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Abstract 18 

Chitosan has been considered an environmental-friendly polymer. However, its use 19 

in agriculture has not been extended yet due to its relatively low solubility in water. In an 20 

attempt to improve such chemical characteristics, a chitosan-derivative prepared by 21 

adding a phosphonic group to chitosan N-methylene phosphonic chitosan, NMPC, was 22 

obtained from shrimp fishing industry waste from Argentinean Patagonia. This study 23 

showed that NMPC had a fungicidal effect on the phytopathogenic fungus Fusarium 24 

solani f. sp. eumartii (F. eumartii). NMPC inhibited F. eumartti mycelial growth and spore 25 

germination with low IC50 values. In vivo studies showed that NMPC affected fungal 26 

membrane permeability, ROS production, and cell death. NMPC also exerted antifungal 27 

effects against two other phytopathogens, Botrytis cinerea, and Phytophthora infestans. 28 

NMPC did not affect tomato cell viability at the same doses applied to these 29 

phytopathogens. Furthermore, the selective cytotoxicity of NMPC could give it added 30 

value in its application as an antimicrobial agent in agriculture. 31 

 32 
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Introduction  52 

Fusarium solani f. sp. eumartii (F. eumartii) is the causal agent of one of the most 53 

economically severe diseases of potato plants. It produces reddish-brown mottling 54 

symptoms between leaf veins and dry rot in tubers (Carpenter, 1915). Dry potato rot 55 

caused by F. eumartii is a threat to several places in the United States, Argentina, Brazil, 56 

and Canada. Although F. eumartii has been historically considered a potato pathogen, it 57 

also infects tomato plants (Solanum lycopersicum) (Romberg & Davis, 2007). Some 58 

chemical fungicides, such as benzilate and thiabendazole, are commonly used to control 59 

fusariosis. However, they are heavy-duty chemicals that often cause detrimental effects, 60 

including pollution and toxicity. Specifically, they produce reproductive and 61 

developmental problems in laboratory animals at high oral doses.  These include 62 

skeletal malformations, increased mortality (rats), and multiply anomalies (mice), among 63 

others (Gupta, 2018). The resistance of different Fusarium spp. has also been described 64 

against several chemical fungicides (Hou et al, 2018; Qiu et al, 2014; Zhou & Wang, 65 

2001). From all these issues, there is an immediate demand for a more sustainable and 66 

eco-friendly type of agrochemicals. In this sense, chitosan not only possesses these 67 

beneficial characteristics but also does not present toxicity for the environment (Malerba 68 

& Cerana, 2018; Maluin & Hussein, 2020).  69 

Chitosan is a linear polysaccharide composed of randomly spread -(1-4) linked D-70 

glucosamine and N-acetyl-D-glucosamine. This polymer usually comes from chitin, 71 

which is abundant and easy to isolate from crustacean exoskeletons. (Younes & 72 

Rinaudo, 2015). Most of the agricultural applications reported for the chitosan relates to 73 

its capacity for the stimulation of plant defense mechanisms (El Hadrami et al, 2010; 74 

Hidangmayum et al, 2019). Several phytopathological studies demonstrated the 75 

antimicrobial properties of chitosan against fungi (Deepmala et al, 2015; El Hadrami et 76 

al., 2010; Terrile et al, 2015), viruses, and bacteria (Badawy et al, 2014; Chirkov, 2002; 77 

Mania et al, 2019; Mansilla et al, 2013). However, one disadvantage is that chitosan has 78 

a poor-water solubility, so this limitation has restricted its use in agriculture (de Oliveira 79 

Pedro et al, 2013). The derivatization is the widest procedure used to improve the 80 

physicochemical properties, such as solubility (Verlee et al, 2017). For that purpose, the 81 

production of O-, N- or N, O- substituted derivatives have been extensively employed 82 

