example, Zacharewicz
et al. [12] propose a description language for workflow processes
along with an automatic transformation of a workflow into a
Generalized-DEVS model. More recently, in the context of Business
Process Models, a Model-Driven Development framework for the
M&S has been presented [13]. Such a framework is based on
model-to-model transformations from BPMN (as a conceptual
modeling language) to DEVS (as a simulation model specification).
In this direction, Bazoun et al. [14] have proposed a refinement of
the previous BPMN metamodel with new concepts and transfor-
mation rules to adapt the existing model to BPMN 2.0. In this
paper, we abstract the routing process definition into a graph
model that is used as a domain model description for building (au-
tomatically) a discrete-event simulation model of the original situ-
ation without requiring any interaction with the DEVS-modeler.
Instead of using a modeling language (e.g., UML or BPMN), we pro-
pose a simple graph representation based on nodes and links to
describe the structure of our processes. To improve the perfor-
mance of the final simulation models, we employ the Routed DEVS
(RDEVS) definition [15] as a “layer” above DEVS with aims to pro-
vide routing functionality without requiring the user to “dip down”
to DEVS itself for any functions [16]. The conceptualizations devel-
oped using the MDE approach are encapsulated in a M&S software
tool implemented as a plug-in for Eclipse Integrated Development
Environment (IDE) [17]. Our aim is i) to offer a software environ-
ment for the graphical modeling of routing situations using a stan-
dardized graph description, and ii) to be able to generate Java code
for such routing situations in a way that they can be executed in
DEVS simulators as discrete-event simulation models.

The remainder of this paper is structured as follows. Section II
briefly introduces the different uses of MDE in the M&sS field. It also
describes the principles of DEVS formalism and how DEVS models
can be used for solving routing processes. A description of the
desirable capabilities of M&S software tools is also included. Sec-
tion Il presents the core of the proposal: the MDE modeling levels
used as a conceptual view of routing situations. It describes the
metamodels defined as conceptualizations of each MDE level to
represent some view of the original situation. Section IV introduces
the M&S software tool designed as a plug-in for Eclipse IDE using
the metamodel obtained from the MDE approach. The goal of this
plug-in is to provide a single object-oriented M&sS tool for building
simulation models of routing situations from graph models. Sec-

23

Engineering Science and Technology, an International Journal 24 (2021) 22-34

tion V details the main benefits of having the M&S tool with a proof
of concepts. Finally, Section VI is devoted to conclusions and future
work.

2. Related work
2.1. Model-driven-X in the M&S field

The Model-Driven-X (MDX) methodologies are widely used in
the SE field. The Model-Driven Development (MDD) proposes a
paradigm that uses models as the primary artifacts and redefines
the implementation as automatic generation from the models
[18]. Model-Driven Architecture (MDA) is a particular vision of
MDD proposed by the Object Management Group [19]. The MDE
approach follows the MDA proposal to cover all engineering pro-
cess areas with a focus on developing metamodels to facilitate
automated transformations.

The M&S field has used MDX approaches in different ways. For
example, Alshareef et al. [20] propose the use of MDE in simulation
especially for creating platform-independent models. Other
authors believe that MDE can be used for modeling conceptual
views before building the final simulation model [21,22]. In this
paper, we employ MDE as a vehicle for designing and implement-
ing a M&S software tool that provides DEVS-based solutions for
generic routing processes. We argue that MDE modeling levels
can be used to support the abstraction, formalization, and imple-
mentation meta-models required to obtain (automatically) the
final simulation model.

However, it is important to remark that simulation establishes a
model in a computational environment. Such a “computation” is an
aspect of M&S and does not imply that M&sS is a subfield of SE [23].
Even when MDX approaches have been used in M&S, Model-Based
(MB) paradigms (such as MB System Engineering and MB Simula-
tion) are frequently used to get solutions to M&S issues [24,25].
Such MB approaches use MDX practices pragmatically (i.e., the
models are important, but they do not necessarily drive the devel-
opment process).

2.2. Discrete event system specification

The DEVS formalism is a complete M&S technique based on sys-
tems theory introduced by Prof. Zeigler in the early 70’s. It provides
a general methodology for the hierarchical construction of reusable
models in a modular way. It employs two abstraction levels to
describe the behavior of a system: atomic and coupled.

At the atomic level, the behavior of the system is detailed as a
sequence of deterministic transitions among sequential states. This
sequence determines how the system reacts to external events.
Also, it describes how output events are created.

Equation (1) resumes the atomic model definition following the
approach called “Classic DEVS with ports” [4].

M = (X,Y,S, dext, sint, 4, ta) (1)

where:

X ={(pv) | p € InPorts, v € X} is the set of input ports and
values;

Y ={(p,v) | p € OutPorts, v € Y} is the set of output ports and
values;

S is a set of sequential states;

dext: Q x X — S is the external transition function, where
Q={(s,e)| s€S, 0 < e <ta(s)}is the total state set in which e is
the elapsed time since the last transition in the state s;

dint:S — S is the internal transition function,

A S — Y is the output function; and

Maria Julia Blas and S. Gonnet
ta: S — Ry is the advance time function.

On the other hand, at the coupled level, the system is described
as a network of interconnected components. Such components can
be atomic or coupled models in their own right. The connections
among components (i.e., the couplings) denote how components
influence each other. There are three types of influences: i) exter-
nal input couplings that connect external inputs to component
inputs, ii) external output couplings that connect component out-
puts to external outputs, and iii) internal couplings that connect
component outputs to component inputs.

Equation (2) summarizes the coupled model definition using,
also, the “Classic DEVS with ports” approach.

N = (X,Y,D, {My|d € D}, EIC, EOC, IC, Select))

where:

X and Y are defined in the same way as Eq. (1);

D is the set of the component names;

For each d € D, My is a DEVS model;

EIC € {((N,ipn),(d,ipq)) | ipn € InPorts, d € D, ipq € InPortsy} is the
set of the external input couplings;

EOC € {((d,opq),(N,opn)) | opn € OutPorts, d € D, opg €
OutPortsg} is the set of external output couplings;

IC € {((a, opa),(b, ipy)) | a,b € D,op, € OutPorts,,ip, € InPortsy} is
the set of internal couplings; and

Select is the tie-break function.

2.3. Structuring routing processes with DEVS: Routed DEVS

When solving a routing process situation with DEVS, the final
model employs one of the following strategies: i) “pre-wired” con-
nections (i.e., an implicit routing formulation), or ii) “handlers”
(i.e., an explicit component that manages the routing functional-
ity). In i), the simulation models are designed considering the
events flow as pre-defined connections. For each possible interac-
tion among components that defines an alternative flow, the model
includes a coupling among ports to be used when the interaction is
active [14,26-29]. On the other hand, the solutions designed
according to ii) use a set of simulation components (often called
“handlers”) that are explicitly introduced in the simulation model
with aims to manage the routing functionality [30,31].

To overcome the implicit and explicit routing functionality, the
RDEVS formalism provides an appropriate separation of concerns
in terms of the routing structure, the possible paths, and the com-
ponent behaviors. Over the years, researchers have proposed
extensions of DEVS with aims to solve different situations. In this
context, the RDEVS formalism was designed as a DEVS extension
that improves the modeling of DEVS simulation models devoted
to routing process situations [15]. Unlike DEVS formalism, the
RDEVS formalism defines three types of simulation models: essen-
tial, routing, and network.

The RDEVS essential model specifies a discrete-event simulation
model that exhibits the behavior of an elemental domain-
component involved in the routing process situation. The guideli-
nes for building an essential model should be defined by a domain
expert. Formally, an RDEVS essential model is defined as a DEVS
atomic model [4].

The RDEVS routing model defines a discrete-event simulation
model that acts inside the routing process situation. Its definition
employs a domain-component as an operational description of
its own behavior. Hence, the routing model definition embeds an
instance of a specific essential model. Therefore, the same essential
model can be embedded in several routing models. Besides the
domain-component definition, the routing model requires a routing
policy. The routing policy attached to each routing model is defined

24

Engineering Science and Technology, an International Journal 24 (2021) 22-34

at design time and cannot be changed during the simulation execu-
tion. However, the same routing policy can be used in distinct rout-
ing models. The routing policy definition includes an identifier used
to distinguish the set of routing models that build the routing sit-
uation. Routing models employ these identifiers to decide how to
treat the input events (accept or reject) and how to route the out-
put events. Therefore, the events that flow over the routing models
that compose a routing situation are defined as events with identi-
fication. An event with identification is recognized by its sender
information (i.e., the identifier of the routing model that creates
the event through its output function) and its feasible receptors.
The feasible receptors of an event with identification are obtained
from the routing function that composes the routing policy. There-
fore, the execution of the routing process is build-in inside the
RDEVS models.

