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Abstract
In 2007, tense n-valued Łukasiewicz–Moisil algebras (or tense LMn-algebras) were introduced by Diaconescu and Georgescu
as an algebraic counterpart of the tense n-valued Moisil logic. In this article we continue the study of tense LMn-algebras
initiated by Figallo and Pelaitay (2014, Log. J. IGPL, 22, 255–267). More precisely, we determine a topological duality for
these algebras. This duality enables us not only to describe the tense LMn-congruences on a tense LMn-algebra, but also
to characterize the simple and subdirectly irreducible tense LMn-algebras. Furthermore, by means of the aforementioned
duality, a representation theorem for tense LMn-algebras is proved, which was formulated and proved by a different method
by Georgescu and Diaconescu (2007, Fund. Inform., 81, 379–408).
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1 Introduction

In 1940, Gr. C. Moisil [22] introduced n-valued Łukasiewicz algebras (now these algebras are known
as n-valued Łukasiewicz–Moisil algebras or LMn-algebras for short). From that moment on, many
articles have been published about this class of algebras. Many of the results obtained have been
reproduced in the important book by Boicescu et al. [1] which can be consulted by any reader
interested in broadening their knowledge on these algebras.

Propositional logics usually do not incorporate the dimension of time; consequently, in order
to obtain a tense logic, a propositional logic is enriched by the addition of new unary operators
(or connectives) which are usually denoted by G,H ,F and P. We can define F and P by means
of G and H as follows: F(x)=¬G(¬x) and P(x)=¬H (¬x), where ¬x denotes negation of the
proposition x. Tense algebras (or tense Boolean algebras) are algebraic structures corresponding to
the propositional tense logic (see [4, 21]). An algebra 〈A,∨,∧,¬,G,H ,0,1〉 is a tense algebra if
〈A,∨,∧,¬,0,1〉 is a Boolean algebra and G, H are unary operators on A which satisfy the following
axioms for all x,y∈A:

G(1)=1, H (1)=1,

G(x∧y)=G(x)∧G(y), H (x∧y)=H (x)∧H (y),

x≤GP(x), x≤HF(x),

where P(x)=¬H (¬x) and F(x)=¬G(¬x).
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2 Tense LMn-Algebras and Applications

Taking into account that tense algebras constitute the algebraic basis for the bivalent tense logic,
Diaconescu and Georgescu introduced in [13] the tense MV -algebras and the tense Łukasiewicz–
Moisil algebras (or tense n-valued Łukasiewicz–Moisil algebras) as algebraic structures for some
many-valued tense logics. In recent years, these two classes of algebras have become very interesting
for several authors (see [2, 6–10, 17, 19, 20]). In particular, in [8, 9], Chiriţă introduced tense
θ -valued Łukasiewicz–Moisil algebras and proved an important representation theorem which made
it possible to show the completeness of the tense θ -valued Moisil logic (see [8]). In [13], the authors
formulated an open problem about representation of tense MV -algebras, this problem was solved in
[3, 23] for semi-simple tense MV -algebras. Also, in [2], tense basic algebras which are an interesting
generalization of tense MV -algebras were studied.

The main purpose of this article is to give a topological duality for tense n-valued Łukasiewicz–
Moisil algebras. In order to achieve this we will extend the topological duality given in [16], for
n-valued Łukasiewicz–Moisil algebras. In [14], another duality for Łukasiewicz–Moisil algebras
was developed, starting from Boolean spaces and adding a family of open sets.

The article is organized as follows: In Section 2, we briefly summarize the main definitions and
results needed throughout this article. In Section 3, we developed a topological duality for tense
n-valued Łukasiewicz–Moisil algebras, extending the one obtained in [16] for n-valued Łukasiewicz–
Moisil algebras. In Section 4, the results of Section 3 are applied. First, we characterize congru-
ences on tense n-valued Łukasiewicz–Moisil algebras by certain closed and increasing subsets of
the space associated with them. This enables us to describe the subdirectly irreducible tense n-
valued Łukasiewicz–Moisil algebras and the simple tense n-valued Łukasiewicz–Moisil algebras. In
Section 5, which is the core of this article, a representation theorem for tense n-valued Łukasiewicz–
Moisil algebras is proved using the duality obtained for these algebras. The proof of this result could
be of interest for people working in duality theory. Finally, in Section 6, we describe the simple
and subdirectly irreducible complete tense n-valued Łukasiewicz–Moisil algebras. We also provide
a further characterization of the simple and subdirectly irreducible finite algebras.

2 Preliminaries

2.1 Tense De Morgan algebras

In [18], Figallo and Pelaitay introduced the variety of algebras, which they call tense De Morgan
algebras, and they also developed a representation theory for this class of algebras.

First, recall that an algebra 〈A,∨,∧,∼,0,1〉 is a De Morgan algebra if 〈A,∨,∧,0,1〉 is a bounded
distributive lattice and ∼ is a unary operation on A satisfying the following identities for all x,y∈A:

1. ∼ (x∨y)=∼x∧∼y,
2. ∼∼x=x,
3. ∼0=1.

In what follows a De Morgan algebra 〈A,∨,∧,∼,0,1〉 will be denoted briefly by (A,∼).

DEFINITION 2.1
An algebra (A,∼,G,H ) is a tense De Morgan algebra if (A,∼) is a De Morgan algebra and G and
H are two unary operations on A such that for any x,y∈A :

1. G(1)=1 and H (1)=1,
2. G(x∧y)=G(x)∧G(y) and H (x∧y)=H (x)∧H (y),
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3. x≤GP(x) and x≤HF(x), where F(x)=∼G(∼x) and P(x)=∼H (∼x),
4. G(x∨y)≤G(x)∨F(y) and H (x∨y)≤H (x)∨P(y).

In [18], a duality for tense De Morgan algebras is described taking into account the results established
by Cornish and Fowler in [12]. To this purpose, the topological category tmPS of tmP-spaces and
tmP-functions was considered, which we indicate below:

DEFINITION 2.2
A tense De Morgan space (or tmP-space) is a system (X ,g,R,R−1), where

(i) (X ,g) is an mP-space ([12]). More precisely,

(mP1) X is a Priestley space (or P-space),
(mP2) g :X −→X is an involutive homeomorphism and an anti-isomorphism,

(ii) R is a binary relation on X and R−1 is the converse of R such that:

(tS1) For each U ∈D(X ) it holds that GR(U ), HR−1 (U )∈D(X ), where GR and
HR−1 are two operators on P(X ) defined for any U ⊆X as follows:

GR(U )={x∈X | R(x)⊆U }, (2.1)

HR−1 (U )={x∈X | R−1(x)⊆U }, (2.2)

and D(X ) is the set of all increasing and clopen subsets of X ,

(tS2) (x,y)∈R implies (g(x),g(y))∈R for any x,y∈X ,
(tS3) for each x∈X , R(x) is a closed set in X ,
(tS4) for each x∈X , R(x)=↓R(x)∩↑R(x), where ↓Y (↑Y ) denotes the set of all

x∈X such that x≤y (y≤x) for some y∈Y ⊆X .

DEFINITION 2.3
A tmP-function from a tmP-space (X1,g1,R1,R

−1
1 ) into another one, (X2,g2, R2,R

−1
2 ), is a continuous

and increasing function (P-function) f :X1 −→X2, which satisfies the following conditions:

(mf) f ◦g1 =g2 ◦f (mP-function [12]),
(tf1) (x,y)∈R1 implies (f (x),f (y))∈R2 for any x,y∈X1,
(tf2) if (f (x),y)∈R2, then there is an element z∈X1 such that (x,z)∈R1 and

f (z)≤y,
(tf3) if (y,f (x))∈R2, then there is an element z∈X1 such that (z,x)∈R1 and

f (z)≤y.

Next, Figallo and Pelaitay (see [18, Section 5]) showed that the category tmPS is dually equivalent
to the category TDMA of tense De Morgan algebras and tense De Morgan homomorphisms. The
following results are used to show the dual equivalence:

• Let (X ,g,R,R−1) be a tmP-space. Then, (D(X ),∼g,GR,HR−1 ) is a tense De Morgan algebra,
where for all U ∈D(X ), ∼g U is defined by

∼g U =X \g(U ), (2.3)

and GR(U ) and HR−1 (U ) are defined as in (2.1) and (2.2), respectively.
• Let (A,∼,G,H ) be a tense De Morgan algebra and X(A) be the Priestley space associated with

A, i.e. X(A) is the set of all prime filters of A, ordered by inclusion and with the topology having
as a sub-basis the following subsets of X(A):

σA(a)={S ∈X(A) :a∈S} for eacha∈A, (2.4)
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and

X(A)\σA(a) for eacha∈A.

Then, (X(A),gA,RA
G,RA

H ) is a tmP-space, where gA(S) is defined by

gA(S)={x∈A :∼x /∈S}, for all S ∈X(A), (2.5)

and the relations RA
G and RA

H are defined for all S,T ∈X(A) as follows:

(S,T )∈RA
G ⇐⇒G−1(S)⊆T ⊆F−1(S), (2.6)

(S,T )∈RA
H ⇐⇒H−1(S)⊆T ⊆P−1(S). (2.7)

• Let (A,∼,G,H ) be a tense De Morgan algebra; then, the function σA :A−→D(X(A)) is a tense
De Morgan isomorphism, where σA is defined as in (2.4).

• Let (X ,g,R,R−1) be a tmP-space; then, εX :X −→X(D(X )) is an isomorphism of tmP-spaces,
where εX is defined by

εX (x)={U ∈D(X ) : x∈U }, for all x∈X . (2.8)

• Let h : (A1,∼1,G1,H1)−→ (A2,∼2,G2,H2) be a tense De Morgan morphism. Then, the map
�(h) :X (A2)−→X (A1) is a morphism of tmP-spaces, where

�(h)(S)=h−1(S), for all S ∈X (A2). (2.9)

• Let f : (X1,g1,R1,R
−1
1 )−→ (X2,g2,R2,R

−1
2 ) be a morphism of tmP-spaces. Then, �(f ) :D(X2)−→

D(X1) is a tense De Morgan morphism, where

�(f )(U )= f −1(U ), for all U ∈D(X2). (2.10)

In [18], the duality described above was used to characterize the congruence lattice ContM (A) of
a tense De Morgan algebra (A,∼,G,H ). First the following notion was introduced:

DEFINITION 2.4
Let (X ,≤,g,R,R−1) be a tmP-space. An involutive closed subset Y (i.e. Y =g(Y ) [12]) of X is a
tmP-subset if it satisfies the following conditions for u,v∈X :

(ts1) if (v,u)∈R and u∈Y , then there exists, w∈Y such that (w,u)∈R and w≤v.
(ts2) if (u,v)∈R and u∈Y , then there exists, z∈Y such that (u,z)∈R and z≤v.

The lattice of all tmP-subsets of the tmP-space associated with a tense De Morgan algebra was
taken into account to characterize the congruence lattice of this algebra as it is indicated in the
following theorem:

THEOREM 2.5 ([18, Theorem 6.4] )
Let (A,∼,G,H ) be a tense De Morgan algebra and (X(A),⊆,gA,RA

G,RA
H ) be the tmP-space associated

with A. Then, the lattice CT (X(A)) of all tmP-subsets of X(A) is anti-isomorphic to the lattice ContM (A)
of the tense De Morgan congruences on A, and the anti-isomorphism is the function �T defined by
the prescription:

�T (Y )={(a,b)∈A×A :σA(a)∩Y =σA(b)∩Y }, for all Y ∈CT (X(A)). (2.11)
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2.2 n-valued Łukasiewicz–Moisil algebras

In the sequel n is an integer number and we use the notation [n] :={1,...,n}.
In [11] (see also [1]), Cignoli defined the n-valued Łukasiewicz–Moisil algebras (or LMn-algebras)

in the following way:

DEFINITION 2.6
An algebra 〈A,∨,∧,∼,{ϕi}i∈[n−1],0,1〉 is an n-valued Łukasiewicz–Moisil algebra (or LMn-algebra),
where n≥2 is an integer number, if

(i) 〈A,∨,∧,∼,0,1〉 is a De Morgan algebra,
(ii) ϕi, i∈[n−1], are unary operations on A which satisfy the following conditions for any

i, j∈[n−1] and x,y∈A:

(L1) ϕi(x∨y)=ϕi(x)∨ϕi(y),
(L2) ϕi(x)∨∼ϕi(x)=1,
(L3) ϕi(ϕj(x))=ϕj(x),
(L4) ϕi(∼x)=∼ϕn−i(x),
(L5) i≤ j implies ϕi(x)≤ϕj(y),
(L6) ϕi(x)=ϕi(y) for all i∈[n−1], implies x=y.

The operators ϕi :A−→A, i∈[n−1], are known as chrysippian endomorphisms and the axiom
(L6) is known as Moisil’s determination principle.

An LMn-algebra 〈A,∨,∧,∼,{ϕi}i∈[n−1],0,1〉 will be denoted in the rest of this article by its universe
A or by (A,∼,{ϕi}i∈[n−1]).

In Lemma 2.7, we will summarize some properties of these algebras.

LEMMA 2.7 ([1])
Let (A,∼,{ϕi}i∈[n−1]) be an LMn-algebra. Then the following properties are satisfied, for all x,y∈A:

(L7) ϕi(x∧y)=ϕi(x)∧ϕi(y) for any i∈[n−1]
(L8) x≤y if and only if ϕi(x)≤ϕi(y) for any i∈[n−1] ,
(L9) ϕ1(x)≤x,

(L10) x≤ϕn−1(x),
(L11) ϕi(1)=1, ϕi(0)=0 for any i∈[n−1],
(L12) any chrysippian endomorphism ϕi preserves arbitrary suprema and infima,

whenever they exist.

DEFINITION 2.8
Let (A,∼,{ϕi}i∈[n−1]) and (A′,∼′,{ϕ′

i}i∈[n−1]) be two LMn-algebras. A morphism of LMn-algebras is
a map f :A−→A′, which satisfies the conditions:

(Lf1) f (0)=0, f (1)=1, f ◦∼=∼′ ◦f ,
(Lf2) f (x∧y)= f (x)∧f (y), f (x∨y)= f (x)∨f (y), for any x,y∈A,
(Lf3) f ◦ϕi = ϕ′

i ◦f , for any i∈[n−1].
LEMMA 2.9 ([1])
Let (A,∼,{ϕi}i∈[n−1]) be an LMn-algebra and B(A) be the set of all complemented elements of A.
Then, the following conditions are equivalent for all a∈A:

1. a∈B(A)
2. a∨∼a=1 and a∧∼a=0,
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3. there are b∈A, i∈[n−1], such that a=ϕi(b),
4. there is i∈[n−1] such that a=ϕi(a),
5. for all i∈[n−1], a=ϕi(a),
6. for all i, j∈[n−1], ϕi(a)=ϕj(a).

EXAMPLE 2.10
An example of an LMn-algebra is the chain of n rational fractions Ln ={ j

n−1 : 0≤ j≤n−1
}
, in which

n≥2 is an integer number, endowed with the natural lattice structure and the unary operations ∼
and ϕi, defined as follows:

∼ ( j
n−1 )=1− j

n−1 and ϕi(
j

n−1 )=0 if i+j<n or ϕi(
j

n−1 )=1 if i+j≥n.

The importance of Example 2.10 is seen in [11]:

THEOREM 2.11
Let (A,∼,{ϕi}i∈[n−1]) be a non-trivial LMn-algebra. Then, the following conditions are equivalent:

(i) A is a subdirectly irreducible LMn-algebra,
(ii) A is a simple LMn-algebra,
(iii) A is isomorphic to a LMn-subalgebra of Ln.

The following result was obtained as a consequence of this last theorem.

COROLLARY 2.12
Let (A,∼,{ϕi}i∈[n−1]) be a non-trivial LMn-algebra. Then, the following conditions are equivalent:

(i) A is a simple LMn-algebra,
(ii) B(A)={0,1}.

Another example of an LMn-algebra is the following one:

EXAMPLE 2.13
Let 〈B,∧,∨,−,0,1〉 be a Boolean algebra. Let us consider the following set D(B)={(x1,...,xn−1)∈
Bn−1|x1 ≤···≤xn−1}. We define the following unary operations on D(B), for all (x1,...,xn−1)∈D(B):

N :D(B)−→D(B),N (x1,...,xn−1)= (−xn−1,...,−x1),
ϕi :D(B)−→D(B),ϕi(x1,...,xn−1)= (xi,...,xi) for each i∈[n−1].
Then, 〈D(B),∧,∨,N ,{ϕi}i∈[n−1],(0,...,0),(1,...,1)〉 is an LMn-algebra.

The following theorem reduces the calculus in an arbitrary LMn-algebra A to the calculus
in Ln:

THEOREM 2.14 (Moisil’s representation theorem)
For any LMn-algebra A, there exists a non-empty set X and an injective morphism of LMn-algebras
	 :A−→LX

n .
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In [16], Figallo, et al. determined a topological duality for LMn-algebras. To this aim, these
authors considered the topological category LMnP of LMn-spaces and LMn-functions. Specifically:

DEFINITION 2.15
A system (X ,g,{ fi}i∈[n−1]) is an n-valued Łukaziewicz–Moisil space (or LMn-space) if the following
properties are fulfilled:

(LP1) (X ,g) is an mP-space ([12]),
(LP2) fi :X −→X is a continuous function,
(LP3) x≤y implies fi(x)= fi(y) for all i∈[n−1],
(LP4) i≤ j implies fi(x)≤ fj(x),
(LP5) fi ◦fj = fi,
(LP6) fi ◦g = fi,
(LP7) g◦fi = fn−i,

(LP8) X =
n−1⋃
i=1

fi(X ),

for any i,j∈[n−1] and for any x,y∈X .

DEFINITION 2.16
If (X ,g,{ fi}i∈[n−1]) and (X ′,g′,{f ′

i }i∈[n−1]) are two LMn-spaces, then an LMn-function f from X to X ′

is a continuous and increasing function (P-function), which satisfies the following conditions:

(mPf) f ◦g =g′ ◦f (mP-function [12]),
(LPf) f ′

i ◦f = f ◦fi for all i∈[n−1].
It is routine to prove that the condition (LP8) in Definition 2.15 is equivalent to any of these

conditions:

(LP9) for each x∈X there is an index i∈[n−1], such that x= fi(x),
(LP10) if Y , Z are subsets of X and f −1

i (Y )= f −1
i (Z) for all i∈[n−1], then Y =Z .

It is worth mentioning the following properties of LMn-spaces because they are useful to describe
these spaces:

(LP11) Every LMn-space (X ,g,{ fi}i∈[n−1]) is the cardinal sum of a family of chains,
each of which has at most n−1 elements.

