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a b s t r a c t

In this paper we develop a general representation theory for MV-algebras. We furnish
the appropriate categorical background to study this problem. Our guide line is the
theory of classifying topoi of coherent extensions of universal algebra theories. Our main
result corresponds, in the case of MV-algebras and MV-chains, to the representation of
commutative rings with unit as rings of global sections of sheaves of local rings. We
prove that any MV-algebra is isomorphic to the MV-algebra of all global sections of a sheaf of
MV-chains on a compact topological space. This result is intimately related to McNaughton’s
theorem, and we explain why our representation theorem can be viewed as a vast
generalization of McNaughton’s theorem. In spite of the language used in this abstract, we
have written this paper in the hope that it can be read by experts in MV-algebras but not
in sheaf theory, and conversely.
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Preface

We have written this paper in the hope that it can be read by experts in MV-algebras but not in sheaf theory, and
conversely. Our basic reference on MV-algebras is the book ‘Algebraic Foundations of Many-valued Reasoning’ [1], and we
refer to this book and not to the original sources for the known specific results we utilize. Only basic facts of sheaf theory
are needed for reading this paper—the reader may consult ‘Sheaves in Geometry and Logic’ [12]. For general category theory
we refer the reader to the classical textbook ‘Categories for the working mathematician’ [11].

0. Introduction

In this paper we develop a general representation theory forMV-algebras as algebras of global sections of sheaves of MV-
chains. Ourwork generalizes previous results in this direction, like the representation theorem for locally finiteMV-algebras
proved in [2], and it is based on the second author’s thesis [16].
We furnish the appropriate categorical background to study the representation theory of MV-algebras. Our guide line is

the theory of classifying topoi first developed in the case of rings byM. Hakim, and thereafter placed in the general context of
universal algebra by category theorists, in particular Coste [3]. Our main result corresponds, in the case of MV-algebras and
MV-chains, to the representation of commutative ringswith unit as rings of global sections of sheaves of local rings (see, e.g.,
[6]).We prove that everyMV-algebra is isomorphic to theMV-algebra of all global sections of its prime spectrum (Theorem 3.12).
We analyze and develop carefully the various steps that lead to this theorem.
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The basic starting construction in the case of rings is the local ring resulting from the localization at a prime ideal, while
in the case of MV-algebras it is the MV-chain resulting from the quotient by a prime ideal. This leads in both cases to the
consideration of the set of prime ideals as the set of points of the base space for the spectral sheaf. Some considerations
of categorical nature (see (*)) indicated to us that the appropriate topology for this set, in the case of MV-algebras, is not
the Zariski topology as in the case of rings, but a topology that we call co-Zariski. Its base of open sets is given by the sets
{P | a ∈ P}, letting a range over all elements of A, and not by the sets {P | a /∈ P} as in the Zariski topology. We think that the
consideration of the Zariski topology in the representation of MV-algebras as global sections of sheaves of MV-chains has
blocked the traditional development of the theory beyond the particular case of hyperarchimedean algebras, where the two
topologies coincide.
We construct the prime spectrum sheaf (over the set of prime ideals) of an MV-algebra following standard methods of

sheaf theory, and we introduce the notion of MV-space and its corresponding category mimicking the algebraic geometry
notion of ringed space. Our main result (Theorem 3.12) means that the category of MV-algebras is the dual of a category of
MV-spaces. This is similar to Grothendieck method in algebraic geometry, which is based on the consideration of the
dual of the category of rings as the category of affine schemes. We show that Theorem 3.12 follows from two facts:
(i) The compactness lemma (Lemma 3.8) stating that the prime spectrum is a compact topological space, and (ii) The
pushout–pullback lemma (Lemma 3.11). This lemma means that given two elements a1, a2 in an MV-algebra A, any two
other elements b1, b2 such that b1 = b2 mod(a1 ∨ a2) can be ‘‘glued" into a single element b, unique mod(a1 ∧ b2), such
that b = b1 mod(a1), and b = b2 mod(a2). Not surprisingly, this lemma is deeply linked with McNaughton’s theorem.
Section 1 is specially aimed to the non-expert reader. There we recall basic fundamental facts on sheaves and on

MV-algebras. In this way we set up a basic dictionary of MV-algebra and sheaf theoretic terms and notation, as well as
a place for reference. The knowledgeable reader is probably able to skip most of this section, and jump ahead to Section 2.
In Sections 2 and 3 we develop the basic framework of the representation and duality theory for MV-algebras. We state

our main representation Theorem 3.12 and we show how it can be derived from the two lemmas mentioned above. These
lemmas are proved in later sections.
Taking into account the equivalence between the categories of MV-algebras and of lattice ordered abelian groups with a

distinguished strong unit (see [1]), their respective representation theories should be strongly related. In 3.13 we compare
our representation Theorem 3.12 with the representation theorems for l-groups of [10] and [17].
In Section 4 the set of maximal ideals of any MV-algebra is equipped with the co-Zariski topology, while the

set of [0, 1]-valued morphisms (introduced in [2]) is equipped with the Zariski topology. These two spectral spaces
have the same underlying set, but the co-Zariski topology is always finer than the Zariski topology, and strictly so,
unless the algebra is hyperarchimedean. We prove several preliminary results, which will find use in the proof of the
pushout–pullback lemma, and also are of help to understand the relationship between this lemma and McNaughton
theorem.We are thus naturally led to introduce a concept of strong semisimplicity (Definition 4.7). Strongly semisimple MV-
algebras form an intermediate class between hyperarchimedean algebras and semisimple algebras. A standard example of
strongly semisimple non-hyperarchimedean MV-algebras is given by finitely presented MV-algebras. In 4.10 we relate our
concept of strong semisimplicity with the notion of Yosida frame of [13].
In Section 5, before attacking the general case, we consider the case of hyperarchimedean algebras, and prove the main

representation theorem for these algebras. Here every prime ideal ismaximal, the Zariski and co-Zariski topologies coincide,
and the prime spectrum is a Hausdorff space. Furthermore, all the fibers in the prime spectrum are subalgebras of the real
unit interval [0, 1]. As a consequence, applying the classicalmethods of [2], we extend to all hyperarchimedeanMV-algebras
the duality theorem of [2] for locally finite MV-algebras.
In Section 6 we prove and/or recall several results on finitely presented MV-algebras, and prove the pushout–pullback

lemma for these algebras. A key result is the gluing Lemma 5.3 of [15], thatwe adapt and prove in our context in Lemma 6.11.
In Section 7we prove the general case of the pushout–pullback lemma. This follows by categorical nonsense (finite limits

commute with filtered colimits) from the case of finitely presented MV-algebras. We find it convenient and instructive to
sketch an explicit proof in the particular case of pullbacks of MV-algebras.
In Section 8 we prove the compactness lemma, that is, we prove that the prime spectrum furnished with the co-Zariski

topology is a compact topological space. We develop a construction of its lattice of open sets without constructing the
underlying set first. This yields a compact locale. Then the prime spectrum is the space of points of this locale. Such space
turns out to be compact, provided the locale has enough points, which follows by a standard application of Zorn’s Lemma.
In Section 9 we prove McNaughton’s theorem as the special case of our representation theorem for free MV-algebras.

We show that a finite open cover of the prime spectrum of the free MV-algebra on n generators yields (by restricting the
open sets of the cover to the maximal spectrum), a finite decomposition of the n dimensional cube by convex polyhedra.
Once this is understood, an isomorphism between the MV-algebra of McNaughton functions and the MV-algebra of global
sections of the prime spectrum of the free algebra becomes evident. These results also furnish a conceptual context for
McNaughton’s theorem. They show the ‘‘local" nature of the concept of McNaughton function, as a particular instance of the
usual topological notion of localness. Our representation theorem is a vast generalization of McNaughton’s theorem, from
free MV-algebras to the totality of MV-algebras.
We relegate to an appendix some general results on posets that we use in this paper. We view posets as

{0, 1}-based categories, and we develop Grothendieck theory of sheaves but dealing directly with posets. In particular,
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since our categories are posets, inf-lattices play the role of categories with finite limits, and locales that of Grothendieck
topoi.
(*) Zariski versus co-Zariski
Categorical reasons that force the Zariski topology in ring theory:

1. The localization of a ring in a prime ideal is a covariant construction in the sense that if we have two prime ideals P ⊂ Q ,
we have a morphism of local rings AP → AQ .

2. Given an element a ∈ A and a prime ideal P , there exists a factorization A{a−1} → AP if and only if a /∈ P . For a fixed a,
the set {P | ∃ A{a−1} → AP } is the Zariski open set Da = { P | a /∈ P }.

3. The assignment a 7→ A{a−1} is contravariant (a presheaf) for Zariski opens in the sense that
Da ⊂ Db ⇒ A{b−1} → A{a−1}.

Categorical reasons that force the co-Zariski topology in MV-algebra theory:
1. The quotient of an MV-algebra by a prime ideal is a contravariant construction, in the sense that if we have two prime
ideals P ⊂ Q , we have a morphism of MV-chains in the other direction A/Q → A/P .

2. Given an element a ∈ A and a prime ideal P , there exists a factorization A/(a)→ A/P if and only if a ∈ P . For a fixed a,
the set {P | ∃ A/(a)→ A/P, } is the co-Zariski open setWa = { P | a ∈ P }.

3. The assignment a 7→ A/(a) is contravariant (a presheaf) for co-Zariski opens in the sense that
Wa ⊂ Wb ⇒ A/(b)→ A/(a).

1. Background, terminology and notation

In this section we recall some facts about MV-algebra and sheaf (on topological space) theory, and in this way we fix
notation and terminology.
For the definition and basic facts on MV-algebras the reader is advised to have at hand the book ‘‘Algebraic foundations

of many-valued reasoning’’, Reference [1].

1.1. MV-algebras

MV-algebras are models of an equational theory in universal algebra.
1. A MV-algebra A has a 2-ary, a 1-ary and a 0-ary primitive operations, denoted⊕, ¬, 0, subject to universal axioms.
2. It is convenient to introduce one 0-ary and two 2-ary derived operations, defined by the following formulae.

1 = ¬0, x� y = ¬(¬x⊕¬y), x	 y = x�¬y.
We have¬¬x = x, 0 = ¬1, and x⊕ y = ¬(¬x�¬y).

3. Given an integer n, we let nx = x⊕ x⊕ x · · · ⊕ x, n times, and 0x = 0.
4. There is a partial order relation defined by x ≤ y ⇐⇒ ∃z, x⊕ z = y.

A useful characterization is the following: x ≤ y ⇐⇒ x	 y = 0.
5. The partial order is a lattice, with supremum denoted ∨ and infimum denoted ∧. The lattice operations are definable by
formulae:

x ∨ y = (x�¬y)⊕ y, and x ∧ y = x� (¬x⊕ y).
We have x ∧ y = ¬(¬x ∨ ¬y) and x ∨ y = ¬(¬x ∧ ¬y).

6. We have x ∧ y ≤ x⊕ y and x� y ≤ x ∧ y.
7. There is a distance operation defined by d(x, y) = (x	 y)⊕ (y	 x), and we have d(x, y) = 0 ⇐⇒ x = y.
8. The following equations hold in any MV-algebra:

x⊕¬x = 1, (x	 y) ∧ (y	 x) = 0.
9. For any MV-algebra A, elements x, y ∈ A and integer n, we have
n(x ∧ y) = nx ∧ ny. It follows that x ∧ y = 0⇒ nx ∧ ny = 0.

10. A = {0} is the trivial MV-algebra, A is said nontrivial if 1 6= 0.
11. The closed real unit interval [0, 1] ⊂ R is the basic example of an MV-algebra. The structure is given by:

x⊕ y = min(1, x+ y), ¬x = 1− x, x	 y = max(0, x− y),
x� y = max(0, x+ y− 1), d(x, y) = |x− y|.

1.2. Ideals and morphisms of MV-algebras

1. We shall denote byA the category ofMV-algebras. Amorphism is a function that preserves the three primitive operations.
It follows that it will preserve all the derived operations since these operations are defined by formulae. In particular it
preserves 0 and 1. Thus the zero function A

0
−→ B is a morphism only when B is the trivial algebra.

2. Given a morphism of MV-algebras A
ϕ
−→ B, the image, Im(ϕ) ⊂ B, is a subalgebra of B,

Im(ϕ) = {y ∈ B | ∃x ∈ A, ϕ(x) = y}.
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3. Congruences are associated with ideals.
An ideal of an MV-algebra A is a subset I ⊂ A satisfying:

(I1) 0 ∈ I
(I2) x ∈ I, y ∈ A, y ≤ x,⇒ y ∈ I
(I3) x ∈ I, y ∈ I,⇒ x⊕ y ∈ I .
An ideal is said to be proper if 1 /∈ I .

4. Given a finite number of elements in anMV-algebra, wewrite (x, y . . . z) for the ideal generated by x, y . . . z. We have:

(x ∧ y) = (x) ∩ (y), (x ∨ y) = (x⊕ y) = (x, y).

