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Scale-to-scale energy transfer rate in compressible two-fluid plasma turbulence
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We derive the exact relation for the energy transfer in three-dimensional compressible two-fluid plasma
turbulence. In the long-time limit, we obtain an exact law which expresses the scale-to-scale average energy
flux rate in terms of two point increments of the fluid variables of each species, electric and magnetic field and
current density, and puts a strong constraint on the turbulent dynamics. The incompressible single fluid and
two-fluid limits and the compressible single fluid limit are recovered under appropriate assumption. In the single
fluid limits, analyses are done with and without neglecting the electron mass thereby making the exact relation
suitable for a broader range of application. In the compressible two-fluid regime, the total energy flux rate, unlike
the single fluid case, is found to be unaltered by the presence of a background magnetic field. The exact relation
provides a way to test whether a range of scales in a plasma is inertial or dissipative and is essential to understand
the nonlinear nature of both space and dilute astrophysical plasmas.
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I. INTRODUCTION

Turbulence is a highly nonlinear and complex phenomenon
which is ubiquitous in nature. Starting from the tap water,
turbulence is found in almost all natural fluids including astro-
physical plasmas. In comparison with neutral fluids, plasma
turbulence is more difficult to handle due to the presence of
more than one characteristic scale (for instance, separately
for ions and electrons), which involves different nonlinear
dynamic regimes and probable dissipation scales, e.g., ion
and electron inertial length scales [1]. Beyond the hydrody-
namic length and timescales, every species population (ions,
electrons, neutral atoms) of a plasma can be modelled as a
separate fluid whence a multifluid model can be appropriate
to describe the entire plasma. If the plasma is highly ion-
ized such that at every point the ionic and electronic charge
densities are nearly equal, then a single-fluid model, often
called the extended magnetohydrodynamics (ExMHD), can
be adopted. The ExMHD can be reduced to the popular Hall-
MHD (HMHD) model when the electron mass is neglected
with respect to the ion mass. Finally, if one is interested in the
fluctuations of sufficiently large length scales (much greater
than the ion inertial length or ion gyroradius) and timescales
(much greater than the ion gyroperiod), the ordinary Magne-
tohydrodynamics (MHD) limit can be recovered. Due to its
remarkable simplicity and interesting properties, this model
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has extensively been used to investigate plasma turbulence
using analytical, numerical, and observational studies [2–4].

While the initial understanding of energy transfer across
different length scales of incompressible hydrodynamic (IHD)
turbulence was principally phenomenological in nature, the
pioneering works of von Kármán and Howarth [5] and
Kolmogorov built the foundation of rigorous analytical exact
relations for IHD turbulence. Assuming statistical stationarity,
homogeneity, and isotropy, in the limit of infinitely large
Reynolds number, Kolmogorov [6,7] (hereafter K41) derived
an expression for the average energy flux rate ε in terms
of third-order velocity structure functions. This expression is
only valid in the inertial range, i.e., the range of scales which
are free from both the large-scale forcing and the small-scale
dissipation dynamics. This first exact relation, also known as
the 4/5 law, represents one of the cornerstones of turbulence
theories using two-point statistics [3] and can be written as〈

δu3
�

〉 = − 4
5ε�, (1)

where u� is the fluid velocity component along the increment
direction �, δξ denotes the difference of a physical quantity
ξ between two arbitrary points x and x′ (≡ x + �) and 〈·〉
stands for statistical average. Later, Monin and Yaglom [8]
(hereafter MY75) proposed a vectorial form of the above
relation without assuming isotropy as

∇� · 〈δu2δu〉 = −4ε. (2)

These exact results are crucial as they provide an accurate
measure of the energy dissipation rate, and therefore, the
heating rate of a system by the process of a turbulent cascade
[9]. Following both K41 and MY75 formalism, Politano and
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Pouquet [4,10] derived exact relations for incompressible
magnetohydrodynamics (IMHD) turbulence both in terms of
(i) fluid velocity and magnetic fields and (ii) the Elsässer
variables, respectively. Other exact laws for incompressible
turbulence were derived for MHD, HMHD, and ExMHD
(with and without electron inertia) turbulence [11–14] de-
scribing the scale-to-scale transfer of total energy or other
inviscid invariants (cross helicity, magnetic helicity, etc.) deep
inside the inertial range. However, Galtier [12,13] reported
that unlike the case of ordinary IHD and IMHD, the average
energy flux rate in incompressible HMHD (IHMHD) and
electron MHD (ExMHD without electron inertia) turbulence
cannot be expressed purely in terms of two-point increments.
This issue was successfully dealt using an alternative formula-
tion presented by Banerjee and Galtier [15] (BG17 hereafter),
which expresses the energy cascade rate ε entirely in terms of
two-point increments for IHD, IMHD, IHMHD, and electron
MHD turbulence without any assumption of isotropy. Very
recently, this alternative form has been verified using direct
numerical simulation [16,17].

Seventy years after K41, a number of exact relations were
derived for compressible hydrodynamic (CHD) turbulence us-
ing both isothermal and polytropic closures [18,19]. Follow-
ing the MY75 formalism, the general form of compressible
exact relations may be written as

−4ε = ∇� · F + S, (3)

where only the so-called flux term F survives for incompress-
ible turbulence. The new source term S , being proportional
to the local velocity divergence (i.e., ∇ · u), vanishes for the
flow with constant density. Similar relations for compress-
ible MHD (CMHD) and Hall-MHD (CHMHD) turbulence
were also derived using this methodology [20–22]. Recently,
for isothermal CHD turbulence, Banerjee and Kritsuk [23]
showed that unlike the kinetic energy correlation function,
the thermodynamic energy correlator should be multiplied by
a factor 1/2 to make it consistent with the spectral mode
energy equipartition in the acoustic limit. This modification
is found to rule out the role of the correlation between the
velocity and the pressure dilatation in the process of energy
cascade [24]. However, Andrés and Sahraoui [21] pointed out
that flux-source formulation contains some terms which are
neither a pure flux term nor as a source term. Again, there
are certain terms which could be cast as both flux and source
terms. It is only very recently [25] that an exact relation
has been derived for isothermal and self-gravitating CMHD
turbulence, generalizing the BG17 findings and also modify-
ing the thermodynamic energy correlator according to linear
mode energy equipartition. The final relation is found to be
remarkably compact with respect to the previous compressible
exact relations and can be easily extended for rotational or
HMHD turbulence.

