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MAXIMAL OPERATORS ASSOCIATED WITH GENERALIZED

HERMITE POLYNOMIAL AND FUNCTION EXPANSIONS

LILIANA FORZANI, EMANUELA SASSO, AND ROBERTO SCOTTO

Abstract. We study the weak and strong type boundedness of maximal

heat–diffusion operators associated with the system of generalized Hermite
polynomials and with two different systems of generalized Hermite functions.

We also give a necessary background to define Sobolev spaces in this context.

1. Introduction

The generalized Hermite polynomials Hµ
n (x) of degree n were defined for x ∈ R

by G. Szëgo in [21, problem 25, p. 380] as being an orthogonal family of polynomials

with respect to the measure γµ(dx) = x2µe−x
2

dx on R, with µ > −1/2. In this
paper we are going to consider a normalization of these polynomials that were
defined by Rosenblum [16]. When µ = 0 these polynomials coincide with the
classical Hermite polynomials and the behavior of these maximal operators have
been studied for this particular case in [1, 6, 11, 12, 17].

To extend them to x ∈ Rd we can do it as a tensor product of the one-dimensional
generalized Hermite polynomials. Indeed, set µ = (µ1, . . . , µd) with µk > −1/2 for
all k = 1, . . . , d, x ∈ Rd and for the multi-index n = (n1, . . . , nd) ∈ Nd0 we define
the d-dimensional generalized Hermite polynomial of degree |n| = n1 + . . .+ nd as

Hµ
n (x) =

d∏
k=1

Hµk
nk

(xk).

In this way these polynomials are orthogonal in L2 with respect to the measure

γµ(dx) =

d∏
k=1

x2µk
k e−|x|

2

dx;

and are eigenfunctions with eigenvalues equal to −|n| for every n ∈ Nd0 of the
differential-difference operator

Lµ =

d∑
k=1

Lµk , (1.1)

2010 Mathematics Subject Classification. 42C05, 42C15.
Key words and phrases. Generalized Hermite polynomials and functions; heat–diffusion semi-

groups; maximal operators.

83



84 L. FORZANI, E. SASSO, AND R. SCOTTO

with

Lµkφ(x) =
1

2
D2
µk
φ(x)− xDµkφ(x)− µk(φ(x)− φ ◦ σk(x));

being

Dµkφ(x) =
∂φ

∂xk
(x) +

µk
xk

(φ(x)− φ ◦ σk(x)),

and σk the reflection with respect to the hyperplane {xk = 0}, i.e., σk(x1, . . . , xk,
. . . , xd) = (x1, . . . ,−xk, . . . , xd).

Associated to this differential-difference operator we have the diffusion semi-
group Tµt = eLµt which applied to functions f in Lp(Rd, γµ), p ≥ 1, solves the
heat–diffusion equation with initial data f , that is, if u(x, t) = Tµt f(x) then

∂u

∂t
= Lµu, t > 0,

u(x, 0) = f(x).
(1.2)

Our goal in this paper is to give sense to the second equality u(x, 0) = f(x), which
means to prove the convergence u(·, t) → f as t → 0+ in the almost everywhere
sense. This is a consequence of the Lp-boundedness of the maximal operator

Tµ∗ f(x) = sup
t>0
|Tµt f(x)|,

stated in Theorem 1.3, whose proof is given in section 2.

Theorem 1.3. For µ ∈ (−1/2,∞)d, the operator Tµ∗ is of weak-type (1, 1) and
strong-type (p, p) for p > 1 with respect to γµ.

Corollary 1.4. For µ ∈ (−1/2,∞)d and every f ∈ L1(Rd, γµ),

lim
t→0+

Tµt f = f a.e.

This corollary is an immediate consequence of the first part of Theorem 1.3 and
the fact that generalized Hermite polynomials are dense in L1(Rd, γµ), see [19].

Let us point out that Theorem 1.3 was proved in [2] for d = 1.