Consequently, all finitely generated ideals are principal.
5. For any morphism A

ϕ
−→ B, the kernel, Ker(ϕ) ⊂ A, is an ideal of A, Ker(ϕ) = {x ∈ A | ϕ(x) = 0}. Any ideal I ⊂ A

determines a congruence by stipulating x ∼ y ⇐⇒ d(x, y) ∈ I . The quotient is denoted A
ρ
−→ A/I . We have

I = Ker(ρ). For any x ∈ A, the element ρ(x)will be denoted [x]I . Thus, [x]I = [y]I ⇐⇒ d(x, y) ∈ I .

1.3. MV-chains and prime ideals

1. A MV-algebra is a MV-chain if it is nontrivial and its order relation is total. Thus, MV-chains are characterized by the
axioms:
(C1) 1 6= 0.
(C2) x	 y = 0 or y	 x = 0.

2. From 1.1(8) it follows that an MV-algebra A is an MV-chain if and only if it satisfies:
(C′1) A 6= {0}.
(C′2) x ∧ y = 0⇒ x = 0 or y = 0.

3. An ideal P is prime if it satisfies the following conditions:
(P1) 1 /∈ P .
(P2) For each x, y in A, either (x	 y) ∈ P or (y	 x) ∈ P .

4. From 1.1(8) it follows that an ideal P is prime if and only if it satisfies:
(P′1) P 6= A

and either one of the following two equivalent conditions
(P′2) x ∧ y ∈ P ⇒ x ∈ P or y ∈ P
(P′2) x ∧ y = 0⇒ x ∈ P or y ∈ P .

5. For any morphism A
ϕ
−→ B, the following holds by definition:

Ker(ϕ) is a prime ideal iff Im(ϕ) is an MV-chain.
6. For any morphism A

ϕ
−→ B and prime ideal P of B, the ideal ϕ−1(P) is a prime ideal of A.

7. For any MV-algebra A, and elements x, y ∈ A, The following equivalence holds (see [1, 1.2.14]):

(∀P prime) (x ∈ P ⇒ y ∈ P) ⇐⇒ (y) ⊂ (x).

1.4. Simple MV-algebras and maximal ideals

1. Maximal ideals are prime. Given a prime ideal P , there exists a maximal idealM ⊃ P (see [1, 1.2.12]).
2. We have an important characterization of maximal ideals (see [1, 1.2.2]). An idealM is maximal if and only if it satisfies
the following conditions:
(M1) 1 /∈ M .
(M2) for each x ∈ A, x /∈ M ⇐⇒ ∃ n ≥ 1¬ nx ∈ M .

3. It follows that for any morphism A
ϕ
−→ B and a maximal ideal M of B, the ideal ϕ−1(M) is a maximal ideal of A

(see [1, 1.2.16] ).
4. Recall that an MV-algebra is simple iff it is nontrivial and {0} is its only proper ideal. By definition, an idealM is maximal
if and only if the quotient A/M is a simple MV-algebra.

5. Given any maximal idealM of an MV-algebra A:
(a) A/M is isomorphic to a subalgebra of the real unit interval [0, 1] (see [1, 1.2.10, 3.5.1]).
(b) There is a unique embedding A/M ↪→ [0, 1]which determines by composition a morphism

χM : A −→ A/M ↪→ [0, 1]. Furthermore ker(χM) = M , and χker(χ) = χ (see [1, 7.2.6]).

1.5. Presheaves and sheaves

For the following the reader may consult the book ‘‘Sheaves in Geometry and Logic’’, Reference [12]. Contravariant
functorsXop

→ S from any small categoryX into the category S of sets will be called presheaves.
Given a topological space X , we denote by O(X) the lattice of open sets.

1. A presheaf E on X is a contravariant functor O(X)op
E
−→ S. Given U ⊂ V in O(X), and s ∈ EV , we denote s|U ∈ EU the

image of s under the map EV → EU .
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2. A sheaf is a presheaf E such that given any open cover Uα ⊂ U in O(X), the following sheaf axiom holds for E:

∀ sα ∈ EUα, such that sα|Uα∩Uβ = sβ |Uα∩Uβ , ∃! s ∈ EU, s|Uα = sα.

3. A space E over X is a continuous function E
π
−→ X .

(a) Given p ∈ X , the stalk (or fiber) over p is the set Ep = π−1(p).
(b) Given U ∈ O(X), a section defined on U is a continuous function U

σ
−→ E, πσ = id. If U = X , σ is said to be a global

section. The set of sections defined on U is denoted Γ (U, E).
4. An etale space is a space E

π
−→ X over X , where π is a local homeomorphism. We shall also say that E is a sheaf.

5. An etale space E → X is said to be global if each point e ∈ E is in the image of some global section.
6. For any etale space E → X , given any two sections σ , µ, the set [[σ = µ]] = {x | σ(x) = µ(x)} is open. When E is
Hausdorff, it is also closed (hence clopen), and this fact characterizes Hausdorff sheaves.

7. (Sheaf of sections, see [12, Ch. II Section 5]) For any space over X , E → X , the assignment U 7→ Γ (U, E) together with
the restriction maps determine a presheaf Γ (−, E) satisfying the sheaf axiom.

8. (Godement construction, [4], see also [12, Ch. II Section 5]) Given any presheaf O(X)op
E
−→ S, we can associate to E an

etale space EG π
−→ X .

For each p ∈ X , we take the colimit of the system {EU}U∈Fp indexed by the filter Fp of open neighborhoods of p. By
setting EG

p = lim−−−→U∈Fp EU we have maps EU → EG
p . For any U 3 p and s ∈ EU , we denote by [s]p the corresponding

element in EG
p . By a slight abuse of notation we can write E

G
p = {[s]p | s ∈ EU, U 3 p}.

We define the set EG as the disjoint union of the sets EG
p , p ∈ X . EG

= {([s]p, p), s ∈ EU, U 3 p, p ∈ X}. The map
EG π
−→ X is defined to be the projection, π([a]p, p) = p.

Given U ∈ O(X), each element s ∈ EU determines a section ŝ : U → EG, ŝ(p) = ([s]p, p). We topologize the set EG by
taking as a base of open sets all the image sets ŝ(U). Under this topology the map π becomes a local homeomorphism.

9. The Godement construction can be applied mutatis mutandis to any presheaf Bop
E
−→ S defined only on a base

B ⊂ O(X) of the topology. When E is the restriction toB of a presheafO(X)op
E
−→ E , it yields the same etale space EG.

The reader should consider, among others, that the filter baseBp ⊂ Fp is a cofinal poset in Fp.
10. Given a presheaf E, the assignment s 7→ ŝ defines a natural transformation EU → Γ (U, EG) from E to the sheaf of
sections of the Godement construction. This transformation is an isomorphism iff E satisfies the sheaf axiom.

11. Given a space E over X , and a point p ∈ X , for all U 3 p, evaluation at p defines a map Γ (U, E) → Ep from the set of
sections defined on U to the stalk of E at p. This determines a continuous function Γ (−, E)G → E from the Godement
construction of the sheaf of sections to E. This function is a homeomorphism iff E is an etale space.

12. We shall denote by Sh(X) the category of sheaves on a topological space X . The objects are etale spaces E
p
−→ X , and a

morphism from E
p
−→ X to G

q
−→ X is a continuous function E

f
−→ G such that q ◦ f = p. The sheaf of sections and

the Godement construction establish an equivalence between this category and the category which has as objects the
presheaves O(X)op → Set satisfying the sheaf axiom, and as morphisms the natural transformations of functors.

Convention: When we say that E is a sheaf on X, we will mean indistinctly that E as a presheaf O(X)op E
−→ S satisfying the

sheaf axiom, or that E is an etale space E → X, and we will use either one of the two sets of data. When the base space is not fixed,
we will write E = (X, E).

2. Prime spectrum of MV-algebras

the prime spectrum SpecA.
Given an MV-algebra A, we can associate with A a topological space ZA, and a global sheaf over ZA, SpecA = (EA

π
−→ ZA),

as follows:

2.1. Construction of SpecA

The set of points of ZA is the set of all prime ideals P ⊂ A. For each a ∈ A, letWa ⊂ ZA be the setWa = {P | P 3 a}. One
immediately checks thatW0 = ZA,W1 = ∅, and thatWa ∩Wb = Wa⊕b. So we can take the collectionWA of these sets as a
base of a topology, the co-Zariski topology on ZA,WA ⊂ O(ZA).
We define the set EA as the disjoint union of the MV-chains A/P , P ∈ ZA. That is, EA = {([a]P , P), a ∈ A, P ∈ ZA}. The

map EA
π
−→ ZA is defined to be the projection, π([a]P , P) = P .

Each element a ∈ A defines a global section (as a function of sets) ZA
â
−→ EA, â(P) = ([a]P , P).

Observation 2.2. Recalling 1.2(5), 1.5(6) we have:Wa = [[ â = 0 ]] andWd(a, b) = [[ â = b̂ ]]. Thus, the basic open sets Wa
are the Zero sets Z( â ) of the sections â, where Z( â ) is short for [[ â = 0 ]]. We have Wa = Z( â ). �
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We will now define a topology in EA in such a way that π becomes a local homeomorphism, or etale space over ZA. The
open base for this topology consists of all the image sets â(Wb). These sets are closed under intersections. In fact, given â(Wb)
and ĉ(Wd), we have â(Wb) ∩ ĉ(Wd) = ŝ(Wb⊕d⊕d(a, c)), where s = a, or s = b indistinctly.
With this topology π becomes a local homeomorphism, and every global section â a continuous and open function.

Furthermore, this topology is the final topology with respect to the functions â. The sections â show that SpecA is a global
sheaf.

2.3. Sections of SpecA

Given any open set U ⊂ ZA, the sections over U of SpecA are the sections of π , U
σ
−→ ZA which locally are of the form

â. Specifically, given any P ∈ U , σP = ([s]P , P) for some s ∈ A. Then, the fact that σ is in Γ (U, EA)means that there is an
a ∈ A,Wa 3 P,Wa ⊂ U such that σ(Q ) = ([s]Q , Q ), the same s for all Q ∈ Wa. That is, σ = ŝ onWa. This is equivalent to
the existence of a compatible family of sections ŝi defined on a open coveringWai of U , such that σ |Wai = ŝi|Wai for all i .
The construction above is reminiscent of the Godement construction. We show now that it actually is the Godement

construction on a certain presheafW op
A → S. The following is easy to check:

Proposition 2.4. Any prime ideal P with the order relation of A is a filtered poset (given a, b ∈ P, a ≤ a ⊕ b, b ≤ a ⊕ b,
a⊕ b ∈ P), and the assignment a 7→ A/(a) defines a directed system indexed by P. For each element a ∈ P, we have an induced
morphism A/(a)→ A/P which determine a filtered colimit cone. That is, A/P = lim−→a∈P A/(a). �

2.5. Godement construction for SpecA

The topological space ZA is defined as before. Recall now 1.5(9). The assignment Wa 7→ A/(a) defines a presheaf
W
op
A −→ S on the base of the co-Zariski topology. From 1.3 (7) it follows that if Wa ⊂ Wb then A/(b) → A/(a). From
Proposition 2.4 it immediately follows that EA as constructed in 2.1 corresponds to the Godement construction applied to
this presheaf. �

3. Duality between MV-algebras and sheaves of MV-chains

We introduce now the notion ofMV-space. This notion is inspired by the notion of ringed space in algebraic geometry (see
for example [6, page 72]). The present section should be compared with [2, Section 4].

Definition 3.1 (The Category E of MV-Spaces). (1) A MV-space is a pair (X, E), where X is a topological space and
E = (E → X) is a sheaf of MV-chains on X (that is, the stalks Ex, x ∈ X are MV-chains). It follows that for any
open set U ⊂ X , the set of sections Γ (U, E) is a MV-algebra, Γ (U, E) ⊂

∏
x∈U Ex. We say that E is a sheaf of MV-chains,

and we call E the structure sheaf.1

(2) A morphism (f , ϕ) : (X, E) −→ (Y , F) of MV-spaces is a continuous function X
f
−→ Y together with a family

ϕ = (ϕx)x∈X of morphisms Ff (x)
ϕx
−→ Ex such that for every open V ⊂ Y , and section s ∈ Γ (V , F), the composite

Ex Ff (x)
ϕxoo

x ∈ X

k

OO

f // Y

s

OO k(x) = (ϕx ◦ s ◦ f )(x)

is a section k ∈ Γ (U, E), U = f −1V . This amounts to saying that ϕ is a morphism of sheaves of MV-chains f ∗F
ϕ
−→ E,

in the topos Sh(X), where f ∗ denotes the inverse image functor Sh(Y ) −→ Sh(X).

