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Abstract

In 2007, tense n-valued Lukasiewicz—Moisil algebras (or tense LM,,-algebras) were introduced by Diaconescu and Georgescu
as an algebraic counterpart of the tense n-valued Moisil logic. In this article we continue the study of tense LM, -algebras
initiated by Figallo and Pelaitay (2014, Log. J. IGPL, 22, 255-267). More precisely, we determine a topological duality for
these algebras. This duality enables us not only to describe the tense LM,-congruences on a tense LM,-algebra, but also
to characterize the simple and subdirectly irreducible tense LM,,-algebras. Furthermore, by means of the aforementioned
duality, a representation theorem for tense LM, -algebras is proved, which was formulated and proved by a different method
by Georgescu and Diaconescu (2007, Fund. Inform., 81, 379-408).
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1 Introduction

In 1940, Gr. C. Moisil [ﬂ] introduced n-valued Lukasiewicz algebras (now these algebras are known
as n-valued Lukasiewicz—Moisil algebras or LM, -algebras for short). From that moment on, many
articles have been published about this class of algebras. Many of the results obtained have been
reproduced in the important book by Boicescu et al. [El] which can be consulted by any reader
interested in broadening their knowledge on these algebras.

Propositional logics usually do not incorporate the dimension of time; consequently, in order
to obtain a tense logic, a propositional logic is enriched by the addition of new unary operators
(or connectives) which are usually denoted by G,H,F and P. We can define F' and P by means
of G and H as follows: F(x)=—G(—x) and P(x)=—H(—x), where —x denotes negation of the
proposition x. Tense algebras (or tense Boolean algebras) are algebraic structures corresponding to
the propositional tense logic (see [E, Iﬂ]). An algebra (4,V,A,—,G,H,0,1) is a tense algebra if
(4,v,A,—,0,1) is a Boolean algebra and G, H are unary operators on 4 which satisfy the following
axioms for all x,y €4:

G(H=1,H()=1,
G(xAY)=GX)AGW), H(xAy)= Hx)AH(y),
x<GP(x), x <HF(x),
where P(x)=—H(—x) and F(x)=—G(—x).
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2 Tense LM, -Algebras and Applications

Taking into account that tense algebras constitute the algebraic basis for the bivalent tense logic,
Diaconescu and Georgescu introduced in [E] the tense MV -algebras and the tense Lukasiewicz—
Moisil algebras (or tense n-valued Lukasiewicz—Moisil algebras) as algebraic structures for some
many-valued tense logics. In recent years, these two classes of algebras have become very interesting
for several authors (see [ﬁ, M, VE, , IE]). In particular, in [@, ], Chirita introduced tense
0-valued Lukasiewicz—Moisil algebras and proved an important representation theorem which made
it possible to show the completeness of the tense 6-valued Moisil logic (see [E]). In ﬂﬂ], the authors
formulated an open problem about representation of tense M} -algebras, this problem was solved in
[E, E] for semi-simple tense MV -algebras. Also, in ﬂ], tense basic algebras which are an interesting
generalization of tense MV -algebras were studied.

The main purpose of this article is to give a topological duality for tense n-valued Lukasiewicz—
Moisil algebras. In order to achieve this we will extend the topological duality given in [E], for
n-valued Lukasiewicz—Moisil algebras. In [@], another duality for Lukasiewicz—Moisil algebras
was developed, starting from Boolean spaces and adding a family of open sets.

The article is organized as follows: In Section Pl we briefly summarize the main definitions and
results needed throughout this article. In Section Bl we developed a topological duality for tense
n-valued Lukasiewicz—Moisil algebras, extending the one obtained in [@] for n-valued Lukasiewicz—
Moisil algebras. In Section M the results of Section [l are applied. First, we characterize congru-
ences on tense n-valued Lukasiewicz—Moisil algebras by certain closed and increasing subsets of
the space associated with them. This enables us to describe the subdirectly irreducible tense 7-
valued Lukasiewicz—Moisil algebras and the simple tense n-valued Lukasiewicz—Moisil algebras. In
Section[3] which is the core of this article, a representation theorem for tense n-valued Lukasiewicz—
Moisil algebras is proved using the duality obtained for these algebras. The proof of this result could
be of interest for people working in duality theory. Finally, in Section [@] we describe the simple
and subdirectly irreducible complete tense n-valued Lukasiewicz—Moisil algebras. We also provide
a further characterization of the simple and subdirectly irreducible finite algebras.

2 Preliminaries

2.1 Tense De Morgan algebras

In [@], Figallo and Pelaitay introduced the variety of algebras, which they call tense De Morgan
algebras, and they also developed a representation theory for this class of algebras.

First, recall that an algebra (4, Vv, A,~,0,1) is a De Morgan algebra if (4, V, A,0, 1) is a bounded
distributive lattice and ~ is a unary operation on 4 satisfying the following identities for all x, y € 4:

1. ~(xVy)=~xA~y,
2. ~~X=X,
3. ~0=1.

In what follows a De Morgan algebra (4, V, A,~,0, 1) will be denoted briefly by (4, ~).

DEerNiTION 2.1
An algebra (4,~,G,H) is a tense De Morgan algebra if (4,~) is a De Morgan algebra and G and
H are two unary operations on 4 such that for any x,y € 4:

1. G(1)=1and H(1)=1,
2. G(xAy)=Gx)AG(y) and H(xAy)=H(x)AH(®),
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Tense LM,,-Algebras and Applications 3

3. x<GP(x) and x <HF (x), where F(x)=~ G(~x) and P(x)=~H(~x),
4. GxVvy)<G(x)VF(y)and H(xVy)<H(x)VP(y).

In [IE], a duality for tense De Morgan algebras is described taking into account the results established
by Cornish and Fowler in [ﬁ]. To this purpose, the topological category tmPS of tmP-spaces and
tmP-functions was considered, which we indicate below:

DeriniTION 2.2
A tense De Morgan space (or tmP-space) is a system (X,g,R,R™"), where

(1) (X,g) is an mP-space ([IE]). More precisely,

(mP1) X is a Priestley space (or P-space),
(mP2) g:X — X is an involutive homeomorphism and an anti-isomorphism,

(ii) R is a binary relation on X and R~! is the converse of R such that:

(tS1) For each U € D(X) it holds that Gx(U), Hg-1(U) € D(X), where G and
Hp-1 are two operators on P(X) defined for any U C X as follows:

Gr(U)={x€X|R(x)C U}, (2.1)
Hp 1 (U)={xeX|R'(x)C U}, (2.2)

and D(X) is the set of all increasing and clopen subsets of X,
(tS2) (x,y)€R implies (g(x),g(y)) €R for any x,ye X,
(tS3) for each xe X, R(x) is a closed set in X,
(tS4) for each x € X, R(x)=] R(x)N1 R(x), where | Y (1Y) denotes the set of all
x€X such that x <y (y<x) for some ye Y CX.

DeriNiTION 2.3
A tmP-function from a tmP-space (X1,21,R; ,Rl_l) into another one, (X2,g2, R2, R, 1), is a continuous
and increasing function (P-function) f : X; —> X5, which satisfies the following conditions:

(mf) fogi=gsof (mP-function [LA]),

(tf1) (x,y)€R; implies (f (x),f(v)) € R, for any x,y € X],

(tf2) if (f(x),y) € Ry, then there is an element z € X; such that (x,z) € R; and
f@=y,

(tf3) if (v,f(x)) € Ry, then there is an element z € X; such that (z,x)eR; and
S@)=y.

Next, Figallo and Pelaitay (see [@, Section 5]) showed that the category tmPS is dually equivalent
to the category TDMA of tense De Morgan algebras and tense De Morgan homomorphisms. The
following results are used to show the dual equivalence:

e Let (X,g,R,R’l) be a tmP-space. Then, (D(X),~,,Gg,Hg-1) is a tense De Morgan algebra,
where for all U e D(X), ~, U is defined by

~e U=X\g(U), (2.3)

and Gr(U) and Hp-1(U) are defined as in @I)) and @2)), respectively.

* Let (4,~,G,H) be a tense De Morgan algebra and X(A4) be the Priestley space associated with
A, i.e. X(A) is the set of all prime filters of 4, ordered by inclusion and with the topology having
as a sub-basis the following subsets of X(4):

ou(a)={S € X(4):aeS) for eachae 4, (2.4)
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4 Tense LM, -Algebras and Applications

and
X(4)\o4(a)for eachae 4.
Then, (X(A4),g4,RE,RY,) is a tmP-space, where g4(S) is defined by
24(S)={xeAd:~x ¢S}, for all S € X(A4), (2.5)
and the relations R, and R, are defined for all S, T € X(4) as follows:

(S,T)eRL =G () STCF'(9), (2.6)

(S, T)eR}, < H'(S)ST <SP (S). (2.7)

* Let (4,~,G,H) be a tense De Morgan algebra; then, the function o4: 4 —> D(X(A)) is a tense
De Morgan isomorphism, where o4 is defined as in (Z3).

 Let (X,g,R,R7") be a tmP-space; then, sy : X —> X(D(X)) is an isomorphism of #mP-spaces,
where ey is defined by

ex(x)={UeD(X):xeU}, for allxe X. (2.8)

o Let h:(4y,~1,G1,H))—> (43,~2,G,H;) be a tense De Morgan morphism. Then, the map
®(h): X (4,) — X(4,) is a morphism of tmP-spaces, where

D(h)(S)=h""(S), for all S € X (4). (2.9)

o Letf:(X1,21, R ,Rl’l) — (Xg,gz,Rz,Rz’1 ) be amorphism of trmP-spaces. Then, W(f): D(X;) —
D(X;) is a tense De Morgan morphism, where

W) U)=f"(U), for all U e D(X>). (2.10)

In m], the duality described above was used to characterize the congruence lattice Cony,(A) of
a tense De Morgan algebra (4, ~, G, H). First the following notion was introduced:

DEerINITION 2.4
Let (X,<,g,R,R™") be a tmP-space. An involutive closed subset ¥ (i.e. Y =g(Y) [IE]) of X is a
tmP-subset if it satisfies the following conditions for u,ve X:

(tsl) if (v,u)e R and u €Y, then there exists, we Y such that (w,u) € R and w <v.
(ts2) if (u,v)€eR and u €Y, then there exists, z€ Y such that (#,z)eR and z<v.

The lattice of all rmP-subsets of the rmP-space associated with a tense De Morgan algebra was
taken into account to characterize the congruence lattice of this algebra as it is indicated in the
following theorem:

Tueorem 2.5 ([18, Theorem 6.4])

Let(4,~,G,H) be a tense De Morgan algebra and (X(4), <, gA,RE“;, R}’I) be the rmP-space associated
with A. Then, the lattice C7(X(4)) of all tmP-subsets of X(A4) is anti-isomorphic to the lattice Con,,(A)
of the tense De Morgan congruences on 4, and the anti-isomorphism is the function ®7 defined by
the prescription:

Or(Y)={(a,b)eAd x A:04(a)NY =0,(b)N Y}, for all ¥ €Cr(X(4)). @.11)
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Tense LM,,-Algebras and Applications 5

2.2 n-valued tukasiewicz—Moisil algebras

In the sequel # is an integer number and we use the notation [n]:={1,...,n}.
In [Iﬁl] (see also [E|]), Cignoli defined the n-valued Lukasiewicz—Moisil algebras (or LM,,-algebras)
in the following way:

DEFINITION 2.6
An algebra (4, V, A, ~ {@;}ie(n—11,0, 1) is an n-valued Lukasiewicz—Moisil algebra (or LM, -algebra),
where n>2 is an integer number, if

(1) (4,v,A,~,0,1) is a De Morgan algebra,
(i1) ¢;, i€[n—1], are unary operations on 4 which satisfy the following conditions for any
i,je[n—1]and x,y€4:

(L1 @ixVy)=¢:(x)Vei(»),

(L2) @i(x)V~@i(x)=1,

(L3) gi(gi(x))=g;(x),

(L4) @i(~x)=~@u_i(x),

(L5) i</ implies ¢;(x) < ¢;(y),

(L6) ¢i(x)=¢:(y) for all i e [n—1], implies x=y.

The operators ¢;:A—> A, i €[n—1], are known as chrysippian endomorphisms and the axiom
(L6) is known as Moisil’s determination principle.

An LM,-algebra (4, V, A, ~ {@i}icin-11,0, 1) will be denoted in the rest of this article by its universe
A or by (4, ~,{@i}iectn—11)-
In Lemma [27] we will summarize some properties of these algebras.

Lemma 2.7 ([)
Let (4, ~,{@i}icln—17) be an LM, -algebra. Then the following properties are satisfied, for all x,y € 4:

(L7) @i(xAy)=g¢i(x)Ag;(y) for any i € [n—1]
(L8) x<y ifand only if ¢;(x) <¢@;(y) forany ie[n—1],
L9) ¢1(x)=x,
(L10) x <@u-1(x),
(L11) ¢;(1)=1, ¢;(0)=0 for any ie[n—1],
(L12) any chrysippian endomorphism ¢; preserves arbitrary suprema and infima,
whenever they exist.

DEerINITION 2.8
Let (4, ~,{@i}iepn—11) and (4", ~', {@!}ieln—1)) be two LM,,-algebras. A morphism of LM,-algebras is
amap f :4A—> A’, which satisfies the conditions:

LD f(0)=0,f(1)=1, for~=~"of,,

LE2) fxAy)=f)Af (1), f(xVy)=f(x)Vf(y), for any x,y €4,

(Lf3) fop,=¢]of, for any ie[n—1].
Lemma 2.9 ([El])
Let (4,~,{@i}ic(n—17) be an LM,-algebra and B(4) be the set of all complemented elements of 4.
Then, the following conditions are equivalent for all a € 4:

1. aeB(A)
2. av~a=1and an~a=0,
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6 Tense LM,-Algebras and Applications

3. there are be 4, i € [n—1], such that a=¢;(b),
4. there is i € [n—1] such that a=g;(a),

5. forallie[n—1], a=g¢;(a),

6. foralli,je[n—1], pi(a)=g;(a).

ExawmpLE 2.10
An example of an LM,,-algebra is the chain of » rational fractions L, = {anl 0<j<n—1 }, in which
n>2 is an integer number, endowed with the natural lattice structure and the unary operations ~
and ¢;, defined as follows:

~(L)=1--L and ¢(:L)=0ifi+j<n or ¢;(-L)=1ifi+j>n.

The importance of Example 2.T0lis seen in M]:

THEOREM 2.11
Let (4,~,{¢i}ie(n—1;) be a non-trivial LM,-algebra. Then, the following conditions are equivalent:

(1) 4 is a subdirectly irreducible LM, -algebra,
(ii) A is a simple LM, -algebra,
(iii) A is isomorphic to a LM,-subalgebra of L,,.

The following result was obtained as a consequence of this last theorem.

COROLLARY 2.12
Let (4, ~,{¢i}icn—17) be a non-trivial LM,,-algebra. Then, the following conditions are equivalent:

(1) A is a simple LM,,-algebra,
(i) BA)={0,1}.

Another example of an LM, -algebra is the following one:

ExampLE 2.13
Let (B, A,V,—,0,1) be a Boolean algebra. Let us consider the following set D(B)={(xi,...,X,—1) €
B"!|x; <--- <x,_1}. We define the following unary operations on D(B), for all (xi,...,x,_1) € D(B):

N:D(B)—> D(B),N(x1,....Xp—1)=(—Xp—1,..., —X1),
¢;:D(B)—> D(B), ¢i(x1,...,X,—1)=(x;,...,x;) foreach i€ [n—1].

Then, (D(B),A,V,N {@i}icin-11,(0,...,0),(1,..., 1)) is an LM, -algebra.

The following theorem reduces the calculus in an arbitrary LM, -algebra 4 to the calculus
inL,:

THEOREM 2.14 (Moisil’s representation theorem)
For any LM,-algebra A, there exists a non-empty set X and an injective morphism of LM, -algebras
Q:4— LY.
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Tense LM,,-Algebras and Applications 7

In [@], Figallo, et al. determined a topological duality for LM,-algebras. To this aim, these
authors considered the topological category LM, P of LM, -spaces and LM, -functions. Specifically:

DEriNiTION 2.15
A system (X, g, {fi}ic(n—17) 1s an n-valued Lukaziewicz—Moisil space (or LM,,-space) if the following
properties are fulfilled:

(LP1) (X,g) is an mP-space ([L2]),
(LP2) f;:X — X is a continuous function,

(LP3) x <y implies fi(x)=fi(y) forall ie[n—1],
(LP4) i<j implies f;(x) <f;(x),

(LP5) fiofi=fi,

(LP6) fiog=fi,

(LP7) gofi=fu-i,

n—1
(LP8) X = Ulﬁ(X ),
for at;y i,je[n—1] and for any x,y € X.
DEFINITION 2.16

If (X, g, {fi}iem—1y) and (X', g’ {f! }iein—1)) are two LM, -spaces, then an LM, -function f from X to X’

1

is a continuous and increasing function (P-function), which satisfies the following conditions:

(mPf) fog=g'of (mP-function [LA]),
(LPf) f/of =f of; for all i€ [n—1].