Finally, the RDEVS network model describes a complex discrete-
event simulation model that solves a routing situation as a routing
process. Its definition includes a set of routing models and the cou-
plings among them. Such couplings are detailed as all-to-all connec-
tions in order to leave the routing task to the routing policies
(detailed in each routing model). The network model specification
also involves two special translation functions (used to link multi-
ple networks): input translation function and output translation
function. These functions allow matching events with identification
produced by different routing processes (i.e., different network
models). Therefore, network models are designed to interact with
other network models or, simply, with DEVS models (atomic or cou-
pled). The output events produced by a network model are events
sent “everywhere”. The simulation model that, eventually, con-
sumes such events must decide how to route these messages.

Then, the RDEVS formalism provides a feasible solution to mod-
elers for building discrete-event simulation models for routing pro-
cesses. To show the dependencies among RDEVS models, Fig. 1
presents two examples (ROUTINGSITUATION 1 and ROUTINGS]TUAT]ON
) based on the same set of domain-components (MACHINEypg a
and MACHINErype). In both examples, the basic domain-
components are defined as essential models (that is, DEVS atomic
models). Over these models, a set of routing models is defined with
aims to represent the components to be used in each situation.
Each routing model embeds an essential model with aims to define
its behavior. The routing process situations are modeled as individ-
ual network models structured with these routing models.

Then, the RDEVS formalism allows modeling different routing
process situations using the same set of DEVS models (defined as

domain

© P
B o
components

T (o0 o o]
MACHINE ype

<essential models I

> DEVS
MACHINE rvee o |

HACHINE oo models

<essentiol sodets
Al macHINE e o [N
=)\

RDEVS
models

| eessenriot mocets .|
MACHINE ype s | A\ = /

ROUTINGs ruarion 2

M
T .
Ix)
Q) MACHINE 1%
@ e} —p> s g
|°|"'0 225 process
MACHINE ;s o situations

MACHINE rype MACHINE rypg

MACHINE rype

ROUTINGs ruarzon 1 ROUTINGsruation 2

Fig. 1. Dependencies among DEVS and RDEVS models.

Maria Julia Blas and S. Gonnet

RDEVS essential models) for domain-components. That is, the
RDEVS models act as a “layer” above DEVS with aims to provide
routing functionality without requiring “dip down” to DEVS itself
for any functions [16]. Since RDEVS is a subclass of DEVS [32],
the RDEVS models can be executed using DEVS simulators.

2.4. Capabilities of the M&S software products

Well-designed M&S software products should support the reuse
of existing (software) components [33]. Moreover, two desirable
properties of any M&S software product are low coupling and high
cohesion among software components. The low coupling is desirable
because i) fewer interconnections among software modules reduce
the chance that changes in one module cause problems in other
modules (i.e., enhances reusability), and ii) fewer interconnections
among modules reduce the developer time in understanding the
details of other modules. Also, cohesion is an important attribute
regarding the quality of software modules. Good abstractions typ-
ically exhibit high cohesion [34]. Thereby, software modules
defined in an M&S software product should fully capture explicit
abstractions of the M&S task.

Hence, any M&S software tool should (at least) provide two set
of modules: software modules for supporting the modeling, and
software modules for supporting the simulation execution. More-
over, these products should provide not only simulation capabili-
ties but, also, they should support new modeling strategies that
improve the modeling task (e.g. number of simulation models to
be developed, time to spend for getting correct implementations,
modeling complexity, M&S knowledge required prior to perform
the modeling, etc.).

Nowadays, there are multiple software tools and simulators for
DEVS models. Van Tendeloo and Vangheluwe [35] discuss the main
functionalities of the most frequently used M&S tools. As the
authors describe, there is a set of DEVS M&S tools that support
graphical modeling capabilities. For example, PowerDEVS [36]
integrates different software modules with aims to provide a
graphical modeling environment, an atomic model editor, and a
code generator in a M&S DEVS tool. In the same direction, the
graphical modeling environment called CD++Builder [37] can be
used to create models for CD++ [38]. DEVSimPy [39] offers a graph-
ical modeling environment for coupled models. A similar approach
is applied in Virtual Laboratory Environment [40] where atomic
models are written in C++ and coupled models can be created using
either the graphical environment or by manually writing XML files.

Even when existent capabilities regarding graphical modeling
are useful for DEVS modelers, these approaches are centered on
predefined formalizations of the simulation model. That is, all the
approaches are centered on building graphically DEVS models that
have been already designed (at least, at the conceptual level) by
the modeler. Then, the modeler (that already knows DEVS formal-
ization) employs such knowledge in the definition of the simula-
tion models. In this sense, the M&S field has applied the MDE
approach in several cases. For example, De Lara and Vangheluwe
[41] present a tool for metamodeling and model transformations
for the simulation that facilitates computer-assisted modeling of
complex systems. Other approaches related to MDE are described
by Levytskyy et al. [42] and D’Ambrogio et al. [43]. Still, these
approaches are not focused on modeling the original problem or
situation. From this perspective, the novel contribution of this
paper is the way in which the MDE approach is used in the M&S
field. The MDE modeling levels are used as a guideline in the model
definition through the abstraction, formalization, and implementa-
tion of the original situation. Then, our M&S tool uses a graphical
representation of the original routing situation as a marker for
building (automatically) a DEVS implementation of the simulation

25

Engineering Science and Technology, an International Journal 24 (2021) 22-34

models. This is the main difference between the M&S software tool
developed in this paper and the existing ones.

3. MDE modeling levels for M&S of routing situations

MDE differences three types of models as engineering artifacts
resulting from the activities performed in the analysis, design,
and implementation phases. These models are defined as:
1. Domain models: Solution-independent descriptions of a

domain produced in the analysis phase of a SE project.

2. Platform-independent design models: General computational
solution developed on the basis of the domain model at the
design phase of the SE project.

3. Platform-specific implementation models: The implementation
model is encoded in the programming language of the target
platform at the implementation phase of the software project.

Then, a software system model consists of a set of models
defined in terms of the most important viewpoints of the system
to crosscut all three modeling levels [2].

From the modeling perspective, a simulation model is similar to
a software system model. Following a scientific engineering
approach, Guizzardi and Wagner [9] claim that both kinds of mod-
els are derived from a conceptual system model (also called domain
model). The main benefit obtained from the definition of a domain
model is the clarification of the real-world semantics. In SE, this
approach is based on MDE. In this case, a clearly defined semantics
of the conceptual model of a domain leads to a higher overall qual-
ity of the software application system built upon that model with
respect to comprehensibility, maintainability, interoperability, and
evolvability [9]. Since simulation models are more about the real
world than software system models, the principles of MDE are use-
ful. In fact, in the M&sS field, such a domain model is often called an
abstraction model. An abstraction model focuses on an aspect of
reality and, almost by definition, greatly reduces the complexity
of the reality being considered [4]. Then, it focuses on the perspec-
tive and language of the subject matter experts for the domain
under consideration.

Building a domain model that works in any routing situation is
impossible. However, an appropriate abstraction can be designed
with aims to fulfill most routing situations. This is the approach
described in Section 3.1 for getting the metamodel of the domain
model.

Once the first MDE modeling level is defined, a formal model of
the domain (model) is required. Formal models generally describe
the structure and the behavior of the system independent from
the implementation details [11]. Commonly, a formal model makes
it easier to work out implications of the defined abstraction with
aims to get a future implementation. If multiple formalisms are
used to support the model definition, the same abstraction model
can be used to define several formal models. Hence, a formal model
follows the guidelines of a platform-independent design model
(where the same domain model can potentially be used to produce
different design models). Section 3.2 describes how the domain
model of Section 3.1 is formally defined as a simulation model in
RDEVS. In this case, RDEVS is used as the formalization mechanism
in a platform-independent way.

Finally, once the second MDE modeling level is obtained, an im-
plementation model can be defined with aims to get a concrete real-
ization of the formalization. Commonly, implementation models are
deployed in a simulation environment. Therefore, this model can
be seen as a platform-specific implementation model (third MDE
modeling level). Section 3.3 presents the RDEVS implementation

Maria Julia Blas and S. Gonnet

model using Java as the target-platform for the simulation
execution.