Given any MV-algebra A, the sheaf of MV-chains SpecA = (ZA, EA), determines a MV-space, and this assignment is
(contravariantly) functorial Spec : Aop −→ E . On the other hand, given any sheaf of MV-chains E = (X, E), the
MV-algebra of global sections Γ (E) = Γ (X, E), determines a (contravariant) functor Γ : Eop −→ A. These two functors
are adjoints on the right, in the sense that there is a natural bijection between the homsets

[(X, E), (ZA, EA)]
∼=
−→ [A, Γ (X, E)].

A map (X, E)
(f , ϕ)
−→ (ZA, EA) corresponds under this bijection to the morphism assigning to every a ∈ A the section

k ∈ Γ (X, E) defined by k(x) = (ϕx ◦ â ◦ f )(x) = ϕx([a]f (x)).
As is well known [11] this adjunction amounts to the following proposition, whose proof is straightforward:

1 Technically, E is a MV-chain object in the topos Sh(X) of sheaves over X .
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Proposition 3.2. For any MV-algebra A, the stipulation

η : A −→ Γ SpecA = Γ (ZA, EA), a 7→ â, â(P) = [a]P (see 2.1)

defines a morphism of MV-algebras, which is natural in A, and has the following universal property:
For any MV-space (X, E) and morphism A→ Γ (X, E),

A
η //

##GGGGGGGGG Γ (ZA, EA)

��
Γ (X, E)

(ZA, EA)

(X, E) �

∃ !

OO�
�
�

In the following proposition we describe explicitly the other unit corresponding to this adjunction.

Proposition 3.3. For any MV-space (X, E) ∈ E , the stipulation

(h, ε) : (X, E) −→ SpecΓ (X, E) = (ZΓ (X, E), EΓ (X, E))

Ex Γ (X, E)/h(x),
εxoo

x ∈ X
h // ZΓ (X, E)

εx([σ ]h(x)) = x̂(σ ) = σ(x)

h(x) = {σ | σ(x) = 0}

defines a morphism of MV-spaces, which is natural in (X, E), and has a corresponding universal property.
[note that εx is well defined since clearly εx(h(x)) = {0}, and h is continuous since h−1(Wσ ) = [[σ = 0]], which is open,

1.5 (6)] �

Our general theory of representation of MV-algebras as algebras of global sections of sheaves of MV-chains is based on
the analysis of the morphism η . In 3.12we establish that for any MV-algebra A, η is an isomorphism. Equivalently, the functor
Spec : Aop ↪→ E is full and faithful. It follows that the dual of the category of MV-algebras can be considered to be a category
of MV-spaces, which are objects of a geometrical nature. This result is similar to Grothendieck’s method to dualize rings by
affine schemes [6].
The injectivity of η is an immediate consequence of [1, 1.2.14], stating that every proper ideal in an MV-algebra is an

intersection of prime ideals. Equivalently, that the zero ideal {0} is the intersection of all prime ideals. We record this fact in
the following

Proposition 3.4. For any MV-algebra A, the morphism A
η
−→ Γ (ZA, EA) is injective. �

Notation 3.5. For any MV-algebra A, the image of the morphism η will be denoted by Â. Thus, A
∼=
−→ Â ⊂ Γ (ZA, EA).

By [1, 1.2.10], for any a ∈ A, the prime ideals of the quotient algebra A/(a) are in one to one correspondence with the
prime ideals which belong toWa. Thus ZA/(a) = Wa. From Proposition 3.4 applied to the algebra A/(a)we obtain:

Proposition 3.6. Given any MV-algebra A and elements a, b, c in A,

b̂|Wa = ĉ|Wa ⇐⇒ [b](a) = [c](a), that is, A/(a) ∼= Â |Wa . �

The fact that the ideal {0} is an intersection of prime ideals implies:

Remark 3.7. Given any MV-algebra A and an element a ∈ A, we have ZA = Wa ⇐⇒ a = 0. Given any two elements
a, b ∈ A,Wa ∪Wb = Wa∧b (see 1.3(8)). Thus ZA = Wa ∪Wb ⇐⇒ a ∧ b = 0). �

We state now the following lemma, that will be proved in Section 8:

Lemma 3.8 (Compactness Lemma). Given any MV-algebra A, the spectral space ZA is sober, compact, and has a base of compact
open sets. �

In what follows we need only the compactness of the space ZA. We analyze now the surjectivity of η. With reference to
(2.3), a global section is determined by a compatible family of sections âi on an open coverWbi , which, can be assumed finite.
As a consequence, the surjectivity of η is equivalent to the following property:

3.9. For any finite number of elements a1, . . . , an ∈ A with zero intersection, a1, ∧ · · · ∧ an = 0, we have: Given
b1, . . . , bn ∈ A such that (̂bi = b̂j)|Z (̂ai)∩Z (̂aj), there exist b ∈ A such that (̂b = b̂i)|Z (̂ai). By 3.4 this b is unique.

In turn, 3.9 follows by induction from the following property:
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3.10. For any two elements a1, a2 ∈ A, we have: Given b1, b2 ∈ A such that (̂b1 = b̂2)|Z (̂a1)∩Z (̂a2), there exists b ∈ A, unique
upon restriction to Z (̂a1) ∪ Z (̂a2), such that such that (̂b = b̂1)|Z (̂a1 and (̂b = b̂2)|Z (̂a2 . In other words, the following diagram is a
pullback square:

Â|Z (̂a1)∪Z (̂a2) //

��

Â|Z (̂a1)

��
Â|Z (̂a2) // Â|Z (̂a1)∩Z (̂a2)

Combining Proposition 3.6 with the observation that Z (̂a1 ∨ â2) = Z (̂a1) ∩ Z (̂a2) and Z (̂a1 ∧ â2) = Z (̂a1) ∪ Z (̂a2), 3.10
has the following equivalent reformulation, that will be proved in Section 7:

Lemma 3.11 (Pushout–Pullback Lemma). Given an MV-algebra A and elements a1, a2 ∈ A, the following pushout diagram is
also a pullback diagram.

A/(a1 ∧ a2) //

��

A/(a1)

��
A/(a2) // A/(a1 ∨ a2)

Note that the diagram above is always a pushout square, because, by 1.2(4), (a1 ∨ a2) is the supremum of (a1) and (a2) in the
lattice of congruences of A. �

We have then the following theorem:

Theorem 3.12 (Representation Theorem). Given any MV-algebra A, the morphism

η : A −→ Γ SpecA = Γ (ZA, EA), a 7→ â, â(P) = [a]P

(see 3.2) is an isomorphism.

Proof. Follows from Lemma 3.8 (compactness) and 3.11 (pushout–pullback) as indicated above. �

3.13. Related constructions in the theory of l-groups

Taking into account the equivalence between the categories of MV-algebras and of lattice ordered abelian groups with a
distinguished strong unit, any result on MV-algebras has a counterpart as a result on these groups, and conversely.
We will say, for short, l-group for lattice ordered abelian group, and ul-group for lattice ordered abelian group with a

distinguished strong unit. Morphisms of ul-groups are l-groupmorphisms preserving the distinguished unit, thus ul-groups
are not a full subcategory.
A proof of an statement on ul-groups does not furnish a proof of the corresponding statement on MV-algebras, neither

guaranties its validity. And conversely. Statements should be examined in each case under the explicit definition and
special properties of Mundici’s functors Γ andΞ ([1, chapter 7]) which establish the equivalence of the categories (see for
example 4.10).
There are many general representations of lattice ordered groups and rings as sections of sheaves. To make an explicit

comparison we focus our attention in the traditional construction of [10], and the newer one of [17]. By direct inspection
and using the ideal correspondence of Cignoli–Torrens, [1, 7.2.2, 7.2.3 and 7.2.4], we can examine their constructions dealing
directly with their translation to MV-algebras.
In [10] it is considered the set of all prime ideals, but endowed this timewith the Zariski topology. A base for this topology

is given by the sets Da = {P | a /∈ P}. We will denote this space by KA. Let GA
π
−→ KA be any sheaf of MV-algebras defined

over KA, such that the stalks GP are quotient MV-algebras A→ GP , with kernel denoted ◦P , GP = A/◦P . If this sheaf defines a
representation of A as an MV-algebra of global sections by means of the morphism η : A→ Γ (KA, GA), a 7→ â, where â is
the section defined by â(P) = [a]◦P , then for any a ∈ A the section âmust be continuous. It follows (see 1.5(6)) that the set
Ha = [[ â = 0 ]] = {P | a ∈ ◦P }must be a Zariski open set. This is not so when ◦P = P , in which case Ha = Wa is precisely a
co-Zariski open set. Thus, the Zariski topology forces to abandon the requirement that the stalks be MV-chains.
The Zariski openness of the set Ha is achieved by defining an ideal ◦P = { a | ∃ b /∈ P, | ∀Q : (b /∈ Q ⇒ a ∈ Q ) }. That

is, ◦P ⊂ P is the ideal of all the a ∈ A such that the section ZA
â
−→ EA of the spectrum SpecA (as defined in 2.1) not only is

null at P , but it has null Zariski germ at P , ◦P = { a | ∃ b /∈ P | â|Db = 0 } (note that tautologically if â(P) = 0, then â has
null co-Zariski germ since â|Wa = 0). The reader can check that in this way the sets Ha are Zariski open, in fact, they are the
Zariski interior of the co-Zariski open setsWa.
In [10, 3.11] it is established that the l-group counterpart of the morphism η : A → Γ (KA, GA), a 7→ â, is an

isomorphism. The stalks are not totally ordered. These results for MV-algebras are explicitly worked out in [5].
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When A is a hyperarchimedean MV-algebra (see Section 5), every prime ideal is maximal, and the sets Wa are Zariski
open (4.2). Thus if â is null at P ,Wa is a Zariski open neighborhood of P , and since by definition â|Wa = 0, â has null germ at
P . Thus, ◦P = P . Our construction coincides in this case with the translation of its l-group counterpart in [10].
In [17] it is considered the set of prime ideals of an l-group G, denoted Sp(G), endowed, like here, with the co-Zariski

topology. It is constructed a sheaf of totally ordered l-groups, denoted (Sp(G), G̃), and in Proposition 5.1.2 it is established
that themorphismG −→ Γ (Sp(G), G̃) is an isomorphism. The equivalence between this statement in the case of ul-groups,
and our statement 3.12 on MV-algebras establishing that A −→ Γ (ZA, EA) is an isomorphism is not immediate. It requires
an inspection on the behavior of Mundici’s functors Γ andΞ with respect to the functors Spec and Γ of Section 3, that will
be done elsewhere.

4. Maximal and [0, 1]-valued morphism spectra

The maximal spectrum SpecMA .
We consider now maximal ideals. Recall that maximal ideals are prime.

4.1. Construction of SpecMA

The base spaceMA is defined to be the subspaceMA ⊂ ZA determined by the maximal ideals. Recall then that a base for
the topology is given by the setsWMa = Wa|MA = {M | M 3 a}. The etale space E

M
A → MA, EMA ⊂ EA, is the restriction of EA

toMA. �
A salient feature of the maximal spectral space is the following:

Proposition 4.2. For any MV-algebra A, the sets WMa are closed (thus clopen) subsets of MA.

Proof. We shall show that MA\WMa is open. Let P ∈ MA, P /∈ WMa . By 1.4(2), take an integer n such that ¬ na ∈ P . Then
P ∈ WM

¬ na. To finish the proof we have to show thatW
M
a ∩W

M
¬ na = ∅. We do as follows: Let Q ∈ MA be such that¬ na ∈ Q

and a ∈ Q . Then na ∈ Q , thus ¬ na⊕ na ∈ Q , so 1 ∈ Q (see 1.3(8)), but Q is proper. �

Corollary 4.3. Given anyMV-algebra A, the maximal spectrum SpecMA = E
M
A → MA is a Hausdorff sheaf of simple MV-algebras.

Proof. Let P, Q ∈ MA, P 6= Q . Take a ∈ P , a /∈ Q . ThenWMa and MA\W
M
a separate P andQ . This shows thatMA is Hausdorff.

Now let ([a]P , P) 6= ([b]Q , Q ) in EMA (see 2.1). If P 6= Q , take U 3 P and V 3 Q be disjoint open sets in MA. Then
â(U) 3 ([a]P , P) and b̂(V ) 3 ([b]Q , Q ) are disjoint open sets in EA. If P = Q , then [a]P 6= [b]P . Consider the closed set in
MA,WMd(a, b) = [[̂a = b̂]] (see 2.2). Notice that P /∈ W

M
d(a, b). Then â(MA\W

M
d(a, b)) 3 ([a]P , P) and b̂(MA\W

M
d(a, b)) 3 ([b]P , P)

are disjoint open sets in EMA . This completes the proof that E
M
A is Hausdorff.