Similarly to incompressible turbulence, exact relations are
found to be extremely useful for understanding various as-
pects of compressible turbulence in space and astrophysical
fluids. They have been applied to in situ observations in the
fast and slow solar winds and also in the terrestrial mag-
netosheath to investigate the role of density fluctuations in
the turbulence dynamics at the MHD scales and the efficient
heating of the system by turbulent energy cascade [9,26–28].

Moreover, the exact laws for isothermal turbulence (both CHD
and CMHD) have been validated using numerical simulations
(see, e.g., Refs. [29,30]).

A considerable number of incompressible and compress-
ible exact scaling relations have been derived in both neutral
fluid and MHD turbulence. However, the MHD model con-
stitutes only a very simplistic single-fluid model of plasma
turbulence, which is only applicable for length scales greater
than the ion inertial scales. The Hall and electron MHD mod-
els, on the contrary, allow to probe partially into the subion
scales. Nevertheless, all those models, being the single-fluid
models of plasma, assume local charge neutrality (equal ion
and electron number densities at every point of the flow
field), which could not be the case for several natural plasma
systems, especially where the plasma is weakly or partially
ionized (e.g., cold molecular clouds, protoplanetary disks,
etc.). For those contexts, it is more appropriate to use the two-
fluid (TF) description where the plasma is supposed to consist
of two separate fluids of electrons and singly charged ions
(for the sake of simplicity, we can neglect the neutral fluids
for instance and can include without much problem). The
local charge neutrality is no longer valid and each fluid has
its individual characteristics. Following both the original von
Kármán-Howarth and BG17 methods, the first exact relations
for incompressible TF turbulence were derived recently by
Andrés et al. [31,32] for the total energy (ionic plus electronic
kinetic energy and magnetic energy) and for the generalized
ion and electron helicity. However, those exact relations were
derived assuming quasineutrality and hence represent only a
very limited subset of incompressible two-fluid turbulence.

In the current paper, following the principles of the BG17
formulation, we derive an exact relation for three-dimensional
(3D), homogeneous and compressible two-fluid (CTF) plasma
turbulence. For both ion and electron fluids, we use polytropic
closures (with different polytropic indices), which are of
interest for both laboratory and astrophysical plasmas. The
paper is organized as follows, in Sec. II A we present the
basic equations for a polytropic CTF plasma. In Sec. II B
we demonstrate the conservation of the total energy in the
CTF system, while in Sec. III we present a detailed definition
of the energy correlators and the derivation of the exact
relation. Finally, in Secs. IV and V, we investigate different
interesting limits and summarize our main findings along with
their potential implications in space and astrophysical plasma
turbulence.

II. COMPRESSIBLE TWO-FLUID MODEL

A. Set of equations

In this paper, we consider a CTF plasma which is com-
posed of a singly charged ionic and an electronic fluid both
satisfying polytropic closures with different polytropic in-
dices. Since in general a TF plasma is not locally quasineutral,
we assume ni �= ne, where ni,e denotes the number density
for ions and electrons, respectively. In addition, we assume
stationary large-scale forcings in the ion and electron mo-
mentum equations. Furthermore, for the sake of simplicity,
we assume such a flow regime where the production and
the loss rates of each species are roughly equal and each
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species fluid is undergoing polytropic equation of state with
species specific polytropic index γs. Therefore, the full set of
dynamical equations are given by

∂tρs + ∇ · js = 0, (4)

∂t js + ∇ · ( js ⊗ us) = −∇ps + ρcs(E + us × B) + ds + f s,

(5)

∂t B = −∇ × E, (6)

∂t E = 1

μ0ε0
∇ × B − 1

ε0
J = 1

μ0ε0
∇ × B − 1

ε0

∑
s

ρcsus,

(7)

and ps= Ksρ
γs
s , (8)

where the index s denotes the individual species of ions (i)
and electrons (e). ρs, ρcs, us, js ≡ ρsus and ps denote the
mass density, the electric charge density, the fluid velocity,
the mass current and the fluid pressure for each species s,
respectively. In the above equations, E is the electric field,
B the magnetic field, J(≡ ∑

s ρcsus) the electric current and
ε0 and μ0 are the free space permitivity and permeability, re-
spectively. Finally, f s is the stationary large-scale forcings and
d i = −de = νρr (ue − ui ) denotes the momentum exchange
between the two species [with ρr = ρiρe(ρi + ρe)−1] [33] and
Ks is a constant of proportionality. Note that, in the current
study, for the sake of simplicity, forcing is added only in
the momentum equation and not in the electromagnetic field
evolution equations. It means that the energy is injected in the
form of kinetic energy. However, electric and magnetic energy
component will also be nourished through the interaction of
the momentum field ( j) and the velocity field (u) with the the
electric field (E) and magnetic field (B).

B. Total energy conservation

In this section, we show that the total energy is conserved
for a CTF plasma in the absence of any forcing and viscous
term. Using the set of Eqs. (4)–(8) and setting f s and ds to
zero, it is straightforward to show that

∂t

∑
s

ρsu
2
s

= 2J · E −
∑

s

[∇ · (
u2

s js

) − us · ∇ps − γs js · ∇es
]
, (9)

∂t

∑
s

ρses =
∑

s

[∇ · ( jses) + ps(∇ · us)] , (10)

∂t

(
B2

μ0
+ ε0E2

)
= −2

[
∇ ·

(
E × B

μ0

)
+ J · E

]
, (11)

where es = ps/(γs − 1)ρs is the thermodynamic potential en-
ergy per unit mass for species s. Noting that for a poly-
tropic fluid γ js · ∇es = us · ∇ps, we can show that for a CTF
plasma the total energy E is an inviscid invariant. The total
energy density (E), which is the sum of the densities of ki-
netic and thermodynamic potential energies of the individual
species plus the density of the electromagnetic energy, can be

written as

E = 1

2

(∑
s

ρsu
2
s + B2

μ0
+ ε0E2

)
+

∑
s

ps

γs − 1
. (12)

In the next Sec. III, we derive an exact relation related to the
conservation of total energy in the absence of the forcing and
the viscous terms.