3.1. Routing process situations as graph models

The success of the modeling task depends on the modeler’s abil-
ity to get an appropriate level of abstraction in the design. In this
context, graph models (defined as a set of nodes and edges among
the nodes) can be used as an abstraction of routing situations (re-
ality). Then, a routing situation description can be seen as a graph
model.

When routing situations are modeled as graphs, the nodes of
the graph represent domain-component instances and the edges
of the graph represent the connections (i.e., the relationships)
among those instances (i.e., the nodes). Under this representation,
domain-components are conceptualized as nodes of the graph that
share a behavioral operation. That is, several nodes are used to rep-
resent the same domain-component.

Fig. 2 shows a UML class diagram that describes the elements
that compose a graph model. A Graph is Composed by Nodes and
Edges. In this case, a Graph is Composed by, at least, two Nodes
and it Includes, at least, one Edge. Both associations (i.e., Composed
by and Includes) are modeled as UML compositions. The Nodes are
linked by Edges. An Edge is defined as an ordered pair of Nodes
according to the mandatory associations named Starts at and Ends
at (multiplicity 1). Finally, a Node Instantiates a Component that has
a behavior described over a domain procedure. The Instantiates asso-
ciation between Node and Component is mandatory for Node (mul-
tiplicity 1). However, the same Component can be used as support
of several Nodes (multiplicity 1...%).

The abstraction metamodel (Fig. 2) simplifies the graph domain
using a set of concepts and relationships that ensure building an
appropriate graph model. The main advantage of employing a
graph model as an abstraction of routing situations is that existent
metrics designed for such models can be used as support measures
for studying the complexity of the simulation models obtained
from it.

3.2. Graph models as routed DEVS models

Formalization makes it easier to work out the implications of
the abstraction and implementation in reality [4]. As Section 2.2
details, the RDEVS formalism is designed to level out the modeling
effort of routing situations modeled in DEVS. Hence, the RDEVS for-
malism can be used as formalization language for the abstraction
model depicted in Fig. 2.

Following this approach, each RDEVS model can be seen as the
formalization of some component defined in Fig. 2 as follows: i) the
essential model formalizes a component (because the essential model
is designed to exhibit the behavior of some domain-component), ii)

Composed by Instantiates

‘1 2.4 \L I 1
Graph 1 Node 1 1
ends starts
Component
1 Ends at Staftsat [pehavior: domain procedure
* Edge *
inputEdge outputEdge
Includes /I\l.,*

Fig. 2. Simplified UML class diagram that depicts the main concepts and relation-
ships required for instantiating a graph model that represents a routing situation
(abstraction metamodel).

26

Engineering Science and Technology, an International Journal 24 (2021) 22-34

the routing model formalizes a node of the graph (because the rout-
ing model is designed as part of the routing situation), and iii) the
network model formalizes the graph (because the network model
is designed to represent the overall routing situation).

Fig. 3 extends the UML class diagram depicted in Fig. 2 with the
formalization metamodel (i.e., concepts highlighted in yellow)

OCL: "Two different Edges cannot link the same pair of Nodes."
context Node
inv equalEdges: self.ouputEdge->forAll(e1,e2| e1 <> e2 implies e1.endsAt <> e2.endsAt)

OCL: "Loops are not allowed in the same Node."”
context Edge '
invariant isNotCyclic: self.starts <> self.ends 4

1

OCL: "A Node cannot be isolated."
context Node
invariant isNotlsolated: (self.inputEdge->size() + self.outputEdge->size()) > 0

1 1
Composed by 1 J[1.+
Graph . 2.7 Node
ends starts
1
1 1 L
Ends at Staits at X
inputEdge Edge «formallizes»
. outputEdge
Includes 1\ 1
N Instantiates
Component 1
behavior: domain procedure
1
«formalizes» «formalizes»
1
Essential Model 1
Embeds
1
Routing Policy i
Requires
1.*
Defined over
15
1 1:* 1::*
Network Model Composed by Routing Model
1 9.+ |identifier 1
1 1 1 1 1
Has a$ input Has gs output
1 1
Translptes inputs with
Input Port Output Port
1 1 1
Stafts at
Input Translation Function 1
start node: Routing Model[1..*] Endsat 1 » Coupling

Translates outputs with

Output Translation Function

1 end node: Routing Model[1..*]

Includes

Fig. 3. UML class diagram that links the abstraction metamodel with the RDEVS
specification through the formalizes relation. The associations that hold the same
name and multiplicity in both metamodels describe the same dependency between
elements. The Embeds association (from the formalization metamodel) is the
materialization of the Instantiates association (from the abstraction metamodel).
The OCL constraints are used to ensure the correct design of RDEVS models.

Maria Julia Blas and S. Gonnet

employing the formalizes stereotyped relationship (i.e., association
highlighted in blue). Through this special relationship, the formal-
ization metamodel refines the concepts of the abstraction metamodel
with aims to explicitly define the simulation model structures. For
example, the Node formalization through the Routing Model
includes the node decomposition in terms of its Routing Policy
and Input / Output Ports. A similar approach is used in the Network
Model that formalizes the Graph. In this case, the Input and Output
Translation Functions are included to formalize the Node (or Nodes)
where the event flow should start and end, respectively.

A set of OCL constraints is added to the UML class diagram to
maintain consistency between abstraction and formalization meta-
models. This consistency is related to the correctness of the formal-
ism. Even when RDEVS models can be used to support the design of
routing situations, the graph model used as abstraction must
ensure a set of structural properties prior its formalization with
RDEVS. Such structural properties guarantee the validity of the
RDEVS models. In this context, the OCL constraints detailed in
Fig. 3 are attached to the formalizes relationship modeled between
Node (from the abstraction metamodel) and Routing Model (from the
formalization metamodel). These constraints should be evaluated
before getting the Routing Model that formalizes a Node. For exam-
ple, a Routing Model cannot be obtained for an isolated Node (be-
cause, by definition, all models that compose a Network Model
must be connected to each other). Then, before obtaining such a
simulation model, the OCL invariant named isNotisolated should
be evaluated.

As a remark, from a conceptual point of view, a Coupling can be
seen as a formalization of an Edge. However, Fig. 3 does not include
such formalization as a relationship. This is because the Couplings
in RDEVS models are structured by the Network Model as all-to-
all connections. When a Routing Model Embeds an Essential Model,
the Routing Policy should be defined. Such Routing Policy is used
to route the input/output events that flows to/from the actual
Routing Model from/to the other Routing Models that compose the
Network Model. Therefore, the Routing Policy is Defined over a set
of Routing Models (at least, one Routing Model) using as foundation
the Edges that link the Nodes that abstract them. Moreover, all
Routing Models included in a Network Model must be attached to,
at least, one Routing Policy (multiplicity 1...*). Hence, the Edges
are used as guidelines for building Routing Policies but not as
abstraction of the Couplings.

Now, the definition of RDEVS simulation models over the
graph provides an appropriate separation of concerns between
the routing situation (i.e., the structure and routing paths) and
domain-components in order to get a full simulation model from
the original scenario. An important remark is that there is no uni-
versal routing policy to manage the global structure of the situa-
tion. Each routing model takes its own decisions (through the
routing policy) on how to direct the input and output events.
The advantage is that the modeler does not need to explicitly
define any additional information to manage the routing during
the design phase. All the information required for building the
routing policies is defined in the structure of the original routing
situation.

3.3. Routed DEVS models as discrete event models implementation

To get a concrete realization of the formalization defined in
Section 3.2, such representation should be implementable in a
programming language. Once an encoded version of the RDEVS
models defined from the formalization is instantiated, such
implementation can be seen as a concrete realization (e.g. a sim-
ulation model encoded in Java) of the abstraction (i.e., the rout-
ing situation) through the formalization defined (i.e., RDEVS
models).

27

Engineering Science and Technology, an International Journal 24 (2021) 22-34

In addition to the reusable functions provided in libraries, soft-
ware frameworks provide “flows of control” [44]|. Frameworks
shall ease/speed up the development of software from the domain
they are created for [45]. Therefore, a software framework may be
built on top of a set of libraries and might be used to create more
specialized solutions. Since RDEVS formalism is designed as a sub-
class of DEVS [32] and RDEVS models can be executed using a DEVS
simulator, the RDEVS models can be implemented as extensions of
DEVS models. In this context, available libraries of DEVS formalism
can be used as a guideline to develop RDEVS implementations.