Finally, by 1.4(4), we know that the fibers are simple MV-algebras. �

Given a prime ideal P , there exists a maximal idealM ⊃ P , 1.4(1). Thus, for any basic open setWa with P ∈ Wa we have
M ∈ Wa. As a consequence:

Observation 4.4. The spectral space ZA is never Hausdorff unless it is equal toMA. �

Observation 4.5. The inclusionMA ⊂ ZA is dense. Namely, the prime spectral space ZA is the closure of themaximal spectral
spaceMA. �

We are now concerned with the injectivity of the morphism A
η
−→ Γ (MA, EMA ), a 7→ â, â(M) = [a]M . While

Proposition 3.4 holds for all MV-algebras, we must now restrict to semisimpleMV-algebras, those MV-algebras A such that
the intersection of all maximal idealsM is the zero ideal, in symbols, (0) =

⋂
M∈MA

M . We then have:

Proposition 4.6. A MV-algebra is semisimple if and only if the morphism A
η
−→ Γ (MA, EMA ) is injective. �

By 1.4(3), for any a ∈ A, themaximal ideals of the quotient algebra A/(a) are in one to one correspondencewith themaximal
ideals belonging to the setWMa , in symbols, MA/(a) = W

M
a . The counterpart of Proposition 3.6 does not hold in general for

semisimple algebras, and the following stronger condition is necessary.

Definition 4.7. A MV-algebra A is strongly semisimple if for any a ∈ A, the intersection of all maximal ideals M containing
a is the ideal generated by a, in symbols, (a) =

⋂
M3aM . Equivalently, by 1.4(3), iff A is semisimple together with all its

principal quotients A/(a).

Clearly if A is strongly semisimple, so are all its quotients A/(a). Hyperarchimedean algebras (Section 5) are strongly
semisimple. As we shall see, finitely presented algebras (Section 6) provide examples of non-hyperarchimedean strongly
semisimple algebras. In particular, free algebras are strongly semisimple but not hyperarchimedean. The example following
Corollary 3.4.4 in [1] shows that the semisimple MV-algebra Cont([0, 1], [0, 1]) is not strongly semisimple. The following
is immediate:

Proposition 4.8. A MV-algebra A is strongly semisimple if and only if given elements a, b, c in A,

b̂|WMa = ĉ|WMa ⇐⇒ [b](a) = [c](a) , that is A/(a) ∼= Â |WMa . �
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The reader will have no difficulty in proving the following:

Corollary 4.9. Let A be a strongly semisimple MV-algebra. Then the restriction morphism Γ (ZA, EA)
ρ
−→ Γ (MA, EMA ) is

injective. �

Notice that from the representation Theorem 3.12 it immediately follows that the statement in this corollary holds for
any semisimple algebra. However, it is worth to pay the price of the stronger hypothesis to have a proof independent
of the validity of the representation theorem. Interesting applications of this corollary are given by Proposition 4.21 and
Theorems 9.9 and 9.10.

4.10. Strong semisimplicity and Yosida frames

It is easy to see that a MV-algebra is strongly semisimple if and only if the lattice of ideals of A is a Yosida frame in the
sense of [13]. By means of the categorical equivalence between MV-algebras and ul-groups discussed in 3.13, and using the
Cignoli–Torrence ideal correspondence [1, 7.2.2, 7.2.3 and 7.2.4], we can translate statements on the lattice of l-ideals of
a l-group into statements on the lattice of ideals of a MV-algebra, and conversely. This works well for hyperarchimedean
objects since a MV-algebra is hyperarchimedean if and only if its corresponding ul-group is hyperarchimedean [17, 4.3.13].
Our results show that the lattice of l-ideals of a hyperarchimedean l-group is a Yosida frame.
While the free l-group on n generators is a ul-group ([14, Lemma 14]), its corresponding MV-algebra is not a free

MV-algebra, and for n > 1 its strong semisimplicity is not established. Thus, while our results show that the lattice of
ideals of the free MV-algebra on n generators is a Yosida frame, it does not follow the same result for the lattice of l-ideas of
the free l-group on n generators. This last fact is true and easy for n = 1, true and hard to prove for n = 2, and not known
for n > 2, [13, 5.6].

The spectral space of [0, 1]-valued morphisms.
We consider now a different construction, that we denote XA, of a topological space associated to a MV-algebra A. This

construction is more akin to functional analysis than to algebraic geometry, and has been considered in particular in [2].

4.11. Construction of XA

The points of XA are all the [0, 1]-valued morphisms, XA = [A, [0, 1] ] = {χ : A −→ [0, 1]} ⊂ [0, 1]A. The topology is
the subspace topology inherited from the product space, with the unit interval endowed with the usual topology. A subbase
for this topology is given by the setsW Xa,U = {χ | χ(a) ∈ U}, for a ∈ A and U an open set, U ⊂ [0, 1]. �

Remark 4.12. Given any x ∈ [0, 1],W Xa, x = {χ | χ(a) = x} is a closed set of XA. When x = 0 we write
W Xa = {χ |χ(a) = 0}. �

Since XA is closed in [0, 1]A, XA is a compact Hausdorff space.
From 1.4(5) it follows:

Proposition 4.13. Maximal ideals M are in bijection with morphisms A
χ
−→ [0, 1]. If M corresponds to χ ,

A/M
∼=
−→ χ(A) ⊂ [0, 1], and a ∈ M ⇐⇒ χ(a) = 0. �

We denote XA
κ
−→ ZA the injection defined by κ(χ) = ker(χ). Its image is the subspaceMA ⊂ ZA of maximal ideals. By

abuse of notation we will denote by χ the inverse map χ = κ−1 : MA −→ XA, and write χ(M) = χM .

Each element a ∈ A defines a continuous function XA
â
−→ [0, 1], â(χ) = χ(a). Thus,W Xa,U = â

−1U . By definition, the
topology in XA is the initial topology with respect to the functions â, a ∈ A.
For any topological space X we denote by Cont(X, [0, 1]), the MV-algebra of all [0, 1]-valued continuous functions on

X. Recall that a subalgebra A ⊂ Con(X, [0, 1]) is said to be separating if given any two points χ 6= ξ in X , there is f ∈ A such
that f (χ) = 0 and f (ξ) > 0.
If two [0, 1]-valued morphisms are different, by Proposition 4.13 their kernels must be different. It follows:

Proposition 4.14. Given any MV-algebra A, the functions XA → [0, 1] of the form â , a ∈ A, form a separating subalgebra of the
MV-algebra Cont(XA, [0, 1]). That is, given any two points χ 6= ξ in XA, there is a ∈ A such that χ(a) = 0 and ξ(a) > 0. �

For any a ∈ A we will write W Xa = {χ | χ(a) = 0} = XA\W
X
a, (0, 1] . With this notation we have κ(W

X
a ) = W

M
a and

χ(WMa ) = W
X
a .

Proposition 4.15. Given any MV-algebra A, the sets W Xa, (0, 1] = = {χ | â(χ) > 0} = {χ | â(χ) 6= 0} form a base for the
topology of XA.

Proof. Since XA is a compact Hausdorff space, the result follows from Proposition 4.14 and ([1, Remark to Theorem
3.4.3]). �
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Thus, the open base W Xa, (0, 1] consists of the complements of the zerosets of the functions â.
Under the bijection MA ∼= XA determined by (κ, χ), we have κ(W Xa, (0, 1]) = {M ∈ MA | a /∈ M}. So the topology of XA

corresponds to the Zariski topology inMA, while the topology ofMA was defined to be the co-Zariski topology.
From Proposition 4.2 it follows:

Proposition 4.16. For any MV-algebra A, the bijection MA
χ
−→ XA is continuous. That is, in the set MA of maximal ideals, the

co-Zariski topology is finer than the Zariski topology. �

The maximal spectral space in not a compact space in general. We have

Remark 4.17. MA is compact if and only if it is homeomorphic to XA via the bijection χ .

Proof. One implication is clear. For the other, assume MA to be compact. Then the continuous map MA
χ
−→ XA is also a

closed map (thus a homeomorphism) because XA is Hausdorff. �

In general the co-Zariski topologywill be strictly finer than the Zariski topology. Aswill be seen in Section 5, they coincide
if and only if the MV-algebra is hyperarchimedean.

Proposition 4.18. The injection XA
κ
−→ ZA is continuous if and only if the sets W Xa = {χ | χ(a) = 0} are open (thus clopen)

sets in XA. When this is the case, κ and χ establish a homeomorphism XA
∼=
−→ MA.

Proof. W Xa = κ
−1WA, which are an open base of ZA, thus κ is continuous if and only if the setsW Xa are open in XA. In this

case then, the continuous bijection χ of Proposition 4.16 has a continuous inverse. The proof also can be completedwithout
using this proposition. In fact, if κ is continuous, it is a closed map as a map XA

κ
−→ MA, because XA is compact and MA is

Hausdorff. �

The MV-algebra of global sections of SpecMA = E
M
A → MA is related with the MV-algebra of continuous functions

Cont(MA, [0, 1]). Define a map EMA
λ
−→ [0, 1] by writing λ([a]M , M) = χM(a)) for each ([a]M , M) ∈ EM . Given any

a ∈ A, observe that the following diagram is commutative:

EMA
λ // [0, 1]

MA

â

OO

χ // XA

â

OO

Since the topology of EMA is the final topology with respect to the functions â(M) = ([a]M , M), and the topology of XA
is the initial topology with respect to the functions â(χ) = χ(a), it follows that λ is continuous if and only if so is χ . By
Proposition 4.16, λ is continuous. Summing up:

Proposition 4.19. Given any MV-algebra A, the map EMA
λ
−→ [0, 1] defined by λ([a]M , M) = χM(a) is continuous and

establishes:

(a) A continuous injection EMA ↪→ [0, 1] ×MA over MA, where [0, 1] is endowed with the usual topology.

(b) By composition, an injective morphism Γ SpecMA = Γ (MA, E
M
A )

λ∗
↪→ Cont(MA, [0, 1]) , λ∗( â )(M) = χM(a).

Furthermore, this morphism establishes an isomorphism of Γ SpecMA onto a separating subalgebra of Cont(MA, [0, 1]).

Proof. As indicated above, the function λ is continuous by Proposition 4.16. Then, Proposition 4.14 completes the proof. A
more general result is given in Proposition 5.9. �

Consider now a global section MA
σ
−→ EMA which is the restriction of a global section of the prime spectrum ZA ⊃ MA.

Since by Corollary 8.9 ZA is a compact topological space, there is a finite open coverWMai ⊂ MA over which σ is of the form

b̂i for some bi ∈ A. Thus the composite XA
κ
−→ MA

σ
−→ EMA is of the form b̂i over a finite cover of XA by the closed setsW

X
ai

(Remark 4.12). It follows that the composite XA
σκ
−→ EMA is continuous, and so is the composite XA

λσκ
−→ [0, 1]. We then have

a morphism

Γ (ZA, EA)
κ∗λ∗
−→ Cont(XA, [0, 1]) κ∗λ∗(σ ) = λσκ , λ â κ(χ) = χ(a) (4.20)

rendering commutative the following diagram (recall κχ = id):

Γ (ZA, EA)
κ∗λ∗ //

ρ

��

Cont(XA, [0, 1])� _

χ∗

��
Γ (MA, EMA )

� � λ∗ // Cont(MA, [0, 1])
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Recalling Corollary 4.9 we then have:

Proposition 4.21. For every strongly semisimple MV-algebra A, the morphism in (4.20) above is injective.

Γ (ZA, EA)
� � κ∗λ∗// Cont(XA, [0, 1]) . �

5. Hyperarchimedean algebras

Before proving the representation theorem for a general MV-algebra, it is instructive to consider hyperarchimedean
MV-algebras [2,1]. In this section we prove the compactness and the pushout–pullback lemmas in this case.
For a hyperarchimedeanMV-algebra A, every prime ideal P ismaximal, the Zariski and co-Zariski topologies coincide, and

the spectrum space ZA is Hausdorff. Further, A/P is uniquely isomorphic to a subalgebra of the real unit interval [0, 1]. We
are then in a position to apply the classical techniques used in [2] for a representation theorem of locally finite MV-algebras,
and we will generalize this theorem to general hyperarchimedean MV-algebras.
Hyperarchimedean MV-algebras are strongly semisimple MV-algebras where not only the principal ideals are

intersection of maximal ideals, but every ideal I is the intersection of all maximal ideals M containing I , in symbols,
I =

⋂
M⊃I . Equivalently, by 1.4(3), an MV-algebra A is hyperarchimedean iff A is semisimple together with all its quotients

A/I .

Definition 5.1 ([1] 6.2.2). An element a ∈ A in an MV-algebra is archimedean if there is an integer n ≥ 1 such that
na = (n+ 1)a. A MV-algebra A is hyperarchimedean if every a ∈ A is archimedean.