(Argüelles-Monal et al, 2018). Previously, Heras et al. (2001) have described an N-83 

derivatization process by reacting chitosan with a phosphonic group and named it N-84 

methylene phosphonic chitosan  (NMPC).  In addition to the fact that NMPC is soluble in 85 
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water over a wide range of pH values, it is a Ca2+ and transition metal chelator (Ramos 86 

et al, 2003). NMPC also showed improved performance compared to chitosan as a non-87 

viral gene carrier in HeLa cells, indicating its high potential in clinical applications  (Zhu 88 

et al, 2007). 89 

This work aimed to study the antimicrobial effect as well as downstream events 90 

associated with the mode of action of NMPC-derived chitosan on the phytopathogen F. 91 

eumartii. Furthermore, we evaluated the antimicrobial activity of NMPC on two other 92 

relevant phytopathogens, Botrytis cinerea and Phytophtora infestans. In conclusion, 93 

these findings provided fundamental knowledge on NMPC as a potential antimicrobial 94 

agent for modern agriculture. 95 

 96 

Materials and Methods   97 

Biological materials 98 

Estación Experimental Agropecuaria (EEA) INTA, Balcarce (Argentina) provided F. 99 

eumartii isolated 3122, which was maintained on solid potato dextrose agar (PDA; 100 

Merck, Germany) medium at 25ºC in darkness. Spores were collected from 8-day-old 101 

culture plates and suspended in sterile distilled water (Terrile et al., 2015). Botrytis 102 

cinerea strain B05.10 was cultured as described by Benito et al. (1998). Phytophthora 103 

infestans mating type A2 was grown and preserved on fresh potato tuber slices, as 104 

Andreu et al. (2010) described.  105 

Tomato cell suspensions (S. lycopersicum cv. Money Maker, line Msk8) were 106 

provided and grown in Murashige-Skoog medium as described by Laxalt et al. (2007).  107 

 108 

NMPC preparation 109 

The preparation of chitin and chitosan, as well as the synthesis of NMPC, was 110 

carried out as described by Heras et al. (2001). Briefly, we dissolved chitosan (2% w/v) 111 

in 1% (v/v) glacial acetic acid. Equals parts of chitosan and phosphorous acid (w/w) were 112 

mixed drop-wise with continuous stirring for 1 hr. Then, we increased the temperature to 113 

70ºC, and an equal part of 36.5% (w/v) formaldehyde was added drop-wise for an 114 

additional 1 hr with reflux. After that, we kept the incubation at 70ºC for 5 hr. The clear 115 

pale yellow solution was dialyzed against distilled water in dialysis tubing with a cut-off 116 

value of 2500 Da for 48 hr or until the pH of the water was raised to 6.8. Finally, the 117 

solution was frozen and freeze-dried. We characterized the NMPC as described by 118 

Heras et al. (2001). The characteristics of NMPC used in this study are 615,595 Da, 119 
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viscosity 22.5 mPa/seg, substitution degree 1.54, elemental analysis (%) C, 34.68; H, 120 

7.10; N, 5.15; P, 7.93. The solubility of NMPC in aqueous media over an extended pH 121 

range and its filmogenic nature was verified as previously described. We also performed 122 

IR spectroscopy of NMPC, as Heras et al. (2001) described.  123 

 124 

Measurements of spore and sporangium germination 125 

We evaluated the antifungal activity of NMPC on F. eumartii and B. cinerea spores 126 

and P. infestans sporangia as described by Mendieta et al. (2006). F. eumartii (1 x 106 127 

spores/mL) and B. cinerea spores (1 x 105 spores/mL), and P. infestans sporangia (5 x 128 

104 sporangia/mL) were treated with different concentrations of NMPC (0.5, 1, 1.5, 2.5, 129 

5, 10 µg/mL) in a final volume of 50 µL of 1% sucrose and put on micro slides.The 130 

spores of F. eumartii and B. cinerea were incubated at 25°C, while P. infestans 131 

sporangia at 18°C for 24 hr in darkness. Germinated spores and sporangia were 132 

quantified under light microscope Eclipse E200 (Nikon, Japan) using a hemocytometer. 133 