From this perspective, a software framework for building
RDEVS models was developed using DEVSJAVA library [46] as an
underlying M&S layer. DEVSJAVA is a M&S tool implemented in
Java that supports characterizing models in DEVS formalism.
Through the extension of DEVSJAVA, the RDEVS software frame-
work provides a solid solution for building executable models
defined in RDEVS formalism. Moreover, the DEVSJAVA Viewer
can be used to get a visual representation of RDEVS models.

The RDEVS framework was initially presented by Blas et al. [15].
The main classes included in such a framework were the following:

e EssentialModel.java, RoutingModel.java, and NetworkModel.-
java to define RDEVS simulation models,

e RoutingFunction.java and RoutingFunctionElement.java to
define the Routing Policy used as part of the Routing Model
definition,

¢ InputTranslationFunction.java to define the transformation
from events to events with identification, and

e OutputTranslationFunction.java to define the transformation
from events with identification to events.

However, new classes were added to improve the framework
definition. For example, the class IdentifiedMessaje.java was added
with aims to define the structure of events managed by the simu-
lation models as part of the routing functionality. All the classes
developed as part of the framework were designed to depict con-
cepts related to RDEVS formalism. Hence, the RDEVS software
framework enhances the development of RDEVS simulation mod-
els in Java programming language using some features provided
by DEVSJAVA.

Fig. 4 depicts the classes implemented in the final version of the
RDEVS framework. The relationships are used to represent depen-
dencies among classes. The classes highlighted in blue belong to
DEVSJAVA. These Java classes can be seen as potential extension
points of the RDEVS software framework for building RDEVS
implementations. In SE, an extension point is the definition of
the provided interface for extensions [47]. That is, an extension
itself is an implementation according to an extension point (equal
to an implementation of a software component). Therefore, the
RDEVS software framework includes extension points configured
for designing explicit instances of RDEVS models as reusable soft-
ware components slated for executing the routing simulation (al-
ready defined in the framework) without any other consideration.

Hence, each concept defined in the formalization metamodel is
implementable over an extension point of the framework (i.e., a
new Java class based on the existent ones). Fig. 5 extends the
abstraction-formalization metamodel using the implementable
stereotyped relationship (association highlighted in red) to show
the dependencies between RDEVS formal models and their Java
implementations. The classes with orange background belong to
the implementation metamodel. Then, Fig. 5 defines the
abstraction-formalization-implementation metamodel for routing sit-
uations. Now, when a routing situation is modeled as a Graph, the
formal definition of the simulation model is a Network Model
implementable as an extension of the Java class named
NetworkModel.java.

Maria Julia Blas and S. Gonnet

scalableAtomic
(from genDevs.modeling)

| V N

content entity scalableDigraph
(from genDevs.modeling) (from GenCol) (from genDevs.modeling)
A 0.1 A #myParent
-value
ViewableDigraph
IdentifiedMessage (from simView)
(from rd.models.messages) 0.1
-h: int B
-T: int[0..*] 0..1
ViewableAtomic
y (from simView)
0.1 #myParent
MessageContent A
(from rd.models.messages)

NetworkModel
(from rd.models)

Content #Ti
(from rd.models.messages) L 4R
#Tout
InputTranslationFunction 5
(from rd.models.elements.functions) RoutingMods!
1 (from rd.models)
w
OutputTranslationFunction 1 B 0.1
(from rd.models.elements.functions) -
#state EssentialModel
(from rd.models)
State 0.1
(from rd.models.elements)
0.1 0.1
Omega
#state (from rd.models.elements)
RoutingFunctionElement
(from rd.models.elements.functions) delr
0.1
N RoutingFunction
#elements (from rd.models.elements.functions)

Fig. 4. Java classes implemented as part of the RDEVS framework (using DEVSJAVA
as a support mechanism).

4. Graphical software tool for the M&S of routing situations

Graphical modeling is an aspect that is used successfully [48].
The advantages of a graphical M&S software tool are:

1. easy-to-use: in graphical modeling software, the modeling is
performed by manipulating graphical elements and their
connections;

2. fast modeling solutions: graphical modeling software allows the
development and solution of complex simulation models
rapidly with limited M&S background;

3. well-defined simulation models: if code generation is imple-
mented over the graphical modeling, the final simulation mod-
els will always be well-defined in terms of the related
simulation formalism; and

4, standardized simulation models: through the employment of a
set of well-defined graphical components, the graphical model-
ing software ensures standardized designs [37,49-51].

Then, with aims to build a M&S software tool that provides a
full solution for building simulation models for routing situations,
a graphical M&sS plug-in for Eclipse IDE was developed. The core of
this plug-in is the metamodel depicted in Fig. 5.

28

Engineering Science and Technology, an International Journal 24 (2021) 22-34

Y

Composed by 2..”

Oraph 1 end: Node
1 starts
1
1 1
Ends at Starts at
inputEdge Edge .
" outputEdge | «formalizes»
Includes /I\
1.*
Instantiates
Component
«formalizes» behavior: domain procedure 1
1 EssentialModel
RoutingFunction :
«formajizes» 1
1 1 1 «implementable»

Essential Model

«implementable»

1 1 Embeds

Routing Policy

1* Requites

Defined over

«implementablex | NetworkModel

1 1.*

1 1.8 1.¥
1 Composed by 5«

Network Model

Routing Model

1 |identifier
«implementable»
S I B e K) Y.
RoutingModel Has asinput Has fs output
1 1
Translates inputs with inputiizont Output Port
1 1 1
Stafts at
Input Translation Function 1
start node: Routing Model[1..*] Endsat 4 » Couplig

1

Translates olitputs with

Output Translation Function

1 end node: Routing Model[1..*]

Ieliides «implemegntable» -

«implementable»
1

1

InputTranslationFunction OutputTranslationFunction

Fig. 5. UML class diagram of the abstraction-formalization-implementation
metamodel.

\7 o s Graphical u Model-to-Text
k Slrlus Modeling d "~ Transformation
Ms&S
B e f RDEVS Framework Plugin
Ecore Metamodel DEVSJAVA
-

- o Runtime

= Int ted D 1 t E &

— eCIIpse ntegrated Developmen nvironmen B

Fig. 6. Layered software architecture of the M&S plug-in.

Fig. 6 shows the plug-in architecture as a layered design pattern
that is built with five software modules. The code runtime platform
is Eclipse IDE. The layered architecture used to structure the M&S
software allows us to get reusable software modules and, at the

Maria Julia Blas and S. Gonnet

same time, modularity in each level. Besides employing DEVSJAVA
and the RDEVS software framework, the M&S plug-in uses other
software modules for building the routing representation (i.e.,
the abstraction, formalization, and implementation metamodels).
With aims to ensure full compatibility with the underlying plat-
form, the development of the M&S software employed several
plug-ins of Eclipse IDE. Hence, the final M&S graphical tool takes
the advantages of Eclipse plug-ins for supporting the development
of each module.

The Eclipse Modeling Framework (EMF) [52] was used for build-
ing the foundational metamodel (i.e., the abstraction metamodel)
required as a support mechanism of the plug-in. The Sirius project
[53] was employed for developing a graphical representation of the
foundational metamodel. Such graphical representation allows
building a graphical representation of routing situations (that is,
abstraction metamodel instances or, simply, abstraction models).
Such representation is based in a set of graphical elements that
depict the concepts and relationships detailed in the metamodel.
Finally, the Acceleo development tool [54] was used for translating
the abstraction model to the formalization required to get the imple-
mentation attached to it.

4.1. Ecore metamodel

The EMF project is a modeling framework and code generation
facility for building software tools and other software applications
based on a structured data model [52].

The foundational metamodel used for modeling the routing
process was implemented with EMF to get a data model specifica-
tion described in XMI. This implementation provides the Ecore
metamodel required for building other software modules that
compose the M&S plugin. The core of such metamodel was the
abstraction metamodel (Fig. 2). However, a few changes were
introduced to the original metamodel with aims to exploit the
EMF capabilities.

First, the association named Instantiates was renamed to Mate-
rializes with aims to remove the notion of “instance” from the mod-
eling task. Also, new elements were added, including:

o the attribute name in concepts Graph, Node, and Component to
provide further identification of their instances, and

o the concept Abstraction Description as a container of the ele-
ments that compose an abstraction model.

This last concept (Abstraction Description concept) added to the
metamodel along with the following associations: i) an Abstraction
Description Describes a Graph (i.e., a mandatory composition), and
ii) an Abstraction Description Uses a set of Components (at least,
one Component per instance).