(LP12) If (X ,g,{ fi}i∈[n−1]) is an LMn-space, x∈X and Cx denotes the unique
maximal chain containing x, then Cx ={ fi(x) : i∈[n−1]}.

In addition, in [16], the following results were established:

• If (X ,g,{ fi}i∈[n−1]) is an LMn-space. Then, (D(X ),∼g,{ϕX
i }i∈[n−1]) is an LMn-algebra, where

for every U ∈D(X ), ∼g U is defined as in Equation (2.3) and

ϕX
i (U )= f −1

i (U ) for all i∈[n−1]. (2.12)

• If (A,∼,{ϕi}i∈[n−1]) is an LMn-algebra and X(A) is the Priestley space associated with A,
then (X(A),gA,{ f A

i }i∈[n−1]) is an LMn-space, where for every S ∈X(A), gA(S) is defined as
Equation (2.5) and

f A
i (S)=ϕ−1

i (S) for all i∈[n−1]. (2.13)
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• (A,∼,{ϕi}i∈[n−1])∼= (D(X(A)),∼,{ϕX(A)
i }i∈[n−1]) and

• (X ,g,{ fi}i∈[n−1])∼= (X (D(X )),gD(X ),{ f D(X )
i }i∈[n−1]), via the natural isomorphisms denoted by

σA and εX respectively, which are defined as in Equations (2.4) and (2.8), respectively.
• The correspondences between the morphisms of both categories are defined in the usual way

as in Equations (2.9) and (2.10).

Then, from these results it was concluded that the category LMnP is dually equivalent to the
category LMnA of LMn-algebras and LMn-homomorphisms. Moreover, this duality was taken into
account to characterize the congruence lattice on an LMn-algebra as is indicated in Theorem 2.18. In
order to obtain this characterization the modal subsets of the LMn-spaces were taken into account,
which we mention below:

DEFINITION 2.17
Let (X ,g,{ fi}i∈[n−1]) be an LMn-space. A subset Y of X is modal if Y = f −1

i (Y ) for all i∈[n−1].
THEOREM 2.18
[[16, Theorem 3.1]] Let (A,∼,{ϕi}i∈[n−1]) be an LMn-algebra and (X(A),gA,{ f A

i }i∈[n−1]) be the LMn-
space associated with A. Then, the lattice CM (X(A)) of all modal and closed subsets of X(A) is
anti-isomorphic to the lattice ConLMn (A) of LMn-congruences on A, and the anti-isomorphism is the
function �M :CM (X(A))−→ConLMn (A) defined by the same prescription in (2.11).

2.3 Tense n-valued Łukasiewicz–Moisil algebras

In [13], Diaconescu and Georgescu introduce the following notion:

DEFINITION 2.19
An algebra 〈A,∨,∧,∼,{ϕi}i∈[n−1],G,H ,0,1〉 is a tense n-valued Łukasiewicz–Moisil algebra (or
tense LMn-algebra) if 〈A,∨,∧,∼,{ϕi}i∈[n−1],0,1〉, is an LMn-algebra and G, H are two unary oper-
ators on A which satisfy the following properties:

(T1) G(1)=1 and H (1)=1,
(T2) G(x∧y)=G(x)∧G(y) and H (x∧y)=H (x)∧H (y),
(T3) Gϕi(x)=ϕiG(x) and Hϕi(x)=ϕiH (x),
(T4) x≤GP(x) and x≤HF(x), where P(x)=∼H (∼x) and F(x)=∼G(∼x),

for any x,y∈X and i∈[n−1].
A tense LMn-algebra 〈A,∨,∧,∼,{ϕi}i∈[n−1],G,H ,0,1〉 will be denoted in the rest of this paper by

(A,G,H ) or by (A,∼,{ϕi}i∈[n−1],G,H ).
The following lemma contains properties of tense LMn-algebras that are useful in what follows.

LEMMA 2.20 ([13, 20])
The following properties hold in every tense LMn-algebra (A,G,H ):

(T5) x≤y implies G(x)≤G(y) and H (x)≤H (y),
(T6) x≤y implies F(x)≤F(y) and P(x)≤P(y),
(T7) F(0)=0 and P(0)=0,
(T8) F(x∨y)=F(x)∨F(y) and P(x∨y)=P(x)∨P(y),
(T9) PG(x)≤x and FH (x)≤x,

(T10) GP(x)∧F(y)≤F(P(x)∧y) and HF(x)∧P(y)≤P(F(x)∧y),
(T11) G(x)∧F(y)≤F(x∧y) and H (x)∧P(y)≤P(x∧y),

Downloaded from https://academic.oup.com/jigpal/advance-article-abstract/doi/10.1093/jigpal/jzx056/4917690
by guest
on 02 March 2018



[14:53 2/2/2018 jzx056.tex] Paper Size: a4 paper Job: JIGPAL Page: 9 1–42

Tense LMn-Algebras and Applications 9

(T12) G(x∨y)≤G(x)∨F(y) and H (x∨y)≤H (x)∨P(y),
for any x,y∈X .

DEFINITION 2.21 ([13])
If (A,G,H ) and (A′,G′,H ′) are two tense LMn-algebras, then a morphism of tense LMn-algebras
f : (A,G,H )−→ (A′,G′,H ′) is a morphism of LMn-algebras such that

(tf) f (G(a))=G′(f (a)) and f (H (a))=H ′(f (a)), for any a∈A.

In [13], the following example was given:

EXAMPLE 2.22
Let (X ,R) be a frame (i.e. X is a non-empty set and R is a binary relation on X ) and G∗, H ∗ :LX

n −→LX
n

be defined as follows:

G∗(p)(x)=
∧

{p(y)|y∈X ,xRy}, H ∗(p)(x)=
∧

{p(y)|y∈X ,yRx},

for all p∈LX
n and x∈X . Then, (LX

n ,G∗,H ∗) is a tense LMn-algebra, where the operations of the
LMn-algebra LX

n are defined pointwise.

Also, Diaconescu and Georgescu proved the following important result in [13]. We will offer an
alternative proof of this result in Section 5.

THEOREM 2.23
For any tense LMn-algebra (A,G,H ), there exists a frame (X ,R) and an injective morphism of tense
LMn-algebras from (A,G,H ) into (LX

n ,G∗,H ∗).

3 Topological duality for tense LMn-algebras

In this section, we will develop a topological duality for tense n-valued Łukasiewicz–Moisil algebras,
taking into account the results established by Figallo et al. in [16] and the results obtained by A.V.
Figallo and G. Pelaitay in [18]. In order to determine this duality, we introduce a topological category
whose objects and their corresponding morphisms are described below.

DEFINITION 3.1
A system (X ,g,{ fi}i∈[n−1],R) is a tense LMn-space if the following conditions are satisfied:

(i) (X ,g,{ fi}i∈[n−1]) is an LMn-space (Definition 2.15),
(ii) R is a binary relation on X and R−1 is the converse of R such that:

(tS1) (x,y)∈R implies (g(x),g(y))∈R,
(tS2) for each x∈X , R(x) and R−1(x) are closed subsets of X ,
(tS3) for each x∈X , R(x)=↓R(x)∩ ↑R(x),
(tS4) (x,y)∈R implies (fi(x),fi(y))∈R for any i∈[n−1],
(tS5) (fi(x),y)∈R, i∈[n−1], implies that there exists z∈X such that (x,z)∈R and

fi(z)≤y,
(tS6) (y,fi(x))∈R, i∈[n−1], implies that there exists z∈X such that (z,x)∈R and

fi(z)≤y,
(tS7) for each U ∈D(X ), GR(U ),HR−1 (U )∈D(X ), where GR and HR−1 are operators

on P(X ) defined as in (2.1) and (2.2), respectively.
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REMARK 3.2

(i) Note that if (X ,g,{ fi}i∈[n−1],R) is a tense LMn-space, then (X ,g,{ fi}i∈[n−1],R,R−1) is a tense
LMn-frame (see [20, Definition 3.3]).

(ii) It should be mentioned that if (X ,g,{ fi}i∈[n−1]) is an LMn-space and R=∅⊂X ×X , then
R−1 =∅ and it immediately follows that the conditions (tS1), (tS2), (tS3), (tS4), (tS5) and
(tS6) hold. Besides, for all U ∈D(X ), GR(U )=X and HR−1 (U )=X , from which we obtain
that the relations R and R−1 satisfies the condition (tS7). Therefore, (X ,g,{ fi}i∈[n−1],R) is a
tense LMn-space.

DEFINITION 3.3
A tense LMn-function f from a tense LMn-space (X1,g1,{f 1

i }i∈[n−1],R1) into another one,
(X2,g2,{f 2

i }i∈[n−1],R2), is a function f :X1 −→X2 such that:

(i) f :X1 −→X2 is an LMn-function (Definition 2.16),
(ii) f :X1 −→X2 satisfies the following conditions, for all x∈X1:

(tf1) f (R1(x))⊆R2(f (x)) and f (R−1
1 (x))⊆R−1

2 (f (x)),
(tf2) R2(f (x))⊆↑ f (R1(x)),
(tf3) R2

−1(f (x))⊆↑ f (R1
−1(x)).

The category that has tense LMn-spaces as objects and tense LMn-functions as morphisms will
be denoted by tLMnS, and tLMnA will denote the category of tense LMn-algebras and tense LMn-
homomorphisms. Our next task will be to determine that the category tLMnS is naturally equivalent
to the dual category of tLMnA.

Now we will show a characterization of tense LMn-functions which will be useful later.

LEMMA 3.4
Let (X1,g1,{f 1

i }i∈[n−1],R1) and (X2,g2,{f 2
i }i∈[n−1],R2) be two tense LMn-spaces and

f :X1 −→X2 be a tense LMn-function. Then, f satisfies the following conditions:

(tf4) ↑ f (R1(x))=↑R2(f (x)),
(tf5) ↑ f (R1

−1(x))=↑R2
−1(f (x)), for any x∈X .

PROOF.
(tf4): From (tf1), we obtain that ↑ f (R1(x))⊆↑R2(f (x)) for any x∈X . On the other hand, from (tf2)
we infer that ↑R2(f (x))⊆↑ f (R1(x)), and therefore the proof is complete.

(tf5): It follows from (tf1) and (tf3).

LEMMA 3.5
Let (X ,g,{ fi}i∈[n−1],R) be a tense LMn-space. Then for all x,y∈X such that (x,y) �∈R, the following
conditions are satisfied:

(i) There is U ∈D(X ) such that y �∈U and x∈GR(U ) or y∈U and x �∈FR(U ), where FR(U ) :=
{x∈X :R(x)∩U �=∅}.

(ii) There is V ∈D(X ) such that y �∈V and x∈HR−1 (V ) or y∈V and x �∈PR−1 (V ), where PR−1 (V ) :=
{x∈X :R−1(x)∩V �=∅}.

PROOF.
(i): Let x,y∈X such that y �∈R(x). Then, from property (tS3) we have that y �∈↑R(x) or y �∈↓R(x).
Suppose that y �∈↑R(x). From property (tS2), R(x) is compact. From this last fact, we infer that
there is U ∈D(X ) such that y �∈U and R(x)⊆U . Therefore, x∈GR(U ). Suppose now that y �∈↓R(x).
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Then, taking into account that R(x) is compact, we infer that there is V ∈D(X ) such that y∈V and
R(x)∩V =∅ and so x �∈FR(V ).

(ii): It can be proved in a similar way.

LEMMA 3.6
Let (X1,g1,{f 1

i }i∈[n−1],R1) and (X2,g2,{f 2
i }i∈[n−1],R2) be two tense LMn-spaces. Then, the following

conditions are equivalent:

(i) f :X1 −→X2 is a tense LMn-function,
(ii) f :X1 −→X2 is an LMn-function such that, for any U ∈D(X2):

(tf6) f −1(GR2 (U ))=GR1 (f
−1(U )),

(tf7) f −1(HR−1
2

(U ))=HR−1
1

(f −1(U )).

PROOF.
(i)⇒ (ii):
(tf6): Let x∈ f −1(GR2 (U )). Hence, R2(f (x))⊆U . Since U is increasing, from (tf2), we have that
↑ f (R1(x))⊆U and so, f (R1(x))⊆U . Taking into account that R1(x)⊆ f −1(f (R1(x))), we obtain that
R1(x)⊆ f −1(U ). Thus, x∈GR1 (f

−1(U )). On the other hand, suppose that x∈GR1 (f
−1(U )). Then,

R1(x)⊆ f −1(U ). Since f (f −1(U ))⊆U and U is increasing, we obtain ↑ f (R1(x))⊆U . From the last
assertion and (tf2), we have that R2(f (x))⊆U . Therefore, x∈ f −1(GR2 (U )).

(tf7): It can be proved in a similar way.

(ii)⇒ (i): First, taking into account that f is an LMn-function which satisfies (tf6) and (tf7) we can
see that the following conditions are verified:

(tf8) f −1(FR2 (U ))=FR1 (f
−1(U )) for any U ∈D(X2),

(tf9) f −1(PR−1
2

(U ))=PR−1
1

(f −1(U )) for any U ∈D(X2).

Indeed, let U ∈D(X2), then it follows that f −1(FR2 (U )) = f −1(∼g2 (GR2 (∼g2 U ))=
∼g1 (f −1(GR2 (∼g2 U ))) = ∼g1 (GR1 (f

−1(∼g2 U ))) = ∼g1 (GR1 (∼g1 (f −1(U ))) =
FR1 (f

−1(U )) and so (tf8) holds. Property (tf9) can be proved in a similar way.

(tf1): Let x,y∈X1 such that (1) (x,y)∈R1. Suppose that (f (x),f (y)) /∈R2. Then, from Lemma 3.5 it
follows that there is U ∈D(X2) such that (2) f (y) �∈U and f (x)∈GR2 (U ) or there is V ∈D(X2) such
that (3) f (y)∈V and f (x) �∈FR2 (V ). If (2) holds, then (4) y /∈ f −1(U ) and x∈ f −1(GR2 (U )). From this
last statement and (tf6) we obtain that x∈GR1 (f

−1(U )), and so from (1) we infer that y∈ f −1(U ),
which contradicts (4). If (3) holds, then (5) y∈ f −1(V ) and x �∈ f −1(FR2 (V )), from which it follows
by (tf8) that x �∈FR1 (f

−1(V )). Therefore, R1(x)∩f −1(V )=∅. From this last assertion and (1) we infer
that y �∈ f −1(V ), which contradicts (5). Thus, we conclude that (f (x),f (y))∈R2.

(tf2): Let (1) y∈R2(f (x)). Suppose that (2) y �∈↑ f (R1(x)). Taking into account that X1 is a compact
space, property (tS2) of LMn-spaces and the fact that f is a continuous function it follows that
f (R1(x)) is compact in X2. Consequently, from the last statement and (2) we infer that there exists
U ∈D(X2) such that (3) f (R1(x))⊆U and y �∈U . Hence, from this assertion and (1), we obtain
that x �∈ f −1(GR2 (U )) and so by (tf4), we get that x �∈GR1 (f

−1(U )). This statement contradicts (3).
Therefore, R2(f (x))⊆↑ f (R1(x)).

(tf3): It can be proved in a similar way.

Next, we will describe some properties of tense LMn-spaces which will be quite useful for deter-
mining the duality for tense LMn-algebras that we are interested in. Here and subsequently, maxY
denotes the set of maximal elements of Y .
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LEMMA 3.7 ([16])
Let (X ,g,{ fi}i∈[n−1],R) be a tense LMn-space. Then, the following conditions are verified:

(tS8) X is the cardinal sum of a family of chains, each of which has at most n−1 elements.
(tS9) If x∈X and Cx denotes the unique maximum chain containing x, then

Cx ={ fi(x) : i∈[n−1]}.
(tS10) y∈maxX if and only if y= fn−1(y).

PROOF. It is a consequence of the fact that every LMn-space satisfies properties (tS8), (tS9) and
(tS10).

LEMMA 3.8
Let (X ,g,{ fi}i∈[n−1],R) be a tense LMn-space. Then, the following conditions are satisfied for any
x,y,∈X and i∈[n−1]:

(tS11) R(g(x))=g(R(x)), (tS12) R(fi(x))⊆ ⋃
y∈R(fi(x))

↑ fi(y),

R−1(g(x))=g(R−1(x)),
(tS13) R−1(fi(x))⊆ ⋃

y∈R−1(fi(x))

↑ fi(y), (tS14) ↑ fi(R1(x))=↑R2(f (x)),

(tS15) ↑ fi(R1
−1(x))=↑R2

−1(f (x)), (tS16) f −1
i (GR(U ))=GR(f −1

i (U )),
(tS17) f −1

i (HR−1 (U ))=HR−1 (f −1
i (U )), (tS18) f −1

i (∼g (U ))=∼g (f −1
n−i(U )),

(tS19) f −1
i (FR(U ))=FR(f −1

i (U )), (tS20) f −1
i (PR−1 (U ))=PR−1 (f −1

i (U )).

PROOF.
(tS11): It is a consequence of (tS1) and the fact that g is involutive.

(tS12): Let x,y∈X such that (fi(x),y)∈R, then from (tS5) there exists z∈X such that
(x,z)∈R and fi(z)≤y. From this last assertion and properties (LP3) and
(LP5) it follows that fi(z)= fi(y) and so fi(y)≤y.

(tS13): It can be proved using a similar technique to that used in the proof of (tS12).

From (tS4), (tS5) and (tS6) it follows that properties (tS14) and (tS15) hold.

(tS16): Taking into account (tS14), the fact that the functions fi, i∈[n−1], are continuous
and the proof of Lemma 3.6, we obtain that (tS16) holds.

(tS17): It can be proved in a similar way taking into account (tS15).

(tS18): f −1
i (∼g U )= f −1

i (X \g−1(U ))= X \f −1
i (g−1(U ))= X \(g◦fi)−1(U )=

X \f −1
n−i(U )=X \(fn−i ◦g)−1(U )=X \g−1(f −1

n−i(U ))=X \g(f −1
n−i(U ))=

∼g f −1
n−i(U ).

(tS19): FR(f −1
i (U )) =∼g (GR(∼g (f −1

i (U )))) =∼g (GR(∼g (f −1
i (U ))))=

∼g GR(f −1
n−i(∼g U ))=∼g (f −1

n−i(GR(∼g U )))= f −1
i (∼g GR(∼g U ))= f −1

i (FR(U )).

(tS20): It can be proved using a similar technique to that used in the proof of property
(tS19).

COROLLARY 3.9
Let (X ,g,{ fi}i∈[n−1]) be a tense LMn-space. Then, the conditions (tS4), (tS5) and (tS6) can be replaced
by the following conditions:

(tS16) f −1
i (GR(U ))=GR(f −1

i (U )) for any U ∈D(X ),
(tS17) f −1

i (HR−1 (U ))=HR−1 (f −1
i (U )) for any U ∈D(X ).
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PROOF.
(⇒): It follows from Lemma 3.8.

