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Let w be an A∞-Muckenhoupt weight in R. Let L2(wdx) denote the space of square 
integrable real functions with the measure w(x)dx and the weighted scalar product 
〈f, g〉w =

∫
R
fg wdx. By regularization of an unbalanced Haar system in L2(wdx)

we construct absolutely continuous Riesz bases with supports as close to the dyadic 
intervals as desired. Also the Riesz bounds can be chosen as close to 1 as desired. 
The main tool used in the proof is Cotlar’s Lemma.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction and statement of the main result

A sequence {fk, k ∈ Z} in a Hilbert space H is said to be a Bessel sequence with bound B if the inequality
∑
k∈Z

|〈f, fk〉|2 ≤ B ‖f‖2
H

holds for every f ∈ H. If {fk, k ∈ Z} is a Bessel sequence with bound B and {ek, k ∈ Z} is an orthonormal 
basis for the separable Hilbert space H, then the operator T on H defined by

Tf :=
∑
k∈Z

〈f, fk〉ek

is bounded on H with bound 
√
B. Conversely if T is bounded on H, then {fk, k ∈ Z} is a Bessel sequence 

with bound ‖T‖2.
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When {fk, k ∈ Z} itself is an orthonormal basis and ek = fk, T is the identity. Of particular interest is 
the case of H = L2 when the Bessel system and the orthonormal basis are built on scaling and translations of 
the underlying space. In such cases the operator T has a natural decomposition as T =

∑
j∈Z

Tj . Sometimes 
the orthonormal basis can be chosen in such a way that the Tj’s become almost orthogonal in the sense of 
Cotlar. We aim to use Cotlar’s Lemma to produce smooth and localized Riesz bases for L2(R, wdx) when 
w is a Muckenhoupt weight.

To introduce the problem let us start by some simple illustrations. Let ψ be a Daubechies compactly 
supported wavelet in R. Assume that suppψ ⊂ [−N, N ]. The system {ψ̃j

k(x) = 2 j
2ψ(2jx3 − k) : j, k ∈ Z}

is a compactly supported orthonormal basis for L2(R, 3x2dx). More generally if w(x) is a non-negative 
locally integrable function in R and W (x) =

∫ x

0 w(y)dy, then the system ψj
k(x) = 2 j

2ψ(2jW (x) − k) is an 
orthonormal basis for L2(wdx). In fact, changing variables

∫
R

ψj
k(x)ψl

m(x)w(x)dx = 2
l+j
2

∫
R

ψ(2jW (x) − k)ψ(2lW (x) −m)w(x)dx

=
∫
R

ψj
k(z)ψ

l
m(z)dz

and we have the orthonormality of the system {ψj
k : j ∈ Z, k ∈ Z} in L2(R, wdx). As it is easy to verify in 

the case of w(x) = 3x2, for j fixed the length of the supports of ψj
k tend to zero as |k| → +∞. On the other 

hand for k = 0 the scaling parameter is 2− 1
3 .

Notice also that if w is bounded above and below by positive constants the sequence ψj
k is an orthonormal 

basis for L2(wdx) with a metric control on the sizes of the supports provided by the scale.
A Riesz basis in L2(wdx) is a Schauder basis {fk} such that there exist two constants A and B called 

the Riesz bounds of {fk} for which

A
∑

|ck|2 ≤
∥∥∥∑ ckfk

∥∥∥2

L2(wdx)
≤ B

∑
|ck|2

for every {ck} in l2(R), the space of square summable sequences of real numbers. In this note we aim to 
give sufficient conditions on a weight w defined on R more general than 0 < c1 ≤ w(x) ≤ c2 < ∞, in order 
to construct, for every δ > 0, a system Ψ = {ψI(x), I ∈ D} (D are the dyadic intervals in R) with the 
following properties,

(i) Ψ is a Riesz basis for L2(wdx) with bounds (1 − δ) and (1 + δ),
(ii) each ψj

k is absolutely continuous,
(iii) for each I, ψI is supported on a neighborhood Iε of I such that

0 <
|Iε|
|I| − 1 < δ.