Moreover, since Ecore provides the capability to include OCL
constraints over the metamodels, the OCL constraints attached to
the abstraction-formalization dependency were also included over
the foundational metamodel. With this addition, the abstraction
model (obtained as an instance of the foundational metamodel)
can be validated before its formalization. Then, an explicit and
valid abstraction of a routing situation based on the graph model
can be instantiated from the Ecore model defined with EMF.

4.2. Sirius graphical definition

Sirius is an Eclipse project which allows easily creating graphi-
cal modeling workbench tools by leveraging the Eclipse Modeling
technologies [53]. Hence, Sirius was employed to define graphical
representations for each element included in the Ecore metamodel.
A representation was detailed for each concept including:

29

Engineering Science and Technology, an International Journal 24 (2021) 22-34

e graphical icons for concepts Graph, Node, and Component, and
e graphical links for concept Edge and Materializes association.

Besides providing a graphical instantiation of the Ecore meta-
model, Sirius provides validation functionality. A validation button
was added to the graphical description with aims to verify the cor-
rectness of the abstraction model (i.e., the OCL constraints along
with multiplicities and attributes uniqueness). If problems are
detected, the M&S tool shows an error message with a warning
icon over the graphical element. If the model is correct, the mod-
eler can go directly to the formalization-implementation translation
using the abstraction model instantiated.

4.3. Acceleo model-to-text transformation

Acceleo is a template-based technology including authoring
tools to create custom code generators. It allows automatically
producing any kind of source code from any data source available
in EMF format [54].

By defining a generation model for the model-to-text transfor-
mation, the elements graphically defined in the abstraction model
are navigated to get their formalizations. These formalizations
are used to get the Java code required for the simulation model
implementations. Therefore, the formalization model attached to
the elements defined in the abstraction model is obtained as
follows:

e each Component included in the Abstraction Description is for-
malized in an essential model structure;

e each Node included in the Graph is formalized in a routing
model that encompasses the model identifier (that is defined
as a unique value over the Graph), a pre-set of the routing func-
tion (given by the Edges detailed for the Node over the Graph)
and an instance of the essential model obtained for the related
Component (the one materialized by the Node);

the Graph included in the Abstraction Description is formalized in
a network model structure that includes all the routing models
obtained for its Nodes.

Following these formalization guidelines, the M&S software tool
creates the Java classes that extend the classes implemented in the
RDEVS software framework. The main template used in this auto-
matic generation process is the following:

[template generateElement(abs:AbstractionDescription)]

[for (c:Component | abs.uses)]
[generateComponentStateClass(c)/]
[generateComponentEssentialModel(c)/]

[/for]

[for (n:Node | abs.describes.composedBy)]
[generateRoutingFunctionClass(n)/]
[generateRoutFunctionElementClass(n)/]
[generateNodeRoutingModel(n)/]

[/for]

|generateGraphNetworkModel(abs.describes)/]

|generateTranslationFunctionClasses(abs.describes)/]

[/template]

This template shows how the elements included in the abstrac-
tion model are navigated (using the association modeled in the
Abstraction Description concept) to get their formalization. The
generate () methods are used to support the Java code genera-
tion. Table 1 summarizes the set of classes obtained when a
model-to-text transformation is performed over the abstraction-
formalization model.

Once the abstraction model is fully translated to its equivalent
implementation model, the modeler needs to specify the only thing
missing in the simulation model: the behavior of the components.

Maria Julia Blas and S. Gonnet

Table 1
Java classes created from the Ecore model using the formalization model as extension
of the RDEVS software framework.

Ecore Model Java Implementation

Concept Prop. New Class (.java) “extends™
Component name <name > EssentialModel Essential
Model
<name > State State
Node name <name > RoutingModel Routing Model
<name > FunctionElement Routing
Function
<name > RoutingFunctionElement Routing
Function
Element
Graph name <name > NetworkModel Network
Model
<name > InputTranslationFunction Input
Translation
Function
<name > OutputTranslationFunction Output
Translation
Function

¢ From the Java classes included in the RDEVS software framework.

Such behaviors are presented to the modeler as TO-DO tasks in the
classes named as < name > EssentialModel.java. It is important to
remark that this remaining codification is intended to define the
explicit behavior of the components. The missing implementations
should be well-known by modelers because they belong to
domain-components. Then, this activity should not consume a lot
of time.

When such codification is done, the RDEVS simulation model
can be executed. The overall behavior required for supporting the
routing situation execution is provided by the definition of RDEVS
models. Hence, using the M&S software tool, modeling and imple-
mentation times are reduced to the automatic translation of an ab-
straction model defined graphically from the original routing
situation.

5. Benefits of M&S graphical software tool: Proof of concepts

Either with DEVS or RDEVS, routing situations can be modeled
as discrete-event simulation models. When RDEVS formalism is
used for building such simulation models, the modeler can focus
its attention on the domain properties without worry about the
routing implementation.

By embedding essential models into the routing models, the
RDEVS formalism improves the design phase in two distinct ways:

1. behavioral descriptions are only required for the domain-
components (the routing behavior is build-in as part of the
RDEVS models),

2. routing policies are isolated from behavioral descriptions (al-
lowing the reuse of essential models in other networks).

Therefore, the RDEVS models allow the modeler to explicitly
define the routing functionality without specifying new routing
behavioral descriptions. Such routing information is detailed inside
the routing model as part of its own definition to authenticate sen-
ders and receivers prior executing the (linked) essential model.
Then, the RDEVS formalism is designed for level out the modeling
effort of routing situations in DEVS by providing an easier model-
ing solution. Such solution employs a set of models defined in
terms of the main elements involved in routing processes (i.e.,
well-known domain components). Main benefits of using a RDEVS
solution against a DEVS solution are discussed by Blas et al. [15].

Engineering Science and Technology, an International Journal 24 (2021) 22-34

The RDEVS models built by the modeler in a RDEVS solution are
centered on using a good conceptual abstraction of the routing sit-
uation. However, even when the formalism embeds the routing
functionality, the modeler still needs RDEVS skills for the definition
and codification of the final simulation models.

The M&S graphical software tool proposed in this paper
enhances these advantages as follows:

1. it provides an easy way for modeling routing situations employ-
ing a graph abstraction,

2. it reduces the simulation modeling times by building automat-
ically all the behavior required to support the routing
functionality,

3. it ensures the correctness of RDEVS models because it validates
the abstraction before the formalization, and

4, it reduces the possibility of introducing errors during program-
ming because the modeler only needs to codify a reduced set of
methods in a few classes.

As proof of concepts of these benefits, the process depicted in
Fig. 7 is presented as a routing situation. This process is based on
the set of domain-components detailed in Fig. 1. Each type of
machine is in charge of performing some processing over its
inputs. The entire situation takes an empty box and transforms it
into a package. However, during the first stage of processing (initial
instance of Machine Type A), two possible output routes can be
used. In this case, both routes produce the same final result: a
package.

With aims to get the discrete-event simulation models linked to
this routing situation, the example was modeled in the M&S soft-
ware tool. Fig. 8 presents a screenshot of such an abstraction
model. Following the example, the abstraction model is composed
of two Components (named “Machine Type A” and “Machine Type
B”) and five Nodes (named “Machinel” to “Machine5”). The Nodes
are included in a Graph named “Example”. Each Node materializes
some Component (e.g. the Node named “Machinel” materializes
the Component named “Machine Type A”). Finally, the Nodes are
linked by Edges (grey arrows). These Edges depict the event flows
allowed in the routes.

With the abstraction model defined, the modeler only has to
execute the transformation process to get the implementation of
the RDEVS simulation models. This option is available in the M&S
tool over the abstraction model (Fig. 9(a)). As a result of such a
transformation process, the M&S tool creates a new Java project
named as the abstraction model that ends with “.rdevsimplemen
tation” (Fig. 9(b)). This new Java project includes all the Java classes
described in Table 1 as part of the “rdevsmodels” package. For
example, the class “GraphExample.java” implements the network
model that performs the simulation of the “Example” routing situ-
ation (abstracted into a Graph). The project also includes the
RDEVS framework (the file named “rdevs.implementation.jar”).
The code to be implemented by the modeler to detail the behavior
of domain-components is shown to the developer as TO-DO tasks
(see, for example, lines 21 and 31 in Fig. 9(b)). The entire transla-
tion process is performed in a few seconds (in this case, 2.003 s).

o %
[1
| | m— g —l > ‘
Q MACHINEWPE B MACHINE ype o Output
D a -
0
Input MACHINE _D
p TYPE_A @ ‘

MACHINEM,E_B MACHINE rype o output

Fig. 7. Routing situation (example).