(⇐): It can be proved using a similar technique to that used in the proof of Lemma 3.6.

Next, we will define a contravariant functor from tLMnS to tLMnA.

LEMMA 3.10
Let (X ,g,{ fi}i∈[n−1],R) be a tense LMn-space. Then,

�(X )=〈D(X ),∼g,{ϕX
i }i∈[n−1],GR,HR−1 ,∅,X 〉

is a tense LMn-algebra, where for all U ∈D(X ), ∼g U , ϕX
i (U ), i∈[n−1], GR(U ) and HR−1 (U ) are

defined as in Equations (2.3), (2.12), (2.1) and (2.2), respectively.

PROOF. From [16, Lemma 2.1] and [18, Lemma 4.3] it follows that 〈D(X ),∼g,{ϕX
i }i∈[n−1], ∅,X 〉 is an

LMn-algebra and 〈D(X ),∼g,GR,HR−1 ,∅,X 〉 is a tense De Morgan algebra, respectively. Therefore,
the properties (T1), (T2) and (T4) of tense LMn-algebras (Definition 2.19) hold. In addition, since
any U ∈D(X ) satisfies properties (tS16) and (tS17) in Lemma 3.8, then we can assert that property
(T3) holds too, and so the proof is complete.

LEMMA 3.11
Let f : (X1,g1,{f 1

i }i∈[n−1])−→ (X2,g2,{f 2
i }i∈[n−1]) be a morphism of tense LMn-spaces. Then, the map

�(f ) :D(X2)−→D(X1) defined by �(f )(U )= f −1(U ) for all U ∈D(X2), is a tense LMn-homomorphism.

PROOF. It follows from the results established in [16, Lemma 2.3] and Lemma 3.6.

The previous two lemmas show that � is a contravariant functor from tLMnS to tLMnA. To
achieve our goal we need to define a contravariant functor from tLMnA to tLMnS.

LEMMA 3.12
([20, Lemma 3.8]) Let (A,G,H ) be a tense LMn-algebra and let S,T ∈X(A). Then the following
conditions are equivalent:

(i) G−1(S)⊆T ⊆F−1(S),
(ii) H−1(T )⊆S ⊆P−1(T ).

DEFINITION 3.13
Let (A,G,H ) be a tense LMn-algebra and let RA be the relation defined on X(A) by the prescription:

(S,T )∈RA ⇐⇒G−1(S)⊆T ⊆F−1(S). (3.1)

REMARK 3.14
Lemma 3.12 means that we have two ways to define the relation RA, either by using G and F , or by
using H and P.

The following lemma, whose proof can be found in [20, Lemma 3.11], will be essential for the
proof of Lemma 3.16.

LEMMA 3.15
Let (A,G,H ) be a tense LMn-algebra and let S ∈X(A) and a∈A. Then,

(i) G(a) /∈S if and only if there exists T ∈X(A) such that (S,T )∈RA and a /∈T ,
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(ii) H (a) /∈S if and only if there exists T ∈X(A) such that (S,T )∈RA−1
and a /∈T .

LEMMA 3.16
Let (A,G,H ) be an LMn-algebra and X(A) be the Priestley space associated with A. Then, �(A)=
(X(A),gA,{ f A

i }i∈[n−1],RA) is a tense LMn-space, where for every S ∈X(A), gA(S) and f A
i (S) are defined

as in (2.5) and (2.13), respectively and RA is the relation defined on X(A) as in (3.1). Besides,
σA :A−→D(X(A)), defined by the prescription (2.4), is a tense LMn-isomorphism.

PROOF. From [16, Lemma 2.2] and [18, Lemma 5.6] it follows that (X(A),gA,{ f A
i }i∈[n−1]) is an LMn-

space and (X(A),gA,RA,RA−1
) is a tense mP-space, and so properties (tS1), (tS2), (tS3) and (tS7)

of tense LMn-spaces hold (Definition 3.1). Also, from Corollary 3.9 we have that the conditions
(tS4), (tS5) and (tS6) are satisfied. Therefore, we have that (X(A),gA,{ f A

i }i∈[n−1],RA) is a tense
LMn-space. In addition, from [16, Lemma 2.2], we have that σA is an LMn-isomorphism. Also for
all a∈A, GRA (σA(a))=σA(G(a)) and HRA−1 (σA(a))=σA(H (a)). Indeed, let us take a prime filter S
such that G(a) /∈S. By Lemma 3.15, there exists T ∈X(A) such that (S,T )∈RA and a /∈T . Then,
RA(S) �⊆σA(a). So, S /∈GRA (σA(a)) and, therefore, GRA (σ (a))⊆σA(G(a)). Moreover, it is immediate
that σA(G(a))⊆GRA (σA(a)). Similarly we obtain that HRA−1 (σA(a))=σA(H (a)) and so σA is a tense
LMn-isomorphism.

LEMMA 3.17
Let (A1,G1,H1) and (A2,G2,H2) be two LMn-algebras and h :A1 −→A2 be a tense LMn-homomorphism.
Then, the map �(h) :X(A2)−→X(A1), defined by �(h)(S)=h−1(S) for all S ∈X(A2), is a tense LMn-
function.

PROOF. It follows from the results established in [16, Lemma 2.4] and [18, Lemma 5.7].

Lemmas 3.16 and 3.17 show that � is a contravariant functor from tLMnA to tLMnS.

The following characterization of isomorphisms in the category tLMnS will be used to determine
the duality that we set out to prove.

PROPOSITION 3.18
Let (X1,g1,{f 1

i }i∈[n−1],R1) and (X2,g2,{f 2
i }i∈[n−1],R2) be two tense LMn-spaces. Then, the following

conditions are equivalent, for every function f :X1 −→X2:

(i) f is an isomorphism in the category tLMnS,
(ii) f is a bijective LMn-function such that for all x,y∈X1:

(itf) (x,y)∈R1 ⇐⇒ (f (x),f (y))∈R2.

PROOF. It is routine.

The map εX :X −→X(D(X )), defined as in Equation (2.8), leads to another characterization of
tense LMn-spaces, which also allow us to assert that this map is an isomorphism in the category
tLMnS, as we will describe below:

LEMMA 3.19
Let (X ,≤,g,{ fi}i∈[n−1],R) be a tense LMn-space, εX :X −→X(D(X )) be the map defined by the
prescription (2.8) and let RD(X ) be the relation defined on X(D(X )) by means of the operators GR

and FR as follows:

(εX (x),εX (y))∈RD(X ) ⇐⇒G−1
R (εX (x))⊆εX (y)⊆F−1

R (εX (x)). (3.2)
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Then, the following property holds:

(tS5) (x,y)∈R implies (εX (x),εX (y))∈RD(X ).

PROOF. It is routine.

PROPOSITION 3.20
Let (X ,≤,g,{ fi}i∈[n−1],R) be a tense LMn-space, εX :X −→X(D(X )) be the function defined by the
prescription (2.8) and let RD(X ) be the relation defined on X(D(X )) by the prescription (3.2). Then,
the condition (tS3) can be replaced by the following one:

(tS18) (εX (x),εX (y))∈RD(X ) ⇐⇒ (x,y)∈R.

PROOF. It can be proved in a similar way to [18, Proposition 5.5].

COROLLARY 3.21
Let (X ,≤,g,{ fi}i∈[n−1],R) be a tense LMn-space. Then, the map εX :X −→X(D(X )) is an isomor-
phism in the category tLMnS.

PROOF. It follows from the results established in [16, Lemma 3.19, Propositions 3.18 and 3.20].

Then, from the above results and using the usual procedures we can prove that the functors �◦�

and � ◦� are naturally equivalent to the identity functors on tLMnS and tLMnA, respectively, from
which we conclude:

THEOREM 3.22
The category tLMnS is naturally equivalent to the dual of the category tLMnA.

4 Simple and subdirectly irreducible tense LMn-algebras

In this section, our first objective is the characterization of the congruence lattice on a tense LMn-
algebra by means of certain closed and modal subsets of its associated tense LMn-space. Later,
this result will be taken into account to characterize simple and subdirectly irreducible tense LMn-
algebras. With this purpose, we will start by introducing the following notion.

DEFINITION 4.1
Let (X ,g,{ fi}i∈[n−1],R) be a tense LMn-space. A subset Y of X is a tense subset if it satisfies the
following conditions for all y,z∈X :

(ts1) if y∈Y and z∈R(y), then there is w∈Y such that w∈R(y)∩↓z,
(ts2) if y∈Y and z∈R−1(y), then there is v∈Y such that v∈R−1(y)∩↓z.

In [16], the following characterizations of a modal subset of an LMn-space were obtained.

PROPOSITION 4.2
[[16, Proposition 3.5]] Let (X ,g,{ fi}i∈[n−1]) be an LMn-space and Y be a non-empty subset of X .
Then, the following conditions are equivalent:

(i) Y is modal,
(ii) Y is involutive and increasing,
(iii) Y is a cardinal sum of maximal chains in X .

COROLLARY 4.3
Let (X ,g,{ fi}i∈[n−1]) be an LMn-space. If {Yi}i∈I is a family of modal subsets of X , then

⋂
i∈I

Yi is a

modal subset of X .
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PROOF. It is a direct consequence of Proposition 4.2.

The notion of a modal and tense subset of a tense LMn-space has several equivalent formulations,
which will be useful later:

PROPOSITION 4.4
Let (X ,g,{ fi}i∈[n−1],R) be a tense LMn-space. If Y is a modal subset of X , then the following
conditions are equivalent:

(i) Y is a tense subset,
(ii) for all y∈Y , the following conditions are satisfied:

(ts3) R(y)⊆Y ,
(ts4) R−1(y)⊆Y ,

(iii) Y =GR(Y )∩Y ∩HR−1 (Y ), where GR(Y ) :={x∈X :R(x)⊆Y } and
HR−1 (Y ) :={x∈X :R−1(x)⊆Y }.

PROOF.
(i) ⇒ (ii): Let y∈Y and z∈R(y), then by (i) and (ts1), there is w∈Y such that w∈R(y) and w≤z.
Since Y is modal, from Proposition 4.2 it follows that z∈Y and therefore R(y)⊆Y . The proof that
R−1(y)⊆Y is similar.

(ii) ⇒ (i): It is immediate.

(ii) ⇔ (iii): It is immediate.

The closed, modal and tense subsets of the tense LMn-space associated with a tense LMn-algebra
perform a fundamental role in the characterization of the tense LMn-congruences on these algebras
as we will show next.

THEOREM 4.5
Let (A,G,H ) be a tense LMn-algebra, and (X(A),gA,{f A

i }i∈[n−1],RA) be the tense LMn-space associated
with A. Then, the lattice CMT (X(A)) of all closed, modal and tense subsets of X(A) is anti-isomorphic
to the lattice ContLMn(A) of tense LMn-congruences on A, and the anti-isomorphism is the function
�MT defined by the same prescription as in Equation (2.11).

PROOF. It immediately follows from Theorems 2.5 and 2.18 and the fact that CMT (X(A))=CM (X(A))∩
CT (X(A)) and for all ϕ ⊆A×A, ϕ∈ContLMn(A) iff ϕ is both an LMn-congruence on A and a tense
De Morgan congruence on A.

Next, we will use the results already obtained in order to determine the simple and subdirectly
irreducible tense LMn-algebras.

COROLLARY 4.6
Let (A,G,H ) be a tense LMn-algebra, and (X(A),gA,{f A

i }i∈[n−1],RA) be the tense LMn-space associated
with A. Then, the following conditions are equivalent:

(i) (A,G,H ) is a simple tense LMn-algebra,
(ii) CMT (X(A))={∅,X(A)}.

PROOF. It is a direct consequence of Theorem 4.5.
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COROLLARY 4.7
Let (A,G,H ) be a tense LMn-algebra, and (X(A),{f A

i }i∈[n−1],RA) be the tense LMn-space associated
with A. Then, the following conditions are equivalent:

(i) (A,G,H ) is a subdirectly irreducible tense LMn-algebra,
(ii) there is Y ∈CMT (X(A))\{X(A)} such that Z ⊆Y for all Z ∈CMT (X(A))\{X(A)}.

PROOF. It is a direct consequence of Theorem 4.5.

PROPOSITION 4.8
Let (X ,g,{ fi}i∈[n−1],R) be a tense LMn-space. If Y is a modal subset of X , then GR(Y ) and HR−1 (Y )
are also modal.

PROOF. Let Y be a modal subset of X and z∈GR(Y ). Therefore, (1) R(z)⊆Y . Let (2) w∈Cz, where Cz

is the unique maximal chain containing z, and so from property (tS9), Cz ={ fi(z) : i∈[n−1]}. Then,
there are n0,n1 ∈[n−1] such that (3) z= fn0 (z) and (4) w= fn1 (z). Let (5) t ∈R(w), then by (4) we have
that (fn1 (z),t)∈R and therefore, from (tS4) we infer that (fn0 (fn1 (z)),fn0 (t))∈R. From this last fact,
property (LP5) and (3) it follows that (z,fn0 (t))∈R. Consequently by (1), we get that fn0 (t)∈Y . Since
Y is modal, from Proposition 4.2 and (tS9), we obtain that Ct ={ fi(t) : i∈[n−1]}⊆Y , and so from
(LP9), we conclude that t ∈Y , which allows us to assert from (5) that R(w)⊆Y and thus w∈GR(Y ).
Finally, we can say from (2) that Cz ⊆GR(Y ) for all z∈GR(Y ), and hence from Proposition 4.2, we
conclude that GR(Y ) is modal. The proof that HR−1 (Y ) is modal is similar.

The characterization of modal and tense subsets of a tense LMn-space, given in Proposition 4.4,
prompts us to introduce the following definition:

DEFINITION 4.9
Let (X ,g,{ fi}i∈[n−1],R) be a tense LMn-space and let dX :P(X )−→P(X ) defined by:

dX (Z)=GR(Z)∩Z ∩HR−1 (Z), for allZ ∈P(X ). (4.1)

For each n∈ω, let dn
X :P(X )−→P(X ), defined by:

d0
X (Z)=Z, dn+1

X (Z)=dX (dn
X (Z)), for allZ ∈P(X ). (4.2)

By using the above functions dX , dn
X , n∈ω, we obtain another equivalent formulation of the notion

of modal and tense subset of a tense LMn-space.

LEMMA 4.10
Let (X ,g,{ fi}i∈[n−1],R) be a tense LMn-space. If Y is modal subset of X , then the following conditions
are equivalent:

(i) Y is a tense subset,
(ii) Y =dn

X (Y ) for all n∈ω,
(iii) Y = ⋂

n∈ω

dn
X (Y ).

PROOF. It is an immediate consequence of Proposition 4.4 and Definition 4.9.

PROPOSITION 4.11
Let (X ,g,{ fi}i∈[n−1],R) be a tense LMn-space and (D(X ),GR,HR−1 ) be the tense LMn-algebra associ-
ated with X . Then, for all n∈ω, for all U ,V ∈D(X ) and for all i∈[n−1], the following conditions
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are satisfied:

(d0) dn
X (U )∈D(X ),

(d1) dn
X (X )=X and dn

X (∅)=∅,
(d2) dn+1

X (U )⊆dn
X (U ),

(d3) dn
X (U ∩V )=dn

X (U )∩dn
X (V ),

(d4) U ⊆V implies dn
X (U )⊆dn

X (V ),
(d5) dn

X (U )⊆U ,
(d6) dn+1

X (U )⊆GR(dn
X (U )) and dn+1

X (U )⊆HR−1 (dn
X (U )),

(d7) dn
X (f −1

i (U ))= f −1
i (dn

X (U )) for any n∈ω and i∈[n−1],
(d8) if U is modal, then dn

X (U ) is modal,
(d9)

⋂
n∈ω

dn
X (f −1

i (U )) is a closed, modal and tense subset of X and therefore

dX (
⋂
n∈ω

dn
X (f −1

i (U )))= ⋂
n∈ω

dn
X (f −1

i (U )).

PROOF. From Definition 4.9, Lemma 3.16 and the fact that GR, HR−1 and dn
X , n∈ω, are monotonic

operations it immediately follows that properties (d0), (d1), (d2), (d3), (d4), (d5) and (d6) hold.

(d7): Let U ∈D(X ) and i∈[n−1], then dX (f −1
i (U ))= f −1

i (U )∩GR(f −1
i (U ))∩HR−1 (f −1

i (U )).
From the last assertion and properties (tS17) and (tS18) in Lemma 3.8, we infer that (1)
dX (f −1

i (U )) = f −1
i (U ∩GR(U )∩HR−1 (U ))= f −1

i (dX (U )) for any U ∈D(X ) and i∈[n−1]
Suppose that dn−1

X (f −1
i (U ))= f −1

i (dn−1
X (U )), for any n∈ω and i∈[n−1], then (2) dn

X (f −1
i (U ))=dX

(dn−1
X (f −1

i (U )))=dX (f −1
i (dn−1

X (U ))). Taking into account that dn−1
X (U )∈D(X ) and (1), we get that

dX (f −1
i (dn−1

X (U )))= f −1
i (dX (dn−1

X (U )))= f −1
i (dn

X (U )), and so from (2) the proof is complete.

(d8): It is a direct consequence of Corollary 4.3 and Proposition 4.8.

(d9): Let U ∈D(X ). Then, from Lemma 3.16 and the prescription (2.12), we have that f −1
i (U )∈D(X ).

Also, from (LP5), f −1
i (U ) is a modal subset of X for all i∈[n−1], from which it follows by (d7) that

for n∈ω and i∈[n−1], dn
X (f −1

i (U )) is a modal and closed subset of X , and so by Corollary 4.3 and
the fact that the arbitrary intersection of closed subsets of X is closed, we get that

⋂
n∈ω

dn
X (f −1

i (U )) is a

modal and closed subset of X . If
⋂
n∈ω

dn
X (f −1

i (U ))=∅, then it is verified that
⋂
n∈ω

dn
X (f −1

i (U )) is a closed,

modal and tense subset of X . Suppose now that there exists y∈ ⋂
n∈ω

dn
X (f −1

i (U )). Since, f −1
i (U )∈D(X )

for any i∈[n−1], then from (d6) it follows that y∈GR(dn−1
X (f −1

i (U ))) and y∈HR−1 (dn−1
X (f −1

i (U ))) for
all n∈ω. Therefore, R(y)⊆dn−1

X (f −1
i (U )) and R−1(y)⊆dn−1

X (f −1
i (U )) for all n∈ω and consequently

R(y)⊆ ⋂
n∈ω

dn
X (f −1

i (U )) and R−1(y)⊆ ⋂
n∈ω

dn
X (f −1

i (U )) for all i∈[n−1]. From these last assertions, the

fact that
⋂
n∈ω

dn
X (f −1

i (U )) is a modal and closed subset of X and Proposition 4.11, we have that⋂
n∈ω

dn
X (f −1

i (U )) is a tense subset, from which we conclude, by Lemma 4.10, that dX (
⋂
n∈ω

dn
X (f −1

i (U )))=
⋂
n∈ω

dn
X (f −1

i (U )).