It is known that to study the weak formulation of a second order differential-
difference operator of type (1.1) it is required to obtain the appropriate Sobolev
spaces associated with Lµ. To define these Sobolev spaces we need to study the
boundedness of the Riesz and Bessel potentials defined respectively as:

Iβ = (−Lµ)−β ,

and
Bβ = (I − Lµ)−β ,

for β > 0. Boundedness properties of these operators for µ = 0 can be found in
[4, 5]. On the other hand, boundedness results for any µ are given in Corollary 1.6,
which is a consequence of the hypercontractivity of Tµt given in the following the-
orem.

Theorem 1.5. For µ ∈ (−1/2,∞)d, the diffusion semigroup Tµt is hypercontrac-
tive.
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Corollary 1.6. For µ ∈ (−1/2,∞)d, the Bessel and Riesz potentials associated to
Lµ are of strong-type (p, p), 1 < p <∞, with respect to the measure γµ.

As in the case of other orthogonal systems, one can study the heat–diffusion
semigroups associated to differential-difference operators whose eigenfunctions are
the functions associated with the generalized Hermite polynomials.

In the context of generalized Hermite polynomials there are at least two different
families of orthogonal functions. Namely, the one-dimensional generalized Hermite
functions introduced by M. Rosenblum in [16] and the one-dimensional generalized
Hermite functions introduced by G. Szegö in [21, problem 25, p. 380]. In the case
of µ = 0 we have just one family of orthogonal functions, the so called Hermite
functions, and the behavior of the maximal operators associated with these function
expansions can be found in [20].

Here we are going to define directly d-dimensional Hermite functions as a tensor
product of one-dimensional generalized Hermite functions. For µ ∈ (−1/2,∞)d,
n ∈ Nd0 and x ∈ Rd we define

ψµn(x) =

(
d∏
k=1

ηµk(nk)

Γ(µk + 1/2)

)1/2

1

2|n|/2n!
Hµ
n (x)e−|x|

2/2,

where n! = n1! · · ·nd!, and for l ∈ N0 and ν > −1/2, ην(l) is the generalized
factorial defined as

ην(2m) =
22mm!Γ(m+ ν + 1

2 )

Γ(ν + 1
2 )

= (2m)!
Γ(m+ ν + 1

2 )

Γ(ν + 1
2 )

Γ( 1
2 )

Γ(m+ 1
2 )
,

ην(2m+ 1) =
22m+1m!Γ(m+ ν + 3

2 )

Γ(ν + 1
2 )

= (2m+ 1)!
Γ(m+ ν + 3

2 )

Γ(ν + 1
2 )

Γ( 1
2 )

Γ(m+ 3
2 )
.

They are orthogonal with respect to the measure

ρψµ (dx) =

d∏
k=1

x2µk
k dx.

The other set of functions we can define is

ϕµn(x) = ψµn(x)

d∏
k=1

|xk|µk ,

and they are orthogonal with respect to the Lebesgue measure

ρϕµ(dx) = dx.

Rev. Un. Mat. Argentina, Vol. 54, No. 1 (2013)



86 L. FORZANI, E. SASSO, AND R. SCOTTO

These systems of generalized functions are respectively the eigenfunctions of the
following differential-difference operators:

Hψµ =
1

2

( d∑
k=1

D2
µk
− |x|2

)
, (1.7)

Hϕµ =
1

2

( d∑
k=1

[
D2
µk
− 2µk

xk

(
∂

∂xk
+ µk − 1

)]
− |x|2

)
. (1.8)

Here and in the sequel, ϑ will denote either ψ or ϕ. It can be proved that the
system {ϑµn} is an orthonormal basis on L2(Rd, ρϑµ), for the one-dimensional case
see [16, p. 13]. Also, by using the one-dimensional result in [16, (3.7.4)], we get

Hϑµϑµn(x) = −(|n|+ |µ|+ d/2)ϑµn(x),

with |µ| = µ1 + · · ·+ µd.
For these systems we study problems associated with the initial value problem

similar to (1.2) for the operators defined in (1.7) and (1.8). We answer this in
theorems 1.9, 1.11 and corollaries 1.10, 1.12.

