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Decentralized ellipsoidal state estimation for linear model

predictive control of an irrigation canal

L. P. Rodriguez, J. M. Maestre, E. F. Camacho and M. C. Sánchez
ABSTRACT
A centralized linear MPC is used to stabilize an irrigation system whose operation is represented by

an integrator-delay model. Since not all the state variables can be measured, a decentralized

ellipsoidal estimation strategy is proposed. This approach keeps the quality of a centralized

estimation and reduces significantly the computation time for the systems considered.

An adaptation of Test Canal 1, developed by the ASCE Task Committee on Canal Automation

Algorithms, is used as a case study to show the performance of the proposed methodology.
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INTRODUCTION
Irrigation is the application of controlled amounts of water

to crops at established intervals. It is a necessary activity

in dry areas and during periods of below-average rainfall.

In these areas the irrigation water consumption competes

directly with the municipal and industrial ones. Since the

use of water for agriculture constitutes the largest consumer

of fresh water, the modernization and automation of irriga-

tion systems can largely improve the conservation of this

resource. The water usually comes from a river, lagoon, or

is pumped from underground aquifers and is distributed

through a system of irrigation canals. In this context, the

use of control strategies allows maintaining the water

levels in their desired values in each section of the irrigation

system, while using the smallest possible changes in the con-

figuration of the structures, and using the least amount of

energy for water pumping.

Model Predictive Control (MPC) presents important

advantages over traditional control methods such as Pro-

portional Integral Differential (PID) controllers (see

Malaterre et al. () for a survey on this topic). The

MPC allows simultaneously dealing with multiple objec-

tives, constraints, delay times and uncertainties in the
variables (Camacho & Bordons ). Regarding irrigation

systems, Van Overloop () compared the performance

of classic feedback and feedforward controllers and MPC,

demonstrating the superiority of the latter. Within the frame-

work of distributed control, a control strategy in two levels

was developed (Núñez et al. ). The upper layer follows

a risk management strategy to cope with unexpected

changes in demand, failures and additional maintenance

costs, and the lower layer optimizes the value of water

flows using a distributed MPC. Likewise, Fele et al. ()

presented a flexible hierarchical scheme of MPC which reor-

ganizes the agent priorities for optimizing their control

actions according to different operating conditions in a

hydropower valley. Likewise, a distributed MPC strategy

where local controllers exchange information aiming for a

trade-off between global performance and cooperation

costs was proposed for a system of irrigation canals (Fele

et al. ). The so-called coalitional control technique

used a linear Kalman filter to estimate the coupling

dynamics between the different clusters of controllers.

Concerning centralized control strategies, an MPC tech-

nique was applied to control the water levels of irrigation
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systems and its performance was compared with that

obtained using Gaussian linear quadratic regulators (LQR)

(Van Overloop et al. ). To improve the operation of irri-

gation canals, an MPC strategy that maintains the water

level of the canals within a target band between the maxi-

mum and minimum predefined water levels was proposed

(Hashemy et al. ). Likewise, centralized MPC was

applied for human-in-the-loop control of irrigation systems

(Van Overloop et al. ).

Furthermore, Hashemy et al. () presented a centra-

lized control strategy to satisfy a fair distribution of water

between users downstream and upstream of an irrigation

canal when water is scarce. A new way of calculating the

error associated with the difference in water level was intro-

duced. The heart of the controller is a centralized MPC that

accelerates the equal exchange of level errors between all

sections of the canals. Recently, an MPC strategy that maxi-

mizes the net income derived from existing agricultural

economic activities was developed (Hashemy et al. ).

To this end, the authors used an economic model based

on positive mathematical programming to determine the

economic value of water for each extraction point along

the irrigation canal. This information is compared with an

operating model of the irrigated district, and the water defi-

cit is proportionally divided along the canal, maximizing the

district’s economic gains. The application of MPC to irriga-

tion systems with important fluctuations in the water supply

was studied (Hashemy et al. ). The control system allows

adjusting the regulators in such a way that the irrigators take

water continuously and at a satisfactory flow during fluctu-

ations. Water is stored during the excesses and distributed

when there is a shortage.

Previous works showed that key operational problems of

irrigation systems could be effectively solved applying MPC.