As consequences of Proposition 4.11 and the above duality for tense LMn-algebras (Lemma 3.16)
we obtain the following corollaries.

COROLLARY 4.12
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a tense LMn-algebra and consider the function d :A−→A, defined by
d(a)=G(a)∧a∧H (a), for all a∈A. For all n∈ω, let dn :A−→A be a function, defined by d0(a)=a
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and dn+1(a)=d(dn(a)), for all a∈A. Then, for all n∈ω and a,b∈A, the following conditions are
satisfied:

(d1) dn(1)=1 and dn(0)=0,
(d2) dn+1(a)≤dn(a),
(d3) dn(a∧b)=dn(a)∧dn(b),
(d4) a≤b implies dn(a)≤dn(b),
(d5) dn(a)≤a,
(d6) dn+1(a)≤G(dn(a)) and dn+1(a)≤H (dn(a)),
(d7) for all i∈[n−1] and n∈ω, dn(ϕi(a))=ϕi(dn(a)).

COROLLARY 4.13
Let (A,G,H ) be a tense LMn-algebra, (X(A),gA,{ f A

i }i∈[n−1],RA) be the tense LMn-space associated
with A and let σA :A−→D(X(A)) be the map defined by the prescription (2.4). Then, σA(dn(a))=
dn

X(A)(σA(a)) for all a∈A and n∈ω.

PROOF. It is a direct consequence of Lemma 3.16.

It seems worth mentioning that the operator d defined in Corollary 4.12 was previously defined in
[21] for tense algebras, in [13] for tense MV -algebras, and in [8, 9] for tense θ -valued Łukasiewicz–
Moisil algebras, respectively.

LEMMA 4.14
Let (A,G,H ) be a tense LMn-algebra. If

∧
i∈I

ai exists, then the following conditions hold:

(i)
∧
i∈I

G(ai) exists and
∧
i∈I

G(ai)=G(
∧
i∈I

ai),

(ii)
∧
i∈I

H (ai) exists and
∧
i∈I

H (ai)=H (
∧
i∈I

ai),

(iii)
∧
i∈I

d(ai) exists and
∧
i∈I

dn(ai)=dn(
∧
i∈I

ai) for all n∈ω.

PROOF. (i): Assume that ai ∈A for all i∈ I and
∧
i∈I

ai exists. Since
∧
i∈I

ai ≤ai, we have by (T2) that

G(
∧
i∈I

ai)≤G(ai) for each i∈ I . Thus, G(
∧
i∈I

ai) is a lower bound of the set {G(ai) : i∈ I }. Assume now

that b is a lower bound of the set {G(ai) : i∈ I }. From (T5) and (T6) we have that P(b)≤PG(ai)≤ai

for each i∈ I . So, P(b)≤∧
i∈I

ai. Besides, the pair (G,P) is a Galois connection, this means that

x≤G(y)⇐⇒P(x)≤y, for all x,y∈A. So, we can infer that b≤G(
∧
i∈I

ai). This proves that
∧
i∈I

G(ai)

exists and
∧
i∈I

G(ai)=G(
∧
i∈I

ai).

(ii): The proof for the operator H is analogous to the proof for G.

(iii): It is a direct consequence of (i) and (ii).

For invariance properties we have:

LEMMA 4.15
Let (X ,g,{ fi}i∈[n−1],R) be a tense LMn-space and (D(X ),GR,HR−1 ) be the tense LMn-algebra associ-
ated with X . Then, for all U ,V ,W ∈D(X ) such that U =dX (U ), V =dX (V ) and for some i0 ∈[n−1],
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dX (f −1
i0 (W ))= f −1

i0 (W ), the following properties are satisfied:

(i) U ∩V =dX (U ∩V ),
(ii) U ∪V =dX (U ∪V ),
(iii) ∼g U =dX (∼g U ),
(iv) dX (f −1

i (W ))= f −1
i (W ) for all i∈[n−1].

PROOF.
(i): It immediately follows from the definition of the function dX and property (T2) of tense LMn-
algebras.

(ii): Taking into account that U =dX (U ) and V =dX (V ) and the fact that the operations GR and
HR−1 are increasing, we infer that U ∪V ⊆GR(U ∪V ) and U ∪V ⊆HR−1 (U ∪V ), which imply that
U ∪V =dX (U ∪V ),

(iii): Let U ∈D(X ) such that (1) U =dX (U ). Then, it is verified that ∼g U ⊆GR(∼g U ). Indeed, let
x∈∼g U and (2) y∈R(x). Then, x∈X \g(U ) and hence (3) x �∈g(U ). Suppose that y∈g(U ), then there
is z∈U such that y=g(z), and by (tS11) in Lemma 3.8, we get that R−1(y)=R−1(g(z))=g(R−1(z)).
Since z∈U , from (1) it follows that R−1(z)⊆U and so g(R−1(z)))⊆g(U ). Thus, R−1(y)⊆g(U ). From
the last statement and (2), we infer that x∈g(U ), which contradicts (3). Consequently, y∈∼g U ,
which allows us to assert that R(x)⊆∼g U and therefore ∼g U ⊆GR(∼U ). In a similar way, we can
prove that ∼g U ⊆HR−1 (∼g U ). From the two last assertions we conclude that ∼g U =dX (∼g U ).

(iv): If W ∈D(X ) and dX (f −1
i0 (W ))= f −1

i0 (W ) for some i0 ∈[n−1], then from (d7) it follows that
f −1
i0 (dX (W ))= f −1

i0 (W ). From the last assertion and (LP5) we infer that f −1
i (dX (W ))= f −1

i (W ) for all
i∈[n−1], and so from (d7), we get that dX (f −1

i (W ))= f −1
i (W ) for all i∈[n−1].

COROLLARY 4.16
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a tense LMn-algebra. Then, for all a,b,c∈A, such that a=d(a), b=
d(b) and ϕi0 (c)=d (ϕi0 (c)) for some i0 ∈[n−1], the following properties are satisfied:

(i) d(a∧b)=a∧b,
(ii) d(a∨b)=a∨b,
(iii) d(∼a)=∼a,
(iv) ϕi(c)=d (ϕi(c)) for all all i∈[n−1].

PROOF. It is a direct consequence of Lemmas 3.16 and 4.15.

LEMMA 4.17
Let (A,G,H ) be a tense LMn-algebra. Then, for all a∈A, the following conditions are equivalent:

(i) a=d(a),
(ii) a=dn(a) for all n∈ω.

PROOF. It immediately follows from Corollary 4.12.

LEMMA 4.18
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a tense LMn-algebra and C(A) :={a∈A : d(a)=a}. Then, 〈C(A),∨,∧,∼
,{ϕi}i∈[n−1],0,1〉 is an LMn-algebra.

PROOF. From Corollary 4.16 and property (d1) in Corollary 4.12, we have that
〈C(A),∨,∧,∼,0,1〉 is a De Morgan algebra. Taking into account that a=d(a) for all a∈C(A),
and the property (iv) in Corollary 4.16 it follows that ϕi(a)=ϕi(d(a))=d(ϕi(a)) for all a∈C(A)
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and i∈[n−1]. Therefore, ϕi(a)∈C(A) for all a∈C(A) and i∈[n−1], from which we conclude that
〈C(A),∨,∧,∼,{ϕi}i∈[n−1],0,1〉 is an LMn-algebra.

COROLLARY 4.19
Let (A,G,H ) be a tense LMn-algebra. Then, (B(C(A)),G,H ) is a tense Boolean algebra, where
B(C(A)) is the Boolean algebra of all complemented elements of C(A).

PROOF. It is a direct consequence of Lemmas 2.9 and 4.18 and property (iv) in Corollary 4.16.

REMARK 4.20
Let us recall that under the Priestley duality, the lattice of all filters of a bounded distributive lattice
is dually isomorphic to the lattice of all increasing closed subsets of the dual space. Under that
isomorphism, any filter T of a bounded distributive lattice A corresponds to the increasing closed set

YT ={S ∈X(A) :T ⊆S}=
⋂

{σA(a) :a∈T } (4.3)

and �C(YT )=�(T ), where �C is defined as in (2.11) and �(T ) is the lattice congruence associated
with T .

Conversely any increasing closed subset Y of X(A) corresponds to the filter

TY ={a∈A :Y ⊆σA(a)}, (4.4)

and �(TY )=�C(Y ), where �C is defined as in (2.11), and �(TY ) is the lattice congruence associated
with TY .

Taking into account these last remarks on Priestley duality, Theorem 4.5 and Proposition 4.2,
we can say that the congruences on a tense LMn-algebra are the lattice congruences associated with
certain filters of this algebra. So our next goal is to determine the conditions that a filter of a tense
LMn-algebra must fulfil for the associated lattice congruence to be a tense LMn-congruence.

THEOREM 4.21
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a tense LMn-algebra. If S is a filter of A, then, the following conditions
are equivalent:

(i) �(S)∈ContLMn(A),
(ii) d(ϕi(a))∈S for any a∈S and i∈[n−1],
(iii) dn(ϕi(a))∈S for any a∈S, n∈ω and i∈[n−1].

PROOF.
(i) ⇒ (ii): Let S be a filter of A such that �(S)∈ContLMn(A). Then, from Priestley duality and
Theorem 4.5 it follows that �(S)=�MT (YS), where �(S) is the lattice congruence associated with
S, and YS ={x∈X(A) : S ⊆x}= ⋂

a∈S
σA(a) is a closed, modal and tense subset of the tense LMn-space

X(A), associated with A. Since YS is modal and σA is an LMn-isomorphism, then YS = f A−1

i (YS)=
f A−1

i

(⋂
a∈S

σA(a)
)
= ⋂

a∈S
σA (ϕi(a)) for any i∈[n−1]. From the last assertion, and taking into account

that Y is a tense subset, Lemmas 4.10 and 4.12, Corollary 4.13 and the fact that the function

dX(A) :X(A)−→X(A) is monotone, we infer that YS =dX(A)

(⋂
a∈S

σA(ϕi(a))
)

⊆ ⋂
a∈S

dX(A) (σA(ϕi(a))) =⋂
a∈S

σA(d(ϕi(a)))⊆ ⋂
a∈S

σA(ϕi(a))=YS, for any i∈[n−1]. Hence YS = ⋂
a∈S

σA (d (ϕi(a))) for any i∈[n−1],
from which we conclude that d(ϕi(a))∈S for any a∈S and i∈[n−1]. Indeed, assume that a∈S,
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then a∈x for all x∈YS , from which it follows that x∈ ⋂
a∈S

σA (d (ϕi(a))) for any i∈[n−1], and thus

d(ϕi(a))∈x for all x∈YS and i∈[n−1]. Therefore, d(ϕi(a))∈ ⋂
x∈YS

x for any i∈[n−1], and taking into

account that S = ⋂
x∈YS

x, we obtain that d(ϕi(a))∈S for any i∈[n−1].

(ii) ⇒ (i): From Priestley duality and Equation (4.3), we have that
⋂
a∈S

σA(a)=YS ={x∈X(A) : S ⊆x}
is an increasing and closed subset of X(A) and �(S)=�(YS). By Theorem 4.5, it remains to
show that YS is a modal and tense subset of X(A). From the hypothesis (ii), it follows that for
all a∈S, i∈[n−1] and x∈YS , d(ϕi(a))∈x. Therefore, from this last fact and Corollary 4.16, it
results that ϕi(d(a))∈x for all i∈[n−1] and all x∈YS , and hence (1) YS ⊆ ⋂

a∈S
σA(ϕi(d(a))) for all

i∈[n−1]. Consequently, by Corollary 4.12, YS ⊆ ⋂
a∈S

σA(ϕi(a)) for all i∈[n−1], and from this asser-

tion it follows that YS ⊆ ⋂
a∈S

σA (ϕ1(a)) ⊆ ⋂
a∈S

σA(a)=Ys. Since σA is an LMn-isomorphism, then we

get that ·(2) Ys = ⋂
a∈S

σA (ϕ1(a))= ⋂
a∈S

f A−1

1 (σA(a))= f A−1

1

(⋂
a∈S

σA(a)
)
= f A−1

1 (YS). Therefore from the last

statement and (LP5) we conclude that YS = f A
i (YS) for all i∈[n−1] and so YS is modal. In addi-

tion, from (1), (2) and Corollary 4.12 we infer that YS ⊆ ⋂
a∈S

σA (d (ϕ1(a))) ⊆ ⋂
a∈S

σA (ϕ1(a))=Ys and

hence, YS = ⋂
a∈S

σA (d (ϕ1(a))). Then, taking into account Corollary 4.13 and that
⋂
a∈S

dX(A) (σA (ϕ1(a)))=
dX(A)

(⋂
a∈S

σA(ϕ1(a))
)
, we obtain that YS =dX(A)(YS), and thus, from Lemma 4.10 and the fact that YS

is modal, we infer that YS is a tense subset of X(A). Finally, since YS is a closed, modal and tense
subset of X(A) and �(S)=�MT (YS), we conclude, from Theorem 4.5, that �(S)∈ContLMn(A).

(ii) ⇔ (iii): It is trivial.

Theorem 4.21 leads us to introduce the following definition:

DEFINITION 4.22
Let (A,G,H ) be a tense LMn-algebra. A filter S of A is a tense filter iff

(tf) d(a)∈S for all a∈S or equivalently dn(a)∈S for all a∈S and n∈ω.

Now, we remember the notion of Stone filter of an LMn-algebra.

DEFINITION 4.23
Let (A,∼,{ϕi}i∈[n−1]) be an LMn-algebra. A filter S of A is a Stone filter iff

(sf) ϕi(a)∈S for all a∈S and i∈[n−1], or equivalently ϕ1(a)∈S for all a∈S.

LEMMA 4.24
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a tense LMn-algebra. If S is a Stone filter of A, then the following
conditions are equivalent:

(i) S is a tense filter of A,
(ii) dn(ϕi(a))∈S for all a∈S, n∈ω and i∈[n−1].

PROOF.
(i) ⇒ (ii): Let S be a Stone filter of A, a∈S, n∈ω and i∈[n−1]. Since S is an Stone filter of A,
we have that ϕi(a)∈S. From this last assertion and the fact that S is a tense filter we conclude that
dn(ϕi(a))∈S.
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(ii) ⇒ (i): Let a∈S. Then, from the hypothesis (ii) we obtain that dn(ϕ1(a))∈S. From the last
assertion, properties (L9) and (d5) and the fact that S is a filter of A we infer that dn(a)∈S for all
n∈ω, and therefore S is a tense filter of A.

We will denote by FTS(A) the set of all tense Stone filters of a tense LMn-algebra (A,G,H ).

PROPOSITION 4.25
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a tense LMn-algebra. Then, the following conditions are equivalent
for all θ ⊆A×A:

(i) θ ∈ContLMn(A),
(ii) there is S ∈FTS(A) such that θ =�(S), where �(S) is the lattice congruence associated with

the filter S.

PROOF.
(i) ⇒ (ii): From (i) and Theorem 4.5, it follows that there exists Y ∈CMT (X(A)) such that (1)
�MT (Y )=θ . Then, from Remark 4.20, we infer that TY ={a∈A :Y ⊆σA(a)} is a filter on A and (2)
�(TY )=�(Y )=�MT (Y ). Therefore �(TY )∈ContLMn(A), and so from Theorem 4.21, we obtain that
Y ∈FTS(A). This last assertion, (1) and (2) enable us to conclude the proof.

(ii) ⇒ (i): It immediatly follows from Theorem 4.21.

COROLLARY 4.26
Let (A,G,H ) be a tense LMn-algebra. Then,

(i) (A,G,H ) is a simple tense LMn-algebra if and only if FTS(A)={A,{1}}.
(ii) (A,G,H ) is a subdirectly irreducible tense LMn-algebra if and only if

there is T ∈FTS(A), T �={1} such that T ⊆S· for all S ∈FTS(A), S �={1}.
PROOF. It is a direct consequence of Corollaries 4.6 and 4.7, Remark 4.20 and Proposition 4.25.

Finally, we will describe the simple and subdirectly irreducible tense LMn-algebras.

In the proof of the following proposition we will use the finite intersection property of compact
spaces, which establishes that if X is a compact topological space, then for each family {Mi}i∈I of

closed subsets of X satisfying
⋂
i∈I

Mi =∅, there is a finite subfamily {Mi1 ,...,Min} such that
n⋂

j=1
Mij =∅.

PROPOSITION 4.27
Let (A,G,H ) be a tense LMn-algebra and (X(A),gA,{ f A

i }i∈[n−1],RA) be the tense LMn-space associated
with A. Then, the following conditions are equivalent:

(i) (A,G,H ) is a simple tense LMn-algebra,
(ii) for every U ∈D(X(A))\{X(A)} and for every i∈[n−1] such that f A−1

i (U ) �=X(A),⋂
n∈ω

dn
X(A)(f

A
i

−1
(U ))=∅,

(iii) for every U ∈D(X(A))\{X(A)} and for every i∈[n−1] such that f A−1

i (U ) �=X(A),

d
nU

i
X(A)(f

A−1

i (U ))=∅ for some nU
i ∈ω,

(iv) for every U ∈B(D(X(A)))\{X(A)}, there is nU ∈ω such that dnU
X(A)(U )=∅,

(v) FTS(D(X(A)))={D(X(A)),{X(A)}}.
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PROOF.
(i) ⇒ (ii): Let U ∈D(X(A))\{X(A)}. Then, from Lemma 3.15 and property (LP10) of LMn-spaces,
we infer that there is at least i0 ∈[n−1] such that f A

i0

−1
(U ) �=X(A). Now, let i∈[n−1] such that

f A−1

i (U ) �=X(A), then from (d5) in Proposition 4.11 we have that dn
X(A)(f

A−1

i (U )) �=X(A). From this

last assertion and (d9) in Proposition 4.11, we obtain that
⋂
n∈ω

dn
X(A)(f

A−1

i (U ))∈CMT (X(A))\{X(A)}.
From this last statement, the hypothesis (i) and Corollary 4.6, we conclude that

⋂
n∈ω

dn
X(A)(f

A−1

i (U ))=∅.