Maria Julia Blas and S. Gonnet

2 Eclipse Workspace - pl : ple/rep ions.aird, - Eclipse IDE

File Edit Diagram Navigate Search Project Run Window Help

Hw 4 @~ I BNIRR|JZB QU -iS & ~id~Fl~t v
%5 Model Explorer 52 5% Y = O & routingsituation 52

[type filter text | BrBv| S| DO~ ® A

v & example
=) Project Dependencies
[representations.aird
2 routingsituation.rdevsabstraction

Machine Type A

Engineering Science and Technology, an International Journal 24 (2021) 22-34

Ay R e,
\ <materiglizes> N
\ \’\ * ~,
‘.‘ .. <ma teria7ize§ >
F; . RN .\.
<materid{izes> %
Y
‘.
‘.
‘.
‘.
‘.
‘~

Machine\

Machine3

\ .,
; / : L
Machine2

93 routingsituation.rdevsabstraction - example

- X
e | | & 2 0 +
8 &
| @ <% Palette > E
NQQD~-X#2- <>
Machine Type B (= Graph Elements « | [
7 Graph Q
O Node &
’_/Iﬂ' ~ Edge 1
/,"',.' (= Domain Elements | @
Pl O Component 8
' .',.f‘ <pilterializes> (= Linking Graph with Domain ®
<matesitilizes> .+ — <materializes>
' .l
i .,
.I
o, 7 =
3 ; .
~ s Machine4
Machine5
8¢

Fig. 8. Screenshot of the example modeled with the M&S software tool. The modeler drags and drop the elements available in the palette (right side of the screen) to design

the abstraction model (file extension “*.rdevsabstraction”).
2 Eclipse Workspace - pl : ple/rep ions.aird, - Eclipse IDE 2 Eclipse Workspace - routingsituation.rdevsimpl i d del ponentMachine_Type_A java - Eclipse ID
File Edit Diagram Navigate Search Project Run Window Help File Edit Source Refactor Navigate Search Project Run Window Help
S [ORE M2 2R BIRU S i Ft v . N @~ BN R|ZSRIP & Hx-O- Q™S
;- Model Explorer 52 ¥ = O & routingsituation 53 ;- Model Explorer 52 5% Y = O [ComponentMachine_Type_ Ajava 53
g s Vi J
[type fitter text | BrBiv| S| O @A [type fiter text ‘ I 1 package rdevsmodels;
v 2 example v & example A 3@ import rdevs.implementation.except:
= Project Dependencies o N =) Project Dependencies 7
[+ representations.aird [£) representations.aird R e = o :
X routingsituation.rdevsabst Open 3 2 routingsituation.rdevsabstraction (9 * RDEVS Essential Model that defin(
Open With > v {2 routingsituation.rdevsimplementation 11 * @author Code automatically creats
_), Referenced Libraries e -jul- 11:38:
B Copy CtrlC VE; -) fbrari 12 20-3y1-2020 11:38:41
=4 1 /
Paste Ctrl+V v g rdevsmodels 14 public class ComponentMachine_Type,
3 Delete Delete 1) ComponentMachine_Type_A java
Remove from Context Ctrl+Alt+Shift+Down 4] ComponentMachine Type Bjava
Mark as Landmark Ctrl+Alt+Shift+Up B GraphBcamplejova _ N
[3) InputTranslationFunctionExample.java private String componentName;
Move...) NodeMachinel java / te is modeled in an anotl
Rename... F2 [3) NodeMachinelRoutingF Definition.iava 0 Add other attributes.
[3) NedeMachinelRoutingF ionEl java
g Import... .
ot [3) NodeMachine2 java 24 [revenere * * *
4y Export... @ N Machine2RoutingFunctionDefinition.java 25
e £s m NodeMachineZRoutingFunctionElement java f: o tructon.
S T———— () NodeMachine3java. ‘ o public ComponentMachine_Type_Ai
[¢ to % :D:ema(h!ne?Rout!ngFun:tfonDeflmtlorLJava S;:per(".‘-\achjne Type A", n:\
= odeMac java this. componentName tach:
Validate [J) NodeMachined java // TODO Set other attribut
@ Coverage As 2 [NodeMachinedRoutingFunctionDefinition.java }
g Run As > E:D:emac:!ne:l?nutlngFunnmnEIamant.Java P T C——
Debug As > odeMachine5 java public StateMachine_Type_A get:
Profile As 5 [3) NodeMachi ingFunctionDefinition.java return new StateMachine_Tyj
[3) NodeMachine5RoutingFunctionElement.java
Acceleo 2 [3) StateMachine_Type_Ajava . e
Team > xternal transition functior
) i 0] Stata‘Machmejype,B.Java @override
Compare With > &%) CoreDEVS jar protected State externalTransif
Replace With 5 &%) rdevs.implementation.jar Aot
v <
93 routingsituation.rdevsabstractior Properties Alt+Enter)| C ine_Type_Ajava -

Fig. 9. (a) At the left, the M&S transformation process executed over the routing situation; (b) At the right, a new Java project is created as result of performing the

transformation process.

So, the modeler obtains a set of discrete-event simulation models
for the original routing situation (in which only some pieces of
code are missing) without requiring any other information than
the routing situation description. Then, it is clear that the M&sS tool
provides a fast modeling and implementation solution.

Once the domain-components are implemented using the
domain description; the simulation models can be executed.

31

Fig. 10 shows how these implementation models are executable
using DEVSJAVA Viewer. The Viewer is configured to execute the
model “GraphExample” included in the package “rdevsmodels”.
Given that such a model is a RDEVS network model, each one of
the gray boxes depicts a routing model. Each routing model
matches some Node of the Graph. For example, “Machine 1”
(Fig. 8) is implemented in the Java class named “NodeMachine1.j

Maria Julia Blas and S. Gonnet

|£| DEVSJAVA Simulation Viewer

[configure rdevsmodels

Engineering Science and Technology, an International Journal 24 (2021) 22-34

‘ v‘ [GraphExample v

input @

MACHINE1 - RM I § - MACHINE TYPE A(EM)
@ faput input @+ waiting
o = infinity

ACHINES - RM Id: 8 - MACHINE TYPE R(EM)

EXAMPLE(NM)

MACHINE4 - RM Id: 9 - MACHINE TYPE A(EM)

sarnitiva

2 output

sitput €

MACHINES - RM Id: 10 - MACHINE TYBE REM)

input & waiting —utpet fput bt & output
0 = infinity 0 = infinity
ready clock:). 000 real time factor: WDU [¥] always show couplings help -

step

=
run || restart

Fig. 10. Screenshot of DEVSJAVA Viewer for the example implemented with the M&S software tool. The configuration is detailed at the top of the screen. At the bottom, the

execution controls are available.

ava”. Such class is depicted in the box labeled as “MACHINE 1 - RM
Id: 0 - MACHINE TYPE A(EM)”. This label indicates that the routing
model embeds “Machine Type A” using zero as the routing
identifier.

As Fig. 10 shows, the representation of this model is very similar
to the abstraction model representation (Fig. 8) but, also, to the
original routing situation (Fig. 7). These equivalences allow under-
standing all the M&S stages in the same way. The M&S software
tool has been successfully used for the study of routing situations
related to SE and electric power systems fields.

The models obtained following the MDE modeling levels pro-
vide a full solution for the modeling and implementation of routing
simulation models. The MDE modeling levels are mapped into
implicit models commonly used in the M&sS field. By nature, simu-
lation is a technical field [6]. Then, commonly, these models are
“implicit” because conceptual modeling tasks are mismatch in
MRS processes.

The Eclipse plug-in developed to integrate these models allow
following the abstraction-formalization-implementation approach
as a new type of modeling task-based in distinct (but related) con-
ceptual modeling perspectives over routing situations. Simulation
practitioners do not have to worry about building such conceptu-
alizations. Employing the MDE approach, the M&S tool guides this
conceptualization process from abstraction models to well-defined
implementations.

6. Conclusions and future work

In this paper, we present a novel application of the MDE
approach with aims to guide the development of discrete-event
simulation models for routing situations. Following this approach,
metamodels are defined as abstraction, formalization, and imple-
mentation of the desired simulation models. A M&S graphical soft-
ware tool that employs these metamodels is developed as a plug-in
for Eclipse IDE. The final software tool allows building automatic

32

solutions based on discrete-event simulation models for routing
situations through the graphical definition of a graph model.