In the same way for any control strategy, the availability of

reliable knowledge of the system state is crucial for MPC

because the measurement of all the state variables is not

possible. As is well known, MPC uses models to perform

its calculations of future states and inputs. While irrigation

canal dynamics are highly nonlinear and may evolve with

time, the use of very accurate models, such as the Saint–

Venant equations which are widely used in literature for

describing the behavior of canal reaches and simulating

water levels and flows, may result in long computation
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times of the control actions, which are inappropriate for

real-time applications. As a consequence, simplifying

assumptions to make the solution method easier and more

tractable are common, for example, a linear model with a

quadratic cost function that leads to a convex optimization

problem. In particular, we focus here on the linear and

time-invariant Integrator-Delay (ID) model, which captures

the delay time steps and the storage by which the backwater

area moves up and down. Due to its simplicity, the ID model

is very compact and fast for computations, thus being a

popular choice for MPC. Nevertheless, the values of its

parameters (delay time and storage area) are valid at given

operation point and these may change when the flow

changes (Van Overloop ). Moreover, the simplifications

introduced also generate uncertainty in the model predic-

tions. For these reasons, it is crucial to implement

estimation methods that can explicitly handle uncertainty

and several operation points, which, as will be seen later,

are features of the method proposed in this article.

In the literature dealing with MPC for irrigation canals,

stochastic observers, such as the Kalman filter (Kalman

), were used. These assume that the probability distri-

bution of the disturbances and the noise of the

measurements are known. In practice, these perturbations

are not always known, and it is more natural that they

belong to compact sets without assumptions about their dis-

tribution (Fogel & Huang ). These sets guarantee to

contain the states that are consistent with the system

model, the measurements, the noise of the measurements

and the bounded perturbations.

Generally, the compact set that contains the states has a

particular geometric shape. Alamo et al. () and Le et al.

() developed estimation techniques based on zonotopes.

Other types of widely used sets are the ellipsoids due to the

simplicity of their formulation and the resulting stability of

the estimates (Durieu et al. ; Polyak et al. ;

Daryin et al. ; Daryin & Kurzhanski ; Chabane

et al. ). Two different methodologies to reduce the size

of the estimation set have been proposed. The first one

uses a criterion based on the determinant of the shape

matrix, while the second one minimizes the trace of this

matrix. Durieu et al. () showed that the computational

complexity of these two methods is low at the expense of

a loss of accuracy in comparison with the polytopic



3 L. P. Rodriguez et al. | Decentralized ellipsoidal state estimation for linear MPC of an irrigation canal Journal of Hydroinformatics | in press | 2020

Corrected Proof

Downloaded from http
by guest
on 11 May 2020
estimation. The radius of the ellipsoid estimation set is mini-

mized at each time instant by solving a Linear Matrix

Inequality (LMI) optimization problem (Chabane et al.

). The estimates precisions are similar or greater than

the ones provided by the zonotopic estimation, but the com-

putation time increases considerably with the size of the

model.

Likewise, note that there are other alternatives available

in the literature. For example, there is a growing interest

in data assimilation procedures that do not require

assumptions related to probability distribution of noise

measurements, and they can be also used in combination

with deterministic models (Sun et al. ; Wang et al.

), for example, these techniques have been applied for

real-time correction of deviations between the simulation

model forecast and the observed variables. The same holds

for optimization-based control methods. Besides the pre-

viously mentioned LQR and MPC, other approaches can

be found in the literature, for example, genetic algorithms,

which provide an optimization framework that is suitable

for complex problems with variables of continuous and dis-

crete nature, for example Tian et al. () used it to find

Pareto optimal solutions for a multi-scenario operational

water resources management problem and Li & Lian

() for PID parameter tuning. Arauz et al. () opti-

mized the coefficients of PI controllers for irrigation

canals using LMI constraints to guarantee the stability of

the overall system and minimize undesired mutual inter-

actions. Also, more recently, data-based methods have also

appeared in this context. For example, in Salvador et al.

(), previous trajectories of the system were optimized

to calculate control actions for a water system, and

Barreiro-Gomez et al. () used them in combination

with evolutionary games, which are a valuable tool for

resource allocation optimization.

As can be seen, optimization and control strategies may

be essential in many areas of the water domain, from the

mitigation of severe droughts in many regions of the

planet up to control of urban floods, which are increasing

on a worldwide scale. Also, model-based decision-making

methods are sensitive to model simplifications and inaccura-

cies, for example, in Diogo & do Carmo (), the influence

of boundary conditions in peak flows is assessed via numeri-

cal integration of the Saint–Venant equations. To deal with
s://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2020.150/680502/jh2020150.pdf
these issues, we develop a decentralized ellipsoidal esti-

mation methodology suitable for linear models of

irrigation canals. This is relevant for control methods that

require an estimate of the state such as MPC, where the

use of this type of model is common to increase the compu-

tation speed and guarantee the convexity of the resulting

optimization problem, for example, the ID model (Schuur-

mans ; Van Overloop et al. ; ZafraCabeza et al.

