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Spectral properties of a quantum circuit are efficiently read out by monitoring the resonance frequency
shift it induces in a microwave resonator coupled to it. When the two systems are strongly detuned, theory
attributes the shift to an effective resonator capacitance or inductance that depends on the quantum circuit
state. At small detuning, the shift arises from the exchange of virtual photons, as described by the Jaynes-
Cummings model. Here we present a theory bridging these two limits and illustrate, with several examples,
its necessity for a general description of quantum circuits readout.
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Circuit quantum electrodynamics (QED) is at the heart of
most advanced superconducting quantum technologies.
Different types of superconducting qubits can be strongly
coupled to microwave resonators thus achieving regimes
and phenomenenawhich cannot be reachedwithin the realm
of quantum optics [1]. More recently, strong coupling
between microwave resonators and a variety of other
quantum systems not necessarily involving superconductors
has been achieved [2], extending further the realm of circuit
QED. In all these applications the measurement of the qubit
or the hybrid device state is achieved by monitoring the
resonator properties. Theoretically, two regimes have been
approached using disconnected descriptions [3]: the dis-
persive regime, where the qubit-resonator detuning is larger
than the coupling strength yet small enough to allow the
exchange of virtual photons, and the adiabatic regime,
where the detuning is sufficiently large for virtual processes
to be strongly suppressed. The dispersive regime, which
describes level repulsion between those of the quantum
circuit and of the resonator, is typically dealt with using a
Jaynes-Cummings Hamiltonian within different levels of
approximation [3–10]. In contrast, the adiabatic regime
accounts for the renormalization of the resonator capaci-
tance or inductance by the effective capacitance of the
circuit, including its “quantum capacitance” [11,12], or its
effective inductance [13,14], which modifies the resonator
frequency [15,16].
However, there is no actual border between these two

regimeswhich could justify a separate treatment, as illustrated
by recent experiments on hybrid circuit QED setups [17] that
reveal features of both regimes for the same device. This
situation claims for a unified description of quantum circuits
readout, going beyond the standard Jaynes-Cummings

model, which could be applied to different types of devices
over a large range of parameters.
In the present Letter we derive a general expression for

the resonator frequency shift when coupled to a generic
quantum circuit. This expression naturally interpolates
between the adiabatic and the dispersive regimes, thus
allowing us to clarify their origin from the same coupling
Hamiltonian. In addition, our formalism is not restricted to
the usual two-level approximations, and it can describe any
multilevel situation on the same footing. We illustrate the
importance of the different terms in our expression by
analyzing well-known models like a short single channel
superconducting weak link hosting Andreev states, the
radio frequency SQUID (rf-SQUID) and the Cooper
pair box.
Resonator-quantum circuit coupling.—The system we

consider comprises a resonant circuit and a quantum
circuit coupled through phase or charge fluctuations as
depicted in Figs. 1(a) and 2(a) and in the inset of Fig. 3.
The resonant circuit is represented as a lumped-element
LC resonator with bare resonance frequency fr ¼ ωr=2π,
with ωr ¼ 1=

ffiffiffiffiffiffiffiffiffiffi
LrCr

p
. Introducing the photon annihilation

(creation) operators a (a†), it can be described by the
Hamiltonian Hr ¼ ℏωra†a. On the other hand, the quan-
tum circuit Hamiltonian, ĤqcðxÞ, depends on a dimension-
less control parameter x, corresponding to an excess
charge on a capacitor or a flux through a loop. We denote
by jΦiðxÞi the eigenstates of the uncoupled quantum
circuit, ĤqcðxÞjΦiðxÞi ¼ EiðxÞjΦiðxÞi. Flux (charge) fluc-
tuations in the resonator lead to x→x0þ x̂r, where
x̂r ¼ λðsaþ s�a†Þ, with λ a coupling constant depending
on the coupling scheme [18], and s ¼ 1 (−i). We assume
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λ ≪ 1 in accordance with experiments. The resonator-
quantum circuit coupling Hamiltonian Ĥc is obtained by
expanding Ĥqcðx0 þ x̂rÞ up to second order in x̂r