It is routine to prove that the condition (LP8) in Definition .13 is equivalent to any of these
conditions:

(LP9) for each x € X there is an index i € [n— 1], such that x =f;(x),
(LP10) if Y, Z are subsets of X and £, '(Y)=f,""'(Z) for all ie[n—1], then Y =Z.

It is worth mentioning the following properties of LM,,-spaces because they are useful to describe
these spaces:

(LP11) Every LM,-space (X,g,{f:}icin—17) 1s the cardinal sum of a family of chains,
each of which has at most n—1 elements.

(LP12) If (X,g,{fi}icln—1;) is an LM,-space, x € X and C, denotes the unique
maximal chain containing x, then C, ={fi(x):ie[n—1]}.

In addition, in [E], the following results were established:
e If (X, g, {fi}ictn—17) 1s an LM,,-space. Then, (D(X), ~, {(pf‘},»e[n_l]) is an LM, -algebra, where
for every U € D(X), ~, U is defined as in Equation (23]) and
eX(U)=f""(U)forallie[n—1]. (2.12)

o If (4, ~,{¢i}icln—17) 1s an LM,-algebra and X(4) is the Priestley space associated with 4,
then (X(A4), g4, {f"}icin—1y) is an LM,-space, where for every S € X(4), g«(S) is defined as
Equation @3) and

FAS) =9 (S)forallie[n—1]. (2.13)
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8 Tense LM,-Algebras and Applications

" (A~ @dietn-1) Z(DEAD),~, g PYien-1) and

s (X, g Afiliem-11) =X (DX)), gpex)s {ﬁD(X)},-E[,,_l]), via the natural isomorphisms denoted by
0,4 and ey respectively, which are defined as in Equations 4) and &3), respectively.

* The correspondences between the morphisms of both categories are defined in the usual way

as in Equations (Z.9) and @.I0).

Then, from these results it was concluded that the category LM, P is dually equivalent to the
category LM, A of LM,-algebras and LM,-homomorphisms. Moreover, this duality was taken into
account to characterize the congruence lattice on an LM,,-algebra as is indicated in Theorem 2ZI8] In
order to obtain this characterization the modal subsets of the LM,,-spaces were taken into account,
which we mention below:

DeriniTiON 2.17
Let (X, g, {fi}icin_17) be an LM,-space. A subset ¥ of X is modal if ¥ =£,"'(Y) for all i € [n—1].

THEOREM 2.18

[[IE, Theorem 3.1]] Let (4, ~, {gi}icjn—1) be an LM, -algebra and (X(A4), g4, {f}icin—1) be the LM, -
space associated with 4. Then, the lattice Cy(X(4)) of all modal and closed subsets of X(4) is
anti-isomorphic to the lattice Conyyy, (4) of LM,-congruences on A4, and the anti-isomorphism is the
function ©,; :Cy(X(4)) —> Conyyy,(4) defined by the same prescription in @IT).

2.3 Tense n-valued tukasiewicz—Moisil algebras
In [|E], Diaconescu and Georgescu introduce the following notion:

DeriNiTION 2.19

An algebra (4,V, A, ~{@i}icn-11,G,H,0,1) is a tense n-valued Lukasiewicz—Moisil algebra (or
tense LM,-algebra) if (4,V, A, ~,{@i}ic(n-11,0, 1), is an LM,-algebra and G, H are two unary oper-
ators on A which satisfy the following properties:

(T1) G()=1and H(1)=1,

(T2) G(xAY)=G(x)AG() and HxAy)=H(x)AH(p),

(T3) Goi(x)=¢:G(x) and H;(x)=¢;H (x),

(T4) x <GP(x) and x < HF (x), where P(x)=~ H(~x) and F(x)=~ G(~Xx),
for any x,yeX andie[n—1].

A tense LM,-algebra (4,V, A, ~ {¢i}icin—15, G, H,0,1) will be denoted in the rest of this paper by
(4,G,H) or by (4,~ {@i}ictn-11, G, H).
The following lemma contains properties of tense LM, -algebras that are useful in what follows.

Lemma 2.20 ([13, Rdp)
The following properties hold in every tense LM, -algebra (4,G,H):

(T5) x<y implies G(x) < G(y) and H(x)<H(y),

(T6) x <y implies F(x) <F(y) and P(x) <P(y),

(T7) F(0)=0 and P(0)=0,

(T8) F(xVvy)=F(x)VF(y)and P(xVy)=P(x)VP(y),

(T9) PG(x)<x and FH(x)<x,
(T10) GP(x)AF(y)<F(P(x)Ay) and HF (x)AP(y) <P(F(x)Ay),
(T11) GX)AF()<F(xAy) and H(x)AP()<P(xAY),
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Tense LM,,-Algebras and Applications 9

(T12) GxVvy)<G(x)VF(y)and H(xVy)<H(x)VP(),
for any x,y € X.

DEFINITION 2.21 ([IE])
If (4,G,H) and (4',G’,H’) are two tense LM,-algebras, then a morphism of tense LM, -algebras
f:(4,G,H)— (4',G’,H’) is a morphism of LM, -algebras such that

(th) f(G(a))=GC'(f(a)) and f(H(a))=H'(f (), for any a € A.
In [ﬂ], the following example was given:

ExampLE 2.22
Let (X,R) be a frame (i.e. X is anon-empty setand R is a binary relation on X ) and G*, H* : L —> L¥
be defined as follows:

G*(p)) = \pO)ly X. xRy}, H*(p)x) = \ o)y €X. yRx}.

for all peL¥ and xeX. Then, (LY, G*,H*) is a tense LM,-algebra, where the operations of the

no

LM,-algebra L are defined pointwise.

Also, Diaconescu and Georgescu proved the following important result in [ﬁ]. We will offer an
alternative proof of this result in Section 5.

THEOREM 2.23
For any tense LM, -algebra (4, G, H), there exists a frame (X, R) and an injective morphism of tense
LM,,-algebras from (4, G, H) into (LY, G*, H*).

no

3 Topological duality for tense LM ,-algebras

In this section, we will develop a topological duality for tense n-valued Lukasiewicz—Moisil algebras,
taking into account the results established by Figallo ef al. in [@] and the results obtained by A.V.
Figallo and G. Pelaitay in [@]. In order to determine this duality, we introduce a topological category
whose objects and their corresponding morphisms are described below.

DeriniTION 3.1
A system (X, g, {fi}icin—11,R) 1s a tense LM,-space if the following conditions are satisfied:

(i) (X,g,{fi}iern—11) is an LM,,-space (Definition 2.T3)),
(ii) R is a binary relation on X and R~' is the converse of R such that:

(tS1) (x,y)€R implies (g(x).g() €R,

(tS2) for each x€ X, R(x) and R~!(x) are closed subsets of X,

(tS3) for each xe X, R(x)=] R(x)N 1 R(x),

(tS4) (x,y) € R implies (fi(x),f;(y)) €R for any i € [n— 1],

(tS5) (fi(x),y)€R, ie[n—1], implies that there exists z € X such that (x,z) €R and
fi2) <y,

(tS6) (v.fi(x))eR, i [n—1], implies that there exists z € X such that (z,x) €R and
fi2) =y,

(tS7) for each U e D(X), Gr(U),Hg-1(U) € D(X), where Gr and Hg-1 are operators
on P(X) defined as in I) and @2)), respectively.
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10 Tense LM,-Algebras and Applications
REmARK 3.2

(1) Note that if (X, g,{fi}ic(n—1), R) is a tense LM,,-space, then (X, g, {ﬁ}ie[n_”,R,R’l) is a tense
LM,-frame (see [20, Definition 3.3]).

(i1) It should be mentioned that if (X,g,{fi}ic(n—17) is an LM,-space and R=0 C X x X, then
R~'=¢ and it immediately follows that the conditions (tS1), (tS2), (tS3), (tS4), (tS5) and
(tS6) hold. Besides, for all U € D(X), Gr(U)=X and Hp-1(U)=X, from which we obtain
that the relations R and R~! satisfies the condition (tS7). Therefore, (X, g, {f; }ien—11-R) 1s a
tense LM,,-space.

DEFINITION 3.3
A tense LM,-function f from a tense LM,-space (Xi, gl,{ﬂl},«ﬂn_”,Rl) into another one,
(X2, g, {ﬂz},—e[nq],Rz), is a function f : X; — X, such that:

(i) f: X1 —> X, is an LM, -function (Definition Z.T4)),
(i) f:X; — X; satisfies the following conditions, for all x € X;:

(tf1) f(Ri(x) SR:(f (x)) and £ (RT' (1)) SRy ' ( (x)),
(t2) Ry(f (x)) S/ (R1(x)),
(t3) Ry~ (f(0) A/ (R~ ().

The category that has tense LM,-spaces as objects and tense LM, -functions as morphisms will
be denoted by tLM,S, and tLM,A will denote the category of tense LM, -algebras and tense LM,,-
homomorphisms. Our next task will be to determine that the category tLM,,S is naturally equivalent
to the dual category of LM, A.

Now we will show a characterization of tense LM,,-functions which will be useful later.

LEmMmA 3.4
Let (X1, g1, ' biepn11, R1) and (X2, 22, {;*}icin—11, R2) be two tense LM, -spaces and
f:Xi — X, be a tense LM,,-function. Then, f satisfies the following conditions:

(tF4) 1/ (R () =1 Rolf (X)),
(tf5) 1£ (R~ () =1 R~ (£ (x)), for any xe X.

PrOOF.
(tf4): From (tf1), we obtain that 1 /(R;(x)) C4 Ra(f(x)) for any x € X. On the other hand, from (tf2)
we infer that 1 R,(f(x)) 1 f(R1(x)), and therefore the proof is complete.

(tf5): It follows from (tf1) and (tf3). [ |

LeEmma 3.5
Let (X,g,{f}icin—15,R) be a tense LM,,-space. Then for all x, y € X such that (x,y) R, the following
conditions are satisfied:

(1) There is U € D(X) such that y ¢ U and x € Gr(U) or ye U and x & Fr(U), where Fr(U):=
{(xeX:R(x)NU £0}.

(i) Thereis Ve D(X)suchthaty &V andxe Hg-1(V)oryeV andx € Pr-1(V'), where Pg-1(V):=
(xeX :R'(x)NV #0}.

Prook.

(1): Let x,y € X such that y ¢ R(x). Then, from property (tS3) we have that y ¢4 R(x) or y & R(x).
Suppose that y €1 R(x). From property (tS2), R(x) is compact. From this last fact, we infer that
there is U € D(X) such that y ¢ U and R(x) S U. Therefore, x € Gg(U). Suppose now that y &, R(x).
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Tense LM,,-Algebras and Applications 11

Then, taking into account that R(x) is compact, we infer that there is V' € D(X) such that ye V' and
R(x)NV =0 and so x € Fr(V).

(i1): It can be proved in a similar way. [ |

LemmMma 3.6
Let (X1,g1, {}j1 Vietn—11,R1) and (X2, &2, {ﬁz}ie[n_”,Rz) be two tense LM,,-spaces. Then, the following
conditions are equivalent:

(i) f:X; — X; is a tense LM,,-function,
(i1) f:X; — X; is an LM,-function such that, for any U € D(X5):

(tf6) /= (Gr,(U))=Gr,(f~'(U)),

(t67) £~ (Hyer (U) = Hgr (7 (U)).
ProoF.
1) =():
(tf6): Let x €/ ~1(G,(U)). Hence, Ry(f(x))C U. Since U is increasing, from (tf2), we have that
17 (R (x)) C U and so, f(R(x)) C U. Taking into account that R;(x) S/ ~!(f(R(x))), we obtain that
Ri(x)Sf~!(U). Thus, x€ Gg,(f ~'(U)). On the other hand, suppose that x € Gy, (f~!(U)). Then,
Ri(x)Sf~1(U). Since f(f~'(U))C U and U is increasing, we obtain 1 f(R,(x)) € U. From the last
assertion and (tf2), we have that Ry(f(x)) C U. Therefore, x €f (G, (U)).

(tf7): It can be proved in a similar way.

(i1)= (i): First, taking into account that /" is an LM, -function which satisfies (tf6) and (tf7) we can
see that the following conditions are verified:

(tf8) /Y (Fg,(U))=Fg,(f~1(U)) for any U € D(Xy),
(tf9) £~ (Pp1(U)) =Py (f (V) for any U € D(Xy).

Indeed, let U € D(X>), then it follows that f~'(Fg,(U)) =f""(~g, (Gr,(~g, U))=

~a (fi](GRz(Ngz U))) =g (GR1“71(~g2 U))) =g (GRI(Ngl (fﬁl(U))) =

Fr,(f~'(U)) and so (tf8) holds. Property (tf9) can be proved in a similar way.

(tf1): Let x,y € X; such that (1) (x,y) € R;. Suppose that (f (x),f(»)) ¢ R,. Then, from Lemma B3] it
follows that there is U € D(X3) such that (2) f(y) € U and f(x) € Gg,(U) or there is V' € D(X3) such
that (3) f(») € V and f(x) € Fx,(V). If (2) holds, then (4) y ¢/ ~'(U) and x €/ ~!(G,(U)). From this
last statement and (tf6) we obtain that x € Gg, (f "' (U)), and so from (1) we infer that y f~!(U),
which contradicts (4). If (3) holds, then (5) y€f~!(V) and x ¢f ' (Fg,(V)), from which it follows
by (tf8) that x & F, (f ~'(V)). Therefore, R;(x)Nf~'(V)=0. From this last assertion and (1) we infer
that y ¢f~!(V), which contradicts (5). Thus, we conclude that (f(x),f(y)) €R,.

(tf2): Let (1) y € Ry(f (x)). Suppose that (2) y €1 f(R;(x)). Taking into account that X; is a compact
space, property (tS2) of LM,-spaces and the fact that /" is a continuous function it follows that
f(Ri(x)) is compact in X,. Consequently, from the last statement and (2) we infer that there exists
U € D(X;) such that (3) f(R(x))SU and y¢ U. Hence, from this assertion and (1), we obtain
that x €/ ~!(Gg,(U)) and so by (tf4), we get that x ¢ Gg,(f ~'(U)). This statement contradicts (3).
Therefore, R,(f (x)) S1f (R (x)).

(tf3): It can be proved in a similar way. [ |

Next, we will describe some properties of tense LM,,-spaces which will be quite useful for deter-
mining the duality for tense LM, -algebras that we are interested in. Here and subsequently, max ¥
denotes the set of maximal elements of Y.
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12 Tense LM,-Algebras and Applications

Lemma 3.7 ([Ld])
Let (X,g,{fi}icn—17,R) be a tense LM,-space. Then, the following conditions are verified:

(tS8) X is the cardinal sum of a family of chains, each of which has at most #—1 elements.

(tS9) If x€ X and C, denotes the unique maximum chain containing x, then
Ce={fix):ie[n—1]}
(tS10) y emaxJX if and only if y=£,_1(»).

Proor. It is a consequence of the fact that every LM, -space satisfies properties (tS8), (tS9) and

(tS10).

Lemma 3.8

Let (X,g,{f:}icin—1],R) be a tense LM, -space. Then, the following conditions are satisfied for any

x,y,eX andie[n—1]:
(tS11) R(g(x)) =g(R(x)), (S12) RGNS U i),

YER(fi(x)
R (g(x))=g(R™'(x)),
ESIBRGENS U M), (S1) ARG =1 Ra(f (),
YERT(fi(x))
(tS15) 1 /iR~ () =1 Ry~ (f (%)), (tS16) £, (Gr(U)) = Gr(f;'(U)),
(tS17) £ (He1(U) =He1(f;'(U)),  (tS18) £~ (~g (U)) = (fy (V)
(tS19) £~ (Fr(U) =Fr(f;”'(U)), (tS20) £, (Pr+(U) =P (1 (U)).

PRrOOF.
(tS11): It is a consequence of (tS1) and the fact that g is involutive.