; Fele et al. , ; Hashemy et al. , , ,

; Maestre et al. ). In general, this type of model

does not intend to be accurate from a hydraulic viewpoint

and clearly its simplicity generates mismatches with the

real dynamics of the canal. Indeed, it is a Markov-type

model, i.e. it is a stochastic model where future states

depend only on the current state and not on previous

events. The same holds for the exogenous inputs considered

in the model update, which are simplified and treated as

random disturbances, thus ignoring issues such as the

water demand can be highly affected by the water-

availability and the precipitation-drought behavior, which

exhibit a long-term persistent behavior – the so-called

Hurst phenomenon or Hurst–Kolmogorov behavior. These

phenomena can be detected by performing auto-correlation

analysis and may be relevant to avoid failures in extreme

events such as severe droughts (Koutsoyiannis ;

Dimitriadis & Koutsoyiannis ; Tyralis et al. ).

Despite all the simplifications performed, the proposed fra-

mework has been shown to provide good performance for

canal regulation purposes and can benefit from a significant

advantage of the method proposed in the article, which is

that the estimation process can handle explicitly mis-

matches and disturbances as long as they are bounded.

Indeed, throughout the article we apply the decentra-

lized estimator in combination with MPC to show its

applicability. The proposed approach has several appealing

features: (i) it deals explicitly with uncertainty in the

system evolution, thus accounting for possible model mis-

specifications and errors, which are typical issues when

simple models are used to capture nonlinear systems

dynamics and/or different operation points; (ii) the compu-

tation is decentralized so that it can be implemented in real

world problems where local controllers and observers may

exist for different part of the canal; (iii) the exploitation of

the structure of irrigation canals allows significant speeding
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up of the computations in comparison to that of Chabane

et al. (). To this end, the developed procedure takes

advantage of the structure of the matrices that model the

system evolution, the measurements, the weight of the dis-

turbances, and the weight of the measurements noise,

which can be arranged in block diagonal form. Each block

may represent one or more sections of the irrigation canal,

and sub-systems are connected through the input-to-state

matrix. The nominal state of the system is estimated using

a Luenberger observer, which is calculated by means of

an LMI optimization problem solved in parallel for each

subsystem. The resulting local observer gains are then

gathered into a single global gain matrix. After accomplish-

ing the estimation step, the system is regulated using a

centralized MPC controller. An adaption of the Test Canal

1, developed by the ASCE Task Committee on Canal

Automation Algorithms, is used as a case study.

The rest of the paper is organized as follows. Next, the

formulation of the ad-hoc decentralized ellipsoidal state

estimation and the centralized MPC used to stabilize the

irrigation system are presented. The performance of the pro-

posed methodology for different simulated scenarios of the

ASCE Test Canal 1 is discussed in the following section.

Finally, conclusions and hints about future works are

discussed.
PROBLEM FORMULATION

System model

We consider canals that transport water for irrigated agricul-

ture. In particular, a canal is composed of several sections

separated by gates, which can be moved to control the

water volume stored in each section of the canal. From a

mathematical viewpoint, we are interested in the more

simple internal models used by many control methods

such as LQR and MPC, so we consider an irrigation canal

represented by the following discrete-time linear time-invar-

iant (LTI) system:

xkþ1 ¼ Axk þ Buk þ Ewk (1)

yk ¼ Cxk þ Fwk (2)
om https://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2020.150/680502/jh2020150.pdf

0

where xk ∈ Rnx is the discrete state vector of the system,

uk ∈ Rnu is the input vector, yk ∈ Rny is the measured

output vector, wk ∈ Rnw (nw ¼ nx þ ny) contains the state

and measurements perturbations (noise, offset, etc.) that

are considered bounded by unitary boxes, and A ∈ Rnx : nx ,

B ∈ Rnx : nu , C ∈ Rny : nx , E ∈ Rnx : nw , F ∈ Rny : nw , being the

pair (A,C) detectable and the pair (A,B) stabilizable.

As can be seen, the starting LTI model is very general.

Without loss of generality, we will work in this article with

the particular case of the previously mentioned ID model,

a simple AR(1) model that provides us with a low frequency

approximation of canal dynamics introduced by Schuur-

mans (), which has become a popular choice as a

control model for MPC controllers that regulate average

water levels in irrigation canals. Since estimators are

needed for state space MPC controllers, the choice of this

simple approximation was straightforward, but note that

more sophisticated linear models can be used, for example,

higher-order Markov models and linearized versions of

Saint–Venant equations. In the chosen model, the state

vector xk contains water levels (or errors with respect to

the operation point) and delayed flows, which are provided

by the input vector uk. More information in this regard is

provided below under ‘Case study’, where the model is

explained for the considered case study.