Ĥcðx0Þ ¼ x̂rĤ
0
qcðx0Þ þ

x̂2r
2
Ĥ00

qcðx0Þ; ð1Þ

where the prime stands for the derivative with respect to x.
The Hamiltonian describing resonator, quantum circuit and
their coupling is therefore

Ĥ ¼ ℏωra†aþ Ĥqcðx0Þ þ λĤ0
qcðx0Þðsaþ s�a†Þ

þ λ2Ĥ00
qcðx0Þða†aþ 1=2Þ; ð2Þ

where terms λ2að†Þ2 leading to corrections of order λ4 have
been neglected. When the quantum circuit is described as a
two-level system and the terms involving H00

qc in Eq. (2) are
neglected, this model corresponds to the well-known
Jaynes-Cummings Hamiltonian.
We shall now evaluate, using perturbation theory up to

second order in λ, the resonator shift when the quantum
circuit is on a given state jΦii. The Hellmann-Feynman
theorem establishes that E0

i ¼ hΦijĤ0
qcjΦii. Taking the

derivative on both sides gives

E00
i ¼ hΦ0

ijĤ0
qcjΦii þ hΦijĤ00

qcjΦii þ hΦijĤ0
qcjΦ0

ii: ð3Þ

Here, jΦ0
ii ¼ ∂jΦii=∂x can be expressed as jΦ0

ii ¼
−GiðG−1

i Þ0jΦii where Gi ¼ ðEi − ĤqcÞ−1. Substituting this
into Eq. (3) and using identity

P
i jΦiihΦij ¼ 1, we obtain

the relation between the diagonal matrix element of Ĥ00
qc

and the curvature E00
i of the energy level i,

hΦijĤ00
qcjΦii ¼ E00

i þ 2
X
j≠i

jhΦijĤ0
qcjΦjij2

Ej − Ei
: ð4Þ

Combining this result with the second order correction
of the system energy levels arising from the Ĥ0

qc term in
Eq. (2) [18], we obtain the shift of the energy of the coupled
system when the circuit is in state jΦii and the resonator
contains n photons

δωi;n ¼
�
nþ 1

2

�
δωðiÞ

r þ
X
j≠i

g2i;j
2

�
1

ωij − ωr
−

1

ωij þ ωr

�
;

ð5Þ

where the shift δωðiÞ
r of the resonator frequency reads

δωðiÞ
r ¼ λ2ω00

i þ
X
j≠i

g2i;j

�
2

ωij
−

1

ωij − ωr
−

1

ωij þ ωr

�
; ð6Þ

with ℏgi;j ¼ λjhΦijĤ0
qcjΦjij the coupling strength between

states i and j, ωi ¼ Ei=ℏ and ωij ¼ ωj − ωi. Equations (5)
and (6) are the main results of this work, in particular
Eq. (6) contains both the adiabatic and the dispersive
contributions to the resonator shift, as explained below.
In the classical limit, it can be related to the real part of the
ac current susceptibility as calculated in Ref. [20] for a
fermionic system in thermal equilibrium.
The ωr-independent terms on the right-hand side of

Eq. (6) are the contributions involving Ĥ00
qc that arise from

Eq. (4), while the ωr-dependent terms correspond to those
obtained from a multilevel Jaynes-Cummings Hamiltonian.
It can be seen from Eq. (6) that all transitions which couple
a given state i with other states j via Ĥ0

qc are relevant to

calculate the shift δωðiÞ
r of the resonance frequency. The

equation includes the contribution both from virtual tran-
sitions that do not depend on the resonator and from
transitions mediated by the absorption and emission of
photons. Equation (6) only holds far from resonances, i.e.,
when all transitions between states of the circuit have
energies that differ from ωr by much more than the
coupling energy.
In the limit where ωr ≪ ωij for all transitions, Eq. (6)

simplifies to δωðiÞ
r ≈ δωcurv

r ¼ λ2ω00
i , corresponding to a

frequency shift proportional to the curvature of the
energy level with x. Noting that, for a charge-parameter
q, ð∂2Ei=∂q2Þ−1 is the effective capacitance [21] of the
circuit in state i, and for a phase-parameter φ,
ðΦ0=2πÞ2ð∂2Ei=∂φ2Þ−1 its effective inductance (here Φ0

is the flux quantum), this limit finds a simple interpretation:
the resonator capacitance or inductance is merely renor-
malized by that of the quantum circuit.
It is only in the case where terms fromH00

qc are negligible
that one recovers the result that can be derived from the
generalized Jaynes-Cummings Hamiltonian [22], in which
the frequency shift is dominated by the contributions
involving the exchange of excitations