Proposition 5.2 ([1] 6.3.2). A MV-algebra is hyperarchimedean if and only if every prime ideal is maximal. A MV-chain is
hyperarchimedean if and only if is a subalgebra of the real unit interval [0, 1]. �

Remark 5.3. The real unit interval 1.1(11) is a hyperarchimedean MV-algebra, and for x ∈ [0, 1], nx = (n+ 1)x if and only
if x ≥ 1/n. �

Proposition 5.4. Given an archimedean element a ∈ A in an MV-algebra A, the set W Xa = {χ | χ(a) = 0} is open in XA, thus a
clopen set.

Proof. We take from [2, 4.5] the following argument: Suppose that a ∈ A is hyperarchimedean. Take an integer n ≥ 1 such
that na = (n + 1)a, whence XA\W Xa = {χ | χ(a) > 0} = {χ | χ(a) ≥ 1/n} (Remark 5.3), which is closed, thus W

X
a is

open. �

Observation 5.5. Given a semisimple MV-algebra A, and a ∈ A, if χ(a) is archimedean with the same n for all χ ∈ XA, then
a is archimedean. Actually, it is enough that the assumption holds for all χ /∈ W Xa . �

For semisimple MV-algebras the converse of Proposition 5.4 is also valid.

Proposition 5.6. Given a semisimple MV-algebra A, if the set W Xa is open in XA, then the element a is archimedean.

Proof. Suppose thatW Xa is open. ThenXA\W
X
a is closed, thus compact. It follows that the set {χ(a) | χ ∈ XA\W

X
a } is separated

from 0. Let n ≥ 1 be such that XA\W Xa = {χ | χ(a) ≥ 1/n}. Then for all χ in XA\W
X
a , nχ(a) = (n + 1)χ(a). The result

follows by 5.5. �

Recall that a Stone space (also called boolean space) is a totally disconnected compact Hausdorff space, or, equivalently, a
compact Hausdorff space with an open base of clopen sets.
We list now a series of conditions that characterize hyperarchimedean MV-algebras.

Theorem 5.7.

(a) The following conditions in an arbitrary MV-algebra A are equivalent:
1. A is hyperarchimedean.
2. ZA = MA (that is, every prime ideal is maximal).
3. The prime spectral space ZA is Hausdorff.
4. The prime spectrum SpecA = (EA → ZA) is a Hausdorff sheaf.
5. For all a ∈ A, the sets Wa ⊂ ZA are closed (thus clopen) in ZA.
6. The map κ : XA

∼=
−→ ZA is an homeomorphism (in particular XA is homeomorphic to MA, κ : XA

∼=
−→ MA).

7. The prime spectral space ZA is a Stone space.
(b) The following conditions in a semisimple MV-algebra A are equivalent:
1. A is hyperarchimedean.
8. For all a ∈ A, the sets W Xa ⊂ XA are open (thus clopen) in XA.
9. The map κ : XA −→ ZA is continuous.
10. The maximal spectral space MA is compact.
11. The map κ : XA −→ MA is a homeomorphism.
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Proof. (a) (1) ⇐⇒ (2): By 5.2.
(2) ⇐⇒ (3) and (2) ⇐⇒ ((4)): By 4.3, 4.4.
(2)⇒ (5): By 4.2.
(5)⇒ (3): Let P, Q ∈ ZA, P 6= Q . Take a ∈ P , a /∈ Q . Then,Wa and ZA\Wa are open sets that separate P and Q .
(1)⇒ (6): By 4.18, 5.4.
(6)⇒ (7): Recall that XA is a compact Hausdorff space.
(7)⇒ (3): A Stone space, in particular, is Hausdorff.
(b) (1)⇒ (8): By 5.4.
(8)⇒ (1): By 5.6.
(8) ⇐⇒ (9): Notice thatW Xa = κ

−1Wa.
(9)⇒ (11): By 4.18.
(11)⇒ (9): Since the inclusionMA ⊂ ZA is continuous.
(11) ⇐⇒ (10): By 4.17. �

From Theorem 5.7 it clearly follows:

Theorem 5.8. A MV-algebra A is hyperarchimedean if and only if the spectrum sheaf SpecA is a Hausdorff sheaf of simple
MV-algebras over a Stone space. �

Let E = (E → X) be any Hausdorff sheaf of simple MV-algebras. Consider the MV-algebra of global sections
Γ E = Γ (X, E). The following proposition is essentially proved in [2, Section 6]:

Proposition 5.9. For each σ ∈ Γ (X, E) define fσ (x) = λx(σ (x)), where λx is the unique embedding Ex ↪→ [0, 1] (1.4(5)). The
assignment σ 7→ fσ defines a embedding Γ (X, E) ↪→ Con(X, [0, 1]) into a hyperarchimedean subalgebra S of Con(X, [0, 1]).
S is separating if X has a base of clopen sets.

Proof. In[2, 6.4] it is proved that the continuity of fσ follows from the Hausdorff property of E. Since the zeroset
Z(fσ ) = [[σ = 0]] ⊂ X is open (1.5(6)), it follows, by [2, 4.5], that each fσ is an archimedean element. Finally the last
assertion follows because the characteristic function (as a section) of any clopen set is a continuous section. �

A global Hausdorff sheaf of simple MV-algebras over a Stone space is completely determined by its algebra of global
sections.

Theorem 5.10. Suppose we are given an MV-space (X, E) with E a global Hausdorff sheaf of simple MV-algebras, and X a Stone
space. Then the unit of the adjunction

(h, ε) : (X, E) −→ SpecΓ (X, E) = (ZΓ (X, E), EΓ (X, E))

given by Proposition 3.3 is an isomorphism of MV-spaces.

Proof. We refer to Proposition 3.3. Consider the map X h
−→ ZΓ (X, E), h(x) = {σ | σ(x) = 0}. By Proposition 5.9

ZΓ (X, E) = MΓ (X, E). The ideal h(x) corresponds to the ideal {fσ | fσ (x) = 0}. Then, [1, Theorem 3.4.3 (i)] shows that h is
a bijection. Since X is compact,MΓ (X, E) is Hausdorff and h is continuous, then h is a homeomorphism. Finally, the morphism
εx is injective since the stalks Γ (X, E)/h(x) are simple MV-chains, and surjective by definition of global sheaf. �

From Proposition 5.9 and Theorem 5.10 we immediately obtain the following companion of Theorem 5.8.

Theorem 5.11. A sheaf E = (E → X) is a global Hausdorff sheaf of simple MV-algebras over a Stone space if and only if the
MV-algebra of global sections Γ E = Γ (X, E) is hyperarchimedean. �

The pushout–pullback lemma for hyperarchimedean algebras.
We prove now the pushout–pullback Lemma 3.11 for hyperarchimedean algebras. Recall that in this case ZA = MA, and

that by Proposition 4.19 (b) we have an injective morphism Â
λ∗
↪→ Cont(MA, [0, 1]). With reference to 3.10 we now prove

the lemma in the following form:

Lemma 5.12. Given any hyperarchimedean algebra A, and any two elements a1, a2 ∈ A, the following diagram of [0, 1]-valued
functions is a pullback.

λ∗(̂A)|Wa1∪Wa2
//

��

λ∗(̂A)|Wa1

��
λ∗(̂A)|Wa2

// λ∗(̂A)|Wa1∩Wa2
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Proof. Let b1, b2 ∈ A be such that (λ∗b̂1)|Wa1 , (λ∗b̂2)|Wa2 are compatible in the intersectionWa1∩Wa2 . We have to show that
there exists b ∈ A, uniqueupon restriction ofλ∗̂b toWa1∪Wa2 , such that (λ∗̂b)|Wa1 = (λ∗̂b1)|Wa1 and (λ∗̂b)|Wa2 = (λ∗̂b2)|Wa2 .
Take an integer n ≥ 1 such that na1 = (n+ 1)a1, na2 = (n+ 1)a2. Then

b = (b1 ∧ b2) ∨ (na1 ∧ b2) ∨ (na2 ∧ b1) (5.13)

is the required element.
To check this first we simplify notation: Let f1 = λ∗â1, f2 = λ∗â2, g1 = λ∗b̂1, g2 = λ∗b̂2, and g = λ∗̂b. Since η and λ∗ are

morphisms, we have nf1 = (n+ 1)f1, nf2 = (n+ 1)f2 and

g = (g1 ∧ g2) ∨ (nf1 ∧ g2) ∨ (nf2 ∧ g1).

Also note thatWa1 = Z(f1) andWa2 = Z(f2).
Let x be any element ofMA. Then, x ∈ Z(f1) or x ∈ Z(f2). Suppose x ∈ Z(f1), thus f1(x) = 0. Consider two cases:

x /∈ Z(f2), f2(x) > 0, thus nf2(x) = 1. Then: g(x) = (g1(x) ∧ g2(x)) ∨ (g1(x) = g1(x).
x ∈ Z(f2), f2(x) = 0 and g1(x) = g2(x). Then: g(x) = g1(x) ∧ g2(x) = g1(x).

For x ∈ Z(f2)we proceed in the same way.
Direct inspection shows that this proof works equally well with the following formula for the element b:

b = (b1 �¬na1) ∨ (b2 �¬na2). � (5.14)

Combining Theorem 5.7(7) and Lemma 5.12 we have (see Theorem 3.12):

Theorem 5.15. Given any hyperarchimedean MV-algebra A, the unit of the adjunction (see 3.2):

η : A
η
−→ Γ SpecA = Γ (ZA, EA)

is an isomorphism of MV-algebras. �

Algebras of global sections of global Hausdorff sheaves over Stone spaces are known as boolean products. Observe that this
Theorem, together with Theorem 5.7(7) yields the characterization of hyperarchimedean MV-algebras as boolean products
of simple MV-algebras, [1, 6.5.6].
Combining Theorems 5.10 and 5.15, with reference to Section 3, we have:

Theorem 5.16. The functors Aop
Spec
−→ E and Eop

Γ
−→ A establish a contravariant equivalence between the category of

hyperarchimedean MV-algebras and the category of MV-spaces which are global Hausdorff sheaves over Stone spaces. �

In view of Theorem 5.7(6), this result extends to all hyperarchimedean MV-algebras the representation theorem
originally proved in [2, Theorem 6.9.] for the subclass of locally finite MV-algebras.

6. Finitely presented MV-algebras

In this section we prove the pushout–pullback lemma for finitely presented MV-algebras, that is, quotients of finitely
generated free MV-algebras by finitely generated ideals.
Free MV-algebras. As is well known in universal algebra, the free n-generator MV-algebra Fn = F [x1, . . . , xn], is the

quotient by an equivalence relation of the set of terms in the variables x1, . . . , xn, [1, Section 1.4]. Two terms f , g are
considered equal in Fn if the equation f = g follows from the defining axioms of MV-algebras.
The universal property of free MV-algebras states that for any MV-algebra A, a term f ∈ Fn determines by substitution

and evaluation a function An
fA
−→ A. A n-tuple (a1, . . . , an) determines uniquely a morphism Fn

ϕ
−→ A by defining

ϕ(f ) = fA(a1, . . . , an). This defines an inverse function to the assignment ϕ 7→ (ϕ(x1), . . . , ϕ(xn)). There is a bijection

` : [Fn, A]
∼=
−→ An, `−1(a1, . . . , an)(f ) = fA(a1, . . . , an). (6.1)

The functions of the form fA are called term functions on A, and the assignment f 7→ fA is a morphism Fn
δ
−→ AA

n
,

where the exponential notation stands for the MV-algebra of all functions An → A with the pointwise structure. The term
functions corresponding to the variables are the projections δxi = xiA = πi : An −→ A. The fact that an equation f = g
holds in a MV-algebra A means that the term functions fA and gA are equal. Clearly, for A = Fn, f = fFn(x1, x2, . . . , xn),

and Fn is isomorphic to the MV-algebra of term functions on Fn. When the morphism Fn
δ
−→ AA

n
is injective, it establishes

an isomorphism between the free algebra and the algebra of term functions on A. Thus, the injectivity of the morphism δ
amounts to saying that A generates the variety of MV-algebras, and its mathematical meaning is a completeness theorem
with respect to the algebra A. In particular, this is the case for A = [0, 1], and it is known as Chang’s completeness theorem,
[1, 2.5.3].
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We shall abuse notation and write f[0, 1] = f . The projections and the primitive operations of the MV-algebra [0, 1] are
continuous (for the usual topology), so all term functions on [0, 1] are continuous functions. Thus we have an injective
morphism

Fn
δ
−→ Cont([0, 1]n, [0, 1]) ⊂ [0, 1][0, 1]

n
, (6.2)

where continuity is with respect to the usual topology.
By definition the set of morphisms [Fn, [0, 1] ] is equal to the spectral space XFn . Thus, ` establishes a bijection

` : XFn
∼=
−→ [0, 1]n. Under this bijection the evaluations x̂i : XFn −→ [0, 1] correspond to the projections πi : [0, 1]

n
−→

[0, 1] (πi ◦ ` = x̂i, i = 1, 2, . . . , n) so that ` is continuous for the usual topology in [0, 1]. Since bothspaces are compact
Hausdorff, we have:

Remark 6.3. The bijection ` : XFn
∼=
−→ [0, 1]n establishes a homeomorphism of topological spaces. For any f ∈ Fn and

p ∈ [0, 1]n, `−1(p)(f ) = f (p). The evaluation map XFn
f̂
−→ [0, 1] corresponds via ` to the term function [0, 1]n

f
−→

[0, 1]. �

Finitely presentedMV-algebras. Since all finitely generated ideals are principal (1.2 (4)), a finitely presentedMV-algebra
is always of the form R = Fn/(f ), for some f ∈ Fn. A morphism ϕ as in (6.1) factors through the quotient if and only if
fA(a1, a2, . . . , an) = 0. Thus, we have a commutative diagram:

` : [Fn, A]
∼= // An

` : [R, A]
∼= //

⋃
ZfA

⋃
(6.4)

where Z(fA) ⊂ An is the zeroset of the term function fA.
When A = [0, 1], we have Z(f ) ⊂ [0, 1]n.