The methodology proposed in this paper is based on a

decentralized ellipsoidal state estimation technique, which

assumes that the noise of the disturbances and the measure-

ments are unknown but bounded. Moreover, a centralized

MPC is used to stabilize the whole system.

Decentralized ellipsoidal state estimation

Recently, a centralized ellipsoidal state estimation strategy

for LTI discrete-time systems based on the minimization of

the ellipsoidal estimation set radius at each time instant k

was developed (Chabane et al. ). The estimation is com-

puted by solving an LMI optimization problem. Although

the strategy shows good performance for small systems,

the computation time increases considerably with the size

of the model. Here, we demonstrate how the efficiency of

the estimation technique can be significantly improved.

It should be noticed that matrices A, C, E, F of the

irrigation canal have a block diagonal structure, and each
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block represents the ith section of the irrigation canal.

Each section may represent one or more reaches, and all

sections are coupled by the matrix B. Therefore, the

system state vector xk can be represented by

xk ¼ x1k . . . xik . . . xpk g
�

, where xik ∈ Rni
x is the state

vector corresponding to the ith section of the irrigation

canal, and p is the total number of sections. In the

same way, the measurement vector yk is

yk ¼ y1k . . . yik . . . ypk g
�

, (yik ∈ Rni
y ), and the disturb-

ance vector is wk ¼ w1
k . . . wi . . . wp

k g
�

, (wi
k ∈ Rni

w ).

Moreover the state transition matrix, the measurements

matrix, the process noise matrix and the measurements

noise matrix of the ith section of the irrigation canal

are, respectively, Ai ∈ Rnxi : nxi , Ci ∈ R
nyi : nxi , Ei ∈ Rnxi : nwi ,

Fi ∈ R
nyi : nwi .

In this work the following assumptions are considered:

Assumption 1. Bounded disturbances: vector wk is

bounded by the unitary interval Mnxþ ny .

Assumption 2. Bounded Initial State: the initial state

vector xi0, i ¼ 1, . . .p is bounded by the ellipsoid

ε(Pi, �xio, ρi0) ¼ {xi ∈ Rni
x : (xi � �xio)

T
Pi(xi � �xio) � ρi0}, where

�xio is the initial nominal state of the ith section, Pi is the

shape matrix of the ith ellipsoid, and ρi0 represents its initial

radius (recall that in its simplest form the quadratic form of

an ellipsoid can be expressed in matrix form as xTPx< ρ,

with P being a positive definite matrix).

Given an ε(Pi, �xik, ρik) for xik, where �xik is its center

and ρik is its radius at time k and k> 0, the ellipsoid-

ε(Pi, �xikþ1, ρikþ1) can be calculated for xikþ1 using an

ellipsoidal state estimation (Chabane et al. ) in such a

way that:

ρikþ1 � βiρik > 0 (3)

where βi ∈ (0, 1). In particular, ρikþ1 and βi are minimized at

kþ 1 to guarantee a non-increasing ellipsoidal radius.

The decentralized ellipsoidal state estimation technique

developed in this work is based on the following theorem.

Theorem 1. Consider that at time k, the state vector of

the ith section of the irrigation canal xik belongs to the ellip-

soid ε(Pi, �xik, ρik), with a symmetric positive definite matrix

Pi ¼ PiT ≻ 0. If there exists a matrix Ξi
k ∈ Rnxi : nyi, a scalar

βi ∈ (0, 1) and a radius ρikþ1 satisfying the following LMI
s://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2020.150/680502/jh2020150.pdf
optimization problem for all wi
k ∈ Mnxiþ nyi:

min
Ξi
k, β

i, ρikþ1
ρikþ1 (4)

s:t:
βiPi AiTPi � CiΞi

k 0

PiAi � Ξi
kC

i Pi PiEi � Ξi
kF

i

0 EiTPi � FiTΞi
k Φi

2
64

3
75 ≻ 0

ρikþ1 � βiρik > 0

Then, the system state xikþ1 at time kþ 1 belongs to

ε(Pi, �xikþ1, ρikþ1) for all wi
k ∈ Mnxiþ nyi. The proof of Theo-

rem 1 is beyond the scope of this work, and can be found

in Chabane et al. ().

In contrast to the centralized estimation technique pro-

posed by Chabane et al. (), which updates the radius ρk
of the ellipsoid ε that contains the state vector xk and the

gain of estimatorGk at each time instant k for the whole irri-

gation canal system, the decentralized estimation updates

the radius and the gain for each canal section individually.