The abstraction-formalization-implementation approach used
over RDEVS formalism ensures a set of modeling desired proper-
ties, such as: i) Appropriate level of abstraction and separation of con-
cerns that give M&S solutions with low coupling and high cohesion:
The mapping between the abstraction and formalization meta-
models provides a clear separation of the routing situation struc-
ture and the M&S logic. While the routing situation structure is
directly mapped to the RDEVS models (that ensures correct imple-
mentation of the routing functionality), the M&S logic is passed to
the modelers (with aims to only define the behavior of domain-
components). This separation of concerns improves the modifiabil-
ity of simulation models because it leads to modular designs with
low coupling and high cohesion. ii) Reusability, modifiability, and
maintainability: These properties can be analyzed from two differ-
ent points of view. Given the own definition of RDEVS formalism,
the simulation models (in this case, obtained from the transforma-
tion process) are easy to reuse and modify. An essential model can
be reused in several routing models and, in the same way, the same
network model can be used to support distinct routing situations
(if routing policies are modified). On the other hand, the utility pro-
vided by the extension points of the RDEVS software framework
allows maintaining the routing functionality implementation as
an isolated module. Changes performed over this functionality will
improve its execution but will not require changes in the exten-
sions (that is, the models designed from the transformation
process).

The results obtained from the transformation process allows
getting RDEVS solutions from graph models. Given that the con-
struction of simulation models for complex systems frequently
require to solve situations where components interact following
a selective mechanism, our graph model is useful when such a
mechanism is defined as part of the situation description. Our
modeling strategy allows building scenario descriptions based on
graph models with aims to separate the domain component behav-
iors from the selective mechanism description (i.e., the routing

Maria Julia Blas and S. Gonnet

process description). Then, the modeler can have a simulation
model without the need to codify any routing implementation.
The main benefits are the reduction of implementation times and
the insurance of the simulation model correctness with respect
to RDEVS formalism.

We argue that the M&S software tool developed is more suit-
able than other types of software tools because it employs a
domain abstraction as methodology modeling (providing a natural
representation of the problem). This characteristic reduces the
knowledge required for building simulation models for routing sit-
uations and, therefore, the modeling tasks could be performed by
anyone that knows the problem domain. Of course, M&S experts
will be needed for defining the implementation of domain-
components to execute the final simulation. To deal with such a
definition, new connections to the levels of MDE will be worked
in future researches. Still, with the M&S software tool, the M&S
process of routing problems is enhanced.

Even when this paper is centered on routing situations, the use
of the MDE allows developing new types of M&S products centered
in this modeling approach.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

This work was supported by UTN [Grant Numbers EIUTI-
FE0003803TC, SIUTIFE0005273TC]; and CONICET [Grant Numbers
PIP 112-20170101131CO; PUE 22920160100132CO].

References

[1] S. Robinson, R. Brooks, K. Kotiadis, D. Van Der Zee, Conceptual Modeling for
Discrete-Event Simulation. CRC Press, 2010.

[2] G. Guizzardi, G. Wagner. Conceptual simulation modeling with Onto-UML. In:
Proceedings of the Winter Simulation Conference, 5, 2012.

[3] P.T. Eugster, P.A. Felber, R. Guerraoui, A.-M. Kermarrec, The many faces of
publish/subscribe, ACM Comput. Surv. 35 (2) (2003) 114-131, https://doi.org/
10.1145/857076.857078.

[4] B. Zeigler, A. Muzy, E. Kofman, Theory of Modeling and Simulation: Discrete
Event & Iterative System Computational Foundations, Academic Press, 2018.

[5] G. Wainer, P. Mosterman, Discrete-Event Modeling and Simulation: Theory
and Applications, CRC Press, Taylor and Francis, 2010.

[6] S. Robinson, Conceptual modelling for simulation: Progress and grand
challenges, J. Simulation 14 (1) (2020) 1-20, https://doi.org/10.1080/
17477778.2019.1604466.

[7] S. Robinson, Conceptual modelling for simulation Part I: definition and
requirements, J. Operational Res. Soc. 59 (3) (2008) 278-290, https://doi.org/
10.1057/palgrave.jors.2602368.

[8] S. Robinson, Conceptual modeling for simulation: issues and research
requirements. In: Proceedings of the 2006 Winter Simulation Conference,
2006, pp. 792-800.

[9] G. Guizzardi, G. Wagner, Towards an ontological foundation of discrete event
simulation, in: Proceedings of the 2010 Winter Simulation Conference, 2010,
pp. 652-664.

[10] D. Cetinkaya, A. Verbraeck, M. Seck, MDD4MS: a model driven development
framework for modeling and simulation, in: Proceedings of the 2011 Summer
Computer Simulation Conference, 2011, pp. 113-121.

[11] D. Cetinkaya, A. Verbraeck, M. Seck. A metamodel and a DEVS implementation
for component based hierarchical simulation modeling. In: Proceedings of the
2010 Spring Simulation Multiconference, 170, 2010.

[12] G. Zacharewicz, C. Frydman, N. Giambiasi, G-DEVS/HLA Environment for
Distributed Simulations of Workflows, Simulation 84 (5) (2008) 197-213,
https://doi.org/10.1177/0037549708092833.

[13] D. Cetinkaya, A. Verbraeck, M. Seck, Model Transformation from BPMN to
DEVS in the MDD4MS Framework, in: Proceedings of the 2012 Symposium on
Theory of Modeling & Simulation, 2012, pp. 304-309.

[14] H. Bazoun, Y. Bouanan, G. Zacharewicz, Y. Ducq, H. Boye. Business process
simulation: transformation of BPMN 2.0 to DEVS models. In: Proceedings of
the Symposium on Theory of Modeling & Simulation, 20, 2014.

[15] M. Blas, S. Gonnet, H. Leone, Routing Structure over Discrete Event System
Specification: A DEVS Adaptation to Develop Smart Routing in Simulation

33

Engineering Science and Technology, an International Journal 24 (2021) 22-34

Models, in: In: Proceedings of the 2017 Winter Simulation Conference, 2017,
pp. 774-785.

[16] B.P. Zeigler, Closure Under Coupling: Concept, Proofs, DEVS Recent Examples,
in: In: Proceedings of the Spring Simulation Multiconference, 2018, pp. 1-6.

[17] The Eclipse Foundation. Eclipse, 2020. https://www.eclipse.org/., (accessed
23rd April 2020).

[18] M. Brambilla, J. Cabot, M. Wimmer, Model-Driven Software Engineering in
Practice, Synthesis Lect. Software Eng. 1 (1) (2012) 1-182, https://doi.org/
10.2200/S00441ED1V01Y201208SWEO0O01.

[19] OMG. MDA Guide, 2003. http://www.omg.orglcgi-bin/doc?omgl03-06-01.

[20] A. Alshareef, H. Sarjoughian, B. Zarrin, B. Activity-based DEVS modeling.
Simulation Modelling Practice and Theory 82(1) (2018) 116-131.

[21] S. Mittal, U. Durak, T. Oren. Guide to Simulation-Based Disciplines, Springer,
2018.

[22] H. Folkerts, T. Pawletta, C. Deatcu, B. Zeigler. Automated, reactive pruning of
system entity structures for simulation engineering. In Proceedings of the
2020 Spring Simulation Conference, 61, 1-12, 2020.

[23] T. Oren, S. Mittal, U. Durak. A Shift from Model-Based to Simulation-Based

Paradigm: Timeliness and Usefulness for Many Disciplines. Int.]. Computer

Software Eng., 3 (1) (2018) 126.

G. Kapos, V. Dalakas, A. Tsadimas, M. Nikolaidou, D. Anagnostopoulos, Model-

based system engineering using SysML: Deriving executable simulation

models with QVT, in: In: Proceedings of the 2014 IEEE International Systems

Conference, 2014, pp. 531-538.

V. Neto, W. Manzano, M. Kassab, E. Nakagawa, Model-based engineering &

simulation of software-intensive systems-of-systems: experience report and

lessons learned, in: In: Proceedings of the 2018 European Conference on

Software Architecture, 2018, pp. 1-7.

Umar Farooq, Gabriel Wainer, Bengu Balya, DEVS modeling of mobile wireless

ad hoc networks, Simul. Model. Pract. Theory 15 (3) (2007) 285-314, https://

doi.org/10.1016/j.simpat.2006.11.011.