Remark 6.5. The bijection ` in 6.3 restricts to a homeomorphism of topological spaces ` : XFn/(f )
∼=
−→ Z(f ). �

The injective arrow δ in ((6.2)) factorizes as follows:

Fn
δ //

��

Cont([0, 1]n, [0, 1])

��
R

δ // Cont(Z(f ), [0, 1])

(6.6)

A key nontrivial result here is that the arrow δ is also injective.

Proposition 6.7. Given any f , g, h ∈ Fn: [g](f ) = [h](f ) ⇐⇒ g|Z(f ) = h|Z(f ), that is Fn/(f ) ∼= Fn|Z(f ).

Proof. The statement is equivalent to [1, lemma 3.4.8] which says: g ∈ (f ) ⇐⇒ Z(f ) ⊂ Z(g).
In fact, it reduces to the lemma when h = 0, and it follows from the lemma applied to the function d(g, h), where d is

the distance operation (1.1(7), see also 1.2(5)). �

The reader should compare the following remark with [1, Theorem 3.6.9].

Remark 6.8. In view of Remark 6.5 the injectivity of δ amounts to the semisimplicity of finitely presented MV-algebras.
Thus finitely presented MV-algebras are strongly semisimple (Definition 4.7).

We can safely assume the following:

Convention 6.9. (1) We will henceforth identify the free MV-algebra Fn = F [x1, x2, . . . , xn] with the MV-algebra of term
functions on [0, 1]. We then have Fn ⊂ Cont([0, 1]n, [0, 1]).

(2) We similarly identify any finitely presentedMV-algebra R = Fn/(f )with theMV-algebra of term functions on [0, 1] restricted
to the subset Z(f ) ⊂ [0, 1]n. We then have R = Fn|Z(f ) ⊂ Cont(Z(f ), [0, 1]).

The pushout–pullback lemma for finitely presented MV-algebras.
For the proof of this lemma we need the following well known result (first observed by McNaughton). It is related to the

proof of [1, Lemma 3.4.8]. It can be proved as in [1, Proposition 3.3.1], see also [15, Lemmas 5.2 and 5.3].

Proposition 6.10. Given any f ∈ Fn and a finite set H ⊂ Fn, there exists a set of convex polyhedra {T1, . . . , Tm} whose union
coincides with Z(f ), and such that all the functions h ∈ H are linear over each Ti. �
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Given any finitely presented MV-algebra R = Fn/(f ), and g ∈ Fn, we have R/([g]f ) = (Fn/(f ))/([g]f ) = Fn/(f , g) =
Fn/(f ∨ g). It follows that the pushout–pullback Lemma 3.11 for finitely presented MV-algebras can be stated as follows:
Given f1, f2 ∈ Fn, the following diagram is a pullback.

Fn/(f1 ∧ f2) //

��

Fn/(f1)

��
Fn/(f2) // Fn/(f1 ∨ f2)

Since Z(f1 ∧ f2) = Z(f1) ∪ Z(f2) and Z(f1 ∨ f2) = Z(f1) ∩ Z(f2), by convention 6.9 this is equivalent to the following:

Lemma 6.11. Given f1, f2 ∈ Fn, the following diagram of [0, 1]-valued functions is a pullback:

Fn|Z(f1)∪Z(f2) //

��

Fn|Z(f1)

��
Fn|Z(f2) // Fn|Z(f1)∩Z(f2)

That is, given g1, g2 ∈ Fn such that g1|Z(f1)∩Z(f2) = g2|Z(f1)∩Z(f2), there exists g ∈ Fn (necessarily unique upon restriction to
Z(f1) ∪ Z(f2)), such that g|Z(f1) = g1|Z(f1) and g|Z(f2) = g2|Z(f2).

Proof. As in case of hyperarchimedean algebras, Lemma 5.12, we are dealing with algebras of [0, 1]-valued functions. We
now use the formula (5.14). Set

h = (g1 �¬ nf1) ∨ (g2 �¬ nf2).
Given x, take n ≥ 1 such that nf1(x) = (n + 1)f1(x), nf2(x) = (n + 1)f2(x), and check (as in 5.12, (5.14)) that for x ∈ Z(f1),
h(x) = g1(x), and for x ∈ Z(f2), h(x) = g2(x). The problem now is that we do not have a single n that works for all the x in
Z(f1) ∪ Z(f2). To make n independent of xwe proceed as follows:
Assume x ∈ Z(f1). Then h(x) = g1(x)∨(g2(x)�¬ nf2(x)). We shall see there is a n ≥ 1 such that g2(x)�¬ nf2(x) ≤ g1(x)

for all x ∈ Z(f1). Since g2(x) � ¬ nf2(x) = max{0, g2(x) − nf2(x)} (see 1.1(11)), and g1(x) ≥ 0, we have to prove
g2(x)− nf2(x) ≤ g1(x).
Let {T1, . . . , Tm} be a set of convex polyhedra as in Proposition 6.10, for f = f1, and H = {f2, g1, g2}. Let xi0, . . . , xini be

the vertices of the polyhedron Ti. For each 1 ≤ i ≤ m and 0 ≤ j ≤ ni there is an integer nij such that g2(xij)−nijf2(xij) ≤ g1(xij)
for xij. In fact, if x ∈ Z(f2), then g1(xij) = g2(xij) and any number nij will do. If f2(xij) > 0, then the inequality will hold if we
take a sufficiently large nij. Let n be such that nij ≤ n for all i, j. Then g2(xij)− nf2(xij) ≤ g1(xij) for all i, j. Since each x ∈ Z(f1)
is a convex combination of the vertices of Ti for some i , and since g1 and the function g2 − nf2 are linear over Ti, we get
g2(x)− nf2(x) ≤ g1(x).
For x ∈ Z(f2)we proceed in the same way. �

7. Pushout–pullback lemma

The general pushout–pullback Lemma 3.11 follows from the particular case of finitely presented MV-algebras 6.11. This
is so by categorical nonsense because finite limits commute with filtered colimits in the category of MV-algebras. However
we find that in this paper a sketch of an explicit proof is convenient.
AnyMV-algebra B is a filtered colimit of finitely presentedMV-algebras. Explicitly, the diagramof allmorphisms R

α
−→ B,

for all finitely presentedMV-algebrasR, is a filtered colimit diagram (with transitionmorphisms (R, α)→ (S, β) allR
ϕ
−→ S

such thatβ◦ϕ = α).Moreover, given a1, a2 ∈ B, a diagramof the form B/(a1)←− B −→ B/(a2) is in a similarway a filtered
colimit of diagrams R/(r1) ←− R −→ R/(r2), r1, r2 ∈ R, of finitely presented algebras. It follows that the corresponding
pushout squares conform a filtered colimit of squares. With this in mind we proceed to prove the lemma.

Lemma 7.1 (Pushout–Pullback Lemma). Given any MV-algebra A, and two elements a1, a2 ∈ A, the following pushout diagram
is also a pullback diagram (recall that (a1, a2) = (a1 ∨ a2)).

A/(a1 ∧ a2) //

��

A/(a1)

��
A/(a2) // A/(a1, a2)

Proof. Let b1, b2 ∈ A, and suppose that they are identified by the quotient map onto A/(a1, a2). We have to show there is
an element c ∈ A, unique modulo (a1 ∧ a2), such that c 7→ b1 in A/(a1), and c 7→ b2 in A/(a2).
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Let F = F [x1, x2, y1, y2] be the free MV-algebra on four generators, and consider the morphism F −→ A/(a1 ∧ a2)
determined by the assignments x1 7→ a1, x2 7→ a2, y1 7→ b1, y2 7→ b2. This morphism induces the four vertical arrows in
the diagram below.

F/(x1) //

��

F/(x1, x2)

��

F/(x1 ∧ x2) //

��

55llllll
F/(x2)

66llllll

��

A/(a1) // A/(a1, a2)

A/(a1 ∧ a2) //

55llllll
A/(a2)

66llllll

The upper square is a pullback, and while the elements y1, y2 are not identified in F/(x1, x2), by the assumption made on
b1, b2, they do so downstairs in A/(a1, a2). Consider the following diagram:

F/(x1) //

���
�
�
� F/(x1, x2)

���
�
�
�

F/(x1 ∧ x2) //

���
�
�
�

55llllll
F/(x2)

66llllll

���
�
�
�

R/(r1) //

��

R/(r1, r2)

��

R/(r1 ∧ r2) //

��

55llllll
R/(r2)

66llllll

��

A/(a1) // A/(a1, a2)

A/(a1 ∧ a2) //

55llllll
A/(a2)

66llllll

where the square in the bottom is a filtered colimit of the middle squares of finitely presented MV-algebras. By the
construction of filtered colimits of MV-algebras, it follows there is one of them where y1, y2 are already identified in
R/(r1, r2). Let y1 7→ s1 ∈ R/(r1), y2 7→ s2 ∈ R/(r2). Since by 6.11 the square is a pullback, there exists an element s ∈ R,
unique modulo (r1 ∧ r2), such that s 7→ s1, and s 7→ s2. Let s 7→ c ∈ A, then c is the required element. �

8. Compactness lemma

To prove the compactness of the prime spectrum ZA we will construct first its lattice of open sets along the lines
developed in the Appendix. This construction yields a compact locale, whose set of points we identify with ZA. This method
guarantees the compactness of ZA provided the locale has enough points. This latter property will be guaranteed by a
standard application of Zorn’s Lemma.

Sheaves of posets and a construction of the prime spectrum of MV-algebras
As is well known, the underlying poset of any MV-algebra A is a distributive lattice that we denote also by A. Further, the

principal ideals of A under inclusion form another distributive lattice which is a quotient lattice of A. In fact, it is the quotient
lattice determined by the following equivalence relation:

Definition 8.1. Given any MV-algebra A and two elements a, b ∈ A,

a ∼ b ⇐⇒ (a) = (b) ⇐⇒ ∃ n | a ≤ nb and b ≤ na.

From 1.2(4) it immediately follows

Proposition 8.2. The relation defined in 8.1 is a lattice congruence:

(a1) = (a2), (b1) = (b2) ⇒ (a1 ∧ b1) = (a2 ∧ b2), (a1 ∨ b1) = (a2 ∨ b2). �

Given any distributive lattice, the opposite order also defines a distributive lattice.We shall denote by Aop the distributive
lattice determined by the opposite order in anMV-algebra A.We consider the opposite lattice of the lattice of principal ideals
defined above:

Definition 8.3. Given any MV-algebra A, we denote by VA the quotient of the lattice Aop by the congruence defined in 8.1,
Aop −→ VA.
The quotient map will be denoted by an over-lining, a 7→ a. We then have:

a ≤ b ⇒ b ≤ a, a ∧ b = a ∨ b, and a ∨ b = a ∧ b.
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We refer to A.6 for the definition of point of an inf-lattice.

Proposition 8.4. Any point p of the lattice Aop, Aop
p
−→ 2 satisfies the equation

p(a⊕ b) = p(a) ∧ p(b) (8.5)

if and only if p factorizes as shown in the following diagram:

Aop //

  BBBBBBBB VA

���
�
�

2

(8.6)

Proof. Assume the factorization (8.6), then by abuse of notation we can write p = p. From Proposition 8.2 it follows that
a⊕ b = a ∨ b = a ∧ b. Then, p(a ⊕ b) = p(a⊕ b) = p(a) ∧ p(b) = p(a) ∧ p(b). Conversely, assume the Eq. (8.5). Then,
p(x) = p(nx). There remains to be proved that if a ∼ b, then p(a) = p(b). By hypothesis, b ≤ na and a ≤ mb, whence
p(a) = p(na) ≤ p(b), and p(b) = p(mb) ≤ p(a), as required to complete the proof. �

Throughout, both lattices Aop and VA are equipped with the Grothendieck topology ȷf of finite suprema defined in A.7,
A.10. By Proposition 8.4 we then have.