III. DERIVATION OF THE EXACT RELATION

In order to derive the exact relation for CTF turbulence,
we define the two-point correlator for the total energy E .
For a neutral polytropic one-fluid, it can be shown that there
is equipartition between the average kinetic energy and the
average thermodynamic potential energy in the linear modes
[34]. This type of equipartition can, in principle, be gen-
eralized for a charged fluid as well. Along with this fact,
following Banerjee and Kritsuk [25], here we construct the
thermodynamic energy correlator which is in accordance with
spectral space energy equipartition between the kinetic and
potential energies in the acoustic limit and also is equal to the
thermodynamic energy density in the single point limit (where
the primed and unprimed quantities coincide). To satisfy both
the conditions, it turns out that the correlation function will
include an appropriate combination of one-point and two-
point contributions having the general form,

(n − 1)

n
〈ρe〉 +

〈
ρe′ + ρ ′e

2n

〉
, (13)

and search for the value of n which gives spectral space
equipartition of energy in the acoustic limit. For a polytropic
fluid, the total energy density of the acoustic mode (Ea) is
given by [35],

Ea = 1

2
ρ0u2 + C2

2ρ0
ρ2

1 , (14)

where ρ0, u, and ρ1 represent the mean density and the
first-order perturbations in velocity and density, respectively.
Here C = √

γ P0/ρ0 denotes the polytropic sound speed. The
two terms on the right-hand side of Eq. (14) correspond to
the the acoustic kinetic and the thermodynamic energy densi-
ties, respectively. The polytropic two-point energy correlation
function can therefore be written as

Ra(�) = 1

2
ρ0〈u · u′〉 + C2

2ρ0
〈ρ1ρ1

′〉

= 1

2
ρ0〈u · u′〉 + γ

2

P0

ρ2
0

〈ρ1ρ1
′〉. (15)

In the formalism described in Sec. III of Ref. [25], it was
shown, for an isothermal fluid, that the correlator could give
the correct value for the thermodynamic energy density in the
spectral space if n = 2 in Eq. (13). Generalizing the same
methodology for a polytropic fluid, we can expand the two-
point contribution (it is only that part which can give us the
energy density for the thermodynamic part in spectral space)
in the general correlation function at acoustic limit (i.e., with
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only first-order perturbations), which gives〈
ρe′ + ρ ′e

2n

〉
= P0

2n(γ − 1)

〈(
1 + ρ1

ρ0

)(
1 + ρ ′

1

ρ0

)γ−1

+
(

1 + ρ ′
1

ρ0

)(
1 + ρ1

ρ0

)γ−1
〉

≈ P0

2n(γ − 1)

〈(
1 + ρ1

ρ0

)[
1 + (γ − 1)

ρ ′
1

ρ0

]
+

(
1 + ρ ′

1

ρ0

)[
1 + (γ − 1)

ρ1

ρ0

]〉
. (16)

The total two-point contribution of second order of smallness is clearly given by P0

nρ2
0
〈ρ1ρ1

′〉. Equating this contribution to the
thermodynamic energy contribution in Eq. (15), we have n = 2/γ (for the isothermal case, γ = 1 and one recovers n = 2 [25]).
Therefore, we define the two-point symmetric correlator of the total energy for the TF plasma as R(�) = 〈RE + R′

E〉/2 with

RE ≡ 1

2

{∑
s

[ js · u′
s + γsρses

′ + (2 − γs)ρses] + B · B′ + E · E ′
}

, (17)

R′
E ≡ 1

2

{∑
s

[ j′s · us + γsρ
′
ses + (2 − γs)ρ ′

se
′
s] + B′ · B + E ′ · E

}
, (18)

where B = B/
√

μ0 and E = √
ε0E. Using Eqs. (4)–(8) (including the forcing and dissipation terms) and the two-point statistics

for homogeneous turbulence, we obtain

∂t 〈 js · u′
s〉 =

〈
js ·

[
−∇′

(
γse

′
s + u′2

s

2

)
+ (u′

s × ω′
s) + qs

ms
(E′ + u′

s × B′) + 1

ρ ′
s

(d ′
s + f ′

s)

]〉

+
〈
u′

s ·
[
−us

(∇ · js

) − ρs∇
(

u2
s

2

)
+ (

js × ωs
) − ∇ps + ρcs(E + us × B) + (ds + f s)

]〉
, (19)

∂t 〈B · B′〉 = − 1

μ0
〈B · (∇′ × E′) + B′ · (∇ × E)〉, (20)

∂t 〈E · E ′〉 = 1

μ0
〈(∇ × B) · E′ + (∇′ × B′) · E〉 − 〈J · E′ + J′ · E〉, (21)

∂t 〈ρse
′
s〉 =

〈
−ρs

γs
θ ′

sCs
′2 + js · ∇′e′

s − ρsu′
s · ∇′e′

s

〉
, (22)

∂t 〈ρses〉 = ∂t 〈ρ ′
se

′
s〉 = −〈psθs〉, (23)

where θs ≡ ∇ · us. By symmetry, we can easily calculate the ∂t 〈 j′s · us〉 and ∂t 〈ρ ′
ses〉 correlators. Finally, with these expressions,

the evolution equation of the total correlation function R can be written as

∂tR = 1
4∂t 〈 ji · u′

i + je · u′
e + j′i · ui + + j′e · ue + 2B · B′ − 2E · E ′ + γiρie

′
i + (2 − γi )ρiei + γeρee′

e

+ (2 − γe)ρeee + γiρ
′
i ei + (2 − γi )ρ

′
i e

′
i + γeρ

′
eee + (2 − γe)ρ ′

ee′
e〉. (24)

Using Eqs. (19)–(23), we obtain

∂tR = 1

4

〈
−(u′

i · ui )(∇ · ji ) − ρi∇
(

u2
i

2

)
· u′

i + u′
i · ( ji × ωi ) − u′

i · ∇pi + ρciu′
i · (E + ui × B) + u′

i · (d i + f i )

− ji · ∇′
(

γie
′
i + u′

i
2

2

)
+ ji · (u′

i × ω′
i ) + e ji

mi
· (E′ + u′

i × B′) + ji

ρ ′
i

· (d ′
i + f ′

i )

− (u′
e · ue)(∇ · je) − ρe∇

(
u2

e

2

)
· u′

e + u′
e · ( je × ωe) − u′

e · ∇pe + ρceu′
e · (E + ue × B) + u′

e · (de + f e)

− je · ∇′
(

γee′
e + u′

e
2

2

)
+ je · (u′

e × ω′
e) − e je

me
· (E′ + u′

e × B′) + je

ρ ′
e

· (d ′
e + f ′

e)

− (ui · u′
i )(∇′ · j′i ) − ρ ′

i∇′
(

u′
i
2

2

)
· ui + ui · ( j′i × ω′

i ) − ui · ∇′ p′
i + ρ ′

ciui · (E′ + u′
i × B′) + ui · (d ′

i + f ′
i )

− j′i · ∇
(

γiei + ui
2

2

)
+ j′i · (ui × ωi ) + e j′i

mi
· (E + ui × B) + j′i

ρi
· (d i + f i )