We considered spores and sporangia germinated when the germ tube length was longer 134 

than one-half of the reproductive structure (Plascencia-Jatomea et al, 2003). We 135 

analyzed at least 250 spores or sporangia per replicate, with 3 replicates per treatment. 136 

We estimated the IC50 values as the NMPC concentrations that reduce germination by 137 

50%.  138 

 139 

F. eumartii mycelial growth inhibition 140 

We added different volumes of NMPC (final concentrations were 5, 50, 100, or 500 141 

µg/mL) and a 0.5 cm-diameter disk of PDA agar containing F. eumartii mycelia in flasks 142 

with 100 mL of PDB media. F. eumartti was grown at 25ºC with shaking at 100 rpm in 143 

darkness. After four days, we filtered each fungal culture through muslin to get the 144 

mycelia and placed them in an oven at 65ºC for 3 hr. We measured the mycelial-dry 145 

biomass, and we estimated the IC50 value. 146 

 147 

Fungicidal activity on F. eumartii cells 148 

We incubated F. eumartii spores (1 x 104 spores/mL) with 1 and 5 µg/mL of NMPC 149 

or distilled water in a final volume of 60 µL. Samples were incubated at 25ºC for 24 hr in 150 

darkness and then spread on PDA. After three days, we counted the colonies and 151 

calculated the number of colony-forming units (CFUs) in each sample.  152 

 153 
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Fungal cell viability assay 154 

F. eumartii cell viability was determined by propidium iodide (PI; Sigma-Aldrich, 155 

USA) exclusion as described by Terrile et al. (2015). PI is used to evaluate cell viability 156 

as a nucleic acids stain. Once the dye is bound to nucleic acids, its fluorescence is 157 

enhanced 20–30-fold (Novo et al, 2000). We treated F. eumartii spores (1 x 106 158 

spores/mL) with 1 and 5 µg/mL of NMPC at 25ºC for 24 hr in darkness. We added PI at 159 

a final concentration of 120 µM, and we observed the F. eumartii spores in an Eclipse 160 

E200 microscope (Nikon, Japan) with a G-2E/C filter set containing an excitation filter at 161 

540/25 nm, suppressor filter at 630/60 nm, and a dichroic mirror at 565 nm.  162 

 163 

Membrane permeabilization assay  164 

We detected fungal cells with compromised cell membranes by recording the 165 

fluorescence of the DNA-binding dye SYTOX green (Molecular Probes, USA).  166 

Permeabilization of the fungal membrane allows the dye to cross the membranes and to 167 

intercalate into the DNA. This association displays an intense fluorescence emission 168 

when it is excited by blue light illumination (Rioux et al, 2000). We incubated the spores 169 

with 5 µg/mL of NMPC or distilled water at 25ºC for 1, 2, and 4 hr in darkness. Next, we 170 

added 1 µM of SYTOX Green, and we immediately observed the spores with an Eclipse 171 

E200 fluorescence microscope equipped with a B-2 A fluorescein filter set (Nikon, 172 

Japan). 173 

 174 

Measurements of endogenous H2O2  175 

The endogenous H2O2 level was assessed by a peroxidase dependent staining 176 

using 3, 3´-diaminobenzidine (DAB; Merck, Germany). DAB polymerizes in contact with 177 

H2O2 in the presence of peroxidase, producing an insoluble colored complex (Thordal-178 

Christensen et al, 1997). F. eumartii spores at a final concentration of 1.5 x 106 179 

spores/mL were incubated with 2.5 and 5 µg/mL of NMPC at 25ºC for 4hr. Then, 0.5 180 

mg/mL of DAB was added to each sample and incubated for an additional 1 hr before 181 

rinsing. We observed the spores under an Eclipse E200 light microscope (Nikon, Tokyo).  182 

 183 

Tomato cell viability assay  184 

Tomato cell suspensions were grown in Murashige-Skoog medium (Duchefa, The 185 

Netherlands) supplemented with 5.4 M naphthalene acetic acid, 1 M 6-benzyladenine, 186 

and vitamins (Duchefa, The Netherlands) at 24°C with continuous agitation in darkness 187 
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as described by Laxalt et al. (2007). We tested tomato cell viability by Evans blue 188 

staining assay (Sukenik et al, 2018). We incubated the cells with 10 and 100 µg/mL of 189 