Let

Tµ,ϑ∗ f(x) = sup
t>0
|Tµ,ϑt f(x)|,

with Tµ,ϑt f(x) = etH
ϑ
µf(x); then we have:

Theorem 1.9. (a) For µ ∈ (−1/2,∞)d, Tµ,ψ∗ is of weak-type (1, 1) and strong-type
(p, p) for p > 1 with respect to the measure ρψµ .

(b) For µ ∈ [0,∞)d, Tµ,ϕ∗ is of weak-type (1, 1) and strong-type (p, p) for p > 1
with respect to the Lebesgue measure dx.

And as an immediate consequence of this theorem we have:

Corollary 1.10. With µ ∈ (−1/2,∞)d for the system {ψµn} and with µ ∈ [0,∞)d

for the system {ϕµn}, we obtain for 1 ≤ p <∞ and every f ∈ Lp(Rd, ρϑµ),

lim
t→0+

Tµ,ϑt f = f a.e.

We will see that for µ /∈ [0,∞)d the maximal operator associated with Tµ,ϕt need
not be weak-type (1, 1) (see comments after Theorem 1.11). This behavior is also
present in one of the Laguerre function systems. For instance, Maćıas, Segovia
and Torrea in [10] showed that the one-dimensional maximal semigroup associated
with the system {Lαn(x)xα/2e−x/2} on (0,∞) for −1 < α < 0 fails to be weak-type
(1, 1), and investigated in detail its boundedness properties on Lp for a restrictive
range of p’s. Nowak and Sjögren in [14] observe that in higher dimensions, by
using a simple argument, there is no weak-type inequality for this heat–diffusion
semigroup maximal operator either. In a recent work by Nowak and Sjögren in
[15, Theorem 1.3] they completely described the behavior of the maximal opera-

tor associated to the system of Laguerre functions {
∏d
k=1 L

αl
nk

(xk)x
αk/2
k e−xk/2} in

higher dimensions for α /∈ [0,∞)d.
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In section 2 we will see the connection between the generalized Hermite polyno-
mials and Laguerre polynomials, and develop a transference method from general-
ized Hermite to Laguerre polynomials as the one introduced in [8] from Laguerre
to Hermite. From that it comes as no surprise that the boundedness properties
of the heat–diffusion maximal operator for the generalized Hermite functions {ϕµn}
for µ /∈ [0,∞)d are the same as the boundedness properties of the heat–diffusion
maximal operator associated with those particular Laguerre functions.

As we said before, for µ /∈ [0,∞)d the maximal operator associated with the
second system of generalized Hermite functions is not bounded on the whole range
of p’s. It will depend on the parameter µ. Let us set some notations before writing
the theorem. For µ ∈ (−1/2,∞)d we denote by

D = {1, 2, . . . , d}, µ̃ = min{µk : k ∈ D}, d̃(µ) = #{k ∈ D : µk = µ̃}.
For −1/2 < µ̃ < 0 we set p1 = p1(µ̃) = − 1

µ̃ and p0 = p0(µ̃) = (p1)′ = 1
1+µ̃ . Then

we get

Theorem 1.11. For d ≥ 1 and µ ∈ (−1/2,∞)d such that −1/2 < µ̃ < 0 we have

a) If d̃(µ) = 1, then
i) Tµ,ϕ∗ is bounded on Lp(dx) for p0 < p < p1.

ii) Tµ,ϕ∗ is of weak-type (p1, p1).
iii) Tµ,ϕ∗ is of restricted weak-type (p0, p0).

b) If d̃(µ) ≥ 2, then
i) Tµ,ϕ∗ is bounded on Lp(dx) for p0 < p < p1.