− (ue · u′
e)(∇′ · j′e) − ρ ′

e∇′
(

u′2
e

2

)
· ue + ue · ( j′e × ω′

e) − ue · ∇′ p′
e + ρ ′

ceue · (E′ + u′
e × B′) + ue · (d ′

e + f ′
e)
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− j′e · ∇
(

γeee + ue
2

2

)
+ j′e · (ue × ωe) − e j′e

me
· (E + ue × B) + j′e

ρe
· (de + f e)

− 2

μ0
[B · (∇′ × E′) + B′ · (∇ × E) − (∇ × B) · E′ − (∇′ × B′) · E] − 2

(
J · E′ + J′ · E

)
− γi

[
p′

i

ρ ′
i

θ ′
i ρi − ρiui · ∇′e′

i + ρiu′
i · ∇′e′

i

]
− γe

[
p′

e

ρ ′
e

θ ′
eρe − ρeue · ∇′e′

e + ρeu′
e · ∇′e′

e

]

− γi

[
pi

ρi
θiρ

′
i − ρ ′

iu
′
i · ∇ei + ρ ′

iui · ∇ei

]
− γe

[
pe

ρe
θeρ

′
e − ρ ′

eu′
e · ∇ee + ρ ′

eue · ∇ee

]

− (2 − γi )piθi − (2 − γe)peθe − (2 − γi )p′
iθ

′
i − (2 − γe)p′

eθ
′
e

〉
. (25)

Using statistical homogeneity, we can show

〈[B · (∇′ × E′) + B′ · (∇ × E) − (∇ × B) · E′ − (∇′ × B′) · E]〉 (26)

= 〈∇′ · (E′ × B) + ∇ · (E × B′) − ∇ · (B × E′) − ∇′ · (B′ × E)〉 (27)

= ∇� · 〈(E′ × B) − (E × B′) + (B × E′) − (B′ × E)〉 = 0. (28)

Again Eq. (25) yields

4∂tR = 〈δ ji · δ[(ui · ∇)ui] + δui · δ[∇ · ( ji ⊗ ui )] + δ je · δ[(ue · ∇)ue] + δue · δ[∇ · ( je ⊗ ue)]〉

+ γi

〈
δρiδ

[
piθi

ρi
+ (ui · ∇)ei

]
+ δui · δ[ρi∇ei]

〉
+ γe

〈
δρeδ

[
peθe

ρe
+ (ue · ∇)ee

]
+ δue · δ[ρe∇ee]

〉

− 〈δ(ρciui ) · δ(ui × B) + δui · δ(ρciui × B) + δ(ρceue) · δ(ue × B) + δue · δ(ρceue × B)〉
+ 〈δJ · δE − δui · δ(ρciE) − δue · δ(ρceE)〉 + 4D + 4F . (29)

Finally, we assume a stationary state for which the left-hand term of the above equation vanishes and we restrict ourselves to
the length scales far away of the dissipation length scales whence we can neglect D. As a result, we can identify F = ε and the
final exact relation becomes

−4ε = 〈δ ji · δ[(ui · ∇)ui] + δui · δ[∇ · ( ji ⊗ ui )] + δ je · δ[(ue · ∇)ue] + δue · δ[∇ · ( je ⊗ ue)]〉

+ γi

〈
δρiδ

[
piθi

ρi
+ (ui · ∇)ei

]
+ δui · δ[ρi∇ei]

〉
+ γe

〈
δρeδ

[
peθe

ρe
+ (ue · ∇)ee

]
+ δue · δ[ρe∇ee]

〉

− 〈δ(ρciui ) · δ(ui × B) + δui · δ(ρciui × B) + δ(ρceue) · δ(ue × B) + δue · δ(ρceue × B)〉
+ 〈δJ · δE − δui · δ(ρciE) − δue · δ(ρceE)〉. (30)

Equation (30) represents an exact law for energy transfer rate
in homogeneous, polytropic TF plasma turbulence. It is worth
mentioning that the final exact relation Eq. (30) is written
only as a function of two-point increments and it is valid
only in the inertial range (i.e., for length scales far away
from the injection and dissipative scales). As discussed in
Ref. [25], unlike incompressible turbulence, the net turbulent
contribution in the energy flux rate cannot simply be expressed
as a departure from the aligned states (generalized Beltrami
flows). In the incompressible limit of two-fluid turbulence
(see the next section), one can express ε as a departure from
different aligned states. In the next Sec. IV, we discuss various
important features of Eq. (30).

IV. DISCUSSION

A. Incompressible TF limit

In the incompressible limit, both the ion and electron num-
ber densities, i.e., ni and ne (and hence the mass ρe,i and charge
densities ρce,ci), are constants in time and space. However,

they are not necessarily equal. Using this assumption and
statistical homogeneity, one can show for each species s

〈δ js · δ[(us · ∇)us] + δus · δ[∇ · ( js ⊗ us)]〉
= 2ρs〈δus · δ[(us · ∇)us]〉
= −2ρs〈δus · δ(us × ωs)〉,

where ∇ · us = 0. The thermodynamic energy terms also
vanish for incompressible fluid. The, Eq. (30) is therefore
simplified as

2ε = 〈ρi0δui · δ(ui × ωi ) + ρe0δue · δ(ue × ωe)

+ ρci0δui · δ(ui × B) + ρce0δue · δ(ue × B)〉. (31)

where ρe0 and ρi0 are the mean mass densities and ρce0

and ρci0 are the mean charge densities for electrons and
ions, respectively. As expected for incompressible turbulence,
here, the turbulent energy flux rate ε is written in terms
of the departure from aligned states which can be obtained
as minimum energy states along with the constraints of the
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conservations of generalized helicities of both ions and elec-
trons [36]. The two relaxed states in a barotropic or even in
an incompressible two-fluid plasma are represented by the
two following alignments: (mi,eωi,e + qi,eB) ‖ ni,eqi,eui,e. The
above Eq. (31) evidently shows that ε reduces to zero when
both the alignments occur. In addition if the electron mass is
neglected, then the corresponding alignment will simply be an
alignment between electron fluid velocity and the magnetic
field thereby leading to a magnetic force-free motion of

the electrons. Interestingly, in the above equation, the terms
associated directly with the electric field E, vanish under
the incompressibility assumption. It is worth mentioning that
Eq. (31) is valid only when the ion and electron density
fluctuations are equal to zero. However, its mean values (ρe0

and ρi0) are not necessarily equal. For a TF plasma with very
strong ionisation, the charge quasineutrality assumption, i.e.,
ni = ne = n0 can be satisfied and Eq. (31) then reduces to