(tS12): Let x,y € X such that (fi(x),») €R, then from (tS5) there exists z€.X such that
(x,z) €R and f;(z) <y. From this last assertion and properties (LP3) and
(LP5) it follows that fi(z) =f;(y) and so f;(y) <y.

(tS13): It can be proved using a similar technique to that used in the proof of (tS12).
From (tS4), (tS5) and (tS6) it follows that properties (tS14) and (tS15) hold.

(tS16): Taking into account (tS14), the fact that the functions f;, i € [n — 1], are continuous
and the proof of Lemma[3.6] we obtain that (tS16) holds.

(tS17): It can be proved in a similar way taking into account (tS15).

(tS18): /i (~, U)=/' X \g " (U) =X \f (g (U)=X\(gof) ' (U)=
X \f,,;-(U)=X\(ﬁH-og)—l(U)=X\g—l(ﬂil,-(U))=X\g(ﬁ:£-(U>)=
Ng n:I(U)
(tS19): Fr(f; ' (U)) =~ (Gr(~¢ (£ (U)))) = ~4 (Gr(~, (' (U)))) =
~ g Gr(Z (g U)) =~ (£ H(Gr(~g UN) =1 (~¢ Gr(~ U) =1 (Fr(U)).

(tS20): It can be proved using a similar technique to that used in the proof of property
(tS19).

COROLLARY 3.9

Let (X, g,{fi}icin—11) be a tense LM,,-space. Then, the conditions (tS4), (tS5) and (tS6) can be replaced

by the following conditions:

(t816) f;'(Ga(U))=Gg(f;'(U)) for any U € D(X),
(tS17) £~ (Hg-1(U))=Hz-1 (" (U)) for any U € D(X).
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Tense LM,,-Algebras and Applications 13

Proor.
(=): It follows from Lemma 3.8

(<): It can be proved using a similar technique to that used in the proof of Lemma 3.6l [ |

Next, we will define a contravariant functor from tLMnS to tLMnA.

Lemma 3.10
Let (X, g, {fi}icin—17.R) be a tense LM,-space. Then,

V(X)=(D(X),~, {0 Yietn—11, Gr, Hr1,0,X)

is a tense LM,-algebra, where for all U e D(X), ~, U, ¢X(U), i€[n—1], Gr(U) and Hz-1(U) are
defined as in Equations @3), @.12), @) and @.2), respectively.

Proor. From [E, Lemma 2.1] and [@, Lemma 4.3] it follows that (D(X), ~¢, {¢ }ict—11, 4,X ) is an
LM,-algebra and (D(X),~,,Gr,Hg-1,9,X) is a tense De Morgan algebra, respectively. Therefore,
the properties (T1), (T2) and (T4) of tense LM, -algebras (Definition Z-T9) hold. In addition, since
any U € D(X) satisfies properties (tS16) and (tS17) in Lemma[3.8] then we can assert that property
(T3) holds too, and so the proof is complete. [ |

Lemma 3.11
Letf:(X1,21, {]21 Viem—11) — (X2, &2, {fiz}ie[n_”) be a morphism of tense LM,,-spaces. Then, the map
W(f):D(X,) —> D(X;) defined by W(f)(U)=f""(U) forall U € D(X>), is a tense LM,,-homomorphism.

Proor. It follows from the results established in [[1d, Lemma 2.3] and Lemma 5.0 [ |

The previous two lemmas show that W is a contravariant functor from tLM,S to tLM,A. To
achieve our goal we need to define a contravariant functor from tLM,A to tLM,S.

LEmma 3.12
([IE, Lemma 3.8]) Let (4,G,H) be a tense LM,-algebra and let S, 7 € X(4). Then the following
conditions are equivalent:

(i) GT'(S)STCF'(9),
(i) H-(T)cS<PI(T).

DErFiNiTION 3.13
Let (4,G, H) be a tense LM,,-algebra and let R? be the relation defined on X(4) by the prescription:

(S, T)eR <= G 1(S)cTCF(S). (3.1)

REMARK 3.14
Lemma[Z T2 means that we have two ways to define the relation R, either by using G and F, or by
using H and P.

The following lemma, whose proof can be found in m, Lemma 3.11], will be essential for the
proof of Lemmal[3.10

Lemma 3.15
Let (4,G,H) be a tense LM,-algebra and let S € X(4) and a€ A. Then,

(i) G(a)¢ S if and only if there exists 7 € X(A) such that (S,T)eR? and a ¢ T,
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14 Tense LM,-Algebras and Applications

(i) H(a) ¢S if and only if there exists 7' € X(A4) such that (S, 7T) eR " anda ¢T.

Lemma 3.16

Let (4,G,H) be an LM, -algebra and X(A) be the Priestley space associated with 4. Then, ®(4)=
(X(A), g4, I }ictn—17, RY) is a tense LM,,-space, where for every S € X(4), g4(S) and /(S are defined
as in (3) and @ZI3), respectively and R* is the relation defined on X(4) as in (EI). Besides,
04:A—> D(%(A)), defined by the prescription (Z4), is a tense LM,-isomorphism.

Proor. From [@, Lemma 2.2] and [IE, Lemma 5.6] it follows that (X(4), g4, {//*}icn—17) is an LM,,-
space and (X(4),g4,R*,R* 71) is a tense mP-space, and so properties (tS1), (tS2), (tS3) and (tS7)
of tense LM,-spaces hold (Definition B.I). Also, from Corollary we have that the conditions
(tS4), (tS5) and (tS6) are satisfied. Therefore, we have that (X(4),g4, {/;1}icin—1),R?) is a tense
LM, -space. In addition, from [@, Lemma 2.2], we have that o4 is an LM,,-isomorphism. Also for
all ac A, Gri(oy(a))=04(G(a)) and Hy,-1(04(a)) =04(H(a)). Indeed, let us take a prime filter S
such that G(a)¢S. By Lemma there exists T € X(4) such that (S,T)eR? and a¢ T. Then,
RA(S) Zo4(a). So, S ¢ Gri(o4(a)) and, therefore, Gg: (o (a)) C 04(G(a)). Moreover, it is immediate
that 04(G(a)) € Gg,(04(a)). Similarly we obtain that H,-1(04(a))=04(H (a)) and so o, is a tense
LM, -isomorphism. | |

Lemma 3.17

Let(4,,G,Hy)and (4,, G,, H,) be two LM, -algebras and & : 4| —> A, be atense LM,,-homomorphism.
Then, the map ®(h): X(4,) —> X(4,), defined by ®(h)(S)=h"1(S) for all S € X(A4,), is a tense LM, -
function.

Proor. It follows from the results established in [@, Lemma 2.4] and [@, Lemma 5.7]. [ |

Lemmas 316 and B-T7] show that ® is a contravariant functor from tLM,A to tLM,,S.

The following characterization of isomorphisms in the category tLM,,.S will be used to determine
the duality that we set out to prove.

ProposiTiON 3.18
Let (X1,g1, ' Yiepn—1),R1) and (X2, 22, {;*}icin—11, R2) be two tense LM,-spaces. Then, the following
conditions are equivalent, for every function f: X; — X;:

(1) f is an isomorphism in the category tLM,,S,
(i1) f is a bijective LM, -function such that for all x,y € X;:
(ith) (r.y)eR) = (f(x).f (¥)) €R,.

Proor. It is routine. | |

The map ey : X —> X(D(X)), defined as in Equation 2.8)), leads to another characterization of
tense LM, -spaces, which also allow us to assert that this map is an isomorphism in the category
tLMnsS, as we will describe below:

Lemma 3.19

Let (X, <,g,{fi}ic;n—1],R) be a tense LM,-space, ex: X —> X(D(X)) be the map defined by the
prescription (Z)) and let R be the relation defined on X(D(X)) by means of the operators Gy
and F'r as follows:

(ex(x),ex(») €R™Y 4= G (ex(x) Sex () S Fy ' (ex(x)). (3.2)
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Tense LM,,-Algebras and Applications 15

Then, the following property holds:
(tS5) (x,y) R implies (ex(x),ex(y)) € RPY.

Proor. It is routine. [ |
ProposiTiON 3.20

Let (X, <,g,{fi}icin—11,R) be a tense LM,,-space, ey : X —> X(D(X)) be the function defined by the
prescription (Z8) and let RP™) be the relation defined on X(D(X)) by the prescription (3.2). Then,
the condition (tS3) can be replaced by the following one:

(tS18) (ex(x),ex(») € RPX) &> (x,y) €R.
Proor. It can be proved in a similar way to [@, Proposition 5.5]. [ |

CoRrROLLARY 3.21
Let (X, <,g,{fi}icin—11,R) be a tense LM,-space. Then, the map ey : X — X(D(X)) is an isomor-
phism in the category tLMnS.

Proor. It follows from the results established in [@, Lemma[319] Propositions Z1Rand 320]. W

Then, from the above results and using the usual procedures we can prove that the functors ® oW
and W o @ are naturally equivalent to the identity functors on t£LM,.S and tLM, A, respectively, from
which we conclude:

THEOREM 3.22
The category ¢£LM,,S is naturally equivalent to the dual of the category tLM,A.

4 Simple and subdirectly irreducible tense LM, -algebras

In this section, our first objective is the characterization of the congruence lattice on a tense LM,,-
algebra by means of certain closed and modal subsets of its associated tense LM,-space. Later,
this result will be taken into account to characterize simple and subdirectly irreducible tense LM,,-
algebras. With this purpose, we will start by introducing the following notion.

DerNiTION 4.1
Let (X, g,{fi}ien—17-R) be a tense LM,-space. A subset ¥ of X is a tense subset if it satisfies the
following conditions for all y,z€ X

(tsl) if ye Y and z € R(y), then there is we Y such that we R(y)N | z,
(ts2) if yeY and ze R™!(y), then there is ve Y such that ve R~!'(y)N | z.

In [@], the following characterizations of a modal subset of an LM,-space were obtained.

ProposITION 4.2
[[IE, Proposition 3.5]] Let (X,g, {fi}icin—17) be an LM,-space and Y be a non-empty subset of X.
Then, the following conditions are equivalent:

(i) Y is modal,
(i1) Y is involutive and increasing,
(iii) Y is a cardinal sum of maximal chains in X.

CoroOLLARY 4.3
Let (X, g, {fi}ic—17) be an LM, -space. If {Y;};c; is a family of modal subsets of X, then (Y; is a
iel

modal subset of X.
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16 Tense LM,-Algebras and Applications
Proor. It is a direct consequence of Proposition 2] [ |

The notion of a modal and tense subset of a tense LM,,-space has several equivalent formulations,
which will be useful later:

ProrosiTiON 4.4
Let (X,g,{fi}iem—15,R) be a tense LM,-space. If Y is a modal subset of X, then the following
conditions are equivalent:

(i) Y is a tense subset,
(i1) for all yeY, the following conditions are satisfied:
(ts3) RY)SY,
(ts4) R7'(»)CY,
(i) Y=Gr(Y)NYNHg-1(Y), where Gp(Y):={xeX:R(x)Z Y} and
Hp-1(Y):={xeX:R'(x)CY}.

PRrOOF.

(i) = (ii): Let ye Y and z € R(y), then by (i) and (tsl), there is we ¥ such that we R(y) and w<z.
Since Y is modal, from Proposition 2] it follows that z€ Y and therefore R(y) C Y. The proof that
R7(y)CY is similar.

(i1) = (i): It is immediate.
(ii) < (iii): It is immediate. | |
The closed, modal and tense subsets of the tense LM, -space associated with a tense LM, -algebra

perform a fundamental role in the characterization of the tense LM,,-congruences on these algebras
as we will show next.

THEOREM 4.5

Let(4, G,H)be atense LM,-algebra, and (X(4), g4, {fiA Vieln—11s R")be the tense LM,,-space associated
with 4. Then, the lattice Cy;r(%(4)) of all closed, modal and tense subsets of X(4) is anti-isomorphic
to the lattice Conyyy,(4) of tense LM,-congruences on A4, and the anti-isomorphism is the function
O®yr defined by the same prescription as in Equation @.IT).

Proor. Itimmediately follows from TheoremsP. 3 andP.I8land the fact that Cyr(X(4))=Cp(X(4))N
Cr(X(4)) and forall ¢ CAxA, ¢ecConyy,(A4)iff ¢ is both an LM,,-congruence on 4 and a tense
De Morgan congruence on 4. [ |

Next, we will use the results already obtained in order to determine the simple and subdirectly
irreducible tense LM, -algebras.

COROLLARY 4.6
Let(4, G,H)be atense LM,-algebra, and (X(A4), g4, {fiA Vieln—11s R")be the tense LM,,-space associated
with A. Then, the following conditions are equivalent:

(1) (4,G,H) is a simple tense LM, -algebra,
(i) Cur(X(4))={0, X(4)}.

Proor. It is a direct consequence of Theorem .3 [ |
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Tense LM,,-Algebras and Applications 17

COROLLARY 4.7
Let (4,G,H) be a tense LM,-algebra, and (X(4), {ff‘},»e[,,_l J,RA) be the tense LM,,-space associated
with A. Then, the following conditions are equivalent:

(1) (4,G,H) is a subdirectly irreducible tense LM,-algebra,
(ii) there is Y € Cpr(X(A4))\{X(4)} such that ZC Y for all Z € Cpr(X(A4))\ {X(4)}.

Proor. It is a direct consequence of Theorem E.3] [ |

ProrosiTiON 4.8
Let (X, g, {fi}icin—17,R) be a tense LM,,-space. If ¥ is a modal subset of X, then Gr(Y) and Hz-1(Y)
are also modal.

Proor. Let Y be a modal subset of X and z € Gg(Y). Therefore, (1) R(z) S Y. Let (2) we C;, where C,
is the unique maximal chain containing z, and so from property (tS9), C, ={fi(z):i € [n—1]}. Then,
there are ng, n) € [n— 1] such that (3) z=f,,(z) and (4) w=/,, (z). Let (§) t € R(w), then by (4) we have
that (f,,(z),t) € R and therefore, from (tS4) we infer that (f,,(f,, (2)).fs,(¢)) € R. From this last fact,
property (LP5) and (3) it follows that (z, f,,(¢)) € R. Consequently by (1), we get that f,,,(f) € Y. Since
Y is modal, from Proposition 2] and (tS9), we obtain that C;,={fi(r):i€[n—1]} C Y, and so from
(LP9), we conclude that ¢t € Y, which allows us to assert from (5) that R(w) C Y and thus w € Gg(Y).
Finally, we can say from (2) that C, C Gg(Y) for all z € Gr(Y), and hence from Proposition £2] we
conclude that Gg(Y) is modal. The proof that Hz-1(Y) is modal is similar. [ |

The characterization of modal and tense subsets of a tense LM, -space, given in Proposition F.4]
prompts us to introduce the following definition:

DEFINITION 4.9
Let (X,g,{fi}icm—11, R) be a tense LM,,-space and let dx : P(X) —> P(X) defined by:

dy(Z)=Gr(Z)NZNHg-1(Z), for allZ e P(X). 4.1)
For each new, let dy : P(X) — P(X), defined by:
AN (2)=2,dT N (Z2)=dx(di(Z)), for allZ e P(X). (4.2)

By using the above functions dy, d¥, n € w, we obtain another equivalent formulation of the notion
of modal and tense subset of a tense LM,,-space.

LeEmma 4.10
Let (X, g, {f:}icin—17, R) be atense LM,,-space. If Y is modal subset of X, then the following conditions
are equivalent:

(i) Y is a tense subset,
(i) Y=dy(Y) forall new,
(ii)) Y= di(Y).
new

Proor. It is an immediate consequence of Proposition 4] and Definition 9] [ |

ProrosiTioN 4.11
Let (X, g,{fi}icn—17,R) be a tense LM,,-space and (D(X), Gg, Hg-1) be the tense LM,-algebra associ-
ated with X. Then, for all n€ w, for all U,V € D(X) and for all i € [n— 1], the following conditions
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18 Tense LM,-Algebras and Applications

are satisfied:

(d0) d(U)eD(X),
(dl) di(X)=X and dy () =0,

(d2) di'(U)<dy(U),

(d3) dHUNV)=dp(U)Nd}(V),

(d4) U CV implies dy(U) S dy(V),

(dS) dy(U)< U,

(d6) dy"'(U) S Gr(dy(U)) and dy™ (U) € Hp-1(d3 (V)

(d7) dr(f, " (U))=f""(d(U)) for any new and i e [n—1],

(d8) if U is modal, then d¥(U) is modal,

(d9) N dx(f,'(U)) is a closed, modal and tense subset of X and therefore

new
de(Ndy (UM = Ndy (i (U)).
new new
Proor. From Definition f.9] Lemma and the fact that Gy, Hz-1 and d}, n € w, are monotonic
operations it immediately follows that properties (d0), (d1), (d2), (d3), (d4), (d5) and (d6) hold.