Proposition 8.7. The points of the site (VA, ȷf ) are exactly the prime ideals of the MV-algebra A. �

An application of Theorem A.12(2) now yields

Proposition 8.8. The topological space ZA (see 2.1) is the same as the space Pȷ(VA) of points of the site (VA, ȷf ). �

Then, Theorem A.16 completes the proof of the compactness Lemma 3.8.

Corollary 8.9. Given any MV-algebra A, the spectral space ZA is sober, compact, and has a base of compact open sets. �

We conclude this section with a characterization of the open sets of ZA. In view of A.10, these sets are in one to one
correspondence with the elements of the locale Iȷ(VA), given by the lattice ideals of VA. The latter are, in turn, in one to
one correspondence with certain lattice ideals of Aop, or equivalently, lattice filters of A. Using that for any x ∈ A and integer
n ≥ 0, the ideals (x) and (nx) coincide, we can prove the following:

Proposition 8.10. There is a one to one correspondence between the open sets W ⊂ ZA and the lattice filters U ⊂ A having
the following property: ‘‘ na ∈ U ⇒ a ∈ U’’. For any such lattice filter U, its corresponding open set is given by
W = {P | ∃ a ∈ U, a ∈ P} =

⋃
a∈U Wa (see 2.1).

9. McNaughton theorem

In this final sectionwe prove thatMcNaughton theorem is equivalent to (in particular it follows from) the representation
Theorem 3.12 for free MV-algebras. A key fact is the realization that finite co-Zariski open covers of the prime spectral space
of the free MV-algebra correspond with finite covers of the cube by convex polyhedra with rational vertices.
Recall our identification of the free MV-algebra Fn = F [x1, x2, . . . , xn] with the algebra of term functions

Fn ⊂ [0, 1][0, 1]
n
(6.9).

Proposition 9.1 ([1, 3.1.9]). A linear polynomial with integer coefficients h = s0 + s1x1 + · · · + snxn, si ∈ Z, determines a term
function, denoted h], by means of the definition h] = (h ∨ 0) ∧ 1. �

Following [1, Definition 3.1.6]) a continuous function [0, 1]n
τ
−→ [0, 1] is said to be a McNaughton function if there

are linear polynomials h1, . . . , hk with integer coefficients such that for each point x ∈ [0, 1]n, τ(x) = hi(x) for some i,
1 ≤ i ≤ k. Each hi is said to be a linear constituent of τ .
Clearly the projections xi and the constant function 0 are McNaughton functions, and directly from the definition it can

be easily seen that McNaughton functions form a MV-subalgebra of [0, 1]n. It follows:

Proposition 9.2 ([1, 3.1.8]). Term functions are McNaughton functions. That is, Fn is a subalgebra of Mn, Fn ⊂ Mn (where Mn
denotes the MV-algebra of McNaughton functions). �

McNaughton’s Theorem establishes the converse result, that is, that every McNaughton function is a term function, Fn ⊃ Mn.
Since any convex polyhedron P ⊂ [0, 1]n is the intersection of [0, 1]n and a finite set of closed half spaces defined by

linear polynomials, we have:

Proposition 9.3. Any convex polyhedron P ⊂ [0, 1]n with rational vertices is the zeroset of a term function f = h]1 ∨ · · · ∨ h
]

k,
P = Z(f ), where h1, . . . , hk are linear polynomials with integer coefficients. �
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As a particular case of Proposition 6.10 we have

Proposition 9.4. Given any f ∈ Fn, there are convex polyhedra T1, . . . , Tm whose union coincides with Z(f ).

Given term functions f1, . . . , fm ∈ Fn, the open setsWfi = Z (̂fi) ⊂ ZFn cover the prime spectral space ZFn exactly when
f1 ∧ · · · ∧ fm = 0, which in turn is equivalent to the fact that the zerosets Z(fi) ⊂ [0, 1]n cover the cube [0, 1]n.
By refining the covers if necessary, we have

Remark 9.5. The (finite) open covers of the prime spectral space ZFn correspond to the (finite) covers of the cube [0, 1]n by
convex polyhedra with rational vertices.

The following is not difficult to prove (compare with Proposition 6.10).

Proposition 9.6 ([1, 3.3.1]). Given a McNaughton function τ with linear constituents h1, . . . , hk, there are convex polyhedra
with rational vertices T1, . . . , Tm whose union coincides with [0, 1]n, and such that for each Ti there is a hj with (τ = hj)|Ti .

In conclusion we have:

Proposition 9.7. Any McNaughton function τ is determined by a cover of [0, 1]n by convex polyhedra Ti = Z(fi),
f1, . . . , fm ∈ Fn, f1 ∧ · · · ∧ fm = 0, and a compatible family g1, . . . , gm ∈ Fn of term functions, (gi = gj)|Ti∩Tj . Conversely, any
such set of data determines a McNaughton function by setting (τ = gi)|Ti (the second assertion is justified by 9.2).

It is convenient now to expand 2.3 and write in detail the definition of a global section of the prime spectrum of the free
MV-algebra on n generators.

Fact 9.8. A global section of the prime spectrum σ ∈ Γ (ZFn , EFn) is determined by a cover of ZFn by open sets Wfi = Z (̂fi),
f1, . . . , fm ∈ Fn, f1 ∧ · · · ∧ fm = 0, and a compatible family g1, . . . , gm ∈ Fn of term functions, (̂gi = ĝj)|Wfi∩Wfj . Then,
(σ = ĝi)|Wfi . �

Wesee that a pair of families of term functions f1, . . . , fm, g1, . . . , gm, f1∧· · ·∧fm = 0, determines either aMcNaughton
function or a global section, according as (gi = gj)|Z(fi)∩Z(fj) or (̂gi = ĝj)|Z (̂fi)∩Z (̂fj). By [1, Lemma 3.4.8] this two conditions are
equivalent, also see 3.6 and 6.7. This immediately yields the identity

Mn = Γ (SpecFn) (recall (ZFn , EFn) = SpecFn).

We establish now a precise statement of this fact:

Theorem 9.9. The composite morphism

Γ (ZFn , EFn)
κ∗λ∗
−→ Cont(XFn , [0, 1])

(`−1)∗

−→ Cont([0, 1]n, [0, 1])

sends a global section σ into the function τ(p) = λσκ(`−1(p)), and establishes an isomorphism Γ SpecFn
∼=
−→ Mn between

the MV-algebra of global sections of the prime spectrum of the free algebra and the MV-algebra of McNaughton functions. Given
g ∈ Fn, this isomorphism sends the global section ĝ into the term function g, and the global section determined by a pair of families
f1, . . . , fm, g1, . . . , gm, f1 ∧ · · · ∧ fm = 0, into the McNaughton function determined by the same pair of families. �

Proof. Let p ∈ [0, 1]n. Recalling (4.20) and 6.3 we have (`−1)∗κ∗λ∗(σ )(p) = κ∗λ∗(σ )(`−1(p)) = λσκ(`−1(p)). This shows
that the composite morphism sends a global section σ into the function τ given by τ(p) = λσκ(`−1(p)). In particular, for
g ∈ Fn, we have λ ĝ κ(`−1(p)) = `−1(p)(g) = g(p). Thus it sends ĝ into g . It follows it sends the global section determined
by a pair of families f1, . . . , fm, g1, . . . , gm, f1 ∧ · · · ∧ fm = 0, into the McNaughton function determined by the same pair
of families. This shows that it is surjective into the MV-algebraMn. From Proposition 4.21 and Remark 6.8 it follows that it
is also injective. �

Bymeans of an identification of [0, 1]n with a subset of ZFn , and of the fibers of EFn over a maximal ideal with the interval
[0, 1], this isomorphism can be interpreted as themorphismwhich sends a global section σ to its restriction to [0, 1]n. With
this proviso, a McNaughton function has a unique extension into the whole prime spectrum ZFn .
One may also identify the maximal spectrum MFn with the cube [0, 1]

n. In this case, however, the latter is equipped
with the co-Zariski topology, which has as a base of open sets the Zero sets of the term functions. The global sections of the
maximal spectrum, just as the McNaughton functions, are given by (now a possibly infinite family of) linear polynomials on
convex polyhedra but, unlike the McNaughton functions, they are only continuous for the (much) finer co-Zariski topology.
Moreover, they do not extend to the whole prime spectrum. Indeed, an example of a global section is the function which is
equal to 1 in {0} = [0, 0], and constantly zero on each interval [1/(n+ 1), 1/n], n ∈ N.
Theorem 9.9 has the following immediate corollary

Theorem 9.10. McNaughton theorem is equivalent to the representation Theorem 3.12 for free MV-algebras. �

This shows that the representation theorem can be viewed as a vast generalization of McNaughton theorem, from free
MV-algebras to arbitrary MV-algebras. In particular, 3.12 yields a proof of McNaughton theorem.
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Appendix. Sheaf theory of posets

In this appendix we fix notation, terminology, and prove a number of general results of the theory of posets that are
needed in this paper. All these results are known folklore of the subject, and can be found in the literature in one form or
another. However, to the best of our knowledge, no preexisting treatment of these topics follow the basic idea we stress
here, namely, that of a sheaf theory of posets. Posets are viewed as {0, 1}-based categories, and we examine Grothendieck
theory of sheaves on Set-based categories, but we deal directly with posets. In particular, since our categories are posets,
inf-lattices play the role of categories with finite limits, and locales that of Grothendieck topoi.
We shall consider a partial order to be a reflexive and transitive relation, not necessarily antisymmetric.2 A set

furnished with such a relation will be called a poset. This is equivalent to a category taking its homsets in the poset
2 = {0, 1} = {∅, {∗}}. As usual,x ≤ y ⇐⇒ hom(x, y) 6= ∅. Under this equivalence a functor is the same thing that an order
preserving function. Given any poset H , under the usual bijection between subsets and characteristic functions, functors
H

p
−→ 2 correspond with poset filters P ⊂ H . Functors Hop

u
−→ 2 are called presheaves, and correspond with poset ideals

U ⊂ H . The set I(H) of all ideals, ordered by inclusion, I(H) = 2H
op
, is a locale (see A.1). The locale structure is given by the

union and intersection of subsets. There is a Yoneda functor H
h
−→ I(H), sending an element a ∈ H to the principal ideal (a].

This functor is full, meaning that for any x, y ∈ H , we have x ≤ y ⇐⇒ h(x) ≤ h(y).
Following Joyal–Tierney [9], we think of locales as dual objects for generalized (possibly pointless) topological spaces,

the locale being its lattice of open sets. In the same vein, we think of inf-lattices as open bases for locales.
Recall:

Definition A.1. A locale is a complete lattice in which finite infima distribute over arbitrary suprema. Amorphism of locales

L
f ∗
−→ R is a function f ∗ preserving finite infima and arbitrary suprema.3 (The upper star is meant to indicate that such an

arrow is to be considered as the inverse image of amorphism between the formal duals R
f
−→ L). The formal dual of a locale

is called a space in [9], but we shall call it a localic space.

Remark A.2. Given a locale L, each element u ∈ L determines a locale Lu = {x | x ≤ u}. Notice that the inclusion Lu ⊂ L is
not a morphism of locales since does not preserve 1. There is a quotient morphism of locales L → Lu given by x 7→ x ∧ u.
This determines the open subspace Lu ↪→ L.

For any topological space X , the lattice O(X) of open sets yields a locale. A continuous function Y
f
−→ X determines a

morphism of locales in the other direction O(X)
f ∗
−→ O(Y ), the usual inverse image of f .

The poset 2 = {0, 1} = O({∗}) is the singleton or terminal localic space. Given any locale L, there exists a unique locale
morphism {0, 1} → L, 1 = 2.

Definition A.3. A point p of a locale L is a morphism 1
p
−→ L, that is, a locale morphism L

p∗
−→ 2.

Proposition A.4. Given any locale L, the set of points PL has a canonical topology whose open sets are the subsets Wu ⊂ PL,
Wu = {p | p∗u = 1}, for u ∈ L. �

There is a surjective morphism of locales L
ρ
−→ O(PL).

Definition A.5. We say that a locale L has sufficiently many (or enough) points when ρ is injective, u 6= v ⇒ Wu 6= Wv .
That is:

u 6= v ⇒ ∃ p | p∗u = 1, p∗v = 0.

In this case, the localic space L is topological, L
∼=
−→ O(PL).

2 While this concept is usually known as a pre-order, our reason for departing from the classical nomenclature is that we prefer to use the non-compound
name for the more important notion.
3 There are two terminologies in the literature, in one we have frames and they formal duals locales, and in the other we have locales and their formal
duals (localic) spaces. The translation is the following: frame = locale, and for the formal duals locale = space.
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The topological space PL is a sober space (that is, every nonempty irreducible closed subset has a unique generic
point, [8, Ch. II]). The category of sober topological spaces is dual to the category of locales with enough points.
An inf-lattice is a poset with finite infima (in particular, the empty infimum or top element 1). A morphism of inf-lattices

is an inf-preserving (whence, an order preserving) function.