As we have shown in the above example with w(x) = 3x2, we have that {ψj
k} satisfies (i) and (ii) but 

not (iii).
An orthonormal basis in L2(R, wdx) satisfying (iii) but not (ii) when w is locally integrable is the following 

unbalanced version of the Haar system (see [12]). Let D = ∪j∈ZDj be the family of standard dyadic intervals 
in R. Each I in Dj takes the form I = [k2−j , (k + 1)2−j) for same integer k. For I ∈ Dj we have that 
|I| = 2−j . We shall frequently use aI and bI to denote the left and right points of I respectively, for each 
I ∈ D, define
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hw
I (x) = 1√

w(I)

{√
w(Ir)
w(Il)

χIl(x) −
√

w(Il)
w(Ir)

χIr(x)
}

(1.1)

where w(E) =
∫
E
w dx, Il is the left half of I and Ir is its right half. Notice that with the above notation 

hw
I is the standard Haar basis hI for L2(R) when w = 1.
The real numbers with the usual distance and measure dμ = wdx with w a Muckenhoupt weight, is a 

space of homogeneous type. Some constructions of wavelet type bases on spaces of homogeneous type are 
contained in [2] and [3]. Those in [2] are not regular and those in [3] are not compactly supported.

In this note we prove that the A∞ Muckenhoupt condition on a weight w is sufficient for building a Riesz 
basis in L2(wdx) satisfying (i), (ii), and (iii).

Aside from Cotlar’s Lemma, other fundamental tools we shall use are the basic properties of Muckenhoupt 
weights and a result due to Favier and Zalik [8] on small Bessel perturbations of Riesz bases.

In [10] N. Govil and R. Zalik gave a spline based regularization method of the Haar system to produce 
a regular and compactly supported Riesz basis with bounds as close to one as desired and supported on 
small neighborhoods of the dyadic intervals. In [1] the same type of result is obtained via regularizing by 
convolution. In both cases the main tool is contained in Theorem 5 in [8].

Let 1 < p < ∞. A locally integrable nonnegative function w defined on R is said to be an Ap Muckenhoupt 
weight if there exists C > 0 such that

(∫
J

wdx

)(∫
J

w− 1
p−1 dx

)p−1

≤ C |J |p ,

for every interval J . The class A∞ is defined by A∞ = ∪1<p<∞Ap.
The typical nontrivial examples of A∞ weights are the powers of the distance to a fixed point. In particular 

w(x) = |x|α belongs to A∞ for every α > −1. For the general theory of Muckenhoupt weights, introduced 
by B. Muckenhoupt in [11], see the book [9].

A simple and well known result for A∞ weights that implies the doubling condition for the measure 
w(x)dx, due to B. Muckenhoupt, is the inequality

(
|E|
|J |

)p

≤ C
w(E)
w(J) (1.2)

which holds for some constant C and every measurable subset E of any interval J , provided that w ∈ Ap. 
From (1.2) it follows easily that the function W (x) =

∫ x

0 w(y)dy defines a one to one and onto change of 
variables on R with Jacobian w. Set W−1 to denote the inverse function of W .

In order to produce a regularization of the system hw
I given by (1.1) we first use the change of vari-

ables defined by W−1 to obtain another orthonormal basis {Hw
I } in the spaces L2 with respect to the 

translation invariant measure dx. Next we regularize by convolution with a smooth and compactly sup-
ported function ϕ the functions Hw

I to produce a Riesz basis for L2(R, dx) which we shall denote by 
{Hw,ε

I }. Finally in order to obtain the desired regularization hw,ε
I of {hw

I } we go back to L2(R, wdx) by 
reversing the change of variables induced by W−1. Since the regularizing function ϕ can be assumed to 
be as smooth as desired, the regularity of each hw,ε

I is only limited by the regularity of W (x) which 
is at least locally absolutely continuous. Let us precisely define the three families {Hw

I }, {Hw,ε
I } and 

{hw,ε
I }.
For each I ∈ D set Hw

I = hw
I ◦W−1. Notice that

Hw
I (x) = 1√

|I ′|

{√
|I ′r|
|I ′|χI′

l
(x) −

√
|I ′l |
|I ′ |χI′

r
(x)

}
(1.3)
l r
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where I ′ = {W (y), y ∈ I}. Now take a function ϕ to be C∞, nonnegative, non-increasing to the right of 0, 
even and supported in (−1, 1) with 

∫
R
ϕ = 1. With the standard notation ϕt(x) = 1

tϕ(xt ), t > 0, define

Hw,ε
I (x) =

(
ϕεw(I) ∗Hw

I

)
(x). (1.4)

Finally, set hw,ε
I (x) = (Hw,ε

I ◦W ) (x) for ε positive small enough.
The main result in this note is contained in the following statement.