In this way, the state vector xikþ1 corresponding to the ith

section of the irrigation canal belongs to the ellipsoid

εi(Pi, �xikþ1, ρikþ1) for all wi
k ∈ Mni

xþ ni
y and the gain of ith

section, Gi
k, can be calculated from:

PiGi
k ¼ Ξi

k (5)

In particular, Equations (4) and (5) are used to compute

ρikþ1 and Gi
k for each section of the irrigation system. After

that, the radius and gain for the overall system, ρkþ1 and

Gk , are computed as follows:

Gk ¼

G1
k 0 � � � 0 0 0

..

. ..
. � � � ..

.
..
. ..

.

0 0 � � � Gi
k 0 0

..

. ..
. ..
.

..

. ..
.

0 0 � � � 0 0 Gp
k

2
6666666664

3
7777777775

(6)

ρkþ1 ¼ max ρ1k; . . . ; ρik; � � � ; ρpkÞ
�

(7)

where Gk ∈ Rnx : ny , is a block diagonal matrix and ρkþ1 is

the largest ellipsoid radius.
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Finally, the nominal state vector of the system

�xkþ1 ∈ Rnx at time instant kþ 1 is calculated by using the

following equation:

�xkþ1 ¼ A�xk þ Buk þGk(yk � C�xk �Duk) (8)

In summary, the steps for updating the state vector are:

• Solve the LMI Optimization Problem (4) for each section

by obtaining ρikþ1 and the matrix Ξi
k for each ith section of

the canal.

• Obtain Gi
k for each section of the canal by solving

Equation (5).

• Obtain Gk for the whole system through the block diag-

onal matrix (6).

• Calculate the radius of the ellipse that contains the states

of the system, ρkþ1, by means of Equation (7).

• Update the states of the whole system, �xkþ1, through

Equation (8).

Remarkably, this procedure can be performed in a

decentralized fashion which allows parallelizing the compu-

tation of the solution. In this regard, the structure of

irrigation canals and their relatively low coupling between

different subsystems is key in distributing the computation

of the ellipsoids. As a consequence, the resulting problems

to solve are smaller, also providing additional gains in the

time required for the computation. As will be shown later,

all these elements provide a significant reduction of compu-

tation time with respect to the original method proposed in

Chabane et al. ().

After updating �xkþ1, the control action is calculated in a

centralized way by solving a centralized MPC regardless of

the configuration chosen to estimate the states of the system.
Centralized model predictive control

Management of irrigation canals systems can be described

by a set of logical and mathematical rules within a control-

ler. These can be classified according to the property of

the irrigation system that is controlled as flow control,

water level control and volume control. Also, rules can be

classified according to the relative position of the controlled

water level in the reach as downstream control and

upstream control. Finally, the controller may be classified
om https://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2020.150/680502/jh2020150.pdf
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based on general control theory feedback control, feedfor-

ward control, optimal control and heuristic control (Van

Overloop ), the MPC technique proposed in this work

has elements of the feedback control, feedforward and opti-

mal control.

The objective of the proposed controller is to maintain a

constant level at offtakes, which are located at the down-

stream end of each canal reach. A centralized MPC is

developed to stabilize the system by maintaining state vari-

ables and inputs within specified ranges.

The control signal uk is calculated by minimizing a

quadratic criterion subject to a set of constraints. The optim-

ization problem is stated as follows (Camacho & Bordons

; Van Overloop ):

argmin
ukjk

XL�1

l¼0

xTkþlþ1jk Q xkþlþ1jk þ uT
kþlþ1jkR ukþlþ1jk (9)

s:t:
xmin � xkþljk � xmax

umin � ukþljk � umax

where xkþljk and ukþljk are the states and inputs predicted at

time kþ l (l:1 . . .L), L is the prediction horizon, Q ∈ Rnx :l

and R ∈ Rnu :l are the weighting matrices, (xmin, xmax) and

(umin, umax) are the limits on the state variables and the

control actions, respectively, chosen taking into account

safety and performance specifications. The particular speci-

fications of the case study will be discussed below under

‘Case study’.