NMPC at 30°C for 24 hr in darkness. As a positive control, we treated cells with 1% 190 

Triton X-100. Twenty-five µL of 1% Evans blue solution were added to 50 µL of treated-191 

suspension cells, incubated at room temperature for 5 min, and observed under Eclipse 192 

E200 light microscope (Nikon, Tokyo). The extent of dye uptake by dead cells was 193 

quantified spectrophotometrically by incubating 250 µL of each suspension with 150 µL 194 

1% Evans blue for 5 min at room temperature. Unbound Evans blue stain was removed 195 

by washing four times with 0.1 M Tris-HCl pH 7.5. Cells were collected by centrifuging at 196 

800 rpm for 15 sec and lysed with 250 µL 100% dimethyl sulfoxide (Sigma-Aldrich, USA) 197 

at 100°C for 15 min. We measured the absorbance at 595 nm by using a microplate 198 

reader ELx800 (BioTek, USA).  199 

 200 

Statistical analysis  201 

The values shown in each figure are the mean values ± SD of at least 3 202 

experiments. Data were subjected to analysis of variance (one-way ANOVA) and post 203 

hoc comparisons with Tukey´s multiple range test at P <0.05 level. We used GraphPad 204 

Prism 5 (GraphPad Software Inc., San Diego, CA, USA) as a statistical software 205 

program. 206 

 207 

Results 208 

 209 

NMPC is an antifungal chitosan derivative  210 

As a first approach to evaluate the antifungal effect of NMPC, we incubated F. 211 

eumartii and B. cinerea spores and P. infestans sporangia with different concentrations 212 

of NMPC for 24 hr. Inhibition of germination of both cell types by NMPC was dose-213 

dependent, being almost 100% of spores and sporangia inhibited at 10 µg/mL NMPC. 214 

(Fig. 1a and 1b). The estimated IC50 values for F. eumartii, B. cinerea, and P. infestans 215 

were 2.5 ± 0.9, 4 ± 1.2, and 2 ± 1.3 µg/mL, respectively. Besides, the IC50 for F. eumartii 216 

was in the same range as that obtained using chitosan (4.3 µg/mL ± 2.3), which is the 217 

precursor of NMPC (Supplementary figure). Next, we studied in depth NMPC action on 218 

F. eumartti phytopathogen. A significant dose-dependent mycelial growth inhibition was 219 

also observed, with a dry mass reduction of nearly 60% at 50 µg/mL of NMPC (Fig. 2). In 220 
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this case, the estimated IC50 for mycelial growth was 22 ± 5.2 µg/mL, nearly nine times 221 

higher than the estimated IC50 value for F. eumartii spore germination.  222 

To study the fungicidal effect, we incubated F. eumartii spores with different 223 

concentrations of NMPC for 24 hr and then plated on an NMPC-free PDA medium for 224 

three days. Interestingly, incubation with 5 µg/mL of NMPC almost completely abolished 225 

fungal growth, suggesting an NMPC-mediated fungicidal action (Fig. 3). We also 226 

analyzed F. eumartii cell viability by PI staining. Only the cells that have damaged 227 

plasma membranes take up PI, and the red fluorescence is a consequence of DNA–dye 228 

binding. As shown in Fig. 4, while control spores remained unstained, an increase in the 229 

percentage of PI-positive spores was observed in NMPC treatment, being higher at a 230 

dose of 5 µg/mL. The PI-positive spore percentage was 55.5% and 91.3% for 1 and 5 231 

µg/mL of NMPC, respectively (Fig. 4b). 232 

 233 

NMPC triggers membrane permeabilization and endogenous H2O2  in F. eumartii cells 234 

The cell membrane integrity of F. eumartii spores was analyzed by using SYTOX 235 

Green. Spores incubated with 5 µg/mL of NMPC during different times were stained with 236 