(ii) ⇒ (iii): Let U ∈D(X(A))\{X(A)} and i∈[n−1] such that f A−1

i (U ) �=X(A). Then, from the hypoth-
esis (ii), we have that (1)

⋂
n∈ω

dn
X(A)(f

A−1

i (U ))=∅. Besides, for all n∈ω, dn
X(A)(f

A−1

i (U )) is a closed subset

of X(A) and dn
X(A)(f

A−1

i (U ))=
n⋂

j=1
dj

X(A)(f
A−1

i (U )). Then, from (1), the last statement, the fact that X(A)

is compact and the finite intersection property of compact spaces, we conclude that there is nU
i ∈ω

such that d
nU

i
X(A)(f

A−1

i (U ))=∅.

(iii) ⇒ (iv): From Lemma 2.9, we have that U ∈ B(D(X(A))) if and only if U = f A−1

i (U ) for all
i∈[n−1], and so from property (LP10) of LMn-spaces, we infer that U ∈B(D(X(A)))\{X(A)} iff
f A−1

i (U ) �=X(A) for all i∈[n−1]. Therefore, from the previous assertion and the hypothesis (iii), we

obtain that for each U ∈B(D(X(A))) and each i∈[n−1], there is nU
i ∈ω such that d

nU
i

X(A)(U )=∅. In
addittion, from (1) it follows that for all i,j∈[n−1], nU

i =nU
j =nU , and so the proof is complete.

(iv) ⇒ (v): Assume that S ∈FTS(D(X(A))), S �={X(A)}. Then there is (1) U ∈S, U �=X(A) and so
from property (LP10) of LMn-spaces, we infer that there is i∈[n−1] such that f A−1

i (U ) �=X(A).
Considering (2) V = f A−1

i (U ), then from Lemma 2.9, we obtain that V ∈B(D(X(A))), V �=X(A).
Hence, from the hypothesis (iv), we can assert that there is nV ∈ω such that dnV

X(A)(V )=∅. From (1),
(2), the preceding assertion and Definitions 4.22 and 4.23, we deduce that ∅∈S, which implies that
S =D(X(A)).

(v) ⇒ (i): It immediately follows from Corollary 4.26 and the fact that (A,G,H ) is isomorphic to
the tense LMn-algebra (D(X(A)),GRA ,HRA−1 ).

COROLLARY 4.28
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a tense LMn-algebra. Then, the following conditions are equivalent:

(i) (A,∼,{ϕi}i∈[n−1],G,H ) is a simple tense LMn-algebra,
(ii) for every a∈A\{1} and for every i∈[n−1] such that ϕi(a) �=1, dna

i (ϕi(a))=0 for
some na

i ∈ω,
(iii) for each a∈B(A)\{1}, there is na ∈ω such that dna (a)=0,
(iv) FTS(A)={A,{1}}.

PROOF. It is a direct consequence of Proposition 4.27 and the fact that σA :A−→D(X(A)) is a tense
LMn-isomorphism.

COROLLARY 4.29
If (A,∼,{ϕi}i∈[n−1],G,H ) is a simple tense LMn-algebra, then B(C(A))={0,1} and therefore (C(A),∼,

{ϕi}i∈[n−1]) is a simple LMn-algebra.
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PROOF. From Lemmas 2.9 and 4.17, property (iv) in Corollary 4.16 and property (ii) in Corollary
4.28 it follows that B(C(A))={0,1}. From this last assertion, Corollary 2.12 and Lemma 4.18 the
proof is complete.

Next, we will recall two concepts which will play a fundamental role in this article. Let Y be a
topological space and y0 ∈Y . A net in a space Y is a map ϕ :D−→Y of some directed set (D,≺) (i.e.
D �=∅ and ≺ is a preorder on D and for all d1,d2 ∈D there is d3 ∈D such that d1 ≺d3 and d2 ≺d3).
Besides, we say that ϕ converges to y0 (written ϕ→y0) if for all neighborhoods U (y0) of y0 there
is d0 ∈D such that for all d ∈D, d0 ≺d, ϕ(d)∈U (y0). We also say that ϕ accumulates at y0 (written
ϕ�y0) if for all neighborhoods U (y0) of y0 and for all d ∈D, there is dc ∈D such that d ≺dc and
ϕ(dc)∈U (y0). If ϕ :D−→Y is a net and yd =ϕ(d) for all d ∈D, then the net ϕ it will be denoted by
(yd)d∈D. If ϕ→y0, it will be denoted by (yd) −−→

d∈Dy0. If ϕ�y0, it will be denoted by (yd)d∈D �y0.

PROPOSITION 4.30
Let (A,G,H ) be a tense LMn-algebra and (X(A),gA,{ f A

i }i∈[n−1],RA) be the tense LMn-space associated
with A. Then, the following conditions are equivalent:

(i) (A,G,H ) is a subdirectly irreducible tense LMn-algebra,
(ii) there is V ∈B(D(X(A))), V �=X(A), such that for each U ∈D(X(A)), U �=X(A) and

for each i∈[n−1] such that f A−1

i (U ) �=X(A),
⋂
n∈ω

dn
X(A)(f

A
i

−1
(U ))⊆V ,

(iii) there is V ∈B(D(X(A))), V �=X(A), such that for each U ∈D(X(A)), U �=X(A) and

for each i∈[n−1] such that f A−1

i (U ) �=X(A), d
nU

i
X(A)(f

A−1

i (U ))⊆V for some nU
i ∈ω,

(iv) there is V ∈B(D(X(A))), V �=X(A), such that for all U ∈B(D(X(A))), U �=X(A),
dnU

X(A)(U )⊆V , for some nU ∈ω,
(v) there is T ∈FTS(D(X(A)), T �={X(A)}, such that T ⊆S for all S ∈FTS(D(X(A))),

S �={X(A)}.
PROOF.
(i) ⇒ (ii): From (i) and Corollary 4.7 we infer that there exists Y ∈CMT (X(A))\{X(A)} such that
(1) Z ⊆Y for all Z ∈CMT (X(A))\{X(A)}. Since Y is modal, then by Proposition 4.2, there is (2)
x∈maxX(A)\Y . Taking into account that Y is a closed subset of X(A) and hence it is compact,
we can assert that there is W ∈D(X(A)), such that (3) Y ⊆W and (4) x �∈W . In addition from (2)
and (tS10) in Lemma 3.7, we have that x= f A

n−1(x) and so by (4) we infer that x �∈ f A−1

n−1 (W ). If
V = f A−1

n−1 (W ), then V ∈B(D(X(A)))\{X(A)}. Besides, from (3) and the fact that Y = f A−1

n−1 (Y ), we
get that (5) Y ⊆ f A−1

n−1 (W )=V . On the other hand, if U ∈D(X(A))\{X(A)}, then from Lemma 3.16
and property (LP10) of LMn-spaces, we infer that there is at least i0 ∈[n−1] such that f A−1

i0
(U ) �=

X(A). Now, let i∈[n−1] such that f A−1

i (U ) �=X(A), then from Proposition 4.11 we obtain that⋂
n∈ω

dn
X(A)(f

A−1

i (U ))∈CMT (X(A))\{X(A)}, from which we conclude, by the assertions (1) and (5), that
⋂
n∈ω

dn
X(A)(f

A−1

i (U ))⊆V .

(ii) ⇒ (iii): From the hypothesis (ii), we have that there is V ∈B(D(X(A)))\{X(A)}, such that
(1)

⋂
n∈ω

dn
X(A)(f

A−1

i (U ))⊆V for each U ∈D(X(A))\{X(A)} and each i∈[n−1] such that f A−1

i (U ) �=
X(A). Suppose that there is U ∈D(X(A))\{X(A)} and there is i0 ∈[n−1], which satisfy (1) and
dn

X(A)(f
A

i0

−1
(U )) �⊆V for all n∈ω. Then for each n∈ω, there exists (2) xn ∈dn

X(A)(f
A−1

i0
(U )) and xn �∈V .

Hence (xn)n∈ω is a sequence in X(A)\V and since X(A)\V is compact, we can assert that there
exists (3) x∈X(A)\V such that (xn)n∈ω accumulates at x. In addition, by (1) and (3), we have that
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x �∈ ⋂
n∈ω

dn
X(A)(f

A
i0

−1
(U )), and thus x∈X(A)\dn0

X(A)(f
A−1

i0
(U )) for some n0 ∈ω. Since x is an accumulation

point of (xn)n∈ω, then the preceding assertion and the fact that X(A)\dn0
X(A)(f

A−1

i0
(U )) is an open

subset of X(A) allows us to infer that for all n∈ω there is mn ∈ω such that n≤mn and xmn ∈X(A)\
dn0

X(A)(f
A−1

i0
(U )). Thus xmn0

∈X(A)\dn0
X(A)(f

A−1

i0
(U )) and n0 ≤mn0 . As a consequence of Proposition

4.11 we have that X(A)\dn0
X(A)(f

A−1

i0
(U ))⊆X(A)\d

mn0
X(A)(f

A−1

i0
(U )) and so xmn0

�∈d
mn0
X(A)(f

A−1

i0
(U ))), which

contradicts (2). Therefore, for every U ∈D(X(A))\{X(A)} and i∈[n−1] such that f A−1

i (U ) �=X(A),

d
nU

i
X(A)(f

A−1

i (U ))⊆V for some nU
i ∈ω.

(iii) ⇒ (iv): From Lemma 2.9 and the property (LP10) of LMn-spaces, we infer that for all U ∈
B(D(X(A))), U �=X(A) if and only if f A−1

i (U ) �=X(A) for all i∈[n−1]. Therefore, from the last
statement and the hypothesis (iii), we obtain that for each U ∈B(D(X(A))), U �=X(A) and each

i∈[n−1], there is nU
i ∈ω such that d

nU
i

X(A)(U )⊆V . Then, considering nU =max{nU
i : i∈[n−1]}, from

(d2) in Proposition 4.11 we conclude that dnU
X(A)(U )⊆V .

(iv) ⇒ (v): Let S ∈FTS(D(X(A))), S �={X(A)}. Then there exists (1) U ∈S \{X(A)} and so from
property (LP10) we infer that there is i∈[n−1] such that f A−1

i (U ) �=X(A). Let (2) W = f A−1

i (U ).
Then, from Lemma 2.9 we have that W ∈B(D(X(A))), W �=X(A) and thus by the hypothesis (iv), we
can assert that there is nW ∈ω such that (3) dnW

X(A)(W )⊆V . Besides, from the assertions (1) and (2) and
Lemma 4.24, we obtain that dnW

X(A)(W )∈S. From the last statement, (3) and the fact that S is a filter
of D(X(A)), we get that V ∈S, and so V ∈ ⋂

S∈FTS (D(X(A)))
S �={X(A)}

S. Therefore, considering T = ⋂
S∈FTS (D(X(A)))

S �={X(A)}

S

and taking into account that V �=X(A), we conclude that T ∈FTS(D(X(A))), T �={X(A)} and T ⊆S,
for all S ∈FTS(D(X(A))), S �={X(A)}.
(v) ⇒ (i): It follows from Corollary 4.26 and the fact that (A,G,H ) is isomorphic to the tense
LMn-algebra (D(X(A)),GRA ,HRA−1 ).

COROLLARY 4.31
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a tense LMn-algebra. Then, the following conditions are equivalent:

(i) (A,∼,{ϕi}i∈[n−1],G,H ) is a subdirectly irreducible tense LMn-algebra,
(ii) there is b∈B(A)\{1} such that for every a∈A\{1} and for every i∈[n−1]

such that ϕi(a) �=1, dna
i (ϕi(a))≤b for some na

i ∈ω,
(iii) there is b∈B(A)\{1} such that for every a∈B(A)\{1}, there is na ∈ω such that

dna (a)≤b,
(iv) there is T ∈FTS(A), T �={1} such that T ⊆S for all S ∈FTS(A), S �={1}.

PROOF. It is a direct consequence of Proposition 4.30 and the fact that σA :A−→D(X(A)) is a tense
LMn-isomorphism.

COROLLARY 4.32
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a subdirectly irreducible tense LMn-algebra such that for every a∈
B(A)\{1}, dn(a)=dna (a) for some na ∈ω and for all n∈ω, na ≤n. Then, (C(A)∼,{ϕi}i∈[n−1]) is a
simple LMn-algebra.

PROOF. From Corollary 4.31, we can assert that there exists b∈B(A)\{1} such that (1) for every
a∈B(A)\{1}, dn′

a (a)≤b for some n′
a ∈ω. Also, from hypothesis we have that there is nb ∈ω such

that dn(b)=dnb (b) for all n∈ω, nb ≤n. Considering u=dnb (b), then from the last assertion, properties
(d5) and (d7) in Corollary 4.12 and the fact that b∈B(A)\{1}, we obtain that u∈B(C(A)), u �=1. In
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addition, let c∈B(C(A)), c �=1, then by Lemma 4.17, c=dn(c) for all n∈ω, and thus from (1) we get
that c=dn′

c (c)≤b. Then from property (d4) in Corollary 4.12, we infer that c=dnb (c)≤dnb (b)=u.
Consequently, from Corollary 4.19, B(C(A)) is a totally ordered Boolean algebra and so B(C(A))=
{0,1}. Therefore, from Corollary 2.12 and Lemma 4.18, we conclude that

(C(A)∼,{ϕi}i∈[n−1]
)

is a
simple LMn-algebra.

5 A representation theorem for tense LMn-algebras

In this section, as an application of the categorical equivalence obtained in Section 3, we prove a
representation theorem for tense LMn-algebras, which was formulated and proved by a different
method by Diaconescu and Georgescu in [13].

First, we analyse the restriction of the relation RA, defined on the tense LMn-space X(A) associated
with a tense LMn-algebra (A,∼,{ϕi}i∈[n−1],G,H ), to the set maxX(A) of the maximal elements of
X(A). By virtue of property (tS10) of tense LMn-spaces and the prescription 2.13 we can assert that
M ∈maxX(A) if and only if M =ϕ−1

n−1(M ).

LEMMA 5.1
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a tense LMn-algebra and let (X(A),⊆,gA,{ f A

i }i∈[n−1],RA) be the tense
LMn-space associated with A. Then, for M1,M2 ∈maxX(A), the following conditions are equivalent:

(i) M1 ⊆P−1(M2),
(ii) G−1(M1)⊆M2,
(iii) M2 ⊆F−1(M1),
(iv) H−1(M2)⊆M1.

PROOF.
(i) ⇒ (ii): Let a∈A such that G(a)∈M1. Then, by the hypothesis (i), we infer that P(G(a))∈M2.
Besides, from property (T9) of tense LMn-algebras, we have that P(G(a))≤a. Then, taking into
account the fact that M2 is a filter of A, it follows that a∈M2 and so G−1(M1)⊆M2.

(ii) ⇒ (iii): Let a∈M2. Then, from property (L10) of LMn-algebras it follows that ϕn−1(a)∈M2 and
so, from the property (L2) it results that ∼ϕn−1(a) �∈M2. From the last statement and the hypothesis
(ii), we have that (1) G(∼ϕn−1(a)) �∈M1. Besides, from properties (T3) and (L4), we obtain that (2)
G(∼ϕn−1(a))=ϕ1(G(∼a)). Then, from (1), (2) and property (L2), we infer that ∼ϕ1(G(∼a))∈M1,
and so from the fact that M1 =ϕ−1

n−1(M1), we get that ϕn−1(∼ϕ1(G(∼a)))∈M1. The last statement and
properties (L3) and (L4) imply that ϕn−1(∼G(∼a))∈M1, and taking into account that M1 =ϕ−1

n−1(M1),
it follows that ∼G(∼a)∈M1 or equivalently F(a)∈M1, from which we conclude that M2 ⊆F−1(M1).

(iii) ⇒ (iv): Let a∈A such that H (a)∈M2. Then, from (iii) we infer that F(H (a))∈M1. Also, from
property (T9) of tense LMn-algebras, we have that F(H (a))≤a. Then, taking into account the fact
that M1 is a filter of A, we conclude that a∈M1 and therefore H−1(M2)⊆M1.

(iv) ⇒ (i): Let a∈M1. Then, from property (L10) it follows that ϕn−1(a)∈M1, and so, from property
(L2), we have that ∼ϕn−1(a) �∈M1. From the last assertion and the hypothesis (iv), we obtain that
(1) H (∼ϕn−1(a)) �∈M2. Besides, from properties (T3) and (L4), we get that (2) H (∼ϕn−1(a))=
ϕ1(H (∼a)). Hence, from (1), (2) and property (L2), we infer that ∼ϕ1(H (∼a))∈M2, and so the fact
that M2 =ϕ−1

n−1(M2) enables us to say that ϕn−1(∼ϕ1(H (∼a)))∈M2. The last assertion and properties
(L3) and (L4) imply that ϕn−1(∼H (∼a))∈M2. Then, taking into account that M2 =ϕ−1

n−1(M2), we can
assert that ∼H (∼a)∈M2 or equivalently P(a)∈M2, from which we conclude that M1 ⊆P−1(M2).
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LEMMA 5.2
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a tense LMn-algebra and (X(A),gA,{ f A

i }i∈[n−1],RA) be the tense LMn-
space associated with A. If X =maxX(A) and R=RA |X , then for all M ∈X ,

R(M )={T ∈X : G−1(M )⊆T }={T ∈X : T ⊆F−1(M )}

={T ∈X : H−1(T )⊆M }={T ∈X : M ⊆P−1(T )}.
PROOF. It immediately follows from Lemmas 3.12 and 5.1.

LEMMA 5.3
Let (A,∼,{ϕA

i }i∈[n−1],G,H ) be a tense LMn-algebra, (X(A),gA,{ f A
i }i∈[n−1],RA) be the tense LMn-

space associated with A, maxX(A)=X , RA |maxX(A)=R, the frame (X ,R) and (Ln,∼,{ϕi}i∈[n−1]) be

the LMn-algebra given in Example 2.10. Then, the algebra (LX
n ,∼,{ϕLX

n
i }i∈[n−1],G∗,H ∗) is a tense

LMn-algebra, where the operations of the LMn-algebra (LX
n ,∼,{ϕLX

n
i }i∈[n−1]) are defined pointwise

and the unary operations G∗ and H ∗ are defined for each p∈LX
n by the prescriptions:

(i) G∗(p)(M )=
∧

{p(T )|T ∈X ,G−1(M )⊆T }

=
∧

{p(T )|T ∈X ,T ⊆F−1(M )},

(ii) H ∗(p)(M )=
∧

{p(S)|S ∈X ,H−1(M )⊆S}

=
∧

{p(S)|S ∈X ,S ⊆P−1(M )},

for all M ∈X .

PROOF. From Lemma 5.2 and Example 2.22, the proof is complete.