2ε = n0〈miδui · δ(ui × ωi ) + meδue · δ(ue × ωe) + eδui · δ(ui × B) − eδue · δ(ue × B)〉

= n0M

〈
δui · δ

[
ui ×

(
mi

M
ωi + e

M
B

)]
+ δue · δ

[
ue ×

(
me

M
ωe − e

M
B

)]〉

= n0M

〈
δui · δ

[
ui ×

(
e

M

√
μ0n0Mb + mi

M
ωi

)]
− δue · δ

[
ue ×

(
e

M

√
μ0n0Mb − me

M
ωe

)]〉

= n0M

〈
δui · δ

[
ui ×

(
e
√

μ0n0√
M

b + (1 − μ)ωi

)]
− δue · δ

[
ue ×

(
e
√

μ0n0√
M

b − μωe

)]〉

= n0M

〈
δui · δ

[
ui ×

(
b
λ

+ (1 − μ)ωi

)]
− δue · δ

[
ue ×

(
b
λ

− μωe

)]〉

= n0M

λ
〈δui · δ[ui × (b + λ(1 − μ)ωi )] − δue · δ[ue × (b − λμωe)]〉, (32)

which has previously been derived by Andrés et al. [32]. In the above expressions, M = mi + me, μ = me/M, b = B√
μ0n0M

, and

λ = √
M/(e

√
μ0n0). Similarly to the IHD and IMHD turbulence, the turbulent energy flux in a two-fluid plasma can also be

attributed to the departure of Beltrami type of alignments for both ionic and electronic fluids. For aligned cases, i.e., for ui,e

‖ωi,e ui,e ‖ B, the contribution of the corresponding term to ε vanishes (see also Ref. [15]).

B. Compressible single-fluid limits

1. Without neglecting electron mass

In the single-fluid limit, at every point ni = ne = n; however, n is not necessarily constant. Now from the definitions of
single-fluid variables, we can write

u = nimiui + nemeue

nimi + neme
= miui + meue

mi + me
, J = e(niui − neue) = ne(ui − ue). (33)

Solving for ui and ue, we get

ui = u + α

1 + α

(
J
ne

)
and (34)

ue = u − 1

1 + α

(
J
ne

)
, (35)

where α ≡ me/mi = μ/(1 − μ). Here we first derive the single-fluid limit without neglecting electron mass and so that α � 1
but α �= 0. This is important because the electron mass is responsible for magnetic reconnection to occur even in a collisionless
plasma [37] and turbulent reconnection is believed to affect the turbulent cascade [38]. The value of α depends on the mass of
the ion and is maximum (1/1837 = 0.000544) for the lightest Hydrogen ions. So, for practical purpose, the effect of electron
mass can be considered to the first order of α. This limit will lead to a regime of MHD which is more general than ordinary or
Hall MHD and therefore can be called MHD with electron inertia. Note that this limit is nevertheless more restricted than the
extended MHD model described in some previous works [39] which did not neglect ∂J/∂t , ∇ · (u ⊗ J + J ⊗ u) and the electron
pressure gradient term in generalized Ohm’s laws. These terms are certainly of theoretical interest. However, for most practical
cases, these contributions are always neglected. Using the aforesaid expressions of ion and electron velocities, we can write

(ui · ∇)ui = (u · ∇)u + α

1 + α

[(
J
ne

· ∇
)

u + (u · ∇)
J
ne

]
+ α2

(1 + α)2

(
J
ne

· ∇
)

J
ne

, (36)

(ue · ∇)ue = (u · ∇)u − 1

1 + α

[(
J
ne

· ∇
)

u + (u · ∇)
J
ne

]
+ 1

(1 + α)2

(
J
ne

· ∇
)

J
ne

. (37)
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Using the above expressions, we obtain (keeping the terms to first order of α)

δ ji · δ[(ui · ∇)ui] + +δ je · δ[(ue · ∇)ue] = δ(ρu) · δ[(u · ∇)u] + α

(1 + α)2 δ

(
ρ

J
ne

)
· δ

[(
J
ne

· ∇
)

u + (u · ∇)
J
ne

]

+ α

(1 + α)2 δ(ρu) · δ

[(
J
ne

· ∇
)

J
ne

]
− α(1 − α)

(1 + α)3 δ

(
ρ

J
ne

)
· δ

[(
J
ne

· ∇
)

J
ne

]
,

(38)

≈ δ(ρu) · δ[(u · ∇)u] + α δ

(
ρ

J
ne

)
· δ

[(
J
ne

· ∇
)

u + (u · ∇)
J
ne

]

+α δ

[
ρ

(
u − J

ne

)]
· δ

[(
J
ne

· ∇
)

J
ne

]
. (39)

Following the same methodology, we can also write

ρiui ⊗ ui = 1

1 + α
ρu ⊗ u + α

(1 + α)2

(
ρ

J
ne

⊗ u + ρu ⊗ J
ne

)
+ α2

(1 + α)3

(
ρ

J
ne

⊗ J
ne

)
, (40)

ρeue ⊗ ue = α

1 + α
ρu ⊗ u − α

(1 + α)2

(
ρ

J
ne

⊗ u + ρu ⊗ J
ne

)
+ α

(1 + α)3

(
ρ

J
ne

⊗ J
ne

)
, (41)

where by definition, ρi = ρ

1+α
and ρe = α

1+α
ρ. After some steps of straightforward algebra, we get by retaining terms to first

order of α,

δui · δ[∇ · ( ji ⊗ ui )] + δue · δ[∇ · ( je ⊗ ue)]

= δu · δ[∇ · (ρu ⊗ u)] + α

(1 + α)2 δ

(
J
ne

)
· δ

[
∇ ·

(
ρ

J
ne

⊗ u + ρu ⊗ J
ne

)]

+ α

(1 + α)2 δu · δ

[
∇ ·

(
ρ

J
ne

⊗ J
ne

)]
− α(1 − α)

(1 + α)3 δ

(
J
ne

)
· δ

[
∇ ·

(
ρ

J
ne

⊗ J
ne

)]
(42)

≈ δu · δ[∇ · (ρu ⊗ u)] + α δ

(
J
ne

)
· δ

[
∇ ·

(
ρ

J
ne

⊗ u + ρu ⊗ J
ne

)]
+ α δ

(
u − J

ne

)
· δ

[
∇ ·

(
ρ

J
ne

⊗ J
ne

)]
. (43)

For the contribution of the thermodynamic energy part, we can write for any species s

(i) γs

〈
δρs δ

[
psθs

ρs
+ (us · ∇)es

]〉
= γsm

γs
s

〈
δn δ

[
Ksn

γs−1θs + (us · ∇)
Ksnγs−1

γs − 1

]〉
, (44)