Definition A.6. A point of an inf-lattice V is a morphism V
p
−→ 2. A presheaf is an order reversing map V op

u
−→ 2. Points

correspond to inf-lattice filters, and presheaves to poset (not necessarily inf-lattice) ideals (see A.8 and A.9).

Definition A.7. Let H be an inf-lattice. A Grothendieck topology4 ȷ on H is defined by specifying, for each a ∈ H , a set ȷ(a) of
families ai ≤ a, called covers, such that:

(i) x ∼= a ∈ ȷ(a).
(ii) ai, j ≤ ai ∈ ȷ(ai), ai ≤ a ∈ ȷ(a)⇒ ai, j ≤ a ∈ ȷ(a).
(iii) ai ≤ a ∈ ȷ(a), b ∈ H ⇒ ai ∧ b ∈ ȷ(a ∧ b).

The topology is said to be subcanonical if the covers are suprema, that is:
(iv) for every ai ≤ a ∈ ȷ(a), a =

∨
i ai.

An inf-lattice furnished with a Grothendieck topology is called a site.

We shall often say topology instead of Grothendieck topology. There is a minimal or trivial topology whose covers are the
isomorphisms. In general, it is possible for some elements a to be covered by the empty family, in symbols ∅ ∈ ȷ(a). This is
the case when H has a bottom element 0 ∈ H , the empty supremum. In this case, it is usually assumed that ∅ ∈ ȷ(0).

Definition A.8. Let (H, ȷ) be a site. A point is a inf-preserving functorH
p
−→ 2which sends covers into epimorphic families.

Writing P = {a | p(a) = 1}, points correspond to ȷ-prime inf-lattice filters. These are subsets P ⊂ H such that:

(i) 1 ∈ P,
(ii) a ≥ b ∈ P ⇒ a ∈ P,
(iii) a, b ∈ P ⇒ a ∧ b ∈ P,
(iv.a) ai ≤ a ∈ ȷ(a) and a ∈ P ⇒ ∃ i | ai ∈ P.
(iv.b) ∅ ∈ ȷ(a) ⇒ a /∈ P.

Note that a filter P need not be proper, for example, in the case of the trivial topology. However, in most cases there is a
bottom element 0 ∈ H , and ∅ ∈ ȷ(0), so that 0 /∈ P for any ȷ-prime filter P .

Definition A.9. Let (H, ȷ) be a site. A sheaf is a presheaf Hop u
−→ 2 satisfying the following:

Sheaf axiom: ai ≤ a ∈ ȷ(a) and ∀ iu(ai) = 1⇒ u(a) = 1.
Writing U = {a | u(a) = 1}, sheaves correspond to ȷ-ideals. These are poset (not inf-lattice) ideals satisfying the sheaf

axiom. That is, subsets U ⊂ H such that:

(i) a ≤ b ∈ U ⇒ a ∈ U .
(ii.a) ai ≤ a ∈ ȷ(a) and ∀ i ai ∈ U ⇒ a ∈ U .
(ii.b) ∅ ∈ ȷ(a)⇒ a ∈ U .

Usually there is a bottom element 0 ∈ H , and ∅ ∈ ȷ(0), so that 0 ∈ U for any ȷ-ideal U .

Example A.10. Given any distributive lattice V , the finite suprema form a subcanonical Grothendieck topology (distributivity
amounts to axiom (iii)), that we will denote ȷf , ai ≤ a ∈ ȷf (a) ⇐⇒ a = a1 ∨ a2 ∨ · · · ∨ an. The points p of the site (V , ȷf )
correspond to the prime filters P ⊂ V of the lattice, and a ȷf -ideal U ⊂ V is just a lattice ideal (notice that 0 ∈ U since 0 is
the empty supremum). The generated lattice ideal, A.11(1), is given by:

#S = {x | ∃ a1, a2, . . . , an ∈ S, n ≥ 0, x ≤ a1 ∨ a2 ∨ · · · ∨ an}. �

We next consider the poset Iȷ(H) of all ȷ-ideals, ordered by inclusion, Iȷ(H) ⊂ I(H). In the next two theorems we collect
the basic properties and the universal property which characterizes this construction.

Theorem A.11. For any site (H, ȷ) we have:

1. For any subset S ⊂ H, the set
#S = {x | ∃ ai ≤ a ∈ ȷ(a), ai ∈ S ∀ i, x ≤ a}

is a ȷ-ideal, called the ȷ-ideal generated by S.

4 Some authors call pre-topologywhat we call here topology.
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2. The poset Iȷ(H) is a locale, Iȷ(H) ⊂ I(H). The generated ȷ-ideal determines a morphism of locales I(H)
#
−→ Iȷ(H), such that for

S ∈ I(H), U ∈ Iȷ(H):
#S ≤ U ⇐⇒ S ≤ U (# is left adjoint to the inclusion).

The locale structure of Iȷ(H) is given by the following:

U ∧ V = U ∩ V ,
∨
i

Ui = #
⋃
i

Ui

.
3. The bottom element is the ȷ-ideal #∅ = {a | ∅ ∈ ȷ(a)}, and the top element is the whole set H. Given a ȷ-ideal U,
U = H ⇐⇒ 1 ∈ U.

4. The composite H
h
−→ I(H)

#
−→ Iȷ(H) determines a inf-lattice morphism ε = #h sending covers into suprema. Given a ∈ H,

ε(a) = #(a] = {x | ∃ bi ≤ b ∈ ȷ(b), bi ≤ a ∀ i, x ≤ b}.

5. Given any U ∈ Iȷ(H), U =
∨
a∈U ε(a). Thus the elements of the form ε(a), a ∈ H, are a base of the locale Iȷ(H) (notice that

ε(a ∧ b) = ε(a) ∧ ε(b)).
6. The topology is subcanonical if and only if the segment (a] is already a ȷ-ideal. That is, ε(a) = (a]. This is the case if and only
if ε is full, that is, for any x, y ∈ H, x ≤ y ⇐⇒ ε(x) ≤ ε(y).

Proof. The proof is routine, we give the guidelines and let the reader check the details. Clearly I(H) = 2Hop is a locale (in
fact, it has the pointwise structure determined by the locale 2). Next, check that the generated sheaf # preserves finite infima
and that it is left adjoint to the inclusion. From this it easily follows that Iȷ(H) is a locale. The rest is straightforward. �

Theorem A.12. For any site (H, ȷ) we have:

1. Given any locale L and a inf-lattice morphism H
f
−→ L sending covers into suprema, there exists a unique morphism of

locales Iȷ(H)
f ∗
−→ L such that f ∗ε = f . f ∗ is determined by the formula f ∗(U) =

∨
a∈U f (a). Furthermore, for any two

f , g, f ≤ g ⇐⇒ f ∗ ≤ g∗.
2. In particular composition with ε establishes a bijection
PIȷ(H)

∼=
−→ Pȷ(H) = {P ⊂ H | P is a ȷ-prime inf-lattice filter}.

The topology of PIȷ(H) induces a topology in the set Pȷ(H). A base for this topology is given by the setsWa = Wε(a) = {P | a ∈ P},
for each a ∈ H (see Proposition A.4 and Theorem A.11(5)).

Proof. We check that f ∗ preserves finite infima. Any order preserving map satisfies f ∗(U ∩ V ) ≤ f ∗(U) ∧ f ∗(V ). For the
converse direction we proceed as follows:

f ∗(U) ∧ f ∗(V ) =
∨
a∈U

f (a) ∧
∨
a∈V

f (a) =
∨

a∈U, b∈V

f (a) ∧ f (b) =
∨

a∈U, b∈V

f (a ∧ b) ≤ f ∗(U ∩ V ).

The rest is clear. �

Remark A.13. Let H
p
−→ 2 be a point with corresponding ȷ-prime inf-lattice filter P ⊂ H , and U ⊂ H be any ȷ-ideal. Then

(see A.8 and A.9):
p∗(U) = 1 ⇐⇒ U ∩ P 6= ∅. �

Proposition A.14. If all covers of a site (H, ȷ) are finite families, then for every a ∈ H, ε(a) ∈ Iȷ(H) is compact. That is:

ε(a) ≤
∨
i

Ui ⇒ ∃ i1, i2, . . . , in | ε(a) ≤ Ui1 ∨ Ui2 ∨ · · · ∨ Uin .

Thus, the locales Iȷ(H)ε(a) are compact. In particular (for a = 1), Iȷ(H) is a compact locale with a base of compact elements (see
A.11(5)).

Proof. The following chain of equivalences, which is justified by A.11(1), (2) and (4), proves the proposition:

�
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By definition, the formal dual of any compact locale L is compact localic space. The topological space PL of A.4 need not
be compact unless L has enough points, in which case L ∼= O(PL). As is usual with the statements asserting the existence of
points, the following theorem follows by an application of the Axiom of Choice:

Theorem A.15. If all covers of a site (H, ȷ) are finite families, then the locale Iȷ(H) has enough points. By Remark A.13, this
amounts to the following statement:
Given any two j-ideals U, V ⊂ H, if U 6= V , then there exists a j-prime inf-lattice filter P ⊂ H such that U ∩ P = ∅, and

V ∩ P 6= ∅.

Proof. Take an element a ∈ H such that a ∈ V , a /∈ U . Consider the set F of inf-lattice filters F ⊂ H , F = {F | a ∈
F , U ∩ F = ∅}. Clearly, if F ∈ F , U ∩ F = ∅, and V ∩ F 6= ∅. We shall see that there is a ȷ-prime filter in F .
The inf-lattice filter [a) ⊂ H , [a) = {x | a ≤ x} is in F , so F 6= ∅. On the other hand, given any chain Fi, Fi ∈ F , the union

F =
⋃
i Fi is an inf-lattice filter such that a ∈ F . But U ∩ F = U ∩

⋃
i Fi =

⋃
i(U ∩ Fi) =

⋃
i ∅ = ∅. Thus F ∈ F . The Axiom

of Choice then yields a maximal element P ∈ F . We show now that P is ȷ-prime.
Given an inf-lattice filter F ⊂ H , and an element a ∈ H , we denote by (F , a) = {x | ∃ b ∈ F , b ∧ a ≤ x} the inf-lattice

filter generated by F ∪ {a}.
Let ai ≤ a ∈ ȷ(a) be a cover. We can assume it is nonempty because if not this would contradict a /∈ U . Suppose
(1) a ∈ P .
Assume that ∀ i ai /∈ P . Then, (P, ai) ∩ U 6= ∅. Take xi ∈ U , xi ∈ (P, ai), xi ≤ bi ∧ ai, bi ∈ P . It follows that
(2) bi ∧ ai ∈ U .
Let c =

∧
i bi. Then

(3) c ∈ P .
But c ≤ bi , thus c ∧ ai ≤ bi ∧ ai. From (2) it follows that
(4) c ∧ ai ∈ U .
Since ai ≤ a ∈ ȷ(a), we have c ∧ ai ≤ c ∧ a ∈ ȷ(c ∧ a) (see A.7 iii). Thus, from (4) it follows that (see A.9 (ii))
(5) c ∧ a ∈ U .
But from (1) and (3), we have
(6) c ∧ a ∈ P .
Finally, (5) and (6) contradict U ∩ P = ∅. �

As a corollary of the last two theorems we have

Theorem A.16. Let (H, ȷ) be a site whose covers are finite families. Let Pȷ(H) be the set of ȷ-prime inf-lattice filters P ⊂ H. Then,
the sets Wa = {P | a ∈ P} are compact and form an open base for a topology. The resulting topological space Pȷ(H) is sober,
compact, and has a base of compact open sets. Its locale of open sets is (isomorphic to) the locale Iȷ(H) of ȷ-ideals of H. �

Compact sober topological spaceswith a basis of compact opens are called spectral spaces [7]. They arose as an abstraction
of spaces of prime ideals in ring theory.
All the results in this appendix apply to Example A.10. In Section 8we have considered the particular case of this example

given by the lattice VA of principal ideals of a MV-algebra A.
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We detected an important omission: in the definition of the category of MV-spaces (Definition 3.1), the morphisms
Ff (x)

ϕx
−→ Ex should be required to be injective. Consequently f ∗F

ϕ
−→ E a monomorphism in the topos Sh(X).

The following simple counterexample was send to us by Mike Hampton.
Let C be Chang’s MV-algebra (Algebraic analysis of many-valued logics, Trans. Amer. Math. Soc. 88 (1958) 467–490), C

has exactly two prime ideals, 0 = {0} and a maximal ideal M ≠ 0, C/0 = C, C/M = {0, 1}. Let T be the MV -space
T = ({∗}, {0, 1}), Γ (T ) = {0, 1}. Without requiring the morphisms of MV -spaces to be injective on the fibers, [T ,SpecC ]
has two elements, while [C, Γ (T )] has only one, thus contradicting the adjointness between the functors Spec and Γ .
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