COROLLARY 5.4
Let (A,∼,{ϕA

i }i∈[n−1],G,H ) be a tense LMn-algebra such that (G,H )= (1A,1A), where 1A :A−→A
is defined by 1A(a)=1 for any a∈A. Let (X(A),gA,{ f A

i }i∈[n−1],RA) be the tense LMn-space asso-
ciated with A, maxX(A)=X , RA |maxX(A)=R, the frame (X ,R) and (Ln,∼,{ϕi}i∈[n−1]) be the LMn-

algebra given in Example 2.10. Then, the algebra (LX
n ,∼,{ϕLX

n
i }i∈[n−1],G∗,H ∗) is a tense LMn-

algebra, where the operations of the LMn-algebra (LX
n ,∼,{ϕLX

n
i }i∈[n−1]), are defined pointwise and

(G∗,H ∗)=(
1LX

n
,1LX

n

)
, where 1LX

n
:LX

n −→LX
n such that for all p∈LX

n , 1LX
n
(p) is the greatest element

of LX
n (i.e. 1LX

n
(p)(M )=1 for all M ∈X ).

PROOF. From Lemma 5.3, (LX
n ,∼,{ϕLX

n
i }i∈[n−1],G∗,H ∗) is a tense LMn-algebra. Since (G,H )= (1A,1A)

it follows that G−1(M )=A and H−1(M )=A for any M ∈X . Therefore, from Lemma 5.2, we infer that
R(M )=∅ for any M ∈X and so, from Lemmas 5.2 and 5.3, we get that for each p∈LX

n , G∗(p)(M )=∧{p(T )|T ∈R(M )}=1, H ∗(p)(M )=∧{p(T )|M ∈R(T )}=1, for any M ∈X . From these last state-
ments, we conclude that (G∗,H ∗)=(

1LX
n
,1LX

n

)
, where 1LX

n
:LX

n −→LX
n is defined by 1LX

n
(p)(M )=1,

for any p∈LX
n and M ∈X .
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In the sequel, we will show some results which will be useful later on.

LEMMA 5.5
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a tense LMn-algebra, (X(A),gA,{ f A

i }i∈[n−1],RA) be the tense LMn-space
associated with A and RA |maxX(A)=R. Then, for all T ∈maxX(A) such that G−1(T ) is a proper filter
of A,

G−1(T )=
⋂

{M ∈maxX(A) : G−1(T )⊆M }=
⋂

{M ∈maxX(A) :M ∈R(T )}.

PROOF. Let T ∈maxX(A) such that G−1(T ) is a proper filter of A. Then there exists M ∈maxX(A)
such that G−1(T )⊆M and therefore,

(1)G−1(T )⊆
⋂

{M ∈maxX(A) : G−1(T )⊆M }.

Suppose that there is a∈A such that

(2)a∈
⋂

{M ∈maxX(A) : G−1(T )⊆M }and(3)G(a) �∈T .

Since T ∈maxX(A) and G−1(T ) is a proper filter of A, it follows that T ∩B(A)∈X(B(A)) and
G−1(T )∩B(A) is a proper filter of B(A). Taking into account that every prime filter of the Boolean
algebra B(A) is an ultrafilter, the fact that every proper filter of B(A) is the intersection of all
ultrafilters of B(A) that contain it, and the property that M ′ ∈X(B(A)) iff there is M ∈maxX(A) such
that M ′ =M ∩B(A), we infer that

(4) G−1(T )∩B(A)=⋂{M ′ ∈X(B(A)) :G−1(T )∩B(A)⊆M ′}
=⋂{M ∩B(A) : M ∈maxX(A),G−1(T )∩B(A)⊆M ∩B(A)}.

From the assertion (3), and the fact that T =ϕ−1
n−1(T ), we have that ϕn−1(G(a)) /∈T and so, from

property (T3) of tense LMn-algebras, we obtain that G(ϕn−1(a)) �∈T . Therefore, ϕn−1(a) �∈G−1(T )∩
B(A). From the previous assertion, Lemma 2.9 and (4) we infer that there is (5) M0 ∈maxX(A)
such that (6) G−1(T )∩B(A)⊆M0 ∩B(A) and ϕn−1(a) �∈M0. From the last statement and the fact that
M0 =ϕ−1

n−1(M0), we can assert that (7) a �∈M0. On the other hand, we have that (8) G−1(T )⊆M
for all M ∈maxX(A), such that (9) G−1(T )∩B(A)⊆M ∩B(A). Indeed, let b∈A such that G(b)∈T ,
then ϕn−1(G(b))∈T , and so from property (T3) it follows that ϕn−1(b)∈G−1(T ). In addition, from
Lemma 2.9, we have that ϕn−1(b)∈B(A) and therefore ϕn−1(b)∈G−1(T )∩B(A). Then, from (9) we
obtain that b∈M , from which it results that G−1(T )⊆M . Then, from (5), (6), (8) and (9), we get
that G−1(T )⊆M0. This last assertion, (5) and (7) contradicts (2). Consequently, (2) and (3) are not
true and so the assertion (1) and Lemma 5.2 enable us to conclude the proof.

In the proof of the following lemma we will use the property of the dense subsets of a topological
space (X ,τ ), which establishes that a subset D of X is dense (i.e. the closure of D is X ) if and only
if for any base B of τ and any B∈B\{∅}, B∩D �=∅.

LEMMA 5.6
Let (LX

n ,∼,{ϕLX
n

i }i∈[n−1],G∗,H ∗) be the tense LMn-algebra described in Lemma 5.3, X
(
LX

n

)
be the

tense LMn-space associated with LX
n and X(Ln) be the LMn-space associated with the LMn-algebra

Ln, given in Example 2.10. If D={
S ×Ln

X \{x} : S ∈X(Ln),x∈X
}
, where for each x∈X , Ln

X \{x} =
{f :X \{x}−→Ln}, then D is a dense subset of X

(
LX

n

)
.
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PROOF. It is easy to check that D⊆X
(
LX

n

)
. If X is a finite set, then D=X

(
LX

n

)
. If X is an infinite

set, then taking into account that the set B={
σLX

n
(h)\σLX

n
(g) : h,g ∈LX

n

}
is a basis of the topology of

X
(
LX

n

)
and the fact that σLX

n
:LX

n −→D
(
X

(
LX

n

))
is an order isomorphism, we infer that for each B∈

B\{∅}, there are h,g ∈LX
n such that h �≤g and B=σLX

n
(h)\σLX

n
(g). From this last assertion it follows

that h(x) �≤g(x) for some x∈X , and since h(x),g(x)∈Ln, then there are (1) j,k ∈[n−1], j<k, such
that (2) h(x)= k

n−1 and (3) g(x)= j
n−1 . Let (4) S ={ l

n−1 : k ≤ l ≤n−1}=↑ k
n−1 ⊆Ln. Then, S ∈X(Ln)

and hence (5) S ×Ln
X \{x} ∈D. Besides, taking into account (1), (2) and (4), we obtain that h(x)∈S,

and from (1), (3) and (4), we get that g(x) �∈S. Hence h∈S ×Ln
X \{x} and g �∈S ×Ln

X \{x}. These last
assertions and the fact that S ×Ln

X \{x} ∈X
(
LX

n

)
enable us to infer that (6) S ×Ln

X \{x} ∈σLX
n
(h)\σLX

n
(g).

Therefore, from (5) and (6), it results that (σLX
n
(h)\σLX

n
(g))∩D �=∅, from which we conclude that D

is dense in X
(
LX

n

)
.

Next, we will recall some characterizations of continuous functions. These characterizations will
play fundamental role in the proofs of Proposition 5.7 and Theorem 5.9.

Let (X ,τX ), (Y ,τY ) be two topological spaces and f :X −→Y . Then, the following conditions are
equivalent:

(i) f is continuous function,
(ii) f −1(C) is closed in (X ,τX ) for any closed C in (Y ,τY ),
(iii) f −1(O) is open in (X ,τX ) for any open O in (Y ,τY ),
(iv) f −1(B) is open in (X ,τX ) for any subbasic B in (Y ,τY ),
(iv) for all x∈X and for every net (xd)d∈D, (xd) −−→

d∈Dx implies that (f (xd)) −−→
d∈D f (x).

PROPOSITION 5.7
Let (A,∼,{ϕA

i }i∈[n−1],G,H ) be a tense LMn-algebra, (X(A),gA,{ f A
i }i∈[n−1],RA) be the tense LMn-space

associated with A, X =maxX(A), D={
Q×Ln

X \{M } : Q∈X(Ln), M ∈X }, (
X(Ln),gLn ,{ f Ln

i }i∈[n−1]
)

be the LMn-space associated with the LMn-algebra (Ln,∼,{ϕi}i∈[n−1]), given in Example 2.10 and

(X
(
LX

n

)
,gLX

n
,{ f

LX
n

i }i∈[n−1],RLX
n ) be the tense LMn-space associated with the tense LMn-algebra (LX

n ,∼,

{ϕLX
n

i }i∈[n−1],G∗,H ∗) described in Lemma 5.3. Let f :D−→X(A), defined for each Q∈X(Ln) and for
each M ∈X , by the prescription:

f
(
Q×Ln

X \{M })=ϕA−1

i (M ), ifQ=ϕ−1
i (Q) for some i∈[n−1]. (5.1)

Then, f satisfies the following properties:

(i) for each a∈A, f −1(σA(a))=σLX
n
(ha)∩D, where ha :X −→Ln is defined for all M ∈X by the

prescription:

ha(M )=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if ϕA
i (a) �∈M for all i∈[n−1], or equivalently

if a �∈M ,
1 if ϕA

i (a)∈M for all i∈[n−1], or equivalently
if ϕA

1 (a)∈M ,
i

n−1 , i∈[n−2], if ϕA
n−i(a)∈M and ϕA

n−i−1(a) �∈M .

(ii) f is continuous, considering D as a subspace of X(LX
n ).

(iii) If (Td)d∈D ⊆D is a net such that T
d

−−→
d∈DT for some T ∈X

(
LX

n

)\D, then
the net (f (Td))d∈D converges in X(A).
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(iv) If the nets (Td)d∈D ⊆D and (Sd)d∈D ⊆D converge to the same element T ∈X
(
LX

n

)\D,
then the nets (f (Td))d∈D and (f (Sd))d∈D converge to the same element in X(A).

PROOF.
(i): Let a∈A. Taking into account that ha :X −→Ln, Ln ={ j

n−1 : 0≤ j≤n−1} and for all i, j∈[n−1],
ϕi(

j
n−1 )=0 if i+j<n or ϕi(

j
n−1 )=1 in other cases, we infer that (1) ϕi(ha(M ))=1 or ϕi(ha(M ))=0

for any M ∈X and i∈[n−1]. Also, we obtain that for any M ∈X and i∈[n−1], ϕi(ha(M ))=1 implies
that ha(M )= j

n−1 , j∈[n−1] and i≥n−j, from which we get that ϕA
n−j(a)∈M , and so from property

(L5) of LMn-algebras, we conclude that ϕA
i (a)∈M . Conversely if ϕA

i0
(a)∈M , for some i0 ∈[n−1],

then we have that ϕA
i (a)∈M for all i∈[n−1], or there exists j∈[n−1], j≤ i0, such that ϕA

j (a)∈M
and ϕA

j−1(a) �∈M . In the first case, we have that ha(M )=1 and so ϕi0 (ha(M ))=1. In the second case, it

follows that ha(M )= n−j
n−1 , j∈[n−1], j≤ i0. Since i0 +(n−j)≥n, from the last assertion we obtain that

ϕi0 (ha(M ))=1. Therefore, (2) for any M ∈X and i∈[n−1], ϕi(ha(M ))=1 if and only ifϕA
i (a)∈M .

Besides, since ha ∈LX
n , then σLX

n
(ha)=

{
S ∈X

(
LX

n

) : ha ∈S
}
, from which it results that

(3)σLX
n
(ha)∩D={Q×Ln

X \{M } :Q∈X(Ln),M ∈X and ha ∈Q×Ln
X \{M }}. It is immediate that (4)ha ∈

Q×Ln
X \{M } iff ha(M )∈Q, for any Q∈X(Ln) and any M ∈X . In addition, (5)ha(M )∈Q if and only

if Q×Ln
X \{M } ∈ f −1(σA(a)), for any M ∈X and Q∈X(Ln). Indeed, let Q∈X(Ln). Then, from prop-

erty (LP9) of LMn-spaces, we have that Q=ϕ−1
i (Q) for some i∈[n−1]. Taking into account (1)

and (2), the provisions of (5) is a consequence of the fact that each of the following statements is
equivalent to the next one in the sequence:

ha(M )∈Q; ha(M )∈ϕ−1
i (Q); ϕi(ha(M ))∈Q; ϕi(ha(M ))=1; ϕA

i (a)∈M ;
a∈ϕA

i
−1

(M ); a∈ f
(
Q×Ln

X \{M }); Q×Ln
X \{M } ∈ f −1(σA(a)).

Finally, from the assertions (3), (4) and (5) we conclude that σLX
n
(ha)∩D= f −1(σA(a)) for any

a∈A.

(ii): From (i), we have that for all a∈A, f −1(σA(a))=σLX
n
(ha)∩D. Therefore, for all a∈A, f −1(σA(a))

is closed and open in D. From this last assertion and taking into account that {σA(a) :a∈A}∪ {X(A)\
σA(a) : a∈A} is a subbase of the topology of X(A), we conclude that f :D−→X(A) is a continuous
function.

(iii): Let (Td)d∈D ⊆D such that (1) T
d

−−→
d∈DT for some T ∈X

(
LX

n

)\D. Since X(A) is compact and
(f (Td))d∈D is a net in X(A), it follows that (2) (f (Td))d∈D accumulates at T for some T ∈X(A).
Suppose that there is S ∈X(A) such that S �=T and (3) (f (Td))d∈D accumulates at S. Hence, T �⊆S or
S �⊆T . Suppose that T �⊆S, then there exists a∈A such that a∈T and a �∈S. Therefore, T ∈σA(a) and
S ∈X(A)\σA(a). Since σA(a)∈D(X(A)), then from (2), (3) and these last assertions, we infer that there
are two nets (f (Tdc ))c∈D and (f (Tdb ))b∈D such that (f (Tdc ))c∈D ⊆ (f (Td))d∈D and {f (Tdc )}c∈D ⊆ σA(a),
(f (Tdb ))b∈D
⊆ (f (Td))d∈D and {f (Tdb )}b∈D ⊆ X(A)\σA(a). Hence, (4) {Tdc}c∈D ⊆ f −1(σA(a)) and
(5) {Tdb}b∈D ⊆ f −1(X(A)\σA(a)). For each a∈A, let the function ha :X −→Ln be defined, for all
M ∈X by:

ha(M )=
⎧⎨
⎩

0 if a �∈M ,
1 if ϕA

1 (a)∈M ,
i

n−1 , 1≤ i≤n−2, if ϕA
n−i(a)∈M and ϕA

n−i−1(a) �∈M .

Then, from (i) we have that f −1(σA(a))=σLX
n
(ha)∩D and f −1(X(A)\σA(a))=D∩ (

X
(
LX

n

)\σLX
n
(ha)

)
,

and so from (4) and (5) we infer that (6){Tcd }d∈D ⊆σLX
n
(ha) and (7){Tbd }d∈D ⊆X

(
LX

n

)\σLX
n
(ha). On
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the other hand, from (1) we have that T
dc

−−→
c∈DT and since σLX

n
(ha) is closed in X

(
LX

n

)
, then from (6)

we can assert that (8)T ∈σLX
n
(ha). In addition, from (1) we obtain T

db
−−→
b∈DT and taking into account

(7) and the fact that X
(
LX

n

)\σLX
n
(ha) is closed in X

(
LX

n

)
, we obtain that T �∈σLX

n
(ha), which contradicts

(8). Analogously we reach a contradiction if S �⊆T . Therefore T =S, from which we conclude that
(f (Td))d∈D is a net in X(A), which has a unique accumulation point and therefore it is convergent
in X(A).

(iv): Let (Td)d∈D ⊆D and (Sd)d∈D ⊆D such that T
d

−−→
d∈DT and S

d
−−→
d∈DT , T ∈X

(
LX

n

)\D. Then, from
(i), the nets (f (Td))d∈D and (f (Sd))d∈D converge in X(A). Suppose that there are Q,S ∈X(A) such
that Q �=S, f (Td) −−→

d∈DQ and f (Sd) −−→
d∈DS, then using a similar technique to that performed in the

demonstration of (iii), we arrive at a contradiction and therefore, Q=S.

Hereinafter we need to consider the following theorem of extensions of continuous functions:

THEOREM 5.8 ([15])
Let (X ,τX ) be a topological space, D⊆X dense in X , (Y ,τY ) a regular topological space and f :
D−→Y a continuous function, then f has a continuous extension F :X −→Y iff, for every x∈X
and all nets (xi)i∈I ⊆D which converge to x, the nets (f (xi))i∈I converge to the same limit in Y . If F
exists, then F is the unique continuous extension of f .

The above theorem is an equivalent formulation of the statement in [15] because in the latter,
bases of filters are used instead of nets, but for our purposes the nets are most useful.

THEOREM 5.9
Let (A,∼,{ϕA

i }i∈[n−1],G,H ) be a tense LMn-algebra, (X(A),gA,{ f A
i }i∈[n−1],RA) be the tense

LMn-space associated with A, (X ,R) be a frame, where X =maxX(A), R=RA |maxX(A), and (LX
n ,∼,

{ϕLX
n

i }i∈[n−1],G∗,H ∗) be the tense LMn-algebra described in Lemma 5.3. Then, there exists a surjec-

tive tense LMn-function from X
(
LX

n

)
onto X(A), where (X

(
LX

n

)
,gLX

n
,{ f

LX
n

i }i∈[n−1],RLX
n ) is the tense

LMn-space associated with the LMn-algebra from Lemma 5.3.

PROOF. In order to prove the existence of a surjective LMn-function � :X(
LX

n

)−→X(A), we will
show the statements set in (I) to (XIV), which are listed below:

(I) There exists a continuous function � :X(
LX

n

)−→X(A):
Let D={

Q×Ln
X \{M } : Q∈X(Ln), M ∈X

}
,

(
X(Ln),gLn ,{ f Ln

i }i∈[n−1]
)

be the LMn-space associated
with the LMn-algebra (Ln,∼,{ϕi}i∈[n−1]) and let f :D−→X(A) be defined as in Proposition 5.7.
Taking into account that every Priestley space is a regular space, then from Proposition 5.7 and
Theorem 5.8, we can assert that f has a unique continuous extension � :X(

LX
n

)−→X(A). Also,
from the proof of Theorem 5.8 we have that

• for all T ∈X
(
LX

n

)\D, �(T )=S if and only if f (Td) −−→
d∈DS for any net (Td)d∈D ⊆D such that

T
d

−−→
d∈D

T .