(d7): Let UeD(X) and ie[n—1], then dy(f; '(U)=/f""(U)NG(f; " (U)NHg-1(f; (U)).
From the last assertion and properties (tS17) and (tS18) in Lemma B8 we infer that (1)
dy(f ') =" (UNGr(U)NHz-1(U)=f,""(dx(U)) for any UeD(X) and ie[n—1]
Suppose that di ' (f, ' (U))=f""(dy ' (U)), for any n€w and i € [n— 1], then (2) d}.(f; ' (U))=dx
@' (7 (U)) =dx (f;, ' (d ' (U))). Taking into account that d% '(U)e D(X) and (1), we get that
dy (N (dy " (U)) =f " (dx(dy " (U)))=f""(d%(U)), and so from (2) the proof is complete.

(d8): It is a direct consequence of Corollary 3] and Proposition F.8]

(d9): Let U € D(X). Then, from Lemma[ZI@and the prescription @12)), we have thatf,~' (U) € D(X).
Also, from (LP5), f;~'(U) is a modal subset of X for all i € [n— 1], from which it follows by (d7) that
fornewandie[n—1], d;(fi_l(U)) is a modal and closed subset of X, and so by Corollary [£3]and
the fact that the arbitrary intersection of closed subsets of X is closed, we get that [ ol)'}(}?_l (U))isa

new

modal and closed subset of X. If () d)"((ﬁ_l(U)) =, then it is verified that [ d;(ﬂ_l(U)) isaclosed,

new new

modal and tense subset of X'. Suppose now that there exists y € () d(f;,”'(U)). Since, ;' (U) e D(X)

new
for any i € [n— 1], then from (d6) it follows that y € Gr(ds™" (£, (U))) and y € Hz-1 (d3 " (f, ' (U))) for
all n € w. Therefore, R(y) Sdy ' (' (U)) and R (y) Sdi ' (£, (U)) for all n € w and consequently
R(y)C N di(f (U)) and R~ (») € (N d2(f; ' (U)) for all i € [n— 1]. From these last assertions, the

new new

fact that () d%(f;”'(U)) is a modal and closed subset of X and Proposition EEIT} we have that

new

M d2(f,(U)) is a tense subset, from which we conclude, by LemmalETQ] that dy( () di(f; ' (U)) =

new new

N dz (i~ (V). [ |
new

As consequences of PropositionEIT]and the above duality for tense LM,,-algebras (Lemma 3.T6)
we obtain the following corollaries.

COROLLARY 4.12
Let (4,~,{¢i}icin—11, G, H) be a tense LM,-algebra and consider the function d: 4 — 4, defined by
d(a)=G(a)AanH(a), for allac A. For all n € w, let d": A —> A be a function, defined by d°(a)=a
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Tense LM,,-Algebras and Applications 19

and d"*'(a)=d(d"(a)), for all a€A. Then, for all n€w and a, b € 4, the following conditions are
satisfied:

(d1) d"(1)=1 and d"(0)=0,

(d2) d"!(a)<d"(a),

(d3) d"(anb)=d"(a)~nd"(b),

(d4) a<b implies d"(a) <d"(b),

(d5) d"(a)<a,

(d6) d"+'(a)< G(d"(a)) and d"+(a) < H(d"(a)),

(d7) forallie[n—1] and n€w, d"(¢pi(a))=pi(d"(a)).

COROLLARY 4.13

Let (4,G,H) be a tense LM,-algebra, (X(4), g4, {f"}icin—1;,R?) be the tense LM,-space associated
with 4 and let o4 : 4 —> D(X(4)) be the map defined by the prescription (Z4). Then, o,(d"(a))=
dy)(04(a)) forall ae 4 and n€ w.

Proor. It is a direct consequence of Lemma[3.10 [ |

It seems worth mentioning that the operator d defined in Corollary .12l was previously defined in
[ﬂ] for tense algebras, in [é] for tense MV -algebras, and in [@ E for tense 9-valued Lukasiewicz—
Moisil algebras, respectively.

LeEmma 4.14
Let (4,G,H) be a tense LM,-algebra. If /\ g; exists, then the following conditions hold:

iel

(1) A G(a;) exists and /\G(a )=G(Aa),

iel iel

(i) A H(a;) exists and /\H(al) H(Aa),
iel iel iel

(iii) Ad(a;) exists and A\d"(a;)=d"(\a;) for all ne w.
iel iel iel

ProOF. (i): Assume that a;€4 for all i€l and /\a; exists. Since /A a; <a;, we have by (T2) that
iel iel
G(/\a;)<G(a;) for each i . Thus, G(/\al) is a lower bound of the set {G(a;):i€l}. Assume now

iel

that b is a lower bound of the set {G(a; ) i e[ }. From (T5) and (T6) we have that P(b) <PG(a;) <a;

for each iel. So, P(b)< /\a,. Besides, the pair (G,P) is a Galois connection, this means that
iel

x<G(y)<= P(x)<y, for all x,y€ 4. So, we can infer that b < G(/\a;). This proves that A\ G(a;)
iel iel
exists and A\ G(a;)=G(\a).

iel iel
(i1): The proof for the operator H is analogous to the proof for G.

(iii): It is a direct consequence of (i) and (ii). [ |
For invariance properties we have:

Lemma 4.15
Let (X, g,{fi}icn—11, R) be a tense LM,,-space and (D(X), Gg, Hg-1) be the tense LM,-algebra associ-
ated with X. Then, forall U, V', W € D(X) such that U =dx(U), V =dx (V) and for some iy € [n— 1],
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20 Tense LM,-Algebras and Applications

dX(]ﬁo_l(W)) = fin_l(W), the following properties are satisfied:

(1) UNV =dy(UNV),
(ii) UUV =dx(UUY),
(i)~ U=dx(~, U),
(iv) dx(;' W) =f"'(W) forall ie[n—1].

PRrOOF.
(1): It immediately follows from the definition of the function dy and property (T2) of tense LM,,-
algebras.

(i1): Taking into account that U =dy(U) and V =dx(V') and the fact that the operations Gy and
Hp-1 are increasing, we infer that UUV C Gr(UUV) and UUV C Hg-1(UUV), which imply that
UUV =dxy(UUYV),

(iii): Let U € D(X) such that (1) U =dx(U). Then, it is verified that ~, U € Gg(~, U). Indeed, let
xe~, U and (2)y € R(x). Then,x e X\ g(U) and hence (3) x g(U). Suppose that y € g(U), then there
is ze U such that y=g(z), and by (tS11) in Lemma3.8 we get that R~'(y) =R~ '(g(z)) =g(R"'(2)).
Since z € U, from (1) it follows that R"!(z) C U and so g(R~!(2))) Cg(U). Thus, R~ (y) C g(U). From
the last statement and (2), we infer that x € g(U), which contradicts (3). Consequently, y e~, U,
which allows us to assert that R(x) &~, U and therefore ~, U € Gg(~ U). In a similar way, we can
prove that ~; U C Hp-1(~, U). From the two last assertions we conclude that ~, U =dx(~, U).

(iv): If W eD(X) and dX(ﬂO*l(W)) = ﬁ;l(W) for some iy € [n—1], then from (d7) it follows that
S \(dx(W))=f;'(W). From the last assertion and (LP5) we infer that ;' (dx(W))=/;"" (W) for all
ie[n—1], and so from (d7), we get that dy (f; "' (W))=f,"' (W) for all i€ [n—1]. | |

COROLLARY 4.16
Let (4,~,{¢:}icin—17. G, H) be a tense LM,-algebra. Then, for all a,b,c € A, such that a=d(a), b=
d(b) and ¢;,(c)=d(¢;,(c)) for some iy € [n— 1], the following properties are satisfied:

(i) d(anb)=anb,
(ii) d(avb)=aVb,
(iii) d(~a)=~a,
(iv) @i(c)=d(gi(c)) forall all ie[n—1].

Proor. It is a direct consequence of Lemmas [3.16] and [4.13 | |
Lemma 4.17
Let (4,G,H) be a tense LM,,-algebra. Then, for all a € 4, the following conditions are equivalent:
(1) a=d(a),
(11) a=d"(a) for all ne w.
Proor. It immediately follows from Corollary 12 [ |
Lemma 4.18

Let (4,~,{¢i}icin—11, G, H) be a tense LM,-algebraand C(4):={a €A :d(a)=a}. Then, (C(4),V,A,~
A@itien—11,0,1) is an LM,-algebra.

Proor. From Corollary and property (dl) in Corollary we have that
(C(A4),Vv,A,~,0,1) is a De Morgan algebra. Taking into account that a=d(a) for all ae€(C(4),
and the property (iv) in Corollary it follows that ¢;(a)=g¢;(d(a))=d(¢:i(a)) for all aeC(4)
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Tense LM,,-Algebras and Applications 21

and i € [n—1]. Therefore, ¢;(a) e C(A) for all aeC(A4) and i € [n— 1], from which we conclude that
(CA), vV, A~ A@itiein-11,0,1) is an LM,-algebra. [ |

CoroLLARY 4.19
Let (4,G,H) be a tense LM,-algebra. Then, (B(C(4)),G,H) is a tense Boolean algebra, where
B(C(A)) is the Boolean algebra of all complemented elements of C(4).

Proor. It is a direct consequence of Lemmas [Z9and B8 and property (iv) in CorollaryE1a M

Remark 4.20

Let us recall that under the Priestley duality, the lattice of all filters of a bounded distributive lattice
is dually isomorphic to the lattice of all increasing closed subsets of the dual space. Under that
isomorphism, any filter 7 of a bounded distributive lattice 4 corresponds to the increasing closed set

Yr={(Se€X(4):TCS})=( \lou(@):aeT) (4.3)

and O¢(Y7)=0O(T), where Oc is defined as in @ZI)) and ©(T) is the lattice congruence associated
with 7.
Conversely any increasing closed subset Y of X(4) corresponds to the filter

Ty={acA:Y Coya)}, (4.4)

and O(Ty)=0Oc(Y), where O is defined as in (ZI)), and O(TYy) is the lattice congruence associated
with Ty.

Taking into account these last remarks on Priestley duality, Theorem and Proposition
we can say that the congruences on a tense LM,,-algebra are the lattice congruences associated with
certain filters of this algebra. So our next goal is to determine the conditions that a filter of a tense
LM, -algebra must fulfil for the associated lattice congruence to be a tense LM, -congruence.

THEOREM 4.21
Let (4,~,{¢i}iem—17. G, H) be a tense LM, -algebra. If S is a filter of 4, then, the following conditions
are equivalent:

(1) O(S)€ Conyy,(4),
(i) d(¢i(a))eS forany aeS andie[n—1],
(iii)) d"(¢i(a))€S forany aeS, new andie[n—1].

ProOE.

(1) = (ii): Let S be a filter of 4 such that ©(S) € Conyy,(A). Then, from Priestley duality and
Theorem B3] it follows that ©(S) = 0,7 (Ys), where O(S) is the lattice congruence associated with
S, and Ys={xe€X(4):SCx}=()o4(a) is a closed, modal and tense subset of the tense LM,-space

aes

X(A), associated with 4. Since Y is modal and o, is an LM, -isomorphism, then Ys= fi"r' (Ys)=

fl.Afl (ﬂ oA(a)) = ou(¢i(a)) for any i€ [n—1]. From the last assertion, and taking into account
aeS

acS

that Y is a tense subset, Lemmas [£10] and E12] Corollary B13] and the fact that the function

dx): X(4) —> X(4) is monotone, we infer that Yszdx(A)< ﬂoA(goi(a))> C N dzxw(0a(pi(a)) =
aes aeS

(N oa(d(pi(a))) C (ou(pi(a))=7Ys, forany i € [n— 1]. Hence Y5 = () 04(d(¢:(a))) forany i€ [n—1],

aes aes aeS
from which we conclude that d(g;(a)) €S for any a€S and ie[n—1]. Indeed, assume that a€ S,
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22  Tense LM,-Algebras and Applications

then a € x for all x € Yy, from which it follows that x € () o4(d(¢:(a))) for any i € [n— 1], and thus

acsS
d(gi(a))ex forall x € Ys and i € [n— 1]. Therefore, d(¢;(a)) € () x for any i € [n— 1], and taking into
Xe YS
account that S= (") x, we obtain that d(¢;(a)) €S for any i € [n—1].
x€¥s

(ii) = (i): From Priestley duality and Equation @3)), we have that () o4(a)=Ys={x€ X¥(4): S Cx}

aes
is an increasing and closed subset of X(4) and ©(S)=0O(Ys). By Theorem H.3] it remains to
show that Y5 is a modal and tense subset of X(A4). From the hypothesis (ii), it follows that for
all aeS, ie[n—1] and xe¥s, d(¢;(a)) ex. Therefore, from this last fact and Corollary it
results that ¢;(d(a))ex for all i€[n—1] and all x € Yy, and hence (1) Y5 C [ o4(@i(d(a))) for all

aes
i € [n—1]. Consequently, by CorollaryE12] Y5 C () o4(¢;(a)) for all i € [n— 1], and from this asser-

acs
tion it follows that Y5 C () o4(¢i(a)) C [ o4(a)=7Y,. Since o4 is an LM,-isomorphism, then we
aes aes

get that «(2) Y, = N ou(@i(@)= /" (o4(@) =" ( N UA(a)) =/" (Ys). Therefore from the last
aes

aes aes

statement and (LP5) we conclude that Ys=f/4(Y;) for all ie[n—1] and so Ys is modal. In addi-
tion, from (1), (2) and Corollary we infer that Y5 C () o4(d(¢1(a))) € (ou(pi1(a))=7Y, and

aesS acS
hence, Ys = () 0.4(d(¢1(a))). Then, taking into account CorollaryE.T3]and that ) dx(4) (04 (¢1(a))) =

aeS acS

dxa) ( N UA(<p1(a))>, we obtain that Yg =dx4)(Ys), and thus, from Lemma@.I0 and the fact that Y
aesS

is modal, we infer that Ys is a tense subset of X(4). Finally, since Yy is a closed, modal and tense
subset of X(4) and ©(S)=0,r(¥s), we conclude, from Theorem E3] that ®(S) € Conyyyy, (A).

(ii) < (iii): It is trivial. | |

Theorem L2T] leads us to introduce the following definition:
DEFrINITION 4.22
Let (4,G,H) be a tense LM, -algebra. A filter S of 4 is a tense filter iff
(tf) d(a)eS forall ae S or equivalently d"(a)e S for all ae S and new.

Now, we remember the notion of Stone filter of an LM, -algebra.

DEFINITION 4.23
Let (4, ~,{¢i}icin—17) be an LM, -algebra. A filter S of 4 is a Stone filter iff

(sf) gi(a)eS forall ae S and i € [n— 1], or equivalently ¢(a)€ S for all a€S.

Lemma 4.24
Let (4,~,{@i}icin—11, G, H) be a tense LM,-algebra. If S is a Stone filter of 4, then the following
conditions are equivalent:

(i) S is a tense filter of 4,
(i) d"(¢i(a))eS forallaeS, new andie[n—1].

Prook.

(i) = (ii): Let S be a Stone filter of 4, a€S, n€w and i €[r—1]. Since S is an Stone filter of 4,
we have that ¢;(a) €S. From this last assertion and the fact that S is a tense filter we conclude that
d"(gi(a))€S.
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Tense LM,,-Algebras and Applications 23

(il)) = (i): Let a€S. Then, from the hypothesis (ii) we obtain that d"(¢;(a))€S. From the last
assertion, properties (L9) and (d5) and the fact that S is a filter of 4 we infer that d"(a) € S for all
n € w, and therefore S is a tense filter of A4.

We will denote by Fr5(A) the set of all tense Stone filters of a tense LM,,-algebra (4, G, H).

ProrosiTION 4.25
Let (4, ~,{¢i}iem—11, G, H) be a tense LM, -algebra. Then, the following conditions are equivalent
forall 0 CAx A4:

(1) 6 €Conypy,(A),
(ii) there is S € Frg(A) such that 6 = ©O(S), where O(S) is the lattice congruence associated with
the filter S.

Proor.