ii) For 2 ≤ d ≤ 3, Tµ,ϕ∗ satisfies the logarithmic weak-type (p1, p1) inequality

|{Tµ,ϕ∗ f > λ}| ≤ C ‖f‖p1
λp1

[
log

(
2 +

λ

‖f‖p1

)]d̃(µ)−1

, λ > 0,

for f ∈ Lp1(dx).
For d ≥ 4, there exists an f ∈ Lp1(dx) such that

|{Tµ,ϕ∗ f > λ}| =∞
for all λ > 0. This function f can be taken in the smaller space Lp1,1(dx).

iii) For 2 ≤ d ≤ 3, Tµ,ϕ∗ satisfies the logarithmic restricted weak-type (p0, p0)
inequality

|{Tµ,ϕ∗ χE > λ}| ≤ C |E|
λp0

[
log

(
2 +

1

|E|

)] p0
p1

(d̃(µ)−1)

, λ > 0,

for all measurable sets E ⊂ Rd of finite measure.
For d ≥ 4, this inequality does not hold, even if the exponent of the loga-
rithmic factor is arbitrarily increased.

No boundedness holds for p /∈ [p0, p1]. Indeed, as it was observed in [15, p. 214],
in order to get the Lp-boundedness of the Laguerre heat–diffusion maximal operator
associated with these particular Laguerre functions it is sufficient to look at it in
dimension d = 1 and with −1 < α < 0. In this case the boundedness occurs
precisely when p0(α) < p < p1(α), with p1(α) = − 2

α and p0(α) = p′1(α). As we
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will see in the proof of Theorem 1.11, this will occur in our case for −1/2 < µ < 0
precisely when p0 := p0(2µ) < p < p1(2µ) =: p1. Tµ,ϕ∗ is not strong-type (p1, p1)
nor weak-type (p0, p0). Besides, inequalities (b) (ii) and (iii) for d = 2, 3 are sharp.

As an immediate consequence of this theorem we have:

Corollary 1.12. Let d ≥ 1 and let µ ∈ (−1/2,∞)d be such that −1/2 < µ̃ < 0.
Then for every f ∈ Lp(dx) with p0 < p < p1, or f ∈ Lp1(dx) and d ≤ 3 or

d̃(µ) = 1, or f ∈ Lp0,1 log(d̃(µ)−1)/p1 L and d ≤ 3 or d̃(µ) = 1, we have

lim
t→0+

Tµ,ϕt f(x) = f(x), a.e. x ∈ Rd.

Let us point out that the proof of Theorem 1.11 follows basically the proof of
Theorem 1.3 from [15].

2. Proof of Theorems 1.3, 1.5 and Corollary 1.6

For f ∈ L2(Rd, γµ), taking into account that the family {Hµ
n/‖Hµ

n‖2,µ} is an
orthonormal basis on L2(Rd, γµ), we have

Tµt f(x) =
∑
n∈Nd0

〈f,Hµ
n 〉

‖Hµ
n‖22,µ

Hµ
n (x)e−|n|t,

with 〈f,Hµ
n 〉 =

∫
Rd f(y)Hµ

n (y)γµ(dy), and

‖Hµ
n‖22,µ = 〈Hµ

n , H
µ
n 〉 =

2|n|(n!)2
∏d
k=1 Γ(µk + 1/2)

ηµ(n)
,

with ηµ(n) =
∏d
k=1 ηµk(nk).

This series representing Tµt f converges on L2(Rd, γµ). However, the definition of
Tµt f for f ∈ Lp(Rd, γµ), p ≥ 1, through generalized Hermite polynomial expansions
would be unsatisfactory since the series may diverge for 1 ≤ p < 2 (see [12]).