Theorem 1.1. Let w be a weight in A∞(R). Then there exists ε0 > 0 depending only on w such that

a) for each positive ε < ε0, the system {hw,ε
I , I ∈ D} is a Riesz basis for L2(wdx) of absolutely continuous 

functions,
b) the Riesz bounds of {hw,ε

I , I ∈ D} can be taken as close to one as desired by taking ε small enough,
c) for each dyadic interval I = [aI , bI ] the support of hw,ε

I is an interval Iε = [aεI , bεI ] with aεI ↗ aI , bεI ↘ bI
when ε → 0 and for some constant C, 0 < |Iε|

|I| − 1 < Cε
1
p if w ∈ Ap.

Let us point out that the regularity of each hw,ε
I can be better than absolute continuity if w is smooth. 

In particular, when w ≡ 1 the functions hw,ε
I are C∞. In other words we get a basis for L2(dx) with 

full regularity and small supports. To get simultaneously these two properties we have to pay loosing 
orthogonality.

In Section 2 we give the basic result used in Section 3 in order to prove Theorem 1.1.

2. Preliminaries and basic results

In this section we introduce three basic results from functional and harmonic analysis which we shall 
use in Section 3 to prove Theorem 1.1. We shall refer to them as Coifman–Fefferman inequality, Cotlar’s 
Lemma and Favier–Zalik stability, respectively.

Aside from (1.2) another important property of A∞ weights that we shall use in the proof Theorem 1.1
is contained in the next statement which is proved as Theorem 2.9 on p. 401 in [9] and originally proved 
in [5].

Coifman–Fefferman. If w ∈ Ap, 1 < p < ∞ then there exist positive and finite constants C, γ such that the 
inequality

w(E)
w(J) ≤ C

(
|E|
|J |

)γ

(2.1)

holds for every interval J and every measurable subset E of J .

The original proof of Cotlar’s Lemma is contained in [6]. For more easily available proofs see [7] or [12].

Cotlar’s Lemma. Let {Ti : i ∈ Z} be a sequence of bounded operators in a Hilbert space H. Assume that they 
are almost orthogonal in the sense that there exists a sequence s : Z → (0, ∞) with 

∑
k∈Z

√
s(k) = A < ∞

such that

‖T ∗
i Tj‖ +

∥∥TiT
∗
j

∥∥ ≤ s(i− j)

for every i, j ∈ Z. Then
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∥∥∥∥∥
N∑

i=−N

Ti

∥∥∥∥∥ ≤ A

for every positive integer N .

The third result, due to S. Favier and R. Zalik, deals with the perturbation of Riesz bases and is contained 
in Theorem 5 of [8]. A basis {fn} for a Hilbert space H is said to be a Riesz basis with bounds A and B if 
and only if the inequalities

A ‖f‖2 ≤
∑

|〈fn, f〉|2 ≤ B ‖f‖2

hold for every f ∈ H (see, for example, Theorem 6.1.1 in [4]).

Favier–Zalik stability. Let {fn} be a Riesz basis for a Hilbert space H with bounds A and B. Let {gn} be a 
sequence in H such that {fn − gn} is a Bessel sequence with bound M < A. Then {gn} is a Riesz basis with 

bound [1 −
(
M
A

) 1
2 ]2A and [1 −

(
M
B

) 1
2 ]2B.

The next lemma is a consequence of (1.2). It will be crucial in the proof of Theorem 1.1.

Lemma 2.1. Let w be a weight in Ap. For a given dyadic interval I, set aI , bI and cI to denote the left 
endpoint of I, the right endpoint of I and the center of I respectively. As before Il and Ir denote the left 
and right halves of I. Then

a) with C the constant in (1.2) and ε < (1
2 )p 1

2C we have that 2εw(I) < w(Il) and 2εw(I) < w(Ir);
b) with C as above and ε < 1

C
1
3p we also have that 

∑
I∈Dj χW ε(I)(x) ≤ 2 for every j ∈ Z, where W ε(I) is 

the εw(I) neighborhood of the interval W (I), in other words W ε(I) = (W (aI) − εw(I), W (bI) + εw(I)).