SYTOX Green and subjected to microscopic analysis. Fig. 5a shows that SYTOX Green-237 

mediated fluorescent spores increased over time. While at 1 hr after NMPC treatment, 238 

22% of spores displayed green-fluorescence, 4 hr after, 65% of them were positive for 239 

SYTOX Green (Fig. 5b). Next, NMPC-mediated cytotoxicity was explored by measuring 240 

endogenous H2O2 production in F. eumartii spores. The levels of H2O2 gradually 241 

increased in an NMPC dose-dependent manner. After 4 hr of 5 µg/mL NMPC treatment, 242 

98% of spores were stained (Fig. 6). Together, these findings indicated that both cell 243 

membrane permeabilization and H2O2 production could lead to NMPC-induced cell death 244 

in F. eumartii spores.  245 

 246 

NMPC does not affect tomato cell viability  247 

         Considering that we studied NMPC as a putative antimicrobial agent with a 248 

projected application on horticulture, we tested its toxicity on tomato cells. Tomato cell 249 

suspension cultures were incubated with 10 and 100 µg/mL NMPC for 24 hr and then 250 

stained with the vital dye Evans blue. Quantification of dye uptake showed that cell 251 

viability did not significantly decrease with 10 and 100 µg/mL NMPC (Fig. 7b). Most of 252 

the tomato cells were unstained after 10 µg/mL NMPC treatment (93% ± 6). Even at 100 253 
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µg/mL NMPC addition, tomato cells excluded the dye (85% ± 19), and their morphology 254 

remained unchanged (Fig. 7a). However, control cells treated with 1% Triton X-100 255 

showed nuclei and cytoplasm fully stained, and the cell size look liked smaller than 256 

those treated with water as well as NMPC (Fig. 7a). Cell viability after Triton X-100 257 

treatment was 7 % ± 6 (Fig. 7b).  258 

Discussion  259 

In this study, we demonstrated that NMPC exerted antimicrobial activity on various 260 

phytopathogens of economic relevance in agriculture. According to estimated IC50 261 

values, NMPC displayed antifungal action at similar doses on F. eumartii, B. cinerea, 262 

and P. infestans. In particular, in F. eumartii spores, NMPC drove the cell membrane 263 

damage and loss of cell viability. Interestingly, NMPC concentrations needed to reach 264 

sublethal doses in F. eumartii spores were significantly lower than those previously 265 

reported for  a chitosan N-derivative (Eweis et al, 2006; Liu et al, 2018; Wei et al, 2019; 266 

Zhang et al, 2020). In plants, F. eumartii infection involves spore attachment and 267 

germination before host penetration, lesion formation, and tissue maceration (Prins et al, 268 

2000). Thus, our results become of particular importance since the progress of the 269 

infection to successfully thrive plant tissues needs the efficient germination of spores and 270 

the formation of infective hyphae (Laluk & Mengiste, 2010). F. eumartii hyphae proved to 271 

be sensitive to NMPC, with an estimated IC50 value of 22 µg/mL NMPC. However, F. 272 

eumartii spore germination registered an IC50 much lower (2.5 µg/mL), indicating a cell-273 

specific sensitivity to NMPC. We and others also reported these differential sensitivities 274 

of mycelium and spores for other chitosan derivatives (Bautista-Baños et al, 2006; 275 

Terrile et al., 2015). The spore germination of F. oxysporum is more sensitive than 276 

hyphal growth to the N-derivative chitosan N-/2(3)-(dodec-2-enyl) succinyl, being the IC50 277 

values nearly to 5 µg/mL and 1,000 µg/mL, respectively (Tikhonov et al, 2006). A similar 278 

effect on F. oxysporum spore and mycelial treated with six different quaternary N-alkyl 279 

chitosan derivatives was also described (Badawy, 2010). An explanation could be that 280 

the lipid membrane composition of fungal cells is a crucial point related to sensitivity to 281 

chitosan. Feofilova et al. (2015) reported that linoleic acid predominates in mycelial cells 282 

while oleic acid is more abundant in spores of different members of the Penicillium 283 

genus, supporting the notion of actively growing cellular structures contain more 284 