δωðiÞ
r ≈ δωJC

r ¼ −
X
j≠i

g2i;j

�
1

ωij − ωr
þ 1

ωij þ ωr

�
: ð7Þ

In the following, we will use the shortcut “JC” for this
contribution. For a quantum circuit described by a two-
level system fj0i; j1ig, this result was derived from the
Jaynes-Cummings Hamiltonian in the dispersive limit
beyond the rotating-wave approximation (RWA) in
Refs. [3,6]. Assuming g01 ≪ jω01 − ωrj ≪ ω01 þ ωr, it

simplifies to δωð0=1Þ
r ∼ ∓ g201=ðω01 − ωrÞ, which is the

cavity-pull χ01 in the RWA [4]. When restricting to the
three lowest energy levels of a multilevel circuit, Eq. (6)
also allows us to recover the shifts derived for the transmon

in the RWA in Ref. [22]: δωð0Þ
r ≈ −χ01, δω

ð1Þ
r ≈ χ01 − χ12,

and χij ¼ g2ij=ðωij − ωrÞ.
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Altogether, Eq. (6) shows that the curvature of the energy
levels, i.e., the effective admittance of the circuit, is actually
a distinct contribution to the shift and can be described on
the same footing as the cavity pull given by the Jaynes-
Cummings Hamiltonian. This result clarifies a link between
both that had been suggested in early works [3,4].
Short weak link.—As a first example we address the case

of a resonator inductively coupled to a small loop closed
through a short, single-channel superconducting weak link.
In a simplified low-energy description and neglecting the
presence of excess quasiparticles, this circuit is character-
ized by two levels, at energies ω0 ¼ −EA=ℏ and ω1 ¼
EA=ℏ, with EA ¼ Δ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − τ sin2 ðδ=2Þ

p
, the Andreev energy,

Δ the superconducting gap, τ the channel transmission, and
δ the phase across the weak link [23–25]. The sole matrix
element required to calculate the frequency shifts adopts
the following analytical form [26,27]

h0jH0j1i ¼ Δ
ffiffiffiffiffiffiffiffiffiffi
1 − τ

p

2

�
Δ
EA

−
EA

Δ

�
: ð8Þ

We show in Fig. 1, for τ ¼ 0.8, and three values of the
resonator frequency ωr, the phase dependence of the

resonator frequency shift δωð0Þ
r when the Andreev system

is in its ground state. In Fig. 1(d), ωr ¼ 0.1Δ=ℏ is much

smaller than ω01 at all phases, and δωð0Þ
r is precisely given

by the term associated to the curvature λ2ω00
0 . In Fig. 1(f),

ωr ¼ 0.7Δ=ℏ approaches ω01 at δ ≈ π, so that the shift is in
this region very close to the JC contribution, whereas
further from π it is given by the curvature. In Fig. 1(e),
ωr ¼ 1.2Δ=ℏ crosses ω01, and the characteristic anticross-

ing behavior in δωð0Þ
r can be observed, well described by

JC. Away from δ ≈ π, the curvature once again takes over.
While the short junction limit provides a simple analytical
example to illustrate the crossover from the adiabatic to the
dispersive regimes, a richer behavior, including finite
length, parity, and spin-orbit effects [17,28,29], will be
analyzed elsewhere [30].
rf-SQUID.—To illustrate our result from Eq. (6) in a

multilevel situation, we now address the rf-SQUID, used in
particular as a simple flux qubit [31,32]. Its Hamiltonian
reads

H ¼ 4ECN̂
2 þ EL

2
φ̂2 − EJ cos

�
φ̂þ 2π

Φe

Φ0

�
; ð9Þ

where N̂ is the number of Cooper pairs having crossed the
Josephson junction, φ̂ the phase across the loop inductance,
EC ¼ e2=2C the charging energy, EJ the Josephson energy
and EL ¼ Φ2