[27] A. Alshareef, H. Sarjoughian. DEVS specification for modeling and simulation of
the UML activities. In: Proceedings of the Symposium on Model-driven
Approaches for Simulation Engineering, article 9, 2017.

[28] A. Alshareef, H. Sarjoughian. Metamodeling activities for hierarchical
component-based models. In: Proceedings of the Theory of Modeling and
Simulation Symposium, 2, 2019.

[29] 1. David, H. Vangheluwe, Y. Van Tendeloo, Translating engineering workflow
models to DEVS for performance evaluation, in: In: Proceedings of the 2018
Winter Simulation Conference, 2018, pp. 616-627.

[30] T. Antoine-Santoni, J.F. Santucci, E. De Gentili, B. Costa, Discrete Event
Modeling and Simulation of Wireless Sensor Network Performance,
Simulation 84 (2-3) (2008) 103-121, https://doi.org/10.1177/
0037549708091641.

[31] M. Blas, S. Gonnet, H. Leone, Building simulation models to evaluate web
application architectures, In: Proceedings of the 2016 XLII Latin American
Computing Conference (CLEI), 2016.

[32] M. Blas, S. Gonnet, H. Leone, B. Zeigler, A conceptual framework to classify the
extensions of DEVS formalism as variants and subclasses, in: In: Proceedings of
the 2018 Winter Simulation Conference, 2018, pp. 560-571.

[33] O. Dalle, J. Ribault,]. Himmelspach, Design Considerations for M&S Software,
in: In: Proceedings of 2009 Winter Simulation Conference, 2009, pp. 944-955.

[34] M. Hitz, B. Montazeri, Measuring Coupling and Cohesion in Object-Oriented
Systems, in: In: Proceedings of the International Symposium on Applied
Corporate Computing, 1995, pp. 25-27.

[35] Yentl Van Tendeloo, Hans Vangheluwe, An evaluation of DEVS simulation
tools, Simulation 93 (2) (2017) 103-121, https://doi.org/10.1177/
0037549716678330.

[36] Federico Bergero, Ernesto Kofman, PowerDEVS: a tool for hybrid system
modeling and real-time simulation, Simulation 87 (1-2) (2011) 113-132,
https://doi.org/10.1177/0037549710368029.

[37] Matias Bonaventura, Gabriel A Wainer, Rodrigo Castro, Graphical modeling
and simulation of discrete-event systems with CD++Builder, Simulation 89 (1)
(2013) 4-27, https://doi.org/10.1177/0037549711436267.

[38] Gabriel Wainer, CD++: a toolkit to develop DEVS models, Softw: Pract. Exper.
32(13) (2002) 1261-1306, https://doi.org/10.1002/spe.482.

[39] L. Capocchi, J.F. Santucci, B. Poggi, C. Nicolai, DEVSimPy: A Collaborative
Python Software for Modeling and Simulation of DEVS Systems, in: In:
Proceedings of the Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises, 2011, pp. 170-175.

[40] G. Quesnel, R. Duboz, E. Ramat, M. K. Traore. VLE: A Multimodeling and
Simulation Environment. In: Proceedings of the Summer Simulation
Multiconference, 2007, 367-374.

[41]]. De Lara, H. Vangheluwe, AToM 3: A Tool for Multi-formalism and Meta-
modelling, in: In: International Conference on Fundamental Approaches to
Software Engineering, 2002, pp. 174-188.

[42] A. Levytskyy, E. Kerckhoffs, E. Posse, H. Vangheluwe, Creating DEVS
components with the meta-modelling tool AToM3, in: In: 15th European
Simulation Symposium (ESS), 2003, pp. 97-103.

[43] A. D’Ambrogio, D. Gianni,]. Risco-Martin, A. Pieroni. A MDA-based approach
for the development of DEVS/SOA simulations. In: Proceedings of the 2010
Spring Simulation Multiconference, 142, 2010.

[44] RE. Johnson, B. Foote, Designing Reusable Classes,]. Object-Oriented
Programming 1 (2) (1988) 22-35.

[24]

[25]

[26]

https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0020
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0020
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0020
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0025
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0025
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0025
https://doi.org/10.1080/17477778.2019.1604466
https://doi.org/10.1080/17477778.2019.1604466
https://doi.org/10.1057/palgrave.jors.2602368
https://doi.org/10.1057/palgrave.jors.2602368
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0045
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0045
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0045
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0045
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0050
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0050
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0050
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0050
https://doi.org/10.1177/0037549708092833
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0065
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0065
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0065
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0065
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0075
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0075
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0075
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0075
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0075
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0080
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0080
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0080
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
https://doi.org/10.2200/S00441ED1V01Y201208SWE001
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0120
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0120
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0120
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0120
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0120
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0125
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0125
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0125
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0125
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0125
https://doi.org/10.1016/j.simpat.2006.11.011
https://doi.org/10.1016/j.simpat.2006.11.011
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0145
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0145
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0145
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0145
https://doi.org/10.1177/0037549708091641
https://doi.org/10.1177/0037549708091641
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0155
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0155
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0155
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0155
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0160
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0160
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0160
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0160
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0165
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0165
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0165
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0170
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0170
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0170
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0170
https://doi.org/10.1177/0037549716678330
https://doi.org/10.1177/0037549716678330
https://doi.org/10.1177/0037549710368029
https://doi.org/10.1177/0037549711436267
https://doi.org/10.1002/spe.482
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0195
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0195
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0195
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0195
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0195
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0205
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0205
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0205
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0205
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0210
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0210
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0210
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0210
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0220
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0220

Maria Julia Blas and S. Gonnet

[45] K. Madsen, Five Years of Framework Building: Lessons Learned. In: Companion
of the Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, 345-352, 2003.

[46] ACIMS (Arizona Center for Integrative Modeling and Simulation). 2005.
DEVSJAVA. http://acims.asu.edu/software/devsjava/, (accessed 23rd April
2020).

[47] B. Klatt, K. Krogmann, Software Extension Mechanisms, in: In: Proceedings of
the International Workshop on Component-Oriented Programming, 2008, pp.
11-18.

[48] T. Oren, The Importance of a Comprehensive and Integrative View of M&S, in:
In: Proceedings of the Summer Simulation Multiconference, 2007, pp. 996-
1006.

[49] M. Nikolaidou, V. Dalakas, L. Mitsi, G.D. Kapos, D. Anagnostopoulos, A SYSML
Profile for Classical DEVS Simulators, in: In: Proceedings of the International
Conference on Software Engineering Advances, 2008, pp. 445-450.

34

Engineering Science and Technology, an International Journal 24 (2021) 22-34

[50] L. Touraille, M.K. Traoré, D.R. Hill, A Model-Driven Software Environment for
Modeling, Simulation and Analysis of Complex Systems, in: In: Proceedings of
the Spring Simulation Multiconference, 2011, pp. 229-237.

[51] G. Wainer, Discrete-Event Modeling and Simulation:
Approach, CRC Press, 2017.

[52] The Eclipse Foundation: Eclipse Modeling Project. Eclipse Modeling
Framework, 2020. https://www.eclipse.org/modeling/emf/, (accessed 23rd
April 2020).

[53] The Eclipse Foundation.
(accessed 23rd April 2020).

[54] The Eclipse Foundation. Acceleo, 2019. https://www.eclipse.org/acceleo/,
(accessed 23rd April 2020).

A Practitioner’s

Sirius, 2020. https://[www.eclipse.org/sirius/,

http://refhub.elsevier.com/S2215-0986(20)34267-1/h0235
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0235
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0235
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0235
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0240
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0240
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0240
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0240
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0245
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0245
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0245
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0245
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0250
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0250
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0250
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0250
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0255
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0255
http://refhub.elsevier.com/S2215-0986(20)34267-1/h0255

	Computer-aided design for building multipurpose routing processes�in discrete event simulation models
	1 Introduction
	2 Related work
	2.1 Model-driven-X in the M&S field
	2.2 Discrete event system specification
	2.3 Structuring routing processes with DEVS: Routed DEVS
	2.4 Capabilities of the M&S software products

	3 MDE modeling levels for M&S of routing situations
	3.1 Routing process situations as graph models
	3.2 Graph models as routed DEVS models
	3.3 Routed DEVS models as discrete event models implementation

	4 Graphical software tool for the M&S of routing situations
	4.1 Ecore metamodel
	4.2 Sirius graphical definition
	4.3 Acceleo model-to-text transformation

	5 Benefits of M&S graphical software tool: Proof␣of concepts
	6 Conclusions and future work
	Declaration of Competing Interest
	Acknowledgments
	References