unsaturated lipids than those under exogenous dormancy. In this sense, the ratio 285 

between oleic and linoleic acids was higher in conidia than mycelia of F. oxysporum and 286 
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F. roseum (Rambo & Bean, 1969). Thus, we hypothesized that the differential sensitivity 287 

of NMPC to F. eumartii cells (spores and hyphae) is related to the different lipid 288 

composition of these cell types. Palma Guerrero et al. (2010) reported that the plasma 289 

membrane of other chitosan-sensitive fungi has more polyunsaturated fatty acids than 290 

chitosan-resistant fungi. A Neurospora crassa mutant with depletion of polyunsaturated 291 

fatty acids and reduced membrane fluidity showed increased resistance to chitosan. This 292 

finding suggests that cell permeabilization by chitosan may be dependent on membrane 293 

fluidity. In both cases, they analyzed the mycelial but not the spore lipid composition. 294 

NMPC has an aminoalkyl phosphonic ligand to which chelating properties (Heras et 295 

al., 2001). Ramos et al. (2003) also proved that NMPC is a powerful chelating agent of 296 

Ca2+ and other ions. Thus, we cannot discard that NMPC as a chelator compound could 297 

additionally affect Ca2+ levels in F. eumartii cells. Kim et al. (2015) demonstrated the 298 

Ca2+ requirement in fungal developmental processes such as germination, hyphae 299 

development, and nutrient uptake (Kim et al, 2015). Later, they observed the role of 300 

different Ca2+ channels in controlling spore germination and hyphal growth in F. 301 

oxysporum cells (Kim et al, 2018). In agreement with this study, the antimicrobial action 302 

against Aspergillus flavus and A. parasiticus correlated with the chelation effect of N-303 

carboxymethyl chitosan by disturbing the uptake of nutritional divalent ions (Cuero et al, 304 

1991). However, whether the potent fungicidal action of NMPC involves chelation of Ca2+ 305 

or other ions needs to be explored. 306 

We showed that NMPC-mediated cell membrane permeabilization was also 307 

concomitant with ROS production in fungal spores. Cellular H2O2 induction may result 308 

from the primary effect of cell membrane permeabilization. The ROS production could 309 

cause lipids peroxidation of polyunsaturated fatty acids, inducing cell membrane 310 

permeabilization (Howlett & Avery, 1997). Both cellular and biochemical events could be 311 

responsible for the loss of F. eumartii cell viability mediated by NMPC. Similarly to 312 

NMPC, induction of cell membrane damage was reported by the chitosan derivatives 313 

ATMCS and ATPECS on F. oxysporum hyphae (Qin et al, 2014). The potential 314 

hypothesis that explains the antimicrobial action of chitosan on pathogens relies on the 315 

positive charge of the protonated chitosan that enables electrostatic interactions with the 316 

negative charging of the pathogen surface hence increasing membrane permeability and 317 

subsequently resulting in cell death (Maluin & Hussein, 2020). In this sense, NMPC 318 

could also bind to the negative charge of the membrane surface, causing 319 

permeabilization in F. eumartti spores. 320 
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Considering the potential of NMPC as a fungicide, the harmlessness to the plant cells 321 

is a crucial feature. Interestingly, lethal doses of NMPC on F. eumartii did not exert 322 

toxicity in tomato cells. This selectivity was also reported by chitosan and several of their 323 

derivatives in different experimental models. Asgari-Targhi et al. (2018) analyzed the 324 

effect of bulk or nano-chitosan on the growth and physiology of Capsicum annuum. They 325 

found that application resulted in non-phytotoxic and extended growth of the seedlings 326 

while these effects were dose-dependent. The application of chitosan nanoparticles on 327 

wheat and barley showed similar results (Faride et al, 2017).  328 

In conclusion, all these findings place NMPC as a very promising eco-friendly 329 

biofungicide to protect tomato against different phytopathogens.  330 
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 501 