0=4π
2L the magnetic energy associated with

the loop geometric inductance L. The external flux Φe
threading the loop is the control parameter. By numerical
diagonalization of the Hamiltonian, we obtain the spec-
trum, shown in Fig. 2(b) for EL ¼ EC ¼ EJ=5, and the

transition energies ω0j from state j0i [Fig. 2(c)] and ω1j

from state j1i [Fig. 2(d)]. The resonator frequency

shifts δωð0;1Þ
r when the circuit is in j0i or j1i are shown

in Figs. 2(e) and 2(f), for a resonator at ωr ¼ 0.3EJ=ℏ. The
curvature and JC contributions are shown as green and blue
lines, respectively. It is only close to the crossings ω01 ≈ ωr

(ω12 ≈ ωr) that δω
ð0;1Þ
r coincide with the JC contribution.

Whenωr ≪ ω01 (ωr ≪ ω12;ω01), the contribution from the
curvature almost coincides with the total shift. When none
of these conditions is met, the complete formula is
necessary to describe the frequency shift, as clearly seen
in Figs. 2(e) and 2(f). However, if 8λ2EC ≪ ℏω01, then the
JC expression is almost correct if one uses an effective
resonator frequency ℏωeff

r ¼ ℏωr þ 8λ2EC.
Cooper pair box.—We now consider the Cooper pair

box, a circuit that has both been discussed from the
adiabatic [11,12,14] and from the dispersive [4,22] point
of view. Its Hamiltonian reads

Hcpb ¼ 4ECðN̂ − NgÞ2 − EJ cos φ̂; ð10Þ

(a)

(c) (d)

(e) (f)

(b)

FIG. 1. Short single-channel weak link. (a) Circuit layout: the
loop containing the phase-biased weak link of transmission τ is
coupled to a microwave resonator (top). (b) Phase-dependence of
the energy levels for τ ¼ 0.8. (c) Transition energy ℏω01 ¼ 2EA;
(d),(e),(f) resonator frequency shift in ground state δωð0Þ

r as a
function of phase δ across weak link, for three values of the
resonator frequency indicated with magenta dashed lines in (c).
Red line: total shift; green line: curvature contribution; blue line:
JC contribution [Eq. (7)].
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with now φ̂ being the phase across the Josephson junction,
conjugated to N̂, andNg being the reduced gate voltage (see
inset in Fig. 3).
In this case, λ2H00

cpb ¼ 8λ2EC is a constant which, when
added to the JC contribution, leads to the Ng-dependent
shift λ2ω00

i in the limit ωr → 0. This is illustrated in Fig. 3,
showing the ratio of the JC and curvature contribution to
the total frequency shift as a function of ωr, when the
circuit is in state j0i, at Ng ¼ 1=2 and for various values of
EJ=EC. At ωr ≪ ω01, the JC result overestimates by far the

shift, and δωð0Þ
r is given by the curvature (adiabatic regime):

δωcurv
r =δωð0Þ

r ≈ 1. Around the anticrossing at ωr ¼ ω01, the
JC contribution becomes very large, so that the constant
contribution 8λ2EC is relatively negligible (dispersive

regime): δωJC
r =δωð0Þ

r ≈ 1. When EJ=EC ≲ 1, the JC result
is very close to the exact result for all resonator frequencies.
In contrast, for EJ=EC ≫ 1, the limiting expressions δωcurv

r

and δωJC
r are only valid at ωr ≈ 0 and ωr ≈ ω01,

respectively. Between these two limits the complete expres-
sion of Eq. (6) is needed to account for the frequency shift.
Conclusion and outlook.—We have introduced a for-

mulation of circuit QED readout bridging between the
adiabatic and the dispersive limits that have been used to
describe the coupling of a quantum circuit to a resonator in
different regimes. While we have illustrated our work by
considering simple models, it provides a means to describe
quantitatively circuit QED experiments which explore large
ranges of transition frequencies [10,17]. In particular, this is
of importance for the spectroscopy of mesoscopic systems,
like quantum hybrid devices combining spin-active materi-
als (strong spin-orbit semiconducting nanowires or two-
dimensional electron gases, topological insulators, etc.) and
superconductors, currently explored in quest of topological
superconductivity.
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