The control signal uk, applied to the system, is com-

posed by the first nu elements of the solution vector

ukjk ∈ Rnu:L corresponding to the current time. For kþ 1,

ukþ1 is obtained by solving the MPC with the updated pro-

cess information again.
CASE STUDY

The case study used in this paper is an adaption of the Test

Canal 1 of the ASCE Task Committee on Canal Automation

Algorithms, based on lateral canal WM within the Mari-

copa–Stanfield Irrigation and Drainage District in central

Arizona. Additional details about the Test Canal 1 can be



Table 1 | Main characteristics of the case study

Pool #
Pool
length (m)

Bottom
width (m)

Canal
depth (m)

Capacity
flow (m3/s)

Design
flow (m3/s)

1, 9, 17 100 1.0 1.1 2.0 0.8

2, 10, 18 1,200 1.0 1.1 2.0 0.7

3, 11, 19 400 1.0 1.0 2.0 0.6

4, 12, 20 800 0.8 1.1 1.6 0.5

5, 13, 21 2,000 0.8 1.1 1.6 0.4

6, 14, 22 1,700 0.8 1.0 1.6 0.3

7, 15, 23 1,600 0.6 1.0 1.3 0.2

8, 16, 24 1,700 0.6 1.0 1.1 0.1
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found elsewhere (Clemmens et al. , , ). The

length of the original canal is 9.5 km, the maximum capacity

at the head gate is 2.8 m3/s and the irrigation canal supplies

water to a number of large farms. The canal is characterized

by high Froude numbers and little storage. Many pools have

an initially very steep slope, followed by a mild slope, which

was simplified to a single slope. It is assumed that each canal

reach has an unsubmerged vertical sluice gate and the regu-

lation time step is equal to 5 minutes.

While the original system consists of eight pools, here

we use 24 pools by concatenating three times the original

system to have a larger system for our tests (see Figure 1).

The irrigation canal is fed by a constant water level reser-

voir at its head and the flow released to the canal is

controlled by a gate. The canal reaches are separated by

control structures and each one consists of an adjustable

undershot control gate in parallel with weirs. A fixed

crest level at both sides of the undershot gate is assumed.

To the extreme of each reach (5 m from the downstream

end) are located the offtake undershot gates and the offtake

flows are conveyed to the secondary canals by a culvert.

The canal has almost no flow at the downstream end. To

model the canal, some assumptions were made: sections

with supercritical slopes were modeled with a drop
Figure 1 | Profiles of case study.

s://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2020.150/680502/jh2020150.pdf
followed by a subcritical slope. These approximations

result in slower canal response to upstream flow changes

than the prototype canal.

The mains characteristics of the case study were taken

from Clemmens et al. () and are shown in Tables 1–3.

Nevertheless, note that the level of detail of the real canal,

including its multiple reaches between pools, culverts, and

supercritical flow sections, is not necessary for a general

evaluation of canal control algorithms via simulation

(Clemmens et al. ). Thus, single canal reaches and sub-

critical flow were considered for simplicity.



Table 2 | Check structures properties

Pool #
Gate width
(m)

Gate height
(m)

Weir height
(m)

Weir width
(m)

Inlet 1.5 1.0 No weir No weir

1, 9, 17 1.5 1.0 0.99 4.5

2, 10, 18 1.5 1.0 0.99 4.5

3, 11, 19 1.5 0.9 0.91 4.2

4, 12, 20 1.2 1.0 1.07 4.4

5, 13, 21 1.2 1.0 0.91 3.9

6, 14, 22 1.2 0.9 0.90 3.7

7, 15, 23 1.0 0.9 0.91 3.3

8, 16, 24 – – 0.95 4.0

Figure 2 | ID model of the ith canal reach.

Table 3 | Offtake discharges

Pool #

Discharges
(m3/s)
initial

Discharges
(m3/s) final

Target
level
(m)

Offset
(m)

Head
discharge
exponent

1, 9, 17 0.16 0.16 0.90 0.3 0.6

2, 10, 18 0.0 0.0 0.90 – –

3, 11, 19 0.10 0.10 0.80 0.2 0.5

4, 12, 20 0.21 0.21 0.90 0.36 0.6

5, 13, 21 0.0 0.0 0.90 – –

6, 14, 22 0.19 0.19 0.80 0.24 0.6

7, 15, 23 0.0 0.14 0.80 0.0 0.2

8, 16, 24 0.19 0.19 0.80 0.0 0.5
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Also, the bottom slope is 0.002, the Manning coefficient

is 0.014, the side slope is 1.5, and the drop at the gate

expressed in meters is 1.0 for all the pools.