(ii) γs δus · δ[ρs∇es] = γsm
γs
s δus · δ

[
n ∇

(
Ksnγs−1

γs − 1

)]
. (45)

So, just by having an apparent view, one can think that the contribution from the electron fluid is negligibly small as it carries a
ratio which is proportional to αγe (γe > 1) and also all other quantities (Ks, θs, γs) are supposed to be approximately of the same
order. At this point one has to be very careful. In practice, both the ion and electron pressure are of comparative magnitude and
in fact with the same number density, electron fluid pressure is greater than ion fluid pressure due to having higher temperature.
In terms of the polytropic closure equations, it simply says that Ke is considerably greater than Ki so that both pressures are
significant. The total pressure can be written as

p = pi + pe = Kiρ
γi
i + Keα

γeρ
γe
i = Ki

(1 + α)γi
ργi + Keα

γe

(1 + α)γe
ργe . (46)

So, unlike the component species fluids, the pressure-density closure is not a simple polytropic closure for the resultant single
fluid. However, in practice, for most cases, compressible MHD is studied using a simple polytropic closure. Under the condition
of comparable ion and electron pressures (Ki and Keα

γe are comparable), a simple polytropic law for the single fluid is
possible when γi = γe = γ , where γ is the polytropic index for the single fluid. In that case, one can write p = Kργ where
K = (Ki + αγ Ke)/(1 + α)γ . For comparable contribution of ion and electron pressures, we necessarily have Ki ≈ αγ Ke. Using
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the one fluid quantities, we can write

(i)

〈
γiδρi δ

(
Piθi

ρi

)
+ γeδρe δ

(
Peθe

ρe

)〉

≈ γ

(1 + α)γ
〈δρ δ[Kiρ

γ−1(θ + αχ )] + αγ δρ δ[Keρ
γ−1(θ − χ + αχ )]〉

= γ

〈
δρ δ

(
pθ

ρ

)
+ α δρ δ

(
pχ

ρ

)
− δρe δ

(
peχ

ρe

)〉
, (47)

(ii) 〈γiδρi δ[(ui · ∇)ei] + γeδρe δ[(ue · ∇)ee]〉

≈ γ

(1 + α)γ

〈
δρ δ

[(
u + α

J
ne

)
· ∇

(
Kiρ

γ−1

γ − 1

)]
+ αγ δρ δ

[(
u + (α − 1)

J
ne

)
· ∇

(
Keρ

γ−1

γ − 1

)]〉

= γ

〈
δρ δ[(u · ∇)e] + α δρ δ

[(
J
ne

· ∇
)

e

]
− δρe δ

[(
J
ne

· ∇
)

ee

]〉
, (48)

(iii) 〈γi δui · δ[ρi∇ei] + γe δue · δ[ρe∇ee]〉

≈ γ

(1 + α)γ

〈
δ

(
u + α

J
ne

)
· δ

[
ρ ∇

(
Kiρ

γ−1

γ − 1

)]
+ αγ δ

(
u + (α − 1)

J
ne

)
· δ

[
ρ∇

(
Keρ

γ−1

γ − 1

)]〉

= γ

〈
δu · δ(ρ ∇e) + α δ

(
J
ne

)
· δ(ρ ∇e) − δ

(
J
ne

)
· δ(ρe∇)ee

〉
, (49)

where χ ≡ ∇ · ( J
ne ). In the Eqs. (47)–(49), one can notice that there are some terms containing electron fluid density, pressure

and internal energy. In order to get rid of these terms, we need to introduce a new single-fluid variable called the electrokinetic
pressure PE (as discussed in Ref. [33]) which can be written as

pE =
∑

s

ρcs

ρs
ps = e

(
pi

mi
− pe

me

)
. (50)

Note that, for comparable ion and electron fluid pressures, PE is effectively negative. Using simple algebra, one can show that

pe ≈ α
(

p − mi

e
pE

)
, ee ≈ (1 + α)

(γ − 1)

(
p

ρ
− mi

e

pE

ρ

)
. (51)

So in principle, one can write the Eq. (30) in terms of single-fluid quantities assuming quasineutrality and a polytropic closure
for the resultant single fluid. However, for the sake of comparison between different contributions, we keep the terms with ρe,
pe, and ee as they are. In the next step, we investigate the reduced form of the total electromagnetic contribution of the exact
relation in the single-fluid limit. For doing so, we need to use the specific form of generalized Ohm’s law which reduces to the
Ohm’s law for Hall-MHD in the limit α → 0. We therefore use the following form [33]:

ne

(
1

mi
+ 1

me

)(
E + u × B − J

σ0

)
=

(
1

me
− 1

mi

)
(J × B), (52)

⇒
(

E + u × B − J
σ0

)
=

(
1 − α

1 + α

)
(J × B)

ne
, (53)

where, σ0 = ne2

meνei
is the conductivity of the single fluid. In the ideal limit, where the single fluid has infinite conductivity (σ0 →

∞), the resulting Ohm’s law can be expressed as

(E + u × B) =
(

1 − α

1 + α

)
(J × B)

ne
, (54)

⇒ (E + ui × B) =
(

1

1 + α

)
(J × B)

ne
, (55)

⇒ (E + ue × B) = −
(

α

1 + α

)
(J × B)

ne
. (56)

Now we obtain the total electromagnetic contribution for compressible single-fluid limit. For the sake of easier calculation, we
start the analysis from the correlator containing the electromagnetic contribution. Using the aforesaid expressions of generalized
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Ohm’s law, the resulting correlation function becomes〈
u′ · (J × B) + u · (

J′ × B′) + j ·
(

J′ × B′

ρ ′

)
+ j′ ·

(
J × B

ρ

)
+ 2J · (u′ × B′) + 2J′ · (u × B)

−2

(
1 − α

1 + α

)[
J ·

(
J′ × B′

n′e

)
+ J′ ·

(
J × B

ne

)]〉

=
〈
δu · δ(B × J) + δ j · δ

(
B × J

ρ

)
+ 2δJ · δ(B × u) − 2

(
1 − α

1 + α

)
δJ · δ

(
B × J

ne

)〉
, (57)

≈
〈
δu · δ(B × J) + δ j · δ

(
B × J

ρ

)
+ 2δJ · δ

[
B ×

(
u − J

ne

)]
+ 4α δJ · δ

(
B × J

ne

)〉
, (58)

where we have used the vector identity j · ( B×J
ρ

) = u · (B × J) and in the final expression, we have kept the contribution to first
order of α. Finally, without neglecting the electron mass but keeping their contribution to first order of α, one can write the exact
relation for a TF plasma in the single-fluid limit as