Proof. a) Using (1.2) with J = I, E = Il we obtain

w(Il)
w(I) ≥ 1

C

(
|Il|
|I|

)p

= 1
C2p > 2ε.

The same inequality is true for Ir instead of Il.
b) Let us consider I, K and J three consecutive intervals in Dj with bI = aK and bK = aJ . Let M be 

the interval obtained as the union of I, J and K. From (1.2) we see that

ε <
1
C

1
3p = 1

C

(
|K|
|M |

)p

≤ w(K)
w(M)

Hence ε(w(I) +w(J)) ≤ εw(M) < w(K) = W (aJ) −W (bI), so that W (bI) + εw(I) < W (aJ) − εw(J). Then, 
no point x ∈ R can belong to more than two of the intervals W ε

I . �
3. Proof of Theorem 1.1

Throughout this section w is a weight in Ap(R) for some 1 < p < ∞. We shall use the standard inner 
product notation 〈·,·〉 for the scalar product in L2(dx). We shall write 〈·,·〉w to denote the inner product in 
L2(wdx).

Notice first that {hw
I : I ∈ D} defined in (1.1) is an orthonormal basis for L2(R, wdx). For j ∈ Z, set

Vj = {f ∈ L2(wdx) : f is constant on each I ∈ Dj},



422 H. Aimar, W.A. Ramos / J. Math. Anal. Appl. 430 (2015) 417–427
and observe that 
⋃

j∈Z
Vj is dense in L2(wdx). By (2.1) wdx is doubling and hence 

∫
R
w = ∞. Thus, we 

have 
⋂

j∈Z
Vj = {0}. For I ∈ D fixed, the two dimensional vector space of those functions f defined on I

which are constant on each half Il and Ir of I has { χI√
w(I) , h

w
I } as an orthonormal basis with the L2(wdx)

inner product. For j ∈ Z, we define Wj as the L2(wdx) orthogonal complement of Vj in Vj+1. In other 
words, as usual, Vj+1 = Vj ⊕Wj .

From the above mentioned properties of the multiresolution {Vj : j ∈ Z} we see that

L2(wdx) =
⊕
j∈Z

Wj .

Since, for j ∈ Z fixed, the family {hw
I : I ∈ Dj} is an orthonormal basis of Wj we get that {hw

I : I ∈ D} is 
an orthonormal basis for L2(wdx).

Given a set E ⊂ R we shall write E′ to denote the image of E by W . In other words E′ = {W (x), x ∈ E}. 
We write D′ =

⋃
j∈Z

D′
j to denote the family of all the images I ′ of intervals I ∈ D through W , here D

denote the family of all dyadic intervals in R defined above. Notice that |I ′| = w(I).
For each I ∈ D we shall use Hw

I to denote the composition hw
I ◦ W−1. It is easy to see that Hw

I (x) =
1√
|I′|

{√
|I′

r|∣∣I′
l

∣∣χI′
l
(x) −

√∣∣I′
l

∣∣
|I′

r|
χI′

r
(x)

}
and that {Hw

I , I ∈ D} is an orthonormal basis of L2(R, dx). In fact, 

for f ∈ L2(dx) we have 〈f, Hw
I 〉 = 〈f ◦W, hw

I 〉w for every I ∈ D. Moreover

∑
I∈D

|〈f,Hw
I 〉|2 =

∑
I∈D

|〈f ◦W,hw
I 〉w|

2 = ‖f ◦W‖2
L2(wdx) = ‖f‖2

L2(dx) .

Next we regularize by convolution the function Hw
I for I ∈ D in order to get Hw,ε

I , defined by Hw,ε
I =

ϕεw(I) ∗Hw
I . Here I ∈ D, ϕ is as described in the introduction, and ε is as in Lemma 2.1.