The original test was adapted to consider that the

elements of wk are bounded in the range [1,–1]. Also, the

case study was simulated using (1) and (2) for k¼ [0; 1;

…; 287; 288]. The measurements trajectories were obtained

from simulations. A linear response model in open irrig-

ation canals can be obtained by linearizing the

Saint–Venant equations over a bounded range of operating

conditions. The model is linearized around stationary flow

conditions, while the flow regimen considered along the

canal and along the time is not stationary. A linear ID

model assumes that each canal reach is formed by two

different parts: the integrator and reservoir sections

(Schuurmans ), as illustrated in Figure 2. The first one

acts as a water reservoir without delay time (τ). The

second section is represented by its delay time, which is

the time necessary to go from one steady-state flow to

another one. Note that this model is not accurate from a

hydrological viewpoint and simply captures the transport

and storage of water for average water level regulation pur-

poses. As was said before, linear models are convenient for

the sake of computation and the proposed estimation

method can handle this loss of information as long as it is

bounded, as is the case.



Figure 3 | Control algorithm.
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The ID model for each canal reach can be described by

the following equation:

dei
dt

¼ 1
Abi

[qin,i(k� τ)� qout,i(k)� qofftake,i(k)] (10)

For the ith canal reach, ei is the deviation of the water

level i with respect to the set one in the reservoir section,

qin,i and qout,i are the deviations of inflow and outflow

from their initial values, respectively, and Abi is the surface

of the reservoir section (see Figure 2). Both τ and Abi can

be determined by unsteady flow simulation, (10) can be for-

mulated in state-space form (1) and (2) (Van Overloop

). For the purposes of this work, the state variables con-

sidered in each canal reach are the deviations in water level

and inflow, i.e. ei and qiin(k� τi):

xik ¼ {ei,k; q
i
in(k); q

i
in(k� τ1); qiin(k� 2τ1); qiin(k� 3τ1); qiin(k� 4τ1) }

(11)

Then, the state vector of the irrigation canal is rep-

resented by xk ¼ {xik}
Twith i ¼ {1; . . . ; 24}. Also, the vector

of inputs at time k calculated by the MPC controller is

formed by the deviation in inflow qiin(k) at each canal reach:

uk ¼ {q1in(k); q2in(k); q3in(k); . . . ; q24in (k)}
T (12)

Moreover, the output at sample time k, yk, are the devi-

ations in water level in each canal reach:

yk ¼ {e1,k; e2,k; e3,k; e4,k; . . . ; e23,k; e24,k} T (13)

Also, matrix A contains information on the temporal

evolution of water and flow levels, whereas matrix B injects

changes in the flows in certain states variables. In addition,

modeling errors may be incorporated through matrix E.

The original test was adapted to consider that the

elements of wk are bounded in the range [1,–1]. Also, the

case study was simulated using (1) and (2) for k¼ [0; 1; …;

287; 288]. The measurements trajectories were obtained

from simulations.

At first, the control algorithm presented in Figure 3 was

executed considering the centralized model (a) of the
s://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2020.150/680502/jh2020150.pdf



Table 5 | Performance indices MAE, IAE, IQE

Configuration MAE IAE IQE

a mean 0.0038 1.1026 0.0081
max 0.0059 1.7232 0.0182

b mean 0.0038 1.1026 0.0081
max 0.0059 1.7232 0.0182

c mean 0.0038 1.1026 0.0081
max 0.0059 1.7232 0.0182

d mean 0.0038 1.1026 0.0081
max 0.0059 1.7232 0.0182

e mean 0.0038 1.1026 0.0081
max 0.0059 1.7232 0.0182

f mean 0.0038 1.1026 0.0081
max 0.0059 1.7232 0.0182

g mean 0.0038 1.1026 0.0081
max 0.0059 1.7232 0.0182

h mean 0.0038 1.1026 0.0081
max 0.0059 1.7232 0.0182
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irrigation canal. The states of the system were updated by

solving the optimization problem (4) using an LMI solver,

whose parameters were adjusted by trial and error. The

values of wk are generated randomly, being wkk k � 1, and

x0 ∈ ε(I144:144, 0144:1, 1). The control signal was calculated

by solving the MPC problem (8) using a QP optimization

code. No hard constraints on xk and hard constraints

on uk(100, �100) are considered, also R ¼ 0:01 � I25x25
and Q is a diagonal matrix of dimension (144,144). The diag-

onal elements of this matrix are 1 in positions corresponding

to ei and 0 for those related to qiin. The controller parameters

are the control and prediction horizons, which were

adjusted by trial and error and set at 15 and 43 time instants,

respectively.

Then, the algorithm was executed considering seven

different configurations of the irrigation system for the ellip-

soidal state estimation, using the parameters adjusted for the

centralized configuration (a). These configurations are the

following:

• two sections of 12 pools each one (b);

• three sections of eight pools each one (c);

• four sections of six pools each one (d);

• six sections of four pools each one (e);

• eight sections of three pools each one (f);

• 12 sections of two pools each one (g);

• 24 sections of one pool each one (h).