(i) = (ii): From (i) and Theorem it follows that there exists ¥ €Cyr(X(4)) such that (1)
Our(Y)=0. Then, from Remark 20 we infer that Ty ={a€4:Y Coy(a)} is a filter on 4 and (2)
O(Ty)=0(Y)=0Oyr(Y). Therefore O(Ty) € Conyr,(4), and so from Theorem @2]] we obtain that
Y € Frs(A). This last assertion, (1) and (2) enable us to conclude the proof.

(ii) = (i): It immediatly follows from Theorem 4211 [ |

CoroLLARY 4.26
Let (4,G,H) be a tense LM, -algebra. Then,

(1) (4,G,H) is a simple tense LM,,-algebra if and only if Frs(4)={4,{1}}.
(i) (4,G,H) is a subdirectly irreducible tense LM, -algebra if and only if
there is 7' € Frs(A4), T #{1} such that T C S- for all S € Frs(4), S #{1}.

Prook. It is a direct consequence of Corollaries B8l and B7) Remark BE20] and Proposition E23] W

Finally, we will describe the simple and subdirectly irreducible tense LM, -algebras.

In the proof of the following proposition we will use the finite intersection property of compact
spaces, which establishes that if X is a compact topological space, then for each family {M;};; of

closed subsets of X satisfying [|M; =4, there is a finite subfamily {M,, ..., M; } such that (" M;,=0.
iel Jj=1

ProposiTiON 4.27
Let (4, G, H) be atense LM,-algebra and (X(4), g4, { /' }icin—17, R") be the tense LM, -space associated
with A. Then, the following conditions are equivalent:

(1) (4,G,H) is a simple tense LM, -algebra,
(i1) for every U e D(X(A))\{X(A4)} and for every i € [n—1] such thatﬁA_l U)#X(A),
Ny (7 (UN=0,

(ii1) ’tl‘oc; every U € D(X(A4))\{X(4)} and for every i € [n— 1] such thaltfl.‘fl (U)£X(A),
& (4 (U) =9 for some n € o,
(iv) for every U € B(D(X(A)))\ {X(A)}, there is ny € w such that d;’e‘(;l)(U) =0,
(V) Frs(D(X(4)) ={D(X(4)). {X(A)}}.
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24  Tense LM,-Algebras and Applications

Proor.

(1) = (ii): Let U € D(X(A4))\ {X(4)}. Then, from Lemma .13 and property (LP10) of LM, -spaces,
we infer that there is at least iy € [n—1] such that fmA 71(U )£ X(A4). Now, let i € [n—1] such that
ﬁAil(U) # X(A), then from (d5) in Proposition EETT] we have that da”e(A)(ﬂAfl (U))#X(A). From this
last assertion and (d9) in Proposition T1] we obtain that ) dy A)(fl.‘rl(U ) € Cpr(X(A))\{X(4)}.

new

From this last statement, the hypothesis (i) and Corollary L6} we conclude that (] d A)(fl./‘ (U)=0.
new

(i1) = (iii): Let U e D(X(A4))\ {X(4)} and i € [n — 1] such thatf”rl (U)#X(A). Then from the hypoth-

esis (ii), we have that (1) (N d;(A)(fA l (U))=0. Besides, forall n € w, dg(A)(fA (U))isaclosed subset

new

of X(4) and dgg(A)(fiA*l (U)= ﬂ] a’éE(A)(fi*f1 (U)). Then, from (1), the last statement, the fact that X(4)
j=

is compact and the finite intersection property of compact spaces, we conclude that there is n¥ €
v
such that dy . (1" (U))=1.

(iii) = (iv): From Lemma we have that U € B(D(X(4))) if and only if U= fl.Afl(U) for all
i€e[n—1], and so from property (LP10) of LM,-spaces, we infer that U € B(D(X(4)))\ {X(4)} iff
A l(U )# X(A) for all i € [n— 1]. Therefore, from the previous assertion and the hypothesm (iii), we

obtain that for each U € B(D(X(A4))) and each i € [n— 1], there is n” € such that dae( +(U)=0.1n

addittion, from (1) it follows that for all i,j e [n—1], n; —nU =ny, and so the proof is complete.

(iv) = (v): Assume that S € Frg(D(X(A))), S #{X(A4)}. Then there is (1) UeS, U #%(A) and so
from property (LP10) of LM,-spaces, we infer that there is i € [n—1] such that £~ (U)#%(A)
Considering (2) V=" (U) then from Lemma 29 we obtain that ¥ € B(D(X(4))), V #X(A).
Hence, from the hypothesis (iv), we can assert that there is n) € @ such that d; 4(V)=9. From (1),
(2), the preceding assertion and Definitions and 23] we deduce that € S, which implies that
S=D(X(A)).

(v) = (1): It immediately follows from Corollary 4.26] and the fact that (4, G, H) is isomorphic to
the tense LM,,-algebra (D(X(A)), Gpt, Hpi1).

COROLLARY 4.28
Let (4, ~,{¢i}icmn—11, G, H) be a tense LM,-algebra. Then, the following conditions are equivalent:

(1) A4, ~,{pi}iem—11,G,H) is a simple tense LM, -algebra,
(ii) for every aeA\ {1} and for every i € [n— 1] such that ¢;(a) # 1, d" (¢;(a))=0 for
some n{ € w,
(iii) for each a € B(4)\ {1}, there is n, € ® such that d"«(a)=0,
(v) Frs(A)=14,{1}).

Proor. It is a direct consequence of Proposition 27 and the fact that o4 : 4 —> D(X(4)) is a tense
LM, -isomorphism. | |

CoroLLARY 4.29
If (4, ~,{¢i}icm—-17, G, H) is a simple tense LM,,-algebra, then B(C(4))={0, 1} and therefore (C(4), ~
{@i}ieln—17) 1s a simple LM, -algebra.
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Tense LM,,-Algebras and Applications 25

Proor. From Lemmas and T7 property (iv) in Corollary and property (ii) in Corollary
it follows that B(C(4))={0, 1}. From this last assertion, Corollary and Lemma the
proof is complete. |

Next, we will recall two concepts which will play a fundamental role in this article. Let ¥ be a
topological space and yy € Y. A net in a space Y is amap ¢: D — Y of some directed set (D, <) (i.e.
D#@ and < is a preorder on D and for all d;, d, € D there is d3 € D such that d; <d; and d> < d;).
Besides, we say that ¢ converges to yy (written ¢ — ) if for all neighborhoods U(yy) of yy there
is dy € D such that for all d € D, dy < d, ¢o(d) € U(yy). We also say that ¢ accumulates at y, (written
@ >Yy) if for all neighborhoods U(yy) of yy and for all d € D, there is d. € D such that d <d, and
o(d.)eU(y). If :D—Y is anet and y; =¢(d) for all d € D, then the net ¢ it will be denoted by
Va)aep- If @ =y, it will be denoted by (1) 7)o If ¢ > yy, it will be denoted by (V4)sep > V0.

ProrosiTiON 4.30
Let(4, G, H)be atense LM, -algebra and (X(4), g4, {fiA Vieln—11» R") be the tense LM,,-space associated
with A. Then, the following conditions are equivalent:

(1) (4,G,H) is a subdirectly irreducible tense LM,-algebra,
(i1) there is V € B(D(X(A))), V # X(A), such that for each U € D(X(A4)), U # X(4) and
for each i € [n— 1] such that /1 (U) # %(4), dg’E(A)(fl.A_l(U)) cv,
new

(iii) there is V € B(D(X(A))), V # X(A4), such that for each U € D(X(A4)), U #X(4) and
for each i € [n— 1] such that /1 (U) # X(A4), 01’;2"[(//1)(]",4“7l (U))CV for some nY € w,

(iv) there is V € B(D(X(A4))), V # X(A4), such that for all U € B(D(X(4))), U #X(4),
dg’;A)(U) CV, for some nY ew,

(v) there is T € Frs(D(X(A)), T #{X(A4)}, such that T C S for all S € Frs(D(X(A))),
S#{X(4)}.

Proor.

(i) = (ii): From (i) and Corollary B7] we infer that there exists Y € Cyr(X(4))\ {X(4)} such that
(1) ZCY for all ZeCpr(X(A)\{X(A)}. Since Y is modal, then by Proposition 2] there is (2)
xemaxX(4)\Y. Taking into account that Y is a closed subset of X(4) and hence it is compact,
we can assert that there is W € D(X(A4)), such that (3) Y C W and (4) x € W. In addition from (2)
and (tS10) in Lemma B77, we have that x=£ (x) and so by (4) we infer that x ¢/ (W). If
V:ﬁf’j(W), then V € B(D(%(A)))\{X(A)}. Besides, from (3) and the fact that Y:ﬁ,{ll(Y), we
get that (5) Y €4 (W)=V. On the other hand, if U € D(X(4))\ {¥X(4)}, then from Lemma 318
and property (LP10) of LM,-spaces, we infer that there is at least iy € [n— 1] such that f[;’_' (U)#
X(4). Now, let ie[n—1] such that £ '(U)#X(4), then from Proposition EIT] we obtain that
(M d A)(fi/rl (U))eCuyr(X(A4))\ {X(A)}, from which we conclude, by the assertions (1) and (5), that

Ndz (- U)CST.
(i) = (iii): From the hypothesis (ii), we have that there is V € B(D(X(4)))\{¥X(4)}, such that
(1) Ndi, (4 (UNSV for each U eD(X(4))\{X(4)} and each i€ [n—1] such that £ (U)#

new

X(A4). Suppose that there is U € D(X(4))\{X(4)} and there is iy € [n— 1], which satisfy (1) and
d;“E(A)(fig‘_l(U)) Z V for all n € w. Then for each n € w, there exists (2) x, € a’a"e(A)(fi;rl (U))and x, € V.
Hence (x,).c0 is a sequence in X(4)\V and since X(4)\V is compact, we can assert that there
exists (3) xe X(4)\ V such that (x,),c, accumulates at x. In addition, by (1) and (3), we have that
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26 Tense LM,-Algebras and Applications

x & N dyp(f; “1(U)), and thus x € X(A)\dx A)(fzf (U)) for some ng € w. Since x is an accumulation

new
point of (x,).cw, then the preceding assertion and the fact that %(A)\d;‘z A)(]‘[UA l(U)) is an open
subset of X(A4) allows us to infer that for all n € w there is m, € w such that » <m, and x,,, € X(4)\
d;’&A)(fA*'(U)) Thus x,,, e.’{(A)\d;‘;A)(fAfl(U)) and n0<m,,0 As a consequence of Proposition

mno

ETDwe have that X()\dzy (' (U) S X\ (5 (U) and 50 3, #dzfy (i (U))), which
contradicts (2). Therefore, for every U € D(X(4))\ {¥(4)} and i € [n— 1] such that /4~ (U) # X(4),
x(A)(fA (U))CV for some nY € w.

(iii) = (iv): From Lemma [2.9] and the property (LP10) of LM, -spaces, we infer that for all U e
B(D(X(A4))), U #X(A) if and only if fAiI(U )#X(A) for all ie[n—1]. Therefore, from the last
statement and the hypothes1s (iii), we obtain that for each U € B(D(X(A4))), U #X(A) and each
i€[n—1], there is n” € ® such that dx(A)(U)C V. Then, considering ny =max{n :i €[n—1]}, from
(d2) in Proposmonl?;:ﬂ]we conclude that d(, (V) V.

(iv) = (v): Let SeFrs(D(X(A))), S#{X(A)}. Then there exists (1) U eS\{X(4)} and so from
property (LP10) we infer that there is i € [n— 1] such that £ ' (U)# X(4). Let (2) W =f""(U).
Then, from LemmaZ9we have that W € B(D(X(A))), W # X(A) and thus by the hypothesis (iv), we
can assert that there is ny € w such that (3) dg"A)(W) C V. Besides, from the assertions (1) and (2) and
Lemma[£24] we obtain that d;’&)(W) €S. From the last statement, (3) and the fact that S is a filter
of D(%(A)), we get that V' €S, and so V € N S. Therefore, considering T = N S
SeFrs(D(X(4))) SeFrs(D(X(4)))
SA{X(A)} SA{X(A)}
and taking into account that V' # X(4), we conclude that T € Frs(D(X(4))), T #{X(4)} and TC S,
for all §'e€ Frs(D(X(4))), S #{X(A)}.

(v) = (i): It follows from Corollary and the fact that (4,G,H) is isomorphic to the tense
LM,-algebra (D(X(A4)), Gra, Hpa-1). [ |

COROLLARY 4.31
Let (4, ~,{¢i}icn—11, G, H) be a tense LM, -algebra. Then, the following conditions are equivalent:

(1) (A4,~,{¢i}iem—11, G, H) is a subdirectly irreducible tense LM,-algebra,
(ii) there is be B(A4)\ {1} such that for every ae 4\ {1} and for every i €[n—1]
such that g;(a) # 1, d" (¢i(a)) <b for some n¢ € w,
(iii) there is b€ B(A4)\ {1} such that for every a € B(4)\ {1}, there is n, €w such that
d"(a)<b,
(iv) there is T € Frs(A), T # {1} such that T C S for all S € Frs(4), S #{1}.

Proor. It is a direct consequence of Proposition E.30land the fact that o, :4 —> D(X(A4)) is a tense
LM, -isomorphism. [ |

COROLLARY 4.32

Let (4,~,{@i}icin—-11, G, H) be a subdirectly irreducible tense LM,-algebra such that for every ae
B(A)\{1}, d"(a)=d"*(a) for some n,cw and for all new, n, <n. Then, (C(4)~,{¢i}icn—17) 1s a
simple LM,-algebra.

Proor. From Corollary B3T] we can assert that there exists b€ B(4)\ {1} such that (1) for every
aeB(A)\{1}, d"(a)<b for some n, € w. Also, from hypothesis we have that there is n, € w such
that d"(b)=d"(b) for all n € w, n, <n. Considering u=d"*(b), then from the last assertion, properties
(d5) and (d7) in Corollary 12l and the fact that &€ B(A)\ {1}, we obtain that u € B(C(4)), u#1. In
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addition, let c € B(C(A)), ¢ # 1, then by Lemma[I7] ¢ =d"(c) for all n € w, and thus from (1) we get
that c=d":(c)<b. Then from property (d4) in Corollary we infer that c=d" (c) <d™(b)=u.
Consequently, from Corollary ELT9 B(C(A)) is a totally ordered Boolean algebra and so B(C(4))=
{0,1}. Therefore, from Corollary ZI21and Lemma EI8 we conclude that (C(4)~,{g;}icia-11) is a
simple LM,-algebra. | |

5 A representation theorem for tense LM, -algebras

In this section, as an application of the categorical equivalence obtained in Section Bl we prove a
representation theorem for tense LM, -algebras, which was formulated and proved by a different
method by Diaconescu and Georgescu in [E].

First, we analyse the restriction of the relation R4, defined on the tense LM,,-space X(4) associated
with a tense LM,-algebra (4, ~,{¢;}ic(n—1), G, H), to the set maxX(4) of the maximal elements of
X(A). By virtue of property (tS10) of tense LM, -spaces and the prescription 2213 we can assert that
M emaxX(4) if and only if M =g, (M).

Lemma 5.1
Let (4, ~,{¢i}icn—1}, G, H) be a tense LM,-algebra and let (X(4), C, g4, {/;*}ictn—17, R?) be the tense
LM,-space associated with 4. Then, for M;, M, € max X(4), the following conditions are equivalent:

(1) Ml gp_l(Mz)a
(i) G'(M) SM,,
(i) My CF~'(M)),
(iv) H'(M>)C M.

Prook.

(1) = (i1): Let a4 such that G(a) € M;. Then, by the hypothesis (i), we infer that P(G(a)) € M,.
Besides, from property (T9) of tense LM, -algebras, we have that P(G(a)) <a. Then, taking into
account the fact that M, is a filter of A4, it follows that a € M, and so G~1(M,) S M,.

(i1) = (iii): Let a € M,. Then, from property (L10) of LM,-algebras it follows that ¢,_;(a) € M, and
so, from the property (L2) it results that ~¢,_;(a) € M,. From the last statement and the hypothesis
(i1), we have that (1) G(~ ¢,—1(a)) € M. Besides, from properties (T3) and (L4), we obtain that (2)
G(~¢n—1(a))=¢1(G(~a)). Then, from (1), (2) and property (L2), we infer that ~ ¢;(G(~a)) e M|,
and so from the fact that M, = (p;_ll (M), we get that ¢, (~ ¢1(G(~a))) € M,. The last statement and
properties (L3) and (L4) imply that ¢, (~ G(~a)) € M,, and taking into account that M; = ¢, f, (M),
it follows that ~ G(~ @) € M, or equivalently F(a) € M,, from which we conclude that M, C F~'(M).