We prove a) in Theorem 1.1 by applying the Favier–Zalik stability result. We shall estimate the Bessel 
bound in L2(dx) for the difference bεI = Hw

I − Hw,ε
I between the basic element Hw

I and its regularization 
Hw,ε

I .
We use the strategy described in the introduction, taking as {fk} the sequence {bεI} and as the orthonor-

mal basis {ek} the sequence Hw
I . Precisely, define

Tεf =
∑
I∈D

〈f, bεI〉Hw
I

and Tjf =
∑

J∈Dj 〈f, bεJ〉Hw
J , thus Tε =

∑
j Tj . To prove that {bεI : I ∈ D} is a Bessel sequence with 

small bound, we apply Cotlar’s Lemma to the sequence {Tj} of operators in L2(R). We begin by estimating 
‖T ∗

i Tj‖ and 
∥∥TiT

∗
j

∥∥ where T ∗
j is the adjoint of Tj ,

T ∗
j f =

∑
J∈Dj

〈f,Hw
J 〉bεJ .

Since the family {Hw
I , I ∈D} is orthonormal, for i �= j we have T ∗

i Tjf =
∑

J∈Dj ,I∈Di〈f, bεJ 〉〈Hw
J , Hw

I 〉bεI =0. 
On the other hand, for i = j, 

∥∥T ∗
j Tj

∥∥ = ‖Tj‖2 and ‖Tjf‖2
2 =

∑
J∈Dj |〈f, bεJ〉|

2.
Since Hw

J is piecewise constant, for ε small enough the support of bεJ splits into three intervals, each 
of them centered at the images through W of the two endpoints aJ , bJ of J and of its center cJ . All 
of them have the same length 2εw(J). Precisely, with Sε

J = supp bεJ we have that Sε
J =

⋃3
m=1 S

ε,m
J , 

where Sε,1
J = (W (aJ) − w(J)ε, W (aJ) + w(J)ε), Sε,2

J = (W (cJ) − w(J)ε, W (cJ) + w(J)ε) and Sε,3
J =

(W (bJ) − w(J)ε, W (bJ ) + w(J)ε).
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|〈f, bεJ〉|
2 ≤

(∫
Sε
J

|f |2
)(∫

|bεJ |
2
)
.

In order to estimate 
∫
|bεI |

2, let us first notice that |bεI | ≤ |Hw
I | + |Hw,ε

I | ≤ 2 |Hw
I | ≤

2√
w(I) max {

√
w(Ir)
w(Il) ,

√
w(Il)
w(Ir)}, which is bounded by a constant C, depending only on w, times w(I)− 1

2 . 

Then 
∫
|bεI |

2 ≤ C2

w(I) |Sε
I | = 6C2ε.

Then, from b) in Lemma 2.1 we have

‖Tjf‖2
2 ≤ 6C2ε

∑
J∈Dj

∫
Sε
J

|f |2 ≤ 6C2ε
∑
J∈Dj

∫
W ε(J)

|f |2

≤ 6C2ε

∫
R

( ∑
J∈Dj

χW ε(J)

)
|f |2 ≤ 12C2ε ‖f‖2

2 .

Hence 
∥∥T ∗

j Tj

∥∥ = ‖Tj‖2 ≤ 12C2ε, and since ‖T ∗
i Tj‖ = 0 for i �= j, any s(k) with s(0) ≤ 12C2ε and 

s(k) ≥ 0 for k �= 0 is admissible for the estimate ‖T ∗
i Tj‖ ≤ s(i − j) required by Cotlar’s Lemma.

The behavior of the sequence 
∥∥TiT

∗
j

∥∥ is more subtle since TiT
∗
j f =

∑
I∈Di

∑
J∈Dj 〈f, Hw

J 〉〈bεJ , bεI〉Hw
I , 

and now the functions bεJ are not orthogonal. In this case the Lipschitz smoothness of each bεJ away from 
its points of discontinuity, and its mean vanishing properties will play essential roles. These two properties 
are made precise in the following claims, which we proof later.

Claim 1. For each I ∈ D with I = [a, b) centered at cI , on each one of the segments σ1 = (−∞, W (a)), 
σ2 = (W (a), W (cI)), σ3 = (W (cI), W (b)) and σ4 = (W (b), ∞) the function bεI is Lipschitz with norm 
bounded by a constant times (εw(I))− 3

2 .