−4ε =
〈
δ(ρu) · δ[(u · ∇)u] + δu · δ[∇ · (ρu ⊗ u)] + α δ

(
ρ

J
ne

)
· δ

[(
J
ne

· ∇
)

u + (u · ∇)
J
ne

]

+α δ

[
ρ

(
u − J

ne

)]
· δ

[(
J
ne

· ∇
)

J
ne

]
+ α δ

(
J
ne

)
· δ

[
∇ ·

(
ρ

J
ne

⊗ u + ρu ⊗ J
ne

)]

+α δ

(
u − J

ne

)
· δ

[
∇ ·

(
ρ

J
ne

⊗ J
ne

)]
+ γ δρ δ

(
pθ

ρ

)
+ αγ δρ δ

(
pχ

ρ

)
− γ δρe δ

(
peχ

ρe

)

+ γ δρ δ[(u · ∇)e] + αγ δρ δ

[(
J
ne

· ∇
)

e

]
− γ δρe δ

[(
J
ne

· ∇
)

ee

]
+ γ δu · δ(ρ ∇e)

+αγ δ

(
J
ne

)
· δ(ρ ∇e) − γ δ

(
J
ne

)
· δ(ρe∇)ee + δu · δ(B × J) + δ j · δ

(
B × J

ρ

)

+ 2δJ · δ

[
B ×

(
u − J

ne

)]
+ 4α δJ · δ

(
B × J

ne

)〉
. (59)

2. Neglecting electron mass

The above equation can be substantially reduced if we completely neglect the effect of electron mass, i.e., α = 0. In this limit,
the exact relation is simply expressed as

−4ε =
〈
δ(ρu) · δ[(u · ∇)u] + δu · δ[∇ · (ρu ⊗ u)] + γ

[
δρ δ

(
pθ

ρ

)
+ δρ δ[(u · ∇)e] + δu · δ(ρ ∇e)

]

− γ

[
δρe δ

(
peχ

ρe

)
+ δρe δ

[(
J
ne

· ∇
)

ee

]
+ δ

(
J
ne

)
· δ(ρe∇)ee

]

+ δu · δ(B × J) + δ j · δ

(
B × J

ρ

)
+ 2δJ · δ

[
B ×

(
u − J

ne

)]〉
. (60)

This exact relation is a generalized version of Hall MHD turbulence where the electron mass is neglected but the electron pressure
is not. This is much more realistic model than usual Hall MHD or electron MHD model to probe into the scales comparable or
smaller than the electron inertial length. This is the exact relation for the total energy transfer rate in homogeneous and polytropic
CHMHD turbulence where electron fluid pressure is not neglected. From this expression, one can easily obtain the exact relations
for compressible ordinary MHD turbulence obtained in Banerjee and Kritsuk [25] except the thermodynamic energy term which
was calculated from an isothermal closure in Ref. [25] and the self-gravity term which is absent here. Now, a simplified estimate
gives

|u|
|J/ne| ≈ neμ0

|u|
|∇ × B| ≈ neμ0u��√

μ0nmib�

=
(

�

λi

)(
u�

b�

)
, (61)

where ∇ ∼ 1/� with � being the length scale which we are interested in, u� and b� are the velocity and magnetic field fluctuations
corresponding to the scale �. For typical systems where u� ∼ b�, the ratio |u|/|J/ne| is simply given by the factor �/λi and
for ordinary MHD, one is particularly interested in the fluctuation during a very large scale (� � λi ). Hence, at that limit,
|u|/|J/ne| � 1 and consequently |u|/|αJ/ne| � 1. Under the above assumptions, one can finally approximate ui ≈ ue ≈ u.
Interestingly, this does not imply a zero current density J but just indicates a negligible value of the term J/ne with respect to the
fluid velocity u at length scales much larger than λi. Due to the same reason, all the terms of Eq. (60) containing electron fluid
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contribution (also containing J
ne ) can approximately be neglected with respect to similar terms containing single-fluid variables

(also containing u). Using the above simplifications, we can easily show that in the limit of CMHD turbulence, the resulting
exact relation becomes

−4ε =
〈
δ j · δ[(u · ∇)u] + δu · δ

[∇ · ( j ⊗ u)
] + γ δρ δ

[
pθ

ρ
+ (u · ∇)e

]
+ γ δu · δ[ρ∇e]

+ δu · δ(B × J) + δ j · δ

(
B × J

ρ

)
+ 2δJ · δ(B × u)

〉
. (62)

C. Incompressible single-fluid limits

In the incompressible single-fluid limit, both ion and elec-
tron number densities are equal and constant in space and
time. In this limit, we also study two different cases.

1. Without neglecting electron mass

As in the previous section, here we also keep the contri-
bution of the electron mass to first order. The corresponding
incompressible single-fluid limit can be achieved either by
(i) taking the single-fluid limit of Eq. (32) or (ii) rewriting
the Eq. (59) in the incompressible limit. In the following, we
shall only derive the single-fluid limit of Eq. (32). For that, we
use predefined variables:

ui = u + α

1 + α

(
J
ne

)
≈ u + α

(
J
ne

)

and ue = u − 1

1 + α

(
J
ne

)
≈ u − (1 − α)

(
J
ne

)
,

and hence we obtain ωi ≈ ω + α � and ωe ≈ ω −
(1 − α)�, where � = ∇ × ( J

ne ) = ∇×J
ne (using incom-

pressibility). Now a few steps of straightforward algebra
give

nmiδui · δ(ui × ωi ) ≈ (1 − α)ρ δ

(
u + α

J
ne

)
· δ[u×ω + αZ]

nmeδue · δ(ue × ωe) ≈ αρ δ

[
u − (1 − α)

J
ne

]

· δ[u × ω − (1 − α)Z

+ (1 − 2α)

(
J
ne

× �

)]
,

where Z = ( J
ne × ω + u × �). Adding the above two equa-

tions, we get

〈nmiδui · δ(ui × ωi ) + nmeδue · δ(ue × ωe)〉

= ρ

〈
δu · δ(u × ω) + α δ

(
u − J

ne

)
· δ

(
J
ne

× �

)

+ α δ

(
J
ne

)
· δZ

〉
. (63)

Again the electromagnetic contribution can be written as (to
first order of α)

ne〈δui · δ(ui × B) − δue · δ(ue × B)〉

≈
〈
δ

(
u − J

ne

)
· δ(J × B) + δJ · δ(u × B)

+ 2α δ

(
J
ne

)
· δ(J × B)

〉
. (64)

Putting all the contributions together and using Eq. (32), fi-
nally the exact relation for incompressible single-fluid plasma
turbulence is given by

2ε = ρ

〈
δu · δ(u × ω) + α δ

(
u − J

ne

)
· δ

(
J
ne

× �

)

+ α δ

(
J
ne

)
· δZ

〉
+

〈
δ

(
u − J

ne

)

· δ(J × B) + δJ · δ(u × B) + 2α δ

(
J
ne

)
· δ(J × B)

〉
.