(II) � is surjective:

Let S ∈X(A), then by property (LP9) of LMn-spaces, there is i∈[n−1] such that S =ϕA−1

i (S). From
Lemma 3.16, we have that (X(A),gA,{ f A

i }i∈[n−1]) is a tense LMn-space. Then, from the properties
(tS19) and (tS10) of tense LMn-spaces, the definition of the functions f A

i , i∈[n−1], given by the pre-
scription (2.13) and properties (LP4) and (LP5) of LMn-spaces, we infer that M =ϕA−1

n−1(S)∈maxX(A)
and S =ϕA−1

i (M ). If we consider Q∈X(Ln) such that Q=ϕ−1
i (Q), then from Proposition 5.7, we have

that Q×Ln
X \{M } ∈D and f

(
Q×Ln

X \{M })=S. Since � |D= f , we conclude that �
(
Q×Ln

X \{M })=S.
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(III) �−1(σA(a))=σLX
n
(ha) for all a∈A, where the function ha is defined as in Proposition

5.7:

From Proposition 5.7, we have that (1) σLX
n
(ha)∩D= f −1(σA(a)) for all a∈A.

Let a∈A and S ∈σLX
n
(ha)∩D, then from Lemma 5.6, there exists a net (2) (Sd)d∈D ⊆D such that

(3) S
d

−−→
d∈DS. Therefore, there exists do ∈D such that Sd ∈σLX

n
(ha)∩D for all d ∈D, do ≺d, and

so from (1) it follows that Sd ∈ f −1(σA(a)) for all d ∈D, do ≺d. Consequently, from (1) and taking
into account that � |D= f , we have that Sd ∈�−1(σA(a)) for all d ∈D, do ≺d. Besides, since � is
a continuous function we have that �−1(σA(a)) is closed in X

(
LX

n

)
. Then, from the last statement

and (3), we infer that S ∈�−1(σA(a)). Conversely, let T ∈�−1(σA(a))∩D. Then �(T )= f (T ) and
therefore, T ∈ f −1(σA(a)) and so from (1) we obtain that T ∈σLX

n
(ha).

Now, let (4) S ∈�−1(σA(a))∩D, then from Lemma 5.6, there is a net (Sd)d∈D ⊆D such that (5)
S

d
−−→
d∈DS. Besides, since � is a continuous function, we have that �−1(σA(a)) is an open subset of

X
(
LX

n

)
, then from (4) and (5), we can assert that there is do ∈D such that Sd ∈�−1(σA(a)) for all

d ∈D, do ≺d and hence, Sd ∈ f −1(σA(a))∩D for all d ∈D, do ≺d. From the last assertion and (1) it
results that Sd ∈σLX

n
(ha) for all d ∈D, do ≺d, and consequently, from (5) and the fact that σLX

n
(ha) is

a closed subset of X
(
LX

n

)
, it follows that S ∈ϕLX

n
(ha). And so we conclude that �−1(σA(a))=σLX

n
(ha)

for any a∈A.

(IV) � is isotone:

Let T ,S ∈X
(
LX

n

)
such that T ⊆S. Suppose that �(T ) �⊆�(S), then there is a∈A· such that �(T )∈

σA(a) and �(S) �∈σA(a). Consequently, from (III), we obtain that T ∈σLX
n
(ha) and S �∈σLX

n
(ha). Then,

we have that ha ∈LX
n , ha ∈T and ha �∈S, and so T �⊆S, which contradicts the hypothesis. Therefore,

�(T )⊆�(S).

(V) f ◦f
LX

n
i |D= f A

i ◦f for all i∈[n−1], where f
LX

n
i |D is the restriction of f

LX
n

i to D :

From the prescription (5.1), we infer that f
(
Q×Ln

X \{M })⊆M for all Q∈X(Ln) and M ∈X . Then,
from the previous assertion, properties (LP5) and (LP9) of LMn-spaces and the prescription (2.13),
we obtain that (2) f A

i

(
f
(
Q×Ln

X \{M }))= f A
i (M ) for all Q∈X(Ln) and M ∈X . Taking into account the

prescription (2.13) and the fact that ϕ
LX

n
i :LX

n −→LX
n is defined pointwise for any i∈[n−1], it imme-

diately follows that f
LX

n
i |D

(
Q×Ln

X \{M })= f
LX

n
i

(
Q×Ln

X \{M }) = f Ln
i (Q)×Ln

X \{M }, for any Q∈X(Ln),

M ∈X and i∈[n−1] and consequently, (3)
(
f ◦f

LX
n

i |D
)(

Q×Ln
X \{M }) = f

(
f Ln
i (Q)×Ln

X \{M }
)
, for any

Q∈X(Ln), M ∈X and i∈[n−1]. Furthermore, from the prescriptions (2.13) and (5.1), we obtain

that (4) for any Q∈X(Ln), M ∈X and i∈[n−1], f
(
f Ln
i (Q)×Ln

X \{M }
)
= f

(
ϕi

−1(Q)×Ln
X \{M })=

ϕA−1

i (M )= f A
i (M ). Therefore the statements (2), (3) and (4) allow us to say that (V) holds.

(VI) �◦f
LX

n
i = f A

i ◦�, for all i∈[n−1]:
Let T ∈X

(
LX

n

)
, then from Lemma 5.6 there are two nets, (Qd)d∈D ⊆X

(
LX

n

)
and (Md)d∈D ⊆X such

that (1)Qd ×Ln
X \{Md } −−→

d∈DT . Taking into account that the functions f
LX

n
i :X(

LX
n

)−→
X

(
LX

n

)
, i∈[n−1], and � :X(

LX
n

)−→X(A) are continuous and the assertion (1), we infer that

(2)�
(
f

LX
n

i

(
Qd ×LX \{Md }

n

))
−−→
d∈D

�
(
f

LY
n

i (T )
)
, for all i∈[n−1]. On the other hand, by virtue

of that f
LX

n
i

(
Qd ×Ln

X \{Md })∈D for all d ∈D and i∈[n−1], then �
(
f

LX
n

i

(
Qd ×Ln

X \{Md })) =
f
(
f

LX
n

i

(
Qd ×Ln

X \{Md }))= f
(
f

LX
n

i |D
(
Qd ×Ln

X \{Md })) for all i∈[n−1] and d ∈D, and so from the
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statement (V), we obtain that (3)�
(
f

LX
n

i

(
Qd ×Ln

X \{Md }))= f A
i

(
f
(
Qd ×Ln

X \{Md })) for all d ∈D and i∈
[n−1]. From (1) and the definition of � given in (I), we have that f

(
Qd ×Ln

X \{Md }) −−→
d∈D �(T ). Since

f A
i :X(A)−→X(A) is continuous, for any i∈[n−1], then f A

i

(
f
(
Qd ×Ln

X \{Md })) −−→
d∈D f A

i (�(T )) for any

i∈[n−1]. From the last assertion and (3) it follows that (4)�
(
f

LX
n

i

(
Qd ×Ln

X \{Md })) −−→
d∈D

f A
i (�(T ))

for any i∈[n−1]. Finally, from (2), (4) and the fact that X(A) is a Hausdorff space, we infer

that
(
�◦f

LX
n

i

)
(T )=(

f A
i ◦�

)
(T ) for all T ∈X

(
LX

n

)
and i∈[n−1]. Therefore, �◦f

LX
n

i = f A
i ◦� for any

i∈[n−1].
(VII) f ◦gLX

n
|D=gA ◦f , where gLX

n
|D is the restriction of gLX

n
to D:

Taking into account the prescription (2.5) and the fact that ∼ on LX
n is defined pointwise, it imme-

diately follows that gLX
n
|D

(
Q ×Ln

X \{M })=gLX
n

(
Q ×Ln

X \{M })=gLn (Q)×Ln
X \{M } for all M ∈X and

Q∈X
(
LX

n

)
. Then, for all Q∈X

(
LX

n

)
and M ∈X , (1)

(
f ◦gLX

n
|D

)(
Q ×Ln

X \{M })= f
(
gLn (Q)×Ln

X \{M }).
Since Q∈X(Ln), then from property (LP9) of LMn-spaces, there is i∈[n−1] such that Q=ϕ−1

i (Q)
and so from the prescription (2.13) and property (LP7) of LMn-spaces, we infer that gLn (Q)=ϕ−1

n−i(Q),
from which it follows that f

(
Q×Ln

X \{M }) = ϕ−1
i (M ), and f

(
gLn (Q)×Ln

X \{M })=ϕ−1
n−i(M ). On the

other hand, taking into account the prescription (2.13) and property (LP7) of LMn-spaces, we obtain
that ϕA−1

n−i (M )= f A
n−i(M )=gA(f A

i (M ))= gA(ϕA−1

i (M )). Therefore, f (gLn (Q)×Ln
X \{M })=

gA

(
f
(
Q××Ln

X \{M })), and so from (1), we obtain that
(
f ◦gLX

n
|D

)(
Q×Ln

X \{M })= (gA ◦f )
(
Q×Ln

X \{M })
for all Q∈X

(
LX

n

)
and for all M ∈X , from which we conclude that f ◦gLX

n
|D=gA ◦f .

(VIII) �◦gLX
n
=gA ◦�:

Let T ∈X
(
LX

n

)
, then from Lemma 5.6, there is (1) (Td)d∈D ⊆D such that (2) T

d
−−→
d∈DT . Since gLX

n

is a continuous function, then (3) gLX
n
(Td) −−→

d∈DgLX
n
(T ). On the other hand, from (1) we have that

for each d ∈D there are Qd ∈X(Ln) and Md ∈X such that Td =Qd ×Ln
X \{Md }, from which it follows

that gLX
n
(Td)=gLn (Qd)×Ln

X \{Md } and therefore, (4)gLX
n
(Td)∈D for all d ∈D. Since � is continuous,

� |D= f and gLX
n
|D (Td)=gLX

n
(Td), d ∈D, then from (3) and (4) we obtain that

(
f ◦gLX

n

)
(Td) −−→

d∈D(
�◦gLX

n

)
(T ), and so from (VII) we can assert that (5) (gA ◦f )(Td) −−→

d∈D
(
�◦gLX

n

)
(T ). On the other

hand, from (2) and taking into account that � and gA are continuous and � |D= f , we infer that
(6) (gA ◦f )(Td) −−→

d∈D (gA ◦�)(T ). Since X(A) is a Hausdorff space, then from (5) and (6), we conclude
that for all T ∈X

(
LX

n

)
,
(
�◦gLX

n

)
(T )= (gA ◦�)(T ), and so, �◦gLX

n
=gA ◦�.

The statements (I), (II), (IV), (VI) and (VIII) allow us to assert that � is a surjective LMn-function
from X

(
LX

n

)
to X(A).

(IX) G∗(ha)=hG(a) for all a∈A, where for all b∈A, the function hb :X −→Ln is
defined as in Proposition 5.7:

Since hG(a) :X −→Ln is defined by the prescription:

hG(a)(M )=
⎧⎨
⎩

0 if G(a) �∈M ,
1 if ϕA

1 (G(a))∈M ,
i

n−1 , 1≤ i≤n−2, if ϕA
n−i(G(a))∈M and ϕA

n−i−1(G(a)) �∈M ,

then we only have to prove that the statements (A), (B) and (C) hold.

(A) For each a∈A, G∗(ha)(M )=0 iff hG(a)(M )=0 for all M ∈X :

Downloaded from https://academic.oup.com/jigpal/advance-article-abstract/doi/10.1093/jigpal/jzx056/4917690
by guest
on 02 March 2018



[14:53 2/2/2018 jzx056.tex] Paper Size: a4 paper Job: JIGPAL Page: 35 1–42

Tense LMn-Algebras and Applications 35

Since for each a∈A, ha ∈LX
n , then from Lemmas 5.2 and 5.3, we have that for all M ∈X ,

(1) (G∗(ha))(M )= ∧
(M ,T )∈R

ha(T ), from which we infer that for all M ∈X , (2) (G∗(ha))(M )=0 iff
∧

(M ,T )∈R
ha(T )=0.

Besides, since Ln is finite and {ha(T ) : T ∈X ,T ∈R}⊆Ln, then we have that (3)
∧

(M ,T )∈R
ha(T )

=0, iff there isT0 ∈R(M ) such that a �∈T0. In addition, from (1) and (2), we infer that R(M ) �=∅,
and so by Lemma 5.2, G−1(M ) is a proper filter of A. Therefore, from Lemma 5.5, we have
that (4) G−1(M )= ⋂

(M ,T )∈R
T . Consequently, from (2), (3) and (4), it follows that (G∗(ha))(M )=

0 iff G(a) �∈M for any M ∈X . From the last statement and the definition of the function hG(a),
we obtain that (G∗(ha))(M )=0 iff hG(a)(M )=0 for all M ∈X and a∈A.

(B) For each a∈A, G∗(ha)(M )=1 iff hG(a)(M )=1 for all M ∈X :

Let a∈A and M ∈X such that (1) G∗(ha)(M )=1. Taking into account the definition of G∗(ha)(M ),
then (2) R(M ) �=∅ or (3) R(M )=∅.
Suppose (2) holds. Then, each of the following conditions is equivalent to the next one in the
sequence:
(4) (G∗(ha))(M )=1;

∧
(M ,T )∈R

ha(T )=1; ha(T )=1for all T ∈R(M ); ϕA
1 (a)∈T

for all T ∈R(M ); ϕA
1 (a)∈ ⋂

(M ,T )∈R
T .

Besides, from (2) and Lemma 5.2 we have that G−1(M ) is a proper filter of A, and so from
Lemma 5.3, we can set that (5) G−1(M )= ⋂

(M ,T )∈R
T . Then, from (4) and (5) it results that

(G∗(ha))(M )=1 if and only if G(ϕA
1 (a))∈M . From the last statement and property (T3) of tense

LMn-algebras it follows that (G∗(ha))(M )=1 if and only if ϕA
1 (G(a))∈M , and so by virtue of

the definition of the function hG(a), we conclude that (6) (G∗(ha))(M )=1 if only if hG(a)(M )=1,
for all a∈A and M ∈X such that R(M ) �=∅.
On the other hand, taking into account that G−1(M ) is a filter of A and the definition of R(M ),
given in Lemma 5.2, it follows that (3) holds iff G−1(M )=A. Hence for all a∈A, G(ϕA

1 (a))∈M
and so from property (T3) of tense LMn-algebras, we have that ϕA

1 (G(a))∈M for all a∈A, from
which we conclude that hG(a)(M )=1 for all a∈A. Conversely, if hG(a)(M )=1 for all a∈A,
then ϕA

1 (G(a))∈M for all a∈A, from which it follows by property (L9) of LMn-algebras that
G(a)∈M for all a∈A, and so G−1(M )=A. Consequently, R(M )=∅, from which we obtain that
G∗(ha)(M )=1. Therefore, (7) (G∗(ha))(M )=1 if only if hG(a)(M )=1, for all a∈A and M ∈X
such that R(M )=∅. And so, from the statements (7) and (8), the proof of (B) is complete.

(C) For each a∈A, i∈[n−2], G∗(ha)(M )= i
n−1 , iff hG(a)(M )= i

n−1 , for all M ∈X :

For any a∈A and i∈[n−1], each of the following conditions is equivalent to the next one in
the sequence, for all M ∈X , a∈A and i∈[n−2]:

(1) (G∗(ha))(M )= i
n−1 ;

∧
(M ,T )∈R

ha(T )= i
n−1 ; there is T0 ∈R(M ), such that

ha(T0)= i
n−1 and ha(T0)≤ha(T ) for all T ∈R(M ); there is T0 ∈R(M ) such that

ϕA
n−i−1(a) �∈T0 and ϕA

n−i(a)∈T , for all T ∈R(M ).
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Since (G∗(ha))(M ) �=1, then R(M ) �=∅, and consequently G−1(M ) is a proper filter of A and so,
from Lemma 5.3, we have that (2) G−1(M )= ⋂

(M ,T )∈R
T .

Then, from (1) and (2), we infer that
(3) (G∗(ha))(M )= i

n−1 , i∈[n−2], iff G(ϕA
n−i(a))∈M and G(ϕA

n−i−1(a)) �∈M , i∈[n−2].
Besides, from property (T3), we get that

(4) G(ϕA
n−i(a))∈M and G(ϕA

n−i−1(a)) �∈M iff ϕA
n−i(G(a))∈M and ϕA

n−i−1(G(a)) �∈M .
Hence, from (3) and (4) we can assert that G∗(ha)(M )= i

n−1 , iff hG(a)(M )= i
n−1 , for all a∈A,

M ∈X and i∈[n−2].

Finally, from (A), (B), (C), we conclude that G∗(ha)=hG(a) for all a∈A.

(X) For all a∈A, H ∗(ha)=hH (a), where for all b∈A, hb :X −→Ln is defined as in
Proposition 5.7:

It follows using a similar technique to that used in the proof of (IX).

(XI) (S,T )∈RLX
n implies (�(S),�(T ))∈RA for any S,T ∈maxX

(
LX

n

)
:

Let S,T ∈maxX
(
LX

n

)
such that (1)(T ,S)∈RLX

n , then from Lemma 5.3, we obtain that G∗−1(T )⊆S.

Therefore G∗−1(T ) is a proper filter of LX
n . Since T ∈maxX

(
LX

n

)
and LX

n is a tense LMn-algebra then,

from Lemma 5.5, it follows that (2) p∈G∗−1(T ) iff p∈N , for all p∈LX
n and N ∈RLX

n (T )∩maxX
(
LX

n

)
.

Assume now that (3)(�(S),�(T )) �∈RA. Since S,T ∈maxX
(
LX

n

)
, then there are M0,M1 ∈X such that

(5)�(S)=M0 and�(T )=M1, and therefore, from the assertions (3) and (4) and the fact that R=RA |X
it follows that (M0,M1) �∈R, and so, from Lemma 5.3 we obtain that G−1(M0) �⊆M1. Then, there
exists a∈A such that (5)M0 ∈σA(G(a))and M1 �∈σA(a), and hence from the statements (4) and (5), we
obtain that T ∈�−1(σA(G(a)))andS �∈�−1(σA(a)). In addition, from (III) we have that �−1(σA(a))=
σLX

n
(ha), and �−1(σA(G(a)))=σLX

n
(hG(a)). Also, from (IX) we have that σLX

n
(hG(a)) = σLX

n
(G∗(ha)).

Therefore, from these last assertions we get that T ∈σLX
n
(G∗(ha)) and S �∈σLX

n
(ha). Consequently,

there exists a∈A such that ha ∈LX
n , ha ∈G∗−1(T ), ha �∈S, S ∈RLX

n (T )∩maxX
(
LX

n

)
, which contradicts

(2). Therefore, we have that (�(S),�(T ))∈R.