Therefore, to avoid this kind of problems it can be proved that for f ∈ L2(Rd, γµ),
Tµt f(x) can be written as an integral operator

Tµt f(x) =

∫
Rd
Mµ,d

GH(x, y, t) f(y) γµ(dy),

with

Mµ,d
GH(x, y, t) =

∑
n∈Nd0

ηµ(n)

2|n|(n!)2
∏d
k=1 Γ(µk + 1/2)

Hµ
n (x)Hµ

n (y)e−|n|t

=

d∏
k=1

∞∑
nk=0

ηµ(nk)

2nk(nk!)2Γ(µk + 1/2)
Hµk
nk

(x)Hµk
nk

(y)e−nkt.

(2.1)

But now this integral representation of Tµt makes sense for every function f ∈
Lp(Rd, γµ) with 1 ≤ p ≤ ∞.
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Now, the one-dimensional generalized Hermite polynomials can be written in
terms of the Laguerre polynomials. Namely, for n even (n = 2m)

Hµ
2m(x) = (−1)m(2m)!

Γ(µ+ 1/2)

Γ(m+ µ+ 1/2)
Lµ−1/2
m (x2),

and for n odd (n = 2m+ 1)

Hµ
2m+1(x) = (−1)m(2m+ 1)!

Γ(µ+ 1/2)

Γ(m+ µ+ 3/2)
xLµ+1/2

m (x2),

(see [16]), where Lαn stands for the one-dimensional Laguerre polynomial of degree
n and type α.

For α > −1, the one-dimensional Laguerre polynomial of type α and degree
n ∈ N0 is defined as

Lαn(x) =
1

n!
exx−α

dn

dxn
(e−xxn+α),

for x > 0. Now, let α = (α1, . . . , αd) ∈ (−1,∞)d be given; we define the d-
dimensional Laguerre polynomial Lαn of type α and degree |n| as

Lαn(x) =

d∏
k=1

Lαknk (xk)

for x ∈ Rd+ and n ∈ Nd0. Properly normalized, these polynomials are an orthonormal

basis of L2(Rd+, λα), being

λα(dx) =

d∏
k=1

xαkk e−xkdx.

Also, they are eigenfunctions of the Laguerre differential operator

L =

d∑
k=1

[
xk

∂2

∂x2
k

+ (αk + 1− xk)
∂

∂xk

]
,

that is,

LLαn(x) = −|n|Lαn(x).

As with the generalized Hermite polynomials, in this context we have the diffusion
semigroup Tαt = etL whose kernel in dimension 1 is

Mα,1
L (v, u, t) =

∞∑
k=0

Γ(k + 1)

Γ(k + α+ 1)
Lαk (v)Lαk (u)e−kt,

for u, v ∈ (0,∞) and α > −1, cf. [12].
According to the Hille-Hardy formula [9, (4.17.6)], for u, v ∈ (0,∞) and α > −1

Mα,1
L (v, u, t) =

(e−tvu)−
α
2

1− e−t
e
− e
−t(v+u)
1−e−t Iα

(√
4e−tvu

1− e−t

)
,

Iα being the modified Bessel function of first kind and order α, cf. [9, Sec. 5.7].
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The symbol f . g for a non-negative f stands for f ≤ Cg for some positive and
finite constant that usually will depend only on d and α. We write f ' g if f . g
and g . f . From [12] we get the following estimate:

Mα,1
L (v, u, t) '


(1− e−t)−α−1e

− e
−t(v+u)
1−e−t if

√
4e−tvu < 1− e−t

(
√

4e−tvu)−α−
1
2

(1−e−t)1/2 e
−e−t(v+u)+

√
4e−tvu

1−e−t if
√

4e−tvu ≥ 1− e−t

(2.2)
for α > −1, u, v ∈ (0,∞).

The corresponding d-dimensional kernel associated with the Laguerre polyno-
mial expansions is

Mα,d
L (x, y, t) =

d∏
k=1

Mαk,1
L (xk, yk, t),

for x, y ∈ Rd+ and t > 0.
Associated to this semigroup we have its maximal operator

Tα∗ f(x) = sup
t>0
|Tαt f(x)|.