Claim 2. On each one of the three connected components Sε,m
I of its support we have 

∫
Sε,m
I

bεI = 0, m = 1, 2, 3.

Let us assume Claims 1 and 2 and continue the proof.
To estimate 

∥∥TiT
∗
j

∥∥, observe that, since {Hw
I , I ∈ D} is an orthonormal basis, we have

∥∥TiT
∗
j f

∥∥2
2 =

∑
I∈Di

( ∑
J∈Dj

〈f,Hw
J 〉〈bεI , bεJ〉

)2

. (3.1)

Assume first that j > i. For a fixed I ∈ Di, we consider the partition of Dj provided by the three sets, 
A(I) = {J ∈ Dj : Sε

J ∩ Sε
I = ∅}; B(I) = {J ∈ Dj \ A(I) : bεI is continuous and not identically zero on Sε

J}
and C(I) = Dj \ (A(I) ∪ B(I)). Since for J ∈ A(I) we have that 〈bεI , bεJ 〉 = 0, then

∥∥TiT
∗
j f

∥∥2
2 =

∑
I∈Di

⎛
⎝ ∑

J∈B(I)∪C(I)

〈f,Hw
J 〉〈bεI , bεJ 〉

⎞
⎠

2

≤
∑
I∈Di

⎛
⎝ ∑

J∈B(I)∪C(I)

|〈f,Hw
J 〉|2

⎞
⎠

⎛
⎝ ∑

J∈B(I)∪C(I)

|〈bεI , bεJ 〉|
2

⎞
⎠

=
∑

i

⎛
⎝ ∑

|〈f,Hw
J 〉|2

⎞
⎠

⎛
⎝ ∑

|〈bεI , bεJ 〉|
2

⎞
⎠

I∈D J∈B(I)∪C(I) J∈C(I)
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+
∑
I∈Di

⎛
⎝ ∑

J∈B(I)∪C(I)

|〈f,Hw
J 〉|2

⎞
⎠

⎛
⎝ ∑

J∈B(I)

|〈bεI , bεJ 〉|
2

⎞
⎠

= I1 + I2.

In order to estimate I1 notice that C(I) has at most six elements. On the other hand, from (2.1)

|〈bεI , bεJ〉| ≤
∫
Sε
J

|bεI(x)| |bεJ (x)| dx

≤ C
εw(J)

(w(I)w(J))
1
2
≤ Cε

1
2(j−i) γ

2
,

hence

I1 ≤ Cε22−γ(j−i)
∑
I∈Di

∑
j∈B(I)∪C(I)

|〈f,Hw
J 〉|2

≤ Cε22−γ(j−i)
∑
J∈Dj

|〈f,Hw
J 〉|2 
{I ∈ Di : J /∈ A(I)} ≤ Cε22−γ(j−i) ‖f‖2

2 ,

which has again the desired form to apply Cotlar’s Lemma with s(j − i) = Cε2− γ
2 (j−i).

For a given interval I, set Ĩ to denote the concentric with I and twice its length. Since for J ∈ B(I) the 
function bεI is Lipschitz on the support of bεJ , if xm

J is the center of the m-th connected component of the 
support of bεJ , from Claims 2 and 1 and applying again (2.1) we get

∑
J∈B(I)

|〈bεI , bεJ〉|
2 =

∑
J∈B(I)

∣∣∣∣∣
3∑

m=1

∫
Sε,m
J

bεJ(x) (bεI(x) − bεI(xm
J )) dx

∣∣∣∣∣
2

≤
∑

J∈B(I)

C

(εw(I))3

( 3∑
m=1

∫
Sε,m
J

|bεJ(x)| |x− xm
J | dx

)2

≤ C
∑

I∈B(I)

1
ε3w(I)3 |Sε

J |
2 1
w(J)ε

2w(J)2

≤ Cε
∑

J∈B(I)

(
w(J)
w(I)

)2
w(J)
w(I)

≤ Cε
∑

J∈B(I)

(
|J |
|I|

)2γ 1
w(I)

∫
J

w(x)dx

≤ Cε

(
1
2

)2(j−i)γ 1
w(I)

∫
R

∑
J∈B(I)