(iii) = (iv): Let a € 4 such that H(a) € M,. Then, from (iii) we infer that F(H(a)) € M;. Also, from
property (T9) of tense LM,,-algebras, we have that F'(H(a)) <a. Then, taking into account the fact
that M, is a filter of 4, we conclude that a € M, and therefore H~'(M,) C M,.

(iv) = (i): Let a € M,. Then, from property (L10) it follows that ¢,_,(a) € M,, and so, from property
(L2), we have that ~¢,_;(a) € M;. From the last assertion and the hypothesis (iv), we obtain that
(1) H(~¢,_1(a)) € M,. Besides, from properties (T3) and (L4), we get that (2) H(~¢,_i(a))=
¢1(H(~a)). Hence, from (1), (2) and property (L2), we infer that ~ ¢, (H(~a)) € M,, and so the fact
that M, = (pnill(Mz) enables us to say that ¢, (~¢,(H(~a))) € M,. The last assertion and properties
(L3) and (L4) imply that ¢,_;(~ H(~a)) € M,. Then, taking into account that M, = ¢, ', (M,), we can
assert that ~ H(~a) € M, or equivalently P(a) € M,, from which we conclude that M; € P~!(M>). [ |
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28 Tense LM,-Algebras and Applications

LEmMMA 5.2
Let (4,~,{¢;}icn—11, G, H) be a tense LM,-algebra and (X(4), g4, {f*}icin_17, R?) be the tense LM,,-
space associated with 4. If X =maxX(4) and R=R* |y, then for all M € X,

RM)={TeX:G'(M)CT)={TeX:TCF (M)}

={(TeX:H ' (T)CTM}={TeX:MCP \(T)).

Proor. It immediately follows from Lemmas and 311 [ |

Lemma 5.3

Let (4,~,{¢}icin—1],G,H) be a tense LM,-algebra, (X(A4),g4, {/}icin—11,R?) be the tense LM,,-
space associated with 4, maxX(4)=X, R! Imaxx(4)=R, the frame (X,R) and (L,,~,{@;i}ie(n—11) be

X
the LM, -algebra given in Example .10l Then, the algebra (Lff Nl {(0,-L " Yietn—11, G*,H*) is a tense
X

LM,-algebra, where the operations of the LM,-algebra (LY, ~, {wiL" }iepn—17) are defined pointwise
and the unary operations G* and H* are defined for each p € L by the prescriptions:

() G*(pM)= \{p(DITeX, G~ (M) T)
= A\(NITex, TSF (M),
(i) H*(p)M)= /\ Ip(S)IS X, H™ (M) < S}

= A\p(©®)ISex, sSSP (M)},

forall M eX.
Proor. From Lemma[Z2land Example the proof is complete. [ |

COROLLARY 5.4

Let (4,~, {wf}ie[,,_”,G,H) be a tense LM, -algebra such that (G,H)=(1y4,1,), where 1,:4— A4
is defined by 14(a)=1 for any a€ 4. Let (X(4),g4, " }ictn_17,R") be the tense LM,-space asso-
ciated with 4, max¥(4)=X, R* Imaxx(s)=R, the frame (X,R) and (L,,~,{¢i}ie(n—1)) be the LM,-
algebra given in Example IO Then, the algebra (LY ,N,{QDiL” Vien—11, G*,H*) is a tense LM,-
algebra, where the operations of the LM,-algebra (LY, ~, {(piL” }iemn—17), are defined pointwise and
(G*,H*)=(1yr,1x), where 1,x: LY —> LY such that for all pe L, 1,x(p) is the greatest element
of LY (i.e. 1,x(p)(M)=1 for all M €X).

Proor. From Lemmal3.3] (Lff, ~, {(piL{ Viegn—11, G*, H*) is atense LM,,-algebra. Since (G, H)= (14, 14)
it follows that G=!(M)=A and H~'(M)=A for any M € X . Therefore, from Lemma[5.2] we infer that
R(M)= for any M € X and so, from Lemmas[E2land[33] we get that for each p e LY, G*(p)(M) =
Np(DITeRM)}=1, H*(p)M)= N\{p(T)IM eR(T)} =1, for any M € X. From these last state-
ments, we conclude that (G*, H*)= (lLff, 1L§), where 1.x :L,)f —>L,)f is defined by 1.x(p)(M)=1,
for any pe LY and M € X. [ |
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In the sequel, we will show some results which will be useful later on.

LeEmmA 5.5

Let (4, ~, {gi}ictn—11, G, H) be a tense LM,,-algebra, (X(4), g4, {f}icn—17, R") be the tense LM,,-space
associated with 4 and R* Imaxxy=R. Then, for all '€ maxX(4) such that G~!(T) is a proper filter
of 4,

G (= ﬂ{M emaxX(4): G~ (T)C M} =ﬂ{Memaxx(A):M eR(T)}.

Proor. Let T €emaxX(A4) such that G~'(T) is a proper filter of 4. Then there exists M € max X(4)
such that G~'(T) C M and therefore,

(HG (1) ﬂ{Memax%(A): G (T)cMm).
Suppose that there is a € 4 such that
(2)aeﬂ{Memax%(A): G (TYcM}and(3)G(a) &T.

Since T emaxX(4) and G~!(T) is a proper filter of A4, it follows that 7N B(4) € X(B(4)) and
G~ (T)NB(4) is a proper filter of B(4). Taking into account that every prime filter of the Boolean
algebra B(A4) is an ultrafilter, the fact that every proper filter of B(4) is the intersection of all
ultrafilters of 5(4) that contain it, and the property that M’ € X(B(4)) iff there is M € max X(4) such
that M’ =M N B(A), we infer that

(4) G (DHNBA)={M" € X(B(4)):G~(T)NB(A) S M'}
=M NB(4): M emax X(4), G~1(T) N B(A) M N B(A4)}.

From the assertion (3), and the fact that T=(p,;ll(T), we have that ¢, 1(G(a))¢ T and so, from
property (T3) of tense LM, -algebras, we obtain that G(¢,_,(a)) € T. Therefore, ¢,_1(a) € G~ (T)N
B(A). From the previous assertion, Lemma and (4) we infer that there is (5) My emax X(4)
such that (6) G~Y(T)NB(A) S MyNB(4) and ¢,_,(a) & M,. From the last statement and the fact that
M0=<p;_11(M0), we can assert that (7) a €M,. On the other hand, we have that (8) G™'(T)CM
for all M e maxX(4), such that (9) G- (T)NB(A) S M NB(A). Indeed, let b€ A such that G(b) e T,
then ¢,_1(G(b)) €T, and so from property (T3) it follows that ¢,_;(b) € G~(T). In addition, from
Lemma 0] we have that ¢,_;(b) € B(4) and therefore ¢,_;(b) e G~'(T)N B(A). Then, from (9) we
obtain that b€ M, from which it results that G~'(T)C M. Then, from (5), (6), (8) and (9), we get
that G~!(T) € M,. This last assertion, (5) and (7) contradicts (2). Consequently, (2) and (3) are not
true and so the assertion (1) and Lemma [52] enable us to conclude the proof. [ |

In the proof of the following lemma we will use the property of the dense subsets of a topological
space (X, ), which establishes that a subset © of X is dense (i.e. the closure of © is X)) if and only
if for any base B of T and any Be B\ {#}, BND #{.

LeEmma 5.6 .

Let (LY, ~, (@ Yietn1). G*, H*) be the tense LM, -algebra described in Lemma B3] X(LY) be the
tense LM,,-space associated with L and X(L,) be the LM,-space associated with the LM,-algebra
L,, given in Example IfD={SxL,":SeX(L,),xeX}, where for each xeX, L,"\" =
{f :X\{x} —> L,}, then D is a dense subset of X (L).
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30 Tense LM,-Algebras and Applications

Proor. It is easy to check that ® € X(LY). If X is a finite set, then © =X (LY). If X is an infinite
set, then taking into account that the set B= {oLff( (W\orx(g):h,ge LY } is a basis of the topology of
X (LY) and the fact that ozx : LX —> D(X(L})) is an order isomorphism, we infer that for each B e
B\ {#}, there are h, g € L} such that h Zg and B=oy (h)\orx(g). From this last assertion it follows
that /(x) £ g(x) for some x € X, and since A(x),g(x) € L,, then there are (1) j,ke[n—1],j <k, such
that (2) h(x)= nkj and (3) g(x)= anl Let (4) S:{ﬁ k<l<n—1}=% nf—l CL,. Then, SeX(L,)
and hence (5) S x L, \") € ®. Besides, taking into account (1), (2) and (4), we obtain that i(x) €S,
and from (1), (3) and (4), we get that g(x) &S. Hence he S x L, \* and g &S x L,"\*!. These last
assertions and the fact that § x L,*\" e ¥ (Lff ) enable us to infer that (6) S x L\ e opr(W)\orx(g).
Therefore, from (5) and (6), it results that (o7x (h)\ o7x(g))ND # @, from which we conclude that D
is dense in X (LY). [ |

Next, we will recall some characterizations of continuous functions. These characterizations will
play fundamental role in the proofs of Proposition [3.71land Theorem

Let (X, 7x), (Y, ty) be two topological spaces and f : X — Y. Then, the following conditions are
equivalent:

(i) f is continuous function,
(ii) f~Y(C) is closed in (X, ty) for any closed C in (Y, ty),
(iii) £~1(0) is open in (X,ty) for any open O in (Y, 1y),
(iv) f~Y(B) is open in (X, ty) for any subbasic B in (Y, ty),
(iv) for all x€X and for every net (x4)sep, (x4) 7opx implies that (f(x4)) 75/ ().

ProrosiTION 5.7

Let (4, ~,{¢}icin—11, G, H) be a tense LM,,-algebra, (X(4), g4, {1 }icin—17, R") be the tense LM,,-space
associated with 4, X =max X(4), D ={0x L, ""M: Qe X(L,), MeX}, (X(L.).g {fi* }ietn-1)
be the LM,-space associated with the LM,-algebra (L,, ~, {¢i}ic(n—17), given in Example and

x (Lff ) .8LX s {fiL)”( Vietn—11 ,RL) be the tense LM,,-space associated with the tense LM,-algebra L, ~,

{(p,-L"X Yietn—11, G*, H*) described in Lemma[3.3] Let f : D —> X(A), defined for each Q € X(L,) and for
each M € X, by the prescription:

F(OxL, M =g (M), if Q=g (Q)for somei € [n—1]. (5.1)

Then, f satisfies the following properties:

(i) for each aed, f~(o4(a))=01x(h,)ND, where h,: X —> L, is defined for all M € X by the

prescription:
0 if p(a) ¢ M for all i € [n— 1], or equivalently
ifagM,
h,(M)=13 1 if ¢! (a)e M for all i € [n—1], or equivalently
if pil(a)eM,
L ie[n=-2], ifel (a)eM and ¢!, (a)¢M.

(i) f is continuous, considering D as a subspace of X(LY).
(iii) If (T4)sep SD is a net such that 7, - T for some T € X (L} ) \D, then
the net (f(7,))sep converges in X(A4).
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(iv) If the nets (7;)sep SO and (Sy)sep SO converge to the same element 7€ X (Lff ) \D,
then the nets (f(7,))sep and (f(S;))sep converge to the same element in X(A4).

Proor.

(1): Let a € A. Taking into account that 2,: X — L,, L, = {ﬁ :0<j<n—1}andforalli,je[n—1],
goi(#) =0ifi+j<n or gol-(ﬁ) =1 in other cases, we infer that (1) ¢;(h,(M))=1 or ¢;(h,(M))=0
forany M € X and i € [n—1]. Also, we obtain that forany M € X and i € [n— 1], ¢;(h,(M))=1 implies
that h,(M)= ﬁ,j €[n—1] and i >n—j, from which we get that (p;‘_j(a) €M, and so from property
(L5) of LM,-algebras, we conclude that ¢/!(a) € M. Conversely if gof(‘) (a)eM, for some iye[n—1],
then we have that (piA(a) €M for all i € [n—1], or there exists j € [n— 1], j <ip, such that (gf‘(a) eM
and gz);‘_l (a) €M . In the first case, we have that 4,(M)=1 and so ¢;,(h,(M))=1. In the second case, it
follows that h,(M)= % ,J € [n—1],j <iy. Since iy + (n—j) > n, from the last assertion we obtain that
@i, (ho(M))=1. Therefore, (2) for any M € X and i € [n—1], ;(h,(M))=1 if and only if¢{(a)e M.
Besides, since /4, € LY, then oyx (h,)={S € X (L) : h, €S}, from which it results that

(3o (h)ND={0x L, :0e X(L,),M €X and h, € O x L,"\™}. It is immediate that (4)h, €
O x L, \MViff h, (M) e Q, for any Q € X(L,) and any M € X. In addition, (5)4,(M) e Q if and only
if O x L,"\M e f~1(04(a)), for any M € X and Q € X(L,). Indeed, let Q € X(L,). Then, from prop-
erty (LP9) of LM,-spaces, we have that O=¢; '(Q) for some ie[n—1]. Taking into account (1)
and (2), the provisions of (5) is a consequence of the fact that each of the following statements is
equivalent to the next one in the sequence:

hoM)€Q;  h(M)€@; ' (0): @i(ha(M))€Q; @i(h(M))=1; ¢(a)eM;

acg!”'(M); aef (QxLM); Ox LM ef ~(04(a)).

Finally, from the assertions (3), (4) and (5) we conclude that o7x (h,)ND =/ ~(o4(a)) for any
acA.

(ii): From (i), we have that foralla€ 4, f ~'(04(a)) = o1x(h,)N'D. Therefore, for all a €A, f Y o4(a)
is closed and open in ®. From this last assertion and taking into account that {o4(a):a€ A} U {X(4)\
o4(a):ae A} is a subbase of the topology of X(4), we conclude that f:® —> X(4) is a continuous
function.

(iii): Let (T4)aep SO such that (1) T, - T for some Te.’{(Lf)\@. Since X(4) is compact and
(f(Ty))aep is a net in X(A4), it follows that (2) (f(7,))sep accumulates at 7 for some 7 € X(A).
Suppose that there is S € X(4) such that S # T and (3) (f(T4))usep accumulates at S. Hence, T S or
S ZT. Suppose that T Z S, then there exists a € 4 such thatae T and a ¢ S. Therefore, T € 04(a) and
S eX(A4)\o4(a). Since o4(a) € D(X(A4)), then from (2), (3) and these last assertions, we infer that there
are two nets (f(7.))cep and (f (Ty,))sep suchthat (f (T4.))cep S (f (Ta))aep and {f (Ty,)}cep € 04(a),
(f(T4,)beD

C(f(Ta)aep and {f (Ty,)}sep € X(A)\04(a). Hence, (4) {7y, }eep Cf ' (04(a)) and

(5) (T4, }pep SF1(X(A)\ 04(a)). For each a€A4, let the function A,:X —> L, be defined, for all

M e X by:
0 ifagM,
ha(M)z 1 1fg0’14(a)EM,
wpe 1sisn=2, ifg] (a)eM and ¢, (@) ¢M.

Then, from (i) we have that f ~! (04(a)) = opx(ha)N'D andf 1 (X(A)\o4(a)=DN (% (Lf) \opx (ha)),
and so from (4) and (5) we infer that (6){T.,}scp Corx(h,) and (7){Ty, }uep gX(Lff) \orx(hy). On
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32 Tense LM,-Algebras and Applications

the other hand, from (1) we have that 7, —=7" and since o1 (h,) is closed in X (LX ) then from (6)
we can assert that (8) T € ox (h,). In addltlon from (1) we obtain T i D — T and taking into account
(7) and the fact that X (L) \ ox (h,) is closed in X (L¥), we obtain that T & o;x (h,), which contradicts
(8). Analogously we reach a contradiction if S € T'. Therefore 7=, from which we conclude that

(f(T4))aep 1s a net in X(4), which has a unique accumulation point and therefore it is convergent
in X(A).

(iv): Let (T1)gep S and (Sy)gep S such that Td ekl and S, L. Te x(LX) \®. Then, from
(1), the nets (f (T4))aep and (f(Ss))aep converge in X(A). Suppose that there are O, S € X(4) such

that O #S, f(T4) ;5 Q and f(S4) ;=3 S, then using a similar technique to that performed in the
demonstration of (iii), we arrive at a contradiction and therefore, 0==S. [ |

Hereinafter we need to consider the following theorem of extensions of continuous functions:

THEOREM 5.8 ([‘E])

Let (X, tx) be a topological space, D CX dense in X, (Y, ty) a regular topological space and f':
D — Y a continuous function, then / has a continuous extension F : X — Y iff, for every xe X
and all nets (x;),.; €D which converge to x, the nets (f (x;)),.; converge to the same limitin Y. If F/
exists, then F is the unique continuous extension of 1.