From E. Stein’s maximal theorem (see [18]), we know that Tα∗ is of strong-type
(p, p) with respect to λα for p > 1. The weak-type (1, 1) of this operator was
proved by B. Muckenhoupt in [12] for dimension 1 and by U. Dinger in [3] for
higher dimensions.

Let us go back to the kernel defined in (2.1). We want to relate this d-dimensional
Mehler-type formula with the one associated to the Laguerre polynomials. Let us
start with the one-dimensional Mehler-type formula associated to the generalized
Hermite polynomials, i.e.,

Mµ,1
GH(x, y, t) =

∞∑
n=0

ηµ(n)

2n(n!)2Γ(µ+ 1/2)
Hµ
n (x)Hµ

n (y)e−nt,

for µ > −1/2, x, y ∈ R and t > 0. Then,

Mµ,1
GH(x, y, t) =

∞∑
m=0

ηµ(2m)

22m(2m)!2Γ(µ+ 1/2)
Hµ

2m(x)Hµ
2m(y)e−2mt

+

∞∑
m=0

ηµ(2m+ 1)

22m+1(2m+ 1)!2Γ(µ+ 1/2)
Hµ

2m+1(x)Hµ
2m+1(y)e−(2m+1)t

= (I) + (II).

Rev. Un. Mat. Argentina, Vol. 54, No. 1 (2013)



HEAT–DIFFUSION INTEGRALS FOR GENERALIZED HERMITE EXPANSIONS 91

Thus, by taking α = µ− 1
2 ,

(I) =

∞∑
m=0

22mm!Γ(m+ µ+ 1
2 )

22m((2m)!)2(Γ(µ+ 1
2 ))2

(−1)2m((2m)!)2(Γ(µ+ 1/2))2

(Γ(m+ µ+ 1/2))2

× Lµ−1/2
m (x2)Lµ−1/2

m (y2)e−2mt

=

∞∑
m=0

Γ(m+ 1)

Γ(m+ α+ 1)
Lαm(x2)Lαm(y2)e−m(2t)

= Mα,1
L (x2, y2, 2t),

and

(II) =

∞∑
m=0

22m+1m!Γ(m+ µ+ 3
2 )

22m+1((2m+ 1)!)2(Γ(µ+ 1
2 ))2

(−1)2m((2m+ 1)!)2(Γ(µ+ 1/2))2

(Γ(m+ µ+ 3/2))2

× xyLµ+1/2
m (x2)Lµ+1/2

m (y2)e−(2m+1)t

= e−txy

∞∑
m=0

Γ(m+ 1)

Γ(m+ (α+ 1) + 1)
Lα+1
m (x2)Lα+1

m (y2)e−m(2t)

= e−txyMα+1,1
L (x2, y2, 2t).

Therefore,

Mµ,1
GH(x, y, t) = Mα,1

L (x2, y2, 2t) + e−txyMα+1,1
L (x2, y2, 2t), (2.3)

for x, y ∈ R∗ = R \ {0}.
According to (2.3),

Mµ,d
GH(x, y, t) =

d∏
k=1

(Mαk,1
L (x2

k, y
2
k, 2t) + e−txkykM

αk+1,1
L (x2

k, y
2
k, 2t)), (2.4)

for x, y ∈ Rd∗, and with αk = µk − 1/2 ∈ (−1,∞) for k = 1, . . . , d.
Using (2.2) we obtain that for u, v ∈ (0,∞) and α > −1,

√
4e−tvuMα+1,1

L (v, u, t) .Mα,1
L (v, u, t).