Also, the MPC is always solved in a centralized way

regardless of the proposed state estimation configuration.

The mean computing time (MCT) of the eight configurations

can be observed in Table 4.
Table 4 | Mean computing time

Configuration MCT (s)

(a) Centralized 1,487.40

(b) Distributed 20.36

(c) Distributed 2.54

(d) Distributed 1.71

(e) Distributed 0.57

(f) Distributed 0.28

(g) Distributed 0.18

(h) Decentralized 0.13

om https://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2020.150/680502/jh2020150.pdf
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From Table 4 it can be observed that the MCT for the

centralized scenario is 1,487 s. If distributed configurations

(b), (c), (d), (e), (f) and (g) are chosen, the computation

time decreases by a factor of 73, 585, 870, 2,609, 5,312

and 8,263, respectively. If the state estimation is totally

decentralized (configuration h), the reduction factor of

MCT is 11,441.

Also, Mean Absolute Error (MAE), the Integrated Absol-

ute Error (IAE), the Integrated Quadratic Error (IQE) and

the Accumulated Cost (AC) were used as performance

indexes (Dimitriadis & Koutsoyiannis ). These were

evaluated using the following equations:

MAE ¼
PK

k¼0 jeTk j
K

(14)
Table 6 | Performance index AC

Configuration AC

a 0.4349

b 0.4349

c 0.4349

d 0.4349

e 0.4349

f 0.4349

g 0.4349

h 0.4349
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IAE ¼
XK

k¼0

jeTk j (15)

IQE ¼
XK

k¼0

(eTk )
2 (16)

AC ¼
XK

k¼0

xTkQxk þ uT
k R uk (17)
Figure 4 | Trajectory of state variable x1 (estimator configuration a–h).

s://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2020.150/680502/jh2020150.pdf
where K is the time period analyzed, and eTk is a vector that

contains the nominal values of the state variables which rep-

resent the error in water levels. These performance indices

have been widely used in MPC papers and, in particular,

for the ASCE Test Canal 1 (Clemmens et al. , ).

The values of the performance indices calculated for each

configuration are shown in Tables 5 and 6.

The analysis of previous results indicates that the mean

and max MAE, IAE, IQE performance indexes are



Figure 5 | Trajectory of state variable x49.
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independent of the chosen configuration. Also, it is worth

mentioning that as the value of the power superscripts

increases, the performance indicators become more sensi-

tive to the extreme values, which may bias decisions taken

in that regard towards the extremes.

Figures 4–6 show the trajectories of the state variables 1,

49 and 97, obtained by simulating the proposed case

study. These variables represent the deviation of the water

level of the 1st, 9th and 17th pools of the irrigation

canal, respectively, which correspond to the first pools

of the first, second and third concatenated sections,

respectively.

The control algorithm was executed for each proposed

estimation configuration and the bounds of the state

variables were displayed. As can be seen in Figure 4, the

values of the bounds for the state variable 1 are independent

of the estimation configuration. Also, it can be observed

that trajectories are defined within the ellipsoid limits

calculated from the nominal state estimates and the radius

(Figures 4–6).

The same analysis was performed for the rest of the state

variables that take part in all configurations. It was observed

that: xk � �xk ± ρk for k¼ 0; 1; …; 288.
Figure 6 | Trajectory of state variable x97.

om https://iwaponline.com/jh/article-pdf/doi/10.2166/hydro.2020.150/680502/jh2020150.pdf
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CONCLUSIONS

A control algorithm devoted to regulating an irrigation

system whose operation is represented by a ID model is pro-

posed in this paper. An ad-hoc decentralized ellipsoidal

estimation technique is used to compute the states of the

system, and the centralized MPC allows stabilization of

the water levels in the pools by adjusting the control

action on the gates. The performance of the proposed strat-

egy was tested for different estimator configurations, using

the MAE, IAE, IQE, AC and MCT indicators. The compu-

tational time is significantly reduced, keeping the quality

of the estimates with respect to the centralized estimation.

Therefore, the decentralized ellipsoidal estimation method

can deal with larger irrigation systems in comparison with

centralized strategies. Regarding future work, we will study

the application of both decentralized state estimation and

MPC to a real large-scale system whose model is based on

a more sophisticated linearized version of the Saint–

Venant equations. The use of more sophisticated linear

models than the ID model is interesting because it can pro-

vide additional performance but it may affect the way the

system is decomposed to perform the local parallel esti-

mations. Nevertheless, this should not be a significant

issue given the naturally distributed nature of irrigation

canal problems.
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