(XII) (S,T )∈RLX
n implies (�(S),�(T ))∈RA for any S,T ∈X

(
LX

n

)
:

Let S,T ∈X
(
LX

n

)
, then from property (tS4) of tense LMn-spaces, we obtain that

for all i∈[n−1], (S,T )∈RLX
n iff (f

LX
n

i (S), f
LX

n
i (T ))∈RLX

n ,
for all i∈[n−1], (�(S),�(T ))∈RA iff (f A

i (�(S)), f A
i (�(T )))∈RA.

Then from these two assertions and property (LP5) of LMn-spaces, we infer that

(1)(S,T )∈RLX
n iff (f

LX
n

n−1(S),f
LX

n
n−1(T ))∈RLX

n ,
(2)(�(S),�(T ))∈RA iff (f A

n−1(�(S)), f A
n−1(�(T )))∈RA.

On the other hand, from property (LP9) we have that f
LX

n
n−1(S)∈maxX

(
LX

n

)
,

f
LX

n
n−1(T )∈maxX

(
LX

n

)
, from which it follows from (XI) that

(3)
(
f

LX
n

n−1(S),f
LX

n
n−1(T )

)
∈RLX

n implies
(
�

(
f

LX
n

n−1(S)
)
,�

(
f

LX
n

n−1(T )
))

∈RA.

In addition, from (VI) we have that

(4)�
(
f

LX
n

n−1(S)
)
= f A

n−1(�(S)) and �
(
f

LX
n

n−1(T )
)
= f A

n−1(�(T )).

Therefore, from (1), (2), (3) and (4), we conclude that (XII) holds.

(XIII) �−1(GRA (U ))=GRLX
n (�−1(U )) for any U ∈D(X(A)):
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Let U ∈D(X(A)). Since, by Lemma 3.16, there is a∈A such that U =σA(a), we infer that
(1)�−1(GRA (U ))=�−1(GRA (σA(a)))=�−1(σA(G(a))). Taking into account (III), (IX) and the fact
that σLX

n
is a tense LMn-isomorphism, we get that (2)�−1(σA(G(a)))=σLX

n
(hG(a))=σLX

n
(G∗(ha))=

GRLX
n (σLX

n
(ha))=GRLX

n (�−1(σA(a)))=GRLX
n (�−1(U )). Therefore, from (1) and (2), we conclude that

for all U ∈D(X(A)), �−1(GRA (U ))=GRLX
n (�−1(U )).

(XIV) �−1(HRA−1 (U ))=H
RLX

n
−1 (�−1(U )) for any U ∈D(X(A):

The proof is similar to that of (XIII), taking into account (X) and the fact that for all M1,M2 ∈X ,
(M1,M2)∈R iff H−1(M2)⊆M1.

Finally, the statements (I) to (XIV) complete the proof.

REMARK 5.10
In Theorem 5.9, we can consider X =X(B(A)), where X(B(A)) is the lattice of all prime filters of
the Boolean algebra B(A) of the complemented elements of A. It is well known that maxX(A) is
isomorphic to X(B(A)), as ordered sets.

THEOREM 5.11 (Representation theorem for tense LMn-algebras)
For any tense LMn-algebra (A,G,H ) there exists a frame (X ,R) and an injective morphism of tense
LMn-algebras from (A,G,H ) into (LX

n ,G∗,H ∗) and therefore, (A,G,H ) is isomorphic to a tense
LM n-subalgebra of (LX

n ,G∗,H ∗), where (LX
n ,G∗,H ∗) is the tense LMn-algebra described in Lemma

5.3.

PROOF. Lemmas 3.6 and 3.16 and Theorem 5.9 allow us to assert that there exist a frame (X ,R)
and an injective tense LM n-homomorphism 	 :A−→LX

n and therefore A is isomorphic to a tense
LM n-subalgebra of LX

n .

The previous theorem reduces the calculus in an arbitrary tense LMn-algebra A to the calculus in
LX

n .

COROLLARY 5.12
Let (A,∼,{ϕA

i }i∈[n−1],G,H ) be a tense LMn-algebra, In−1 =[n−1] , L[In−1]
2 be the set of all increasing

functions from In−1 to the Boolean algebra L2 with two elements, and the LMn-algebra 〈L[In−1]
2 ,∧,∨,∼

,{ϕi}i∈[n−1],0,1〉, where the operations of the lattice 〈L[In−1]
2 ,∧,∨,0,1〉 are defined pointwise and for

all f ∈L[In−1]
2 and i,j∈[n−1], ϕi(f )(j)= f (i) and (∼ f )(i)= f (n−i). Then, there is a frame (X ,R) such

that A is isomorphic to a tense LMn-subalgebra of L[In−1]
2

X
.

PROOF. It is a direct consequence of Theorem 5.11 and the fact that the LMn-algebras Ln and L[In−1]
2

are isomorphic.

COROLLARY 5.13
Let (A,∼,{ϕA

i }i∈[n−1],G,H ) be a tense LMn-algebra, L2 be the Boolean algebra with two elements,
D(L2)={(x1,...,xn−1)∈Ln−1

2 |x1 ≤ ...≤xn−1}, and

(D(L2),∧,∨,N ,ϕ1,...,ϕn−1,(0,...,0),(1,...,1)),

be the LMn-algebra described in Example 2.13. Then, there is a frame (X ,R) such that A is isomorphic
to a tense LMn-subalgebra of D(L2)X .

PROOF. It is a direct consequence of Corollary 5.12 and the fact that the LMn-algebras D(L2)X and
L[In−1]

2 are isomorphic.
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LEMMA 5.14
The tense LMn-algebra (LX

n ,∼,{ϕLX
n

i }i∈[n−1],G∗,H ∗) is complete.

PROOF. Let { fα}α∈A ⊆LX
n , f :X −→Ln and g :X −→Ln, defined for all x∈X , by the prescriptions:

f (x)= ∧
α∈A

fα(x), g(x)= ∨
α∈A

fα(x). Since Ln is finite, then for all x∈X ,
∧

α∈A
fα(x),

∨
α∈A

fα(x)∈Ln, and

therefore f ,g ∈LX
n . It is easy to show that f = ∧

α∈A
fα and g = ∨

α∈A
fα , which allow us to assert that LX

n

is complete.

COROLLARY 5.15
Any tense LMn-algebra (A,∼,{ϕA

i }i∈[n−1],G,H ) is a subalgebra of a complete tense LMn-algebra.

PROOF. It is an immediate consequence of Theorem 5.11 and Lemma 5.14.

6 Complete and finite simple and subdirectly irreducible tense LMn-algebras

Now, we are interested in the characterization of the simple and subdirectly irreducible complete
tense LMn-algebras whose filters are complete. To this end, we recall that if A is a complete lattice

whose prime filters are complete, then for all S ⊆A, σA

(∧
a∈S

a
)
= ⋂

a∈S
σA(a).

PROPOSITION 6.1
Let (A,G,H ) be a complete tense LMn-algebra. Then, the following conditions are equivalent for
any a∈A:

(i) a=d(a),
(ii) a=dn(a) for all n∈ω,
(iii) a= ∧

n∈ω

dn(a),

(iv) a= ∧
n∈ω

dn(b) for some b∈A.

PROOF. It follows from Lemmas 4.14 and 4.17 and the fact that for any a∈A,
∧
n∈ω

dn(a)∈A.

THEOREM 6.2
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a complete tense LMn-algebra whose filters are complete. Then, the
following conditions are equivalent:

(i) (A,∼,{ϕi}i∈[n−1],G,H ) is a simple tense LMn-algebra,
(ii) B(C(A))={0,1},
(iii) (C(A),∼,{ϕi}i∈[n−1]) is a simple LMn-algebra,
(iv) (C(A),∼,{ϕi}i∈[n−1]) is isomorphic to an LMn-subalgebra of Ln.

PROOF.
(i) ⇒ (ii): It is an immediate consequence of Corollary 4.29.

(ii) ⇔ (iii): It immediately follows from Corollary 2.12 and Lemma 4.18.

(iii) ⇔ (iv): It is a direct consequence of Theorem 2.11.

(ii) ⇒ (i): Taking into account that A is a complete tense LMn-algebra and Proposition 6.1, we have

that C(A)=
{∧

n∈ω

dn(a) : a∈A

}
, and so from the hypothesis (ii) we obtain that (1) ϕi

( ∧
n∈ω

dn(a)
)
=0 or
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ϕi

( ∧
n∈ω

dn(a)
)
=1 for every a∈A and every i∈[n−1]. Besides, from property (L6) of LMn-algebras,

we have that for all a∈A\{1}, there is at least i0 ∈[n−1] such that ϕi0 (a) �=1, and hence from
property (d2) in Corollary 4.12, we obtain that dn(ϕi0 (a)) � �=1 for any n∈ω. Then, from property (L12)

of LMn-algebras and property (d7) in Corollary 4.12, we get that ϕi0

( ∧
n∈ω

dn(a)
)
= ∧

n∈ω

ϕi0 (d
n(a))=

∧
n∈ω

dn(ϕi0 (a)) �=1. Therefore, we can assert that (2) ϕi

( ∧
n∈ω

dn(a)
)
�=1 for every a∈A\{1} and every

i∈[n−1] such that ϕi(a) �=1. From (1) and (2) we infer that ϕi

( ∧
n∈ω

dn(a)
)
=0 for every a∈A\{1} and

every i∈[n−1] such that ϕi(a) �=1. In addition, from the fact that the prime filters of A are complete,

it follows that σA

( ∧
n∈ω

dn (ϕi(a))
)

= ⋂
n∈ω

σA (dn (ϕi(a))). Consequently, for each a∈A\{1} and each

i∈[n−1] such that ϕi(a) �=1,
⋂
n∈ω

σA(dn(ϕi(a))) = ∅ and thus, from Lemma 3.16 and Corollary 4.13, it

results that
⋂
n∈ω

dn
X(A)

(
ϕ

X(A)
i (σA(a))

)
=∅ for all a∈A\{1} and i∈[n−1] such that ϕ

X(A)
i (σA(a)) �=X(A).

Finally, from this last statement, Lemma 3.16 and the definition of ϕ
X(A)
i on D(X(A)), i∈[n−1],

given by the prescription 2.12, we conclude that for all U ∈D(X(A))\{X(A)} and i∈[n−1] such
that f A−1

i (U ) �=X(A),
⋂
n∈ω

dn
X(A)(f

A−1

i (U ))=∅ and so from Proposition 4.27 the proof is complete.

THEOREM 6.3
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a complete tense LMn-algebra whose filters are complete. Then, the
following conditions are equivalent:

(i) (A,∼,{ϕi}i∈[n−1],G,H ) is a subdirectly irreducible tense LMn-algebra,
(ii) B(C(A))={0,1},
(iii) (C(A),∼,{ϕi}i∈[n−1]) is a simple LMn-algebra.

PROOF.
(i) ⇒ (ii): From the hypothesis (i) and Corollary 4.31, we have that there is (1) b∈B(A)\{1} such that
(2) dna (a)≤b for some na ∈ω, for all a∈B(A)\{1}. Then, from (1) and Lemma 2.9, it follows that (3)
b=ϕi(b) for all i∈[n−1]. Besides, since A is a complete tense LMn-algebra, then from Proposition
6.1, we get that

∧
n∈ω

dn(b)∈C(A) and so, from (3), property (L12) of LMn-algebras, Lemma 2.9 and

the property (d7) in Corollary 4.12, we deduce that
∧
n∈ω

dn(b)∈B(C(A)). Furthermore, from (1) and

property (d5) in Corollary 4.12, it results that
∧
n∈ω

dn(b) �=1. Now, let c∈B(C(A)), c �=1, then from

(2) and the fact that c= ∧
n∈ω

dn(c), we obtain that c= ∧
n∈ω

dn(c)≤dnc (c)≤b, and so from property (d4)

in Corollary 4.12, we can assert that c≤ ∧
n∈ω

dn(b). Therefore, from Corollary 4.19, we conclude that

(B(C(A)),∼) is a totally ordered Boolean algebra and consequently, B(C(A))={0,1}.
(ii) ⇔ (iii): It immediately follows from Corollary 2.12 and Lemma 4.18.

(ii) ⇒ (i): From the hypothesis (ii) and Theorem 6.2 it results that (A,∼,{ϕi}i∈[n−1],G,H ) is a simple
tense LMn-algebra and therefore the proof is complete.
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COROLLARY 6.4
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a complete tense LMn-algebra whose filters are complete, and let

(Ln,∼,{ϕi}i∈[n−1]) and (LX
n ,∼,{ϕLX

n
i }i∈[n−1],G∗,H ∗) be the algebras described in Example 2.10 and

Lemma 5.3, respectively. Then, the following conditions are equivalent:

(i) (A,∼,{ϕi}i∈[n−1],G,H ) is a simple tense LMn-algebra,
(ii) (A,∼,{ϕi}i∈[n−1],G,H ) is a subdirectly irreducible tense LMn-algebra,
(iii) (C(A),∼,{ϕi}i∈[n−1]) is isomorphic to an LMn-subalgebra of Ln,
(iv) B(C(A))={0,1},
(v) (A,∼,{ϕi}i∈[n−1],G,H ) is isomorphic to a complete tense LMn-subalgebra of LX

n

1. whose filters are complete.

PROOF. It is a direct consequence of Corollary 5.15 and Theorems 6.3 and 6.2.

COROLLARY 6.5
Let (A,∼,{ϕi}i∈[n−1],G,H ) be a finite tense LMn-algebra, and let (Ln,∼,{ϕi}i∈[n−1]) and (LX

n ,∼
,{ϕLX

n
i }i∈[n−1],G∗,H ∗) be the algebras described in Example 2.10 and Lemma 5.3, respectively. Then,

the following conditions are equivalent:

(i) (A,∼,{ϕi}i∈[n−1],G,H ) is a simple tense LMn-algebra,
(ii) (A,∼,{ϕi}i∈[n−1],G,H ) is a subdirectly irreducible LMn-algebra,
(iii) (C(A),∼,{ϕi}i∈[n−1]) is isomorphic to an LMn-subalgebra of Ln,
(iv) B(C(A))={0,1},
(v) (A,∼,{ϕi}i∈[n−1],G,H ) is isomorphic to a tense LMn-subalgebra of LX

n .

PROOF. It is a direct consequence of Corollary 6.4 and the fact that A is finite. It should be mentioned
that in this case since A is finite, then from property (d2) in Corollary 4.12, we have that for every
a∈A, there is na ∈ω such that dn(a)=dna (a) for all n∈ω, na ≤n, and so

∧
n∈ω

dn(a)=dna (a). Also,

since A is finite, then X =maxX(A) is finite and so LX
n is finite.

7 Conclusion and future research

In this article, we have determined a topological duality for tense n-valued Łukasiewicz–Moisil
algebras, extending the one obtained in [16], in which it is used the definition of LMn-algebras given
in [11]. By means of the above duality we have characterized simple and subdirectly irreducible
tense n-valued Łukasiewicz–Moisil algebras, specially complete and finite algebras. Also, we have
proved a theorem of representation of these algebras. The proof of this theorem has allowed us
to identify some topological properties of Priestley space associated with n-valued Łukasiewicz–
Moisil algebra LX

n (Lemma 5.6, Proposition 5.7), highlighting the effectiveness of the topological
procedures used, which could be of interest for people working in duality theory.

It seems worth mentioning that in [14], Diaconescu and Leuştean introduced an alternative defi-
nition for LMn+1-algebra as we will indicate below:

DEFINITION 7.1
An LMn+1-algebra is a system of the form 〈A,∨,∧, ∗ ,J1,...,Jn,0,1〉 such that the structure 〈A,∨,∧,
∗,0,1〉 is a De Morgan algebra and J1,...,Jn are unary operations on A such that the following hold:

(J1)
n∨

k=n−i+1
Jk (x∨y)=

n∨
k=n−i+1

(Jk (x)∨Jk (y)),
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(J2) Ji(x)∨Ji(y)∗ =1,
(J3) Jk (Ji(x))=0 and Jn(Ji(x))=Ji(x),

(J4) Jk (x∗)=Jn−k (x) and Jn(x∗)=
n∧

i=1
Ji(x)∗,

(J5) Jl(x)≤ (J1(x)∨ ...Jl−1(x))∗,
(J6) if Ji(x)=Ji(y), for all i∈[n], then x=y,

for any i,j∈[n], k ∈[n−1], 1< l <n and x,y∈L.

Moreover, these authors proved that Definitions 2.6 and 7.1 are equivalent.

Furthermore, in [14], it is shown that category LMn+1 of LMn+1-algebras and LMn+1-
homomorphisms is equivalent to a category which has Boolean algebras endowed with a partic-
ular set of Boolean ideals as objects and their corresponding homomorphisms as morphisms. To
achieve this goal, first the authors defined an n symmetric sequence of ideals on a Boolean alge-
bra B as a finite set {I1,...,In−1} of ideals on B with the property that Ii = In−i, for any i∈[n−1].
Then, they considered the category BoolIn+1 whose objects are tuples of the form (B,In−1,...,I1),
where B is a Boolean algebra and {I1,...,In−1}, is an n symmetric sequence of ideals on B, and
whose morphisms are Boolean morphisms g : (B,In−1,...,I1)−→ (B′,I ′

n−1,...,I
′
1) such that g(Ii)⊆ I ′

i ,
for any i∈[n−1]. Finally, they proved that the categories LMn+1 and BoolIn+1 are equivalent. This
categorical equivalence is a powerful tool for working with LMn+1-algebras.

Also, in [14] the authors developed a Stone-type duality for LMn+1-algebras starting from the
Stone duality for Boolean algebras. In order to determine this duality, they took into account that the
categories LMn+1 and BoolIn+1 are equivalent and so they constructed a Stone-type duality for the
category BoolIn+1. To this purpose, they introduced a topological category, denoted by BoolSOn,
whose objects are the Boolean spaces with n symmetric open sets, which are tuples of the form
(X ,O1,...,On−1), where X is a Boolean space (i.e. a Hausdorff and compact space which has a basis
of clopen subsets) and O1,...,On−1 are open sets in X such that Oi =On−i for any i∈[n−1], and whose
morphisms are continuous maps f : (X ,O1,...,On−1)−→ (Y ,U1,...,Un−1) such that f −1(Ui)⊆Oi, for
any i∈[n−1]. Besides, they proved that the categories BoolIn+1 and BoolSOn are dually equivalent.

One of the referees pointed out that it would be interesting to study how this last duality can be
extended for tense (n+1)-valued Łukasiewicz–Moisil algebras.
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[7] I. Chajda and M. Kolařík. Dynamic effect algebras. Math. Slovaca, 62, 379–388, 2012.
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