χJ(x)w(x)dx

≤ Cε

(
1
2

)2γ(j−i)
w(Ĩ)
w(I)

≤ Cε

(
1
2

)2γ(j−i)

So that, for j > i ∑
|〈bεI , bεJ〉|

2 ≤ Cε2−2(j−i)γ (3.2)

J∈B(I)
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hence

I2 ≤ Cε2−2(j−i)γ
∑
I∈Di

∑
J∈B(I)∪C(I)

|〈f,Hw
J 〉|2

≤ Cε2−2(j−i)γ ‖f‖2
2 ,

finally

∥∥TiT
∗
j f

∥∥2
2 ≤ I1 + I2 ≤ Cε2−γ(j−i) ‖f‖2

2 .

Hence, for j > i taking s(j − i) = Cε
1
2 2− γ

2 (j−i) we have a good sequence in order to use Cotlar’s Lemma.
For i ≥ j, with the above notation for J ∈ Dj given, we have the three classes A(J), B(J) and C(J),

∥∥TiT
∗
j f

∥∥2
2 ≤ C

∑
I∈Di

⎛
⎝ ∑

{J∈Dj/ Sε
I∩Sε

J �=∅}
|〈f,Hw

J 〉|2 |〈bεI , bεJ〉|
2

⎞
⎠

≤ C
∑
J∈Dj

|〈f,Hw
J 〉|2

⎛
⎝ ∑

I∈C(J)∪B(J)

|〈bεI , bεJ 〉|
2

⎞
⎠

≤ C
∑
J∈Dj

|〈f,Hw
J 〉|2

⎛
⎝ ∑

I∈C(J)

|〈bεI , bεJ〉|
2

⎞
⎠ + C

∑
J∈Dj

|〈f,Hw
J 〉|2

⎛
⎝ ∑

I∈B(J)

|〈bεI , bεJ〉|
2

⎞
⎠ .

For the first term, notice that if I ∈ C(J), we obtain from (2.1) as before

|〈bεI , bεJ〉| ≤
∫
Sε
I

|bεJ(x)| |bεI(x)| dx

≤ C
εw(I)

w(J) 1
2w(I) 1

2
≤ Cε2−(i−j) γ

2 ,

since the number of elements in C(J) is bounded we get that

∑
J∈Dj

|〈f,Hw
J 〉|2

⎛
⎝ ∑

I∈C(J)

|〈bεI , bεJ 〉|
2

⎞
⎠ ≤ Cε22−γ(i−j) ‖f‖2

2 .

For the second term observe that if I ∈ B(J) and ymI is the center of the interval Sε,m
I , since the integral of 

bεI vanishes on each connected component Sε,m
I , we have

|〈bεI , bεJ〉|
2 ≤

(∣∣∣∣∣
3∑

m=1

∫
Sε,m
I

bεI(y) (bεJ (y) − bεJ (ymI )) dy

∣∣∣∣∣
)2

,

then, from Claim 1,

|〈bεI , bεJ 〉|
2 ≤

⎛
⎜⎝ C

ε
3
2w(J) 3

2

3∑
m=1

∫
Sε,m
I

|bεI(y)| |y − ymI | dy

⎞
⎟⎠

2

≤
(

3Cεw(I) |Sε
I |

3 3 1

)2

≤ Cε

(
w(I)
w(J)

)3

.

ε 2w(J) 2w(I) 2
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Hence

∥∥TiT
∗
j f

∥∥2
2 ≤ Cε22−(i−j)γ ‖f‖2

2 + Cε2−(i−j)2γ
∑
J∈Dj

|〈f,Hw
J 〉|2

⎛
⎝ 1
w(J)

∑
I∈B(J)

w(I)

⎞
⎠

≤ Cε22−(i−j)γ ‖f‖2
2 + Cε2−(i−j)2γ ‖f‖2

2 .