The above theorem is an equivalent formulation of the statement in [IE] because in the latter,
bases of filters are used instead of nets, but for our purposes the nets are most useful.

THEOREM 5.9

Let (4,~ {(pl Yiem—11,G,H) be a tense LM,-algebra, (X(4), gA,{fA Viem— 1],R ) be the tense
LM -space associated with 4, (X, R) be a frame, where X =maxX(4), R=R" |maxx(1), and (LY
{% }[e[n—l], G*,H*) be the tense LM,-algebra described in Lemma[33] Then, there exists a surjec-

tive tense LM,-function from X (L) onto X(4), where (X(LY).g.x, {ﬁL{}ie[n_u,RLf) is the tense
LM,-space associated with the LM,,-algebra from Lemma 3.3l

n?’ ~

Proor. In order to prove the existence of a surjective LM, -function &: X(Lff ) —> X(4), we will
show the statements set in (I) to (XIV), which are listed below:

(I) There exists a continuous function ®: % (LY ) — X(A):

Let ®= {Q x L, X\ . 0eX(L,), MeX}, (X(L,,),gLn, {fiL"}l»E[n_”) be the LM,-space associated
with the LM,-algebra (L,,~,{¢;}icn—17) and let f:® —> ¥(4) be defined as in Proposition B71
Taking into account that every Priestley space is a regular space, then from Proposition 3.7 and
Theorem B8] we can assert that / has a unique continuous extension CD:.’{(Lf ) —> X(A4). Also,
from the proof of Theorem 5.8 we have that

« for all TG%(LX) \D, (T)=3S if and only if /(74) ;S for any net (7;)sep S such that
7; del)]”
(1) @ is surjective:

Let S € X(A4), then by property (LP9) of LM,,-spaces, there is i € [n — 1] such that S = go{rl (S). From
Lemma 316 we have that (X(4),g4,{f;*}icin—1) is a tense LM,-space. Then, from the properties
(tS19) and (tS10) of tense LM, -spaces, the definition of the functions f/, i € [n— 1], given by the pre-
scription (ZI3) and properties (LP4) and (LP5) of LM, -spaces, we infer that M = ¢ (S) € max X(4)
and S= go,.“fl (M). If we consider Q € X(L,) such that 0 = ¢, ' (Q), then from Proposition[57}, we have
that O x L,\™ €D and /(0 x L,"\") =S. Since ® |p=F, we conclude that ® (0 x L,\*) =S.
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(11D dJ’l(aA(a))zaLf (h,) for all a€ A, where the function h, is defined as in Proposition
E7

From Proposition 5.7] we have that (1) oy (h,)ND =f""(04(a)) for all ae A.

LetaeAd and S € opx(h,) N'D, then from Lemmal[3.@ there exists a net (2) (S;)qep D such that
(3) S, 7235 Therefore, there exists d, € D such that S, € opx(h,)ND for all d€D, d,<d, and
so from (1) it follows that S; €f~!(o4(a)) for all d € D, d, < d. Consequently, from (1) and taking
into account that ® |p=f, we have that S; € ®~!(04(a)) for all €D, d, <d. Besides, since ® is
a continuous function we have that ®~'(04(a)) is closed in X (L¥). Then, from the last statement
and (3), we infer that S € ®~!(o4(a)). Conversely, let T € ®~!(04(a))ND. Then ®(T)=f(T) and
therefore, T €f~'(04(a)) and so from (1) we obtain that T € opx (ha).

Now, let (4) S € ®!(o4(a)) N D, then from Lemma there is a net (Sy)ysep S such that (5)
S, 7zpS- Besides, since ® is a continuous function, we have that ®~!(04(a)) is an open subset of
X(Lf ), then from (4) and (5), we can assert that there is d, € D such that S; € ®~!(04(a)) for all
deD, d,~<d and hence, S, €f ' (04(a))ND for all d €D, d,<d. From the last assertion and (1) it
results that Sy € ox (h,) for all d € D, d, < d, and consequently, from (5) and the fact that o7x (h,) is
a closed subset of X (LY ), it follows that S € ¢;x (h,). And so we conclude that = (o,4(a)) =07 (h,)

for any a € 4.

(IV) @ is isotone:

Let7,Se X(Lff) such that 7 C S. Suppose that ®(7') £ &(S), then there is a € 4- such that &(T') €
o4(a) and ®(S) € 04(a). Consequently, from (III), we obtain that T € oyx(h,) and S ¢ ox (h,). Then,
we have that 4, €LY, h, €T and h, ¢S, and so T Z S, which contradicts the hypothesis. Therefore,
D(T) S D(S).

LX . . .. LX
(V) fofi™ |lo=f1of forall i€[n—1], where f;" |p is the restriction of " to D :
From the prescription (&), we infer that f/ (Q x L, \M }) CM forall Qe X(L,) and M € X. Then,

from the previous assertion, properties (LP5) and (LP9) of LM, -spaces and the prescription (Z.13),
we obtain that (2)// (£ (O x L, ")) =A(M) for all Q € X(L,) and M € X. Taking into account the

prescription (ZI3)) and the fact that (piLf’( : LY —> L¥ is defined pointwise for any i € [n— 1], it imme-
diately follows that £ |o (Q x L, \M) = £ (0 x L,\M) = £1(0) x L\, for any Q € X(L,),
M eX and i e[n—1] and consequently, (3) (f ofiLf‘( |@> (Ox L, \M)=f (fiL”(Q) X L,,X\{M)), for any
QeX(L,), M eX and i €[n— 1]. Furthermore, from the prescriptions @.I3) and (&I)), we obtain
that (4) for any Q€ X(L,), MeX and ic[n—1], f (f,.L"(Q) anX\fMl) =1 (6 (Q) x L, \M) =
gof‘_l (M)=f(M). Therefore the statements (2), (3) and (4) allow us to say that (V) holds.
(VD) Doft =fAo, for all ic[n—1]:

LetTeX (Lff ), then from Lemma[3.@there are two nets, (Qy)gep S X (Lf,( ) and (My)4ep € X such

that (1)Qyx L,"\" ——T. Taking into account that the functions ﬁLf X (L)) —
X(LY), ie[n—1], and ®:X(L¥)—> X(4) are continuous and the assertion (1), we infer that

(2)c1>(fff (Qu x LY \{Mdl)) ﬁcb(ff”y (T)), for all ic[n—1]. On the other hand, by virtue
€

of that £ (Qx L") eD for all deD and ieln—1], then (£ (Qsx L, V")) =

f(fiLzr (Qd XL,,X\{Md})) =f (}?Li{ lo (Qd anX\[M‘”)> for all ie[n—1] and d€D, and so from the
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statement (V), we obtain that (3)® (fiL)”( (0 x L,,X\{M"})> = (f (Qax L, ™)) foralld eDandie

[n—1]. From (1) and the definition of ® given in (I), we have that /' (Qy x L, \**) —— &(T). Since

fi*: X(4) —> X(A) is continuous, for any i € [n—1], then /i (f (Qu x L, \W')) = f4(®(T)) for any
i€[n—1]. From the last assertion and (3) it follows that (4) ® (flLX (Qd xL,,X\W‘”)) %ﬁA(q)(T))
for any ie[n—1]. Finally, from (2), (4) and the fact that X(4) is a Hausdorff spgge, we infer
that <<I> ofiL)”() (T)=(fi"o®)(T) for all T € X (L) and i € [n—1]. Therefore, CboﬁLf’( =f"0® for any
ie[n—1].

(VI) fogrx lo=gaof, where grx |o is the restriction of grx to D:

Taking into account the prescription (2.3)) and the fact that ~ on L is defined pointwise, it imme-
diately follows that gx |o (Q X L,,X\{M]) =grx (Q X L,,X\{M’) =g; (0)x L, for all M eX and
QeX(LY). Then, forall Qe X (L}) and M € X, (1)(f ogx ) (Q x L,/ ™) =F (g1,(Q) x L, \").
Since Q € X(L,), then from property (LP9) of LM,-spaces, there is i € [n— 1] such that Q=¢,'(Q)
and so from the prescription (ZI3) and property (LP7) of LM, -spaces, we infer that g;, (Q) =@, ',(Q),
from which it follows thatf(Q anX\{M}) = '(M), andf(gLn(Q) xL,,X\{M’) =@, '(M). On the
other hand, taking into account the prescription (Z.13) and property (LP7) of LM,-spaces, we obtain
that @l ,(M)=fL (M)=g(f(M)=ga(¢{” (M)).  Therefore,  f(g1,(Q)x L, \")=
24 (f(Q X xL,,X\W})) , and so from (1), we obtain that (fogLnx |®) (Q X L,,X\{M}) =(g40f) (Q X L,,X\{M’)
for all 0 € X(LY) and for all M € X, from which we conclude that f ogx [o=g4of .

(VII) ®ogrx =g o0P:

Let T e %(Lf), then from Lemma 5.8 there is (1) (7)qep €D such that (2) T, 7T Since grx
is a continuous function, then (3) grx(74) ;= &y (7). On the other hand, from (1) we have that
for each d € D there are Q,; € X(L,) and M, € X such that T, =Q, x L, \¥¢!from which it follows
that gx(Ty) =g1,(Qa) x L, ™) and therefore, (4)g.x(T,) €D for all d € D. Since @ is continuous,
®|p=f and grx |p (T4)=gwx(T4), d €D, then from (3) and (4) we obtain that (fogL)n()(Td) 7D
(CD ogL’)’()(T), and so from (VII) we can assert that (5)(g40/)(Tu) 773 (dD ogLnx)(T). On the other
hand, from (2) and taking into account that ® and g4 are continuous and @ |p=f, we infer that
(6)(g49/)(Ta) 735 (€40 P)(T). Since X(4) is a HausdorfT space, then from (5) and (6), we conclude
that for all 7€ X (L), (®ogy )(T)=(g40P)(T), and so, Pog;r =g,0P.

The statements (1), (I1), (IV), (VI) and (VIII) allow us to assert that @ is a surjective LM, -function
from X (L) to X(4).
(IX) G*(hy) =hgq) for all ac A, where for all be A, the function hy: X — L, is
defined as in Proposition 3.7t
Since Ag): X —> L, is defined by the prescription:
0 if G(a)¢M,
ho@M)=1{ 1 if p{(G(a))eM,
L, 1<i<n=2, ifg] (G(a)eM and ¢, |(G(a)gM,
then we only have to prove that the statements (A), (B) and (C) hold.

(A) For each ac A, G*(h,)(M)=0 iff hgy(M)=0 for all M e X :
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Since for each a€4, h,eL¥, then from Lemmas and B3] we have that for all M X,
(D)(G*(h))M)= N hu(T), from which we infer that for all M € X, (2)(G*(h,))(M)=0 iff

(M,T)eR
AN h(T)=0.

(M, T)eR

Besides, since L, is finite and {#,(7): T €X,T €R}CL,, then we have that (3) /A 5h.(T)

(M,T)eR
=0, iff there is 7 € R(M) such that a € Tj. In addition, from (1) and (2), we infer that R(M') # @,
and so by Lemma[32] G~!(M) is a proper filter of 4. Therefore, from Lemma 53] we have
that (4) G"'(M)= () T. Consequently, from (2), (3) and (4), it follows that (G*(h,))(M)=
(M,T)eR
0iff G(a) €M for any M € X. From the last statement and the definition of the function 4,
we obtain that (G*(h,))(M)=0iff hg,(M)=0 for all M € X and ae 4.

(B) For each ac A, G*(h,)(M)=1 iff hgy(M)=1 for all M e X:

Letae dand M € X such that (1) G*(h,)(M)= 1. Taking into account the definition of G*(%,)(M),
then (2) R(M)#W or (3) R(IM)=40.
Suppose (2) holds. Then, each of the following conditions is equivalent to the next one in the
sequence:
@) (G h))M)=1; A h(T)=1; hT)=1forall TeRM); ¢i(a)eT
(M,T)eR
forall TeRWM); pil(a)e () T.

(M,T)eR

Besides, from (2) and Lemma we have that G=!(M) is a proper filter of 4, and so from

Lemma B3] we can set that (5) G~'(M)= () T. Then, from (4) and (5) it results that
(M.T)eR

(G*(h,))(M)=1 if and only if G(¢{(a)) € M. From the last statement and property (T3) of tense
LM,-algebras it follows that (G*(h,))(M)=1 if and only if ¢{/(G(a)) € M, and so by virtue of
the definition of the function %¢(,), we conclude that (6) (G*(h,))(M)=1if only if hg(M)=1,
for all ae 4 and M € X such that R(M) #0.

On the other hand, taking into account that G~!(M) is a filter of 4 and the definition of R(M),
given in Lemmal[3Z] it follows that (3) holds iff G~!(M)=A. Hence for all a € 4, G(¢{(a)) e M
and so from property (T3) of tense LM,,-algebras, we have that ¢i'(G(a)) € M for all a € 4, from
which we conclude that Ag,)(M)=1 for all aeA4. Conversely, if hgq(M)=1 for all ac4,
then ¢{l(G(a))e M for all a € 4, from which it follows by property (L9) of LM,-algebras that
G(a)eM forall a€ A4, and so G~!(M)=A. Consequently, R(M )=, from which we obtain that
G*(h,)(M)=1. Therefore, (7) (G*(h,))(M)=1 if only if hg(M)=1, forallac4 and M € X
such that R(M)=. And so, from the statements (7) and (8), the proof of (B) is complete.

(C) Foreach acA, ie[n—2], G*(h,))(M)= ﬁ iff ho@(M)= ﬁ,for all MeX:

For any a€ 4 and i € [n— 1], each of the following conditions is equivalent to the next one in
the sequence, for all M € X, aed and i€ [n—2]:

(1) (G*(h)M)=—2; A\ hoT)=L; there is Ty € R(M), such that

(M,T)eR
h(Ty)= an1 and 4,(Ty) <h,(T) for all T € R(M); there is Ty € R(M) such that
ot (@)¢T, and ¢! (a)€T, for all T € R(M).
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Since (G*(h,))(M) # 1, then R(M) #, and consequently G~'(M) is a proper filter of 4 and so,

from Lemma[33] we have that 2) G"'(M)= [ T.
(M,T)eR
Then, from (1) and (2), we infer that
) (G*(ha)M)= 15, i€ [n—2], iff G(¢;_ (@) €M and G(g;_,_,(a))¢M, i€[n—2].
Besides, from property (T3), we get that
(4) Glg;_(a)eM and G(g;_,_ (@) €M iff ¢ (G(a))eM and ¢, (G(a)) ¢ M.

Hence, from (3) and (4) we can assert that G*(h,)(M)= =5, iff g (M)= /fl» for all ae 4,
MeX andie[n—2].

Finally, from (A), (B), (C), we conclude that G*(h,) =hg(,) for all a€ 4.
(X) For all ac A, H*(h,)=hpq), where for all be A, hy: X —> L, is defined as in
Proposition Bt
It follows using a similar technique to that used in the proof of (IX).
(XI) (S, T)eR: implies (D(S), D(T))€R! for any S, T emaxX (LY):
Let S, T emax X (LY) such that (1)(T,S) €R% , then from Lemmal33] we obtain that G*~'(T) C .

Therefore G*~'(T) is a proper filter of L. Since 7 e max X (L¥) and LY is a tense LM, -algebra then,

from Lemmal53] it follows that (2) pe G*~(T) iffpe N, forallpe LX and N € R% (T)N max X (LY).
Assume now that (3)((S), (7)) ¢R”. Since S, T € max X (LY ), then there are Mo, M; € X such that
(5) ®(S)=Myand ®(T)=M,, and therefore, from the assertions (3) and (4) and the fact that R=R" |
it follows that (My, M) &R, and so, from Lemma 53] we obtain that G~!(M,) Z M;. Then, there
exists a € 4 such that (5) M, € 04(G(a))and M, € 04(a), and hence from the statements (4) and (5), we
obtain that T € ®~'(04(G(a)))and S & &~ (0,4(a)). In addition, from (IIT) we have that ®~'(04(a))=
ox(hy), and @~ (04(G(a)))=01x (hG()- Also, from (IX) we have that 0.x(hg) = 01x(G*(hy)).
Therefore, from these last assertions we get that T € o7x(G*(h,)) and S € oyx(h,). Consequently,
there exists a € 4 such that h, € LY, h, € G*~(T), h, ¢S, S € R (T)Nmax X (L), which contradicts
(2). Therefore, we have that (®(S), ©(T)) €R.
(XID) (S, T)eRY implies (O(S), D(T)) € R for any S, T € X(L¥):

Let S,T € X(LY), then from property (tS4) of tense LM, -spaces, we obtain that
for all ie[n—11, (S, T)eRE iff (£5 (S). £ (T)) e RM,
for all i € [n—1], (®(S), D(T)) e R iff (F1(D(S)), [ A(D(T))) e R

Then from these two assertions and property (LP5) of LM, -spaces, we infer that

X X

(1)(S.T)eRE iff (£ (S)./ 7 (T)) e R,
@((S). (1) R Hff (1, (S [, (T eR’.