Therefore,

Mα,1
L (v, u, t) +

√
4e−tvuMα+1,1

L (v, u, t) .Mα,1
L (v, u, t). (2.5)

Proof of Theorem 1.3. Without loss of generality we may assume f ≥ 0. According
to (2.4) we have

Tµt f(x) =

∫
Rd∗

d∏
k=1

(Mαk,1
L (x2

k, y
2
k, 2t) + e−txkykM

αk+1,1
L (x2

k, y
2
k, 2t)) f(y) γµ(dy),

with αk = µk−1/2 and µk > −1/2 for k = 1, . . . , d. From (2.5) plus d applications of
Tonelli’s theorem together with an easy change of variable on each one-dimensional
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integral, we get

|Tµt f(x)| .
∫
Rd∗

d∏
k=1

Mαk,1
L (x2

k, y
2
k, 2t) f(y) γµ(dy)

=

∫
Rd∗
Mα,d

L (x2, y2, 2t) f(y) γµ(dy)

=

∫
Rd+
Mα,d

L (x2, y2, 2t) fd(y) γµ(dy),

(2.6)

with α = µ− 1
2 (1, . . . , 1), x2 = (x2

1, . . . , x
2
d), and similarly for y2, being

f1(y) = f(y) + f ◦ σ1(y)

and

fk+1(y) = fk(y) + fk ◦ σk+1(y),

for k = 1, . . . , d − 1. Since we will need an explicit form of fd let us write some
notations. Let us recall that for k ∈ D, σk stands for the reflection with respect to
the k-th hyperplane {xk = 0}. Let ∅ 6= A ⊂ D; we denote by σA :=

∏
k∈A σk, and

the symbol
∏

represents the composition of the reflections indexed by A. Observe
that σA is well-defined since σkσj = σjσk for all j, k ∈ D; σ∅ = identity map on

Rd. Also since σ−1
k = σk, for all k ∈ D, σ−1

A = σA. We define the A-th hyper-octant

as OA := {σA(y) : y ∈ Rd+}. Thus for any measurable function f,

fd(y)χRd+(y) =
∑
A⊂D

f(σA(y))χRd+(y) =
∑
A⊂D

f(xA),

with xA = σA(y) and y ∈ Rd+. If f ≥ 0, taking into account that γµ(xA) = γµ(y)
and dxA = dy, we have

‖fdχRd+‖1,γµ =
∑
A⊂D

‖(fd ◦ σA)χRd+‖1,γµ =
∑
A⊂D

‖fχOA‖1,γµ = ‖f‖1,γµ .

Similarly, for 1 < p <∞,

2−d/p‖f‖p,γµ ≤ ‖fdχRp+‖p,γµ ≤
∑
A⊂D

‖fχOA‖p,γµ ≤ 2d‖f‖p,γµ .

Let us make a change of variables in (2.6). Set u = φ(y) = y2 for y ∈ Rd+, then∫
Rd+
Mα,d

L (x2, y2, 2t) fd(y) γµ(dy) = 2−d
∫
Rd+
Mα,d

L (x2, u, 2t) fd ◦ φ−1(u) λα(du)

= 2−d Tα2t(fd ◦ φ−1)(x2).

Therefore, for every x ∈ Rd∗
Tµt f(x) . Tα2t(fd ◦ φ−1)(φ(x)), t > 0 (2.7)

and so
Tµ∗ f(x) . Tα∗ (fd ◦ φ−1)(φ(x)),

with µ ∈ (−1/2,∞)d and α = µ− 1
2 (1, . . . , 1).
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To get the weak-type (1, 1) of Tµ∗ it will be sufficient to prove the weak-type
inequality for Tα∗ (fd ◦φ−1)(x2) with respect to γµ. Let θ > 0 be given and let Eθ =
{x ∈ Rd∗ : Tα∗ (fd◦φ−1)(φ(x)) > θ}; since Tα∗ (fd◦φ−1)((σA(x))2) = Tα∗ (fd◦φ−1)(x2)
for all A ⊂ D, then Eθ ∩OA = σA(Eθ ∩ Rd+). Thus

γµ(Eθ) =
∑
A⊂D

γµ(Eθ ∩OA) =
∑
A⊂D

γµ(σA(Eθ ∩ Rd+)). (2.8)

But

γµ(σA(Eθ ∩ Rd+)) =

∫
Rd∗
χσA(Eθ