Then 
∥∥TiT

∗
j

∥∥ ≤ Cε
1
2 2− γ

2 (i−j), for i ≥ j.
So far we have the hypotheses of Cotlar’s Lemma for the sequence {Tj} with s(k) = Cε

1
2 2− γ

2 |k|, k ∈ Z. 
Then ‖Tε‖ ≤ Cε

1
4 , 0 < ε < ε0 = min{2−p

2C , 3−p

C } where C is the constant in (1.2). Now from the Favier–Zalik 

stability lemma, we get that {Hw,ε
I : I ∈ D} is a Riesz basis for L2(R, dx) with bounds 

(
1 −

√
Cε

1
4

)2
and (

1 +
√

Cε
1
4

)2
. Since hw,ε

I = Hw,ε
I ◦W and for f ∈ L2(wdx) we have the identity

∑
I∈D

〈f, hw,ε
I 〉2w =

∑
I∈D

〈f ◦W−1, Hw,ε
I 〉2

we immediately see that {hw,ε
I : I ∈ D} is a Riesz basis for L2(R, wdx) with bounds 

(
1 ±

√
Cε

1
4

)2
. This 

proves a).
The absolute continuity of each hw,ε

I follows from the regularity of Hw,ε
I and the absolute continuity of W . 

Part b) in the statement of Theorem 1.1 follows directly from the Riesz bounds for {hw,ε
I : I ∈ D} obtained 

before.
Let us prove c). With aI and bI the left and right endpoint of I we have that the support of hw,ε

I is 
the interval Iε = [W−1(W (aI) − εw(I)), W−1(W (bI) + εw(I))] = [aεI , bεI ] containing I. Notice that since 
W (aI) −W (aεI) = εw(I) and W (bεI) −W (bI) = εw(I), from the continuity of W−1 it follows that aεI → aI
and bεI → bI when ε → 0. A more quantitative estimate of the rate of approximation can be obtained using 
again (1.2). In fact, set I∗ to denote the interval concentric with I with three times its length. Let J be the 
interval [aεI , aI ], then from (1.2)

aI − aεI
3 |I| = |J |

|I∗| ≤ C

(
w(J)
w(I∗)

) 1
p

= C

(
εw(I)
w(I∗)

) 1
p

≤ Cε
1
p .

In a similar way b
ε
I−bI
|I| ≤ Cε

1
p . Hence |Iε||I| = 1 + aI−aε

I

|I| + bεI−bI
|I| and 0 < |Iε|

|I| − 1 < Cε
1
p where C depends on 

the Ap constant of w. Notice that the rate of approximation is better as p tends to 1.
Let us finally prove Claims 1 and 2.

Proof of Claim 1. Since for x, y ∈ σi, i = 1, . . . , 4 we have that Hw
I (x) = Hw

I (y), then

|bεI(x) − bεI(y)| =
∣∣Hw,ε

I ∗ ϕεw(I)(x) −Hw,ε
I ∗ ϕεw(I)(y)

∣∣
=

∣∣∣∣
∫
R

Hw
I (z)

εw(I)

(
ϕ

(
x− z

εw(I)

)
− ϕ

(
y − z

εw(I)

))
dz

∣∣∣∣ .
Since ϕ is smooth, applying the mean value theorem we get that

|bεI(x) − bεI(y)| ≤
‖ϕ′‖∞
ε2w(I)2 |x− y|

∫
{|x−z|≤εw(I)}∪{|y−z|≤εw(I)}

|Hw
I (z)| dz

≤ c
‖ϕ′‖∞

(εw(I))
3
2
|x− y|

as desired. �
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Proof of Claim 2. It is easy to see that 
∫
bεI dx = 0. In fact, we can see from (1.3)

√
|I ′|

∫
I′
Hw

I (x)dx =
√
|I ′r|√
|I ′l |

∫
I′
χI′

l
(x)dx−

√
|I ′l |√
|I ′r|

∫
I′
χI′

r
(x)dx

=
√
|I ′r|√
|I ′l |

|I ′l | −
√
|I ′l |√
|I ′r|

|I ′r| = 0.

On the other hand, since 
∫
ϕ(z)dz = 1, we also have that 

∫
Hw,ε

I dx = 0.
Notice that, after normalization, 

∫
Sε,1
I

bεIdx = 0 since 
∫ δ

−δ
[χ(0,∞)(x) −

(
χ(0,∞) ∗ ϕδ

)
(x)]dx = 0 for δ > 0. 

Since a similar argument proves that 
∫
Sε,3
I

bεIdx = 0 and 
∫
bεI = 0, we also have 

∫
Sε,2
I

bεIdx = 0. �
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