On the other hand, from property (LP9) we have that £, (S) € max X (Zy),
fnL_i(l(T )€max X (L), from which it follows from (XI) that
3 (F4S)A2T)) R implies (@(£2(5)), @ (£2,(T)) ) R

In addition, from (VI) we have that

LY A L A

B (171(9) =/, (P(S)) and & (1,7,(T)) =fiL,(&(T).

Therefore, from (1), (2), (3) and (4), we conclude that (XII) holds.
(XI) @ (Gri(U)) =G (~1(U)) for any U € D(X(A)):
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Let UeD(X(A)). Since, by Lemma there is a€A such that U =o0,4(a), we infer that
(D) D (Gra(U)= D (Gra(o4(a))) =P (04(G(a))). Taking into account (III), (IX) and the fact
that oyx is a tense LM,-isomorphism, we get that (2) @' (04(G(a))) =01 (hg) =011 (G*(ha)) =
Gy (015 (ha)) =G oy (P~ (04(a))) = Gy (P~ (U)). Therefore, from (1) and (2), we conclude that
for all U € D(X(A)), &~ (Gpi(U)) =G (V).

(XIV) d>*1(HR/H(U))=HRL§71(<I>*1(U)) Jor any U € D(X(A):

The proof is similar to that of (XIII), taking into account (X) and the fact that for all M;,M, € X,
(Ml,Mz)GR ]finl(Mz)ng

Finally, the statements (I) to (XIV) complete the proof. [ |

REMARK 5.10

In Theorem [B9] we can consider X = X(B(4)), where X(B(A)) is the lattice of all prime filters of
the Boolean algebra 3(4) of the complemented elements of 4. It is well known that max X(4) is
isomorphic to X(B(A4)), as ordered sets.

THeOREM 5.11 (Representation theorem for tense LM,,-algebras)

For any tense LM, -algebra (4, G, H) there exists a frame (X, R) and an injective morphism of tense
LM,-algebras from (4,G,H) into (LY, G*,H*) and therefore, (4,G,H) is isomorphic to a tense
LM ,-subalgebra of (Lff ,G*,H*), where (Lff ,G*,H™) is the tense LM,,-algebra described in Lemma
B3

Proor. Lemmas 3.6 and and Theorem 5.9 allow us to assert that there exist a frame (X,R)
and an injective tense LM ,-homomorphism €2:4 —> L and therefore 4 is isomorphic to a tense
LM ,-subalgebra of L¥. [ |

The previous theorem reduces the calculus in an arbitrary tense LM,,-algebra 4 to the calculus in
LY.

COROLLARY 5.12

Let (4,~, {(pf}ie[,,_”, G,H) be a tense LM,,-algebra, [, | =[n—1], LEI”"] be the set of all increasing
functions from 7, to the Boolean algebra L, with two elements, and the LM,,-algebra (LEI”’l ], AV, ~
A@i}iern—11,0, 1), where the operations of the lattice (Lg""], A,V,0,1) are defined pointwise and for
allf e LV and i,j € [n—11, 9:(/)(j) =1 (i) and (~f)(i)=f (n—i). Then, there is a frame (X, R) such
that 4 is isomorphic to a tense LM, -subalgebra of Lg”"]X.

Proor. It is a direct consequence of Theorem . 11]and the fact that the LM, -algebras L, and Lg""]

are isomorphic. i

COROLLARY 5.13
Let (4,~,{¢'}icia—17, G, H) be a tense LM,-algebra, L, be the Boolean algebra with two elements,

D(Ly)={(x1,....%,_1) €L x) <...<x,_1}, and
(D(L>), A,V N, @1, ..o 04-1,(0,...,0),(1,..., 1)),

be the LM,,-algebra described in Example.13] Then, there is a frame (X, R) such that 4 is isomorphic
to a tense LM,-subalgebra of D(L,)¥.

Proor. It is a direct consequence of Corollary B.12]and the fact that the LM,-algebras D(L,)* and
LY are isomorphic. | |
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LEmmA 5.14 .
The tense LM,-algebra (LY, ~, {goiL” Yien—1), G*, H*) is complete.

ProoF. Let {fy}oea €LY, f: X —> L, and g:X —> L, defined for all x€X, by the prescriptions:
f@)= A fa®x), gx)= "\ fo(x). Since L, is finite, then for all xe X, A fo(x), V fo(x)€L,, and
acA acA

acA acA
therefore /', g € L. It is easy to show that /= A f, and g= \/ f,, which allow us to assert that L
acA acA

is complete. [ |

CoroLLARY 5.15
Any tense LM,-algebra (4,~,{¢'}icin—1), G, H) is a subalgebra of a complete tense LM,-algebra.

Proor. It is an immediate consequence of Theorem B ITland Lemma BT4 [ |

6 Complete and finite simple and subdirectly irreducible tense LM,-algebras

Now, we are interested in the characterization of the simple and subdirectly irreducible complete
tense LM, -algebras whose filters are complete. To this end, we recall that if 4 is a complete lattice

whose prime filters are complete, then for all SC 4, oy ( A a) = oula).
aes aes
ProposITION 6.1
Let (4,G,H) be a complete tense LM, -algebra. Then, the following conditions are equivalent for
any a€A4:

(i) a=d(a),
(i) a=d"(a) for all ne w,
(ifi) a= A\ d"(a),
(iv) a =nK)d”(b) for some be A.

new

Proor. It follows from Lemmas LT and E.T7] and the fact that for any ac 4, A\ d"(a)€A. [ |

new

THEOREM 6.2
Let (4, ~,{¢i}icn—11, G, H) be a complete tense LM,-algebra whose filters are complete. Then, the
following conditions are equivalent:

(1) A4, ~{@i}iem—11.G,H) is a simple tense LM, -algebra,
(i) BC(4))=10,1},
(iii) (C(A),~,{@i}icin—17) 1s a simple LM, -algebra,
(iv) (C(A),~,{@i}ic(n—17) 1s isomorphic to an LM,-subalgebra of L,,.

Proor.
(1) = (ii): It is an immediate consequence of Corollary 29

(i) < (iii): It immediately follows from Corollary 2212 and Lemma E.T8]

(iii) & (iv): It is a direct consequence of Theorem 2111

(ii) = (i): Taking into account that 4 is a complete tense LM,-algebra and Proposition[6.T] we have
that C(4) = { Ad"(a):aed } and so from the hypothesis (ii) we obtain that (1) goi( A d”(a)) —0or

new new
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(p,«( A d”(a)) =1 for every a € 4 and every i € [n— 1]. Besides, from property (L6) of LM, -algebras,
new

we have that for all ae A4\ {1}, there is at least i, € [n—1] such that ¢, (a)#1, and hence from
property (d2) in CorollaryE.I7] we obtain that d"(¢;,(a)) # 1 for any n € w. Then, from property (L12)
of LM,-algebras and property (d7) in Corollary we get that @, ( A d”(a)) = A ¢, (d"(a))=

new new

N d"(¢;,(a)) # 1. Therefore, we can assert that (2) <p,-( A\ d”(a)) #1 for every a€ A\ {1} and every

new new

i € [n—1] such that ¢;(a) # 1. From (1) and (2) we infer that gol»( AN d”(a)) =0foreveryae4\{l}and
new

every i € [n— 1] such that ¢;(a) # 1. In addition, from the fact that the prime filters of 4 are complete,
it follows that oy ( Ad" ((pi(a))) = [ o4(d"(p:i(a))). Consequently, for each a€A\{1} and each

new new

i€[n—1]suchthatg;(a)#1, [)o4(d"(¢:(a))) =0 and thus, from LemmaB.T6and CorollaryET3] it

new

results that () d%, (gof“/*’ (04 (a))) —¢forallae A\ {1} and i € [n— 1] such that ¢ (o4(a))  X(A).
new

Finally, from this last statement, Lemma and the definition of <,0i36 “ on D(X(A)), ie[n—1],
given by the prescription 2.12] we conclude that for all U € D(X(A))\{X(4)} and i€ [n—1] such
that /4 (U) £ X(4), N d;le(A)(fiA*1 (U))=4% and so from Proposition @27 the proof is complete. ll

new

THEOREM 6.3
Let (4, ~,{¢}ic(n—17. G, H) be a complete tense LM,-algebra whose filters are complete. Then, the
following conditions are equivalent:

(1) A,~,{@i}icin-11, G, H) is a subdirectly irreducible tense LM, -algebra,
(i) B(C(4)={0,1},
(iii) (C(A),~,{@i}ieln—17) 1s a simple LM, -algebra.

Prook.

(i) = (ii): From the hypothesis (i) and CorollaryL3T] we have that there is (1) b € B(4)\ {1} such that
(2) d"s(a) < b for some n, € w, for all a € B(A)\ {1}. Then, from (1) and Lemmal.9] it follows that (3)
b=g;(b) for all i € [n—1]. Besides, since A4 is a complete tense LM, -algebra, then from Proposition
we get that /\ d"(b) € C(4) and so, from (3), property (L12) of LM,-algebras, Lemma 9] and

new

the property (d7) in Corollary we deduce that A d"(b) € B(C(4)). Furthermore, from (1) and
property (d5) in Corollary E17] it results that A\ d”lEle;)U;é 1. Now, let c € B(C(A4)), ¢ # 1, then from
(2) and the fact that c= A d"(c), we obtain tha: Ecw: A d"(c)<d"(c)<b, and so from property (d4)
in Corollary 12] we canrf(;ssert that c < A d"(b). Tl’;;)efore, from Corollary ET9] we conclude that

new

(B(C(A)),~) is a totally ordered Boolean algebra and consequently, B(C(4))=1{0, 1}.
(ii) © (iii): It immediately follows from Corollary Z121and Lemma I8

(ii) = (i): From the hypothesis (ii) and Theorem[62)it results that (4, ~, {g;}icfs—17, G, H) is a simple
tense LM, -algebra and therefore the proof is complete. [ |
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COROLLARY 6.4
Let (4, ~,{¢i}iein—11. G, H) be a complete tense LM,-algebra whose filters are complete, and let

(L, ~ @i }icn—17) and (LY, ~, {<piLi(}i€[n_1], G*,H*) be the algebras described in Example ZZT0 and
Lemma B3] respectively. Then, the following conditions are equivalent:

(1) A4,~,{@i}iem—11,G,H) is a simple tense LM, -algebra,

(i) (A4,~,{¢i}iem—11, G,H) is a subdirectly irreducible tense LM,-algebra,

(iii) (C(A),~,{@i}icin—17) is isomorphic to an LM, -subalgebra of L,,

(iv) B(C(4)={0,1},

(v) (4,~,{¢i}icpn—11, G, H) is isomorphic to a complete tense LM, -subalgebra of L¥
1. whose filters are complete.

Proor. It is a direct consequence of Corollary BT3land Theorems[63] and [6.21 [ |

COROLLARY 6.5
Let (4,~,{¢i}ieln—11,G,H) be a finite tense LM,-algebra, and let (L,,~,{@;}ic(n—1;) and (Lff,N

, {<pl.Lf‘( Yietn—11, G*, H*) be the algebras described in Example[ZI0land Lemma[3.3] respectively. Then,
the following conditions are equivalent:

(1) (A4,~,{@i}iem—11,G,H) is a simple tense LM, -algebra,
(i) (A4,~,{@i}icin—11,G,H) is a subdirectly irreducible LM,-algebra,
(iii) (C(A),~,{@i}icin—17) is isomorphic to an LM,-subalgebra of L,,
(iv) BCA)=(0,1},
(v) (4,~,{¢i}iepa—11, G, H) is isomorphic to a tense LM, -subalgebra of L.

Proor. Itis a direct consequence of Corollary[6.4land the fact that A is finite. It should be mentioned
that in this case since A is finite, then from property (d2) in Corollary E12] we have that for every
a€A, there is n, € such that d"(a)=d"(a) for all n€w, n,<n, and so A d"(a)=d"(a). Also,

new

since 4 is finite, then X =maxX(4) is finite and so L is finite. [ |

7 Conclusion and future research

In this article, we have determined a topological duality for tense n-valued Lukasiewicz—Moisil
algebras, extending the one obtained in [‘ﬁ], in which it is used the definition of LM, -algebras given
in [IL1]. By means of the above duality we have characterized simple and subdirectly irreducible
tense n-valued Lukasiewicz—Moisil algebras, specially complete and finite algebras. Also, we have
proved a theorem of representation of these algebras. The proof of this theorem has allowed us
to identify some topological properties of Priestley space associated with n-valued Lukasiewicz—
Moisil algebra LY (Lemma [58] Proposition 57), highlighting the effectiveness of the topological
procedures used, which could be of interest for people working in duality theory.

It seems worth mentioning that in [@], Diaconescu and Leustean introduced an alternative defi-
nition for LM, -algebra as we will indicate below:

DEerNITION 7.1
An LM, -algebra is a system of the form (4, V, A, *,Ji,...,J,,0, 1) such that the structure (4, v, A,
*,0,1) is a De Morgan algebra and Ji,...,J, are unary operations on 4 such that the following hold:

Gy havi= Vo G@VA).

k=n—i+1 k=n—i+1
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(J2) Jix)vdi(y) =1,
(J3) Jik(Ji(x))=0 and J,,(J;(x)) = Ji(x),
(J4) Ji(x*)=J,-4(x) and J,(x*) = A\ Ji(x)*,
i=1
J5) Jix) =(Si(x) V... -1 (X)),
J6) if Ji(x)=Ji(»), for all i € [n], then x=y,
foranyi,je(n], ke[n—1],1<l<nand x,yeL.

Moreover, these authors proved that Definitions 228l and [ZT] are equivalent.

Furthermore, in [@], it is shown that category LM, of LM, -algebras and LM, -
homomorphisms is equivalent to a category which has Boolean algebras endowed with a partic-
ular set of Boolean ideals as objects and their corresponding homomorphisms as morphisms. To
achieve this goal, first the authors defined an n symmetric sequence of ideals on a Boolean alge-
bra B as a finite set {/,...,[,_} of ideals on B with the property that [;=1,_;, for any ie[n—1].
Then, they considered the category Booll, 1 whose objects are tuples of the form (B,1,_,...,11),
where B is a Boolean algebra and {/i,...,1, 1}, is an n symmetric sequence of ideals on B, and
whose morphisms are Boolean morphisms g:(B,1,_1,...,51)— (B'.I)_,,...,1I}) such that g(/;,) C I/,
for any i € [n— 1]. Finally, they proved that the categories LM,,.; and Booll,, are equivalent. This
categorical equivalence is a powerful tool for working with LM, -algebras.

Also, in [I14] the authors developed a Stone-type duality for LM, -algebras starting from the
Stone duality for Boolean algebras. In order to determine this duality, they took into account that the
categories LM,.; and Booll, ., are equivalent and so they constructed a Stone-type duality for the
category Booll, .. To this purpose, they introduced a topological category, denoted by BoolSO,,
whose objects are the Boolean spaces with n symmetric open sets, which are tuples of the form
(X,0,,...,0,_1), where X is a Boolean space (i.e. a Hausdorff and compact space which has a basis
of clopen subsets) and Oy, ..., 0,_ are open sets in X suchthat O;=0,_; foranyi € [n— 1], and whose
morphisms are continuous maps f : (X, O, ...,0,_1) —> (Y, Uy, ..., U,_1) such that f ~1(U;) C O;, for
any i € [n—1]. Besides, they proved that the categories Booll,.., and BoolSO,, are dually equivalent.

One of the referees pointed out that it would be interesting to study how this last duality can be
extended for tense (n+ 1)-valued Lukasiewicz—Moisil algebras.
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