 502 

Legends 503 

Fig. 1. Antimicrobial dose-dependent effect of NMPC. (a) The values represent the 504 

percentages of total spores/sporangia present in each sample after the incubation with 505 

different concentrations of NMPC for 24 hr. Each value is the mean ± SD of at least 3 506 

independent experiments. (b) Representative images of the spores/sporangia are 507 

shown. Scale bar: 22 µm (upper panels), 15 µm (middle panels) and 30 µm (lower 508 

panels). 509 

 510 

Fig. 2. NMPC inhibits F. eumartii mycelial growth. F. eumartii was inoculated in a 511 

liquid PDB medium supplemented with different concentrations of NMPC and incubated 512 

for four days. The quantification of the mycelial dry weight is expressed as the 513 

percentage of control (100%). Each value is the mean ± SD of 3 independent 514 

experiments. Different letters point out statistically significant differences (Tukey’s test, p 515 

 0.05). 516 

 517 

Fig. 3. NMPC mediates fungicidal action on F. eumartii spores. Spores were 518 

incubated with 1 or 5 µg/mL NMPC for 24 hr and then plated on the Petri dishes 519 

containing fresh PDA media to allow fungal growth. F. eumartti was grown for three days 520 

at 25ºC. Values represent the percentage of CFU of control (100%). Each value is the 521 

mean ± SD of at least 3 independent experiments. Different letters point out statistically 522 

significant differences (Tukey's test, p  0.05). Representative images are shown (inset). 523 

 524 

Fig. 4. NMPC affects F. eumartii cell viability. Fungal spores were incubated with 1 525 

µg/mL or 5  µg/mL NMPC for 24 hr and stained with PI. The dead spores are observed 526 
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in red fluorescence. (a) Representative images are shown. The bright-field image for 527 

each treatment is shown below the respective fluorescent images. (b) Values represent 528 

the percentage of the red spores present in each sample. Each value is the mean ± SD 529 

of at least 3 independent experiments. Different letters point out statistically significant 530 

differences (Tukey's test, p < 0.05). Scale bar: 22 µm. 531 

 532 

Fig. 5. NMPC induces cell membrane permeabilization. Kinetic of cell membrane 533 

permeabilization by 5 µg/mL NMPC in fungal spores. Cell membrane permeabilization 534 

was visualized in F. eumartii spores by the SYTOX Green probe. (a) Representative 535 

images are shown. (b) Values represent the percentage of the green-spores present in 536 

each sample. Each value is the mean ± SD of at least 3 independent experiments.  537 

Different letters point out statistically significant differences (Tukey's test, p < 0.05). 538 

Scale bar: 22 µm. 539 

 540 

Fig. 6. NMPC induces H2O2 production in F. eumartii spores. Spores were treated 541 

with 2.5 or 5 µg/mL NMPC for 4 hr before DAB staining and subjected to microscopic 542 

analysis. (a) Representative images are shown. (b) Values are expressed as a 543 

percentage of total spores in each sample. Each value is the mean ± SD of at least 3 544 

independent experiments.  Different letters point out statistically significant differences 545 

(Tukey’s test, p  0.05). Scale bar: 22 µm. 546 

 547 

Fig. 7. NMPC does not affect tomato cell viability. Suspension-cultured tomato cells 548 

were incubated with different concentrations of NMPC for 24 hr and then stained with 549 

Evans blue. As negative and positive controls, water and 1% Triton-100 were used, 550 

respectively. (a) Representative images of at least 3 independent experiments are 551 

shown. (b) Quantification of cell viability was estimated by recording Evans blue 552 

retention in tomato cells. Values are expressed as the percentage of water treatment 553 

(100%). Each value is the mean ± SD of at least 3 independent experiments. Different 554 

letters point out statistically significant differences (Tukey’s test, p  0.05). Scale bar: 20 555 

µm. 556 

 557 
Supplementary figure. Antimicrobial dose-dependent effect of chitosan. The values 558 

represent the percentages of total spores present in each sample after the incubation 559 
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with different concentrations of chitosan for 24 hr. Each value is the mean ± SD of at 560 

least 3 independent experiments.  561 

 562 
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