(65)

2. Neglecting electron mass

Under the condition where electron mass contribution is
entirely ignored, we have α = 0. Equation (65) is then re-
duced to

2ε =
〈
ρ δu · δ(u × ω) + δ

(
u − J

ne

)
· δ(J × B)

+ δJ · δ(u × B)

〉
, (66)

=
〈
ρ δu · δ(u × ω) + δu · δ(J × B)

+ δJ · δ

[(
u − J

ne

)
× B

]〉
, (67)

which is the exact relation in the incompressible Hall MHD
limit. For nonrelativistic IMHD and IHMHD limits, one can
neglect the displacement current term (∝ ∂E/∂t) and then
write ∇ × B = μ0J. Using normalized (to velocity) magnetic
field b ≡ B/

√
μ0ρ0 and jb = ∇ × b and also assuming in-

compressibility (n is constant), one can show that J/ne =
λijb, where λi is the ion inertial length scale which is defined
as

λi = speed of light (c)

ion plasma frequency(ωpi )
= 1

e

√
mi

nμ0
. (68)

Equation (67) can therefore be expressed as

2ε = nM〈δu · δ(u × ω) + [δjb · δ{(u − λijb) × b}
+ δu · δ(jb × b)]〉, (69)

which is similar to what is obtained (where the constant fluid
density is normalized to unity) previously by Banerjee and
Galtier [15] for IHMHD turbulence. For the IMHD limit, we
are interested in the length scales much greater than λi, i.e.,
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λi → 0 and then Eq. (69) reduces to,

2ε = ρ〈δu · δ(u × ω) + δjb · δ(u × b) + δu · δ(jb × b)〉,
(70)

which is also equal to the exact relation derived in Ref. [15]
for IMHD turbulence, when the uniform density is assumed
to be unity.

D. Effect of mean magnetic field

The total magnetic field B at each point can be written
as a sum of a mean or uniform background magnetic field
B0 and a fluctuation part. From Eq. (31), one can readily
show that the contribution of B0 to ε simply vanishes as
〈ρci0 δui · δui × B0 + ρce0 δue · δue × B0〉 = 0. For CTF tur-
bulence, the magnetic contribution due to B0 is given by

〈δ(ρciui ) · δui × B0 + δui · δ(ρciui ) × B0 + δ(ρceue) · δue

× B0 + δue · δ(ρceue) × B0〉 = 0,

and hence Eq. (30) remains unaffected by the application of a
uniform background field. In the single-fluid HMHD limit, the
electric field can be expressed in terms of the magnetic field
as E = ue × B and hence the nonzero contribution comes only
from the terms which were originally containing electric field
in Eq. (30) and the corresponding residual contribution due to
B0 comes to be〈
−δJ · δue × B0 + δu · δ(neue)

× B0 − δ

(
u − J

ne

)
· δ(neue) × B0

〉

=
〈
−δJ · δ

(
u − J

ne

)
× B0 + δ

(
J
ne

)
· δ(neu − J)×B0

〉
.

(71)

In the limit of ordinary MHD, |u|/|J/ne| � 1, and hence
the net contribution due to B0 comes to be equal to
〈−δJ · B0 × δu + δ( J

ρ
) · δ j × B0〉, which is identical to the

contribution of B0 to the turbulent energy flux rate in com-
pressible MHD turbulence as obtained previously [25].

V. CONCLUSIONS

For fully developed turbulence, we derive the exact relation
for a 3D compressible two-fluid plasma model. Equation (30)
can be used to compute the total energy dissipation or transfer
rate in a weakly ionized plasma which can mostly be seen in
the dilute astrophysical plasmas like cold molecular clouds
or protoplanetary disks. Till now, astrophysical turbulence
has been mostly studied using hydrodynamic simulation and
very few times using MHD single-fluid model (for a detailed
review, see Ref. [40]) which is a simplistic assumption for

an astrophysical medium. This current work will facilitate the
study of the astrophysical plasma turbulence to a large extent.
In particular, two-fluid compressible plasma turbulence model
can be expected to give a reliable estimate of the star forma-
tion efficiency in the cold molecular clouds which can then be
studied using appropriate numerical simulation. In addition,
owing to this law, the effect of background magnetic field in
the turbulent star forming regions can also be studied using
CTF plasma turbulence simulation. An interesting study will
be to understand at which scale the electric field contribution
gets converted to the background magnetic field contribution
as obtained in the Eq. (71). Furthermore, this exact relation
will help estimate the energy dissipation or heating rate of the
ionosphere due to ionospheric plasma turbulence. Note that,
in partially or weakly ionized plasmas, the neutral particles
constitute an essential parts of the flow dynamics. However,
their contribution can be easily included in the kinetic and the
thermodynamic energy contribution. For solar wind, a CTF
model of plasma includes the effect of ion and electron inertia
in the scaling of turbulence, and thus generalizes previous
results obtained for incompressible and compressible MHD
and HMHD [10,13,19–21]. Another interesting fact is that
our exact relation does not a priori assume any isotropy.
It is known [41,42] that turbulence eddies in the form of
current sheets and vorticity layers can become more and more
anisotropic and finally unstable to plasma instabilities when a
large inertial range is considered. Although these instabilities
can steepen the magnetic and kinetic energy spectra [38], the
form of the exact relation is expected to be unaltered provided
the ε will not be a scale invariant quantity any longer.

For scales larger than dissipative scales, Eq. (30) implies
a specific scaling for structure functions of the velocity of
each species and of the magnetic field in a nontrivial way,
which can be related to the energy dissipation rate ε at the
smallest scales. Therefore, it provides a way to test whether a
range of scales in a plasma is inertial or dissipative. Over the
last years, the sustained increase in the spatial and temporal
resolution of space missions such as cluster or the new NASA
magnetospheric multiscale mission has opened the possibility
to investigate small-scale plasma phenomena as never before.
The exact laws derived here allow investigation of the nature
of turbulent magnetic field fluctuations at a broad range of
scales in space plasmas, and will be essential to understand
the nonlinear nature of turbulence at the electron scales in the
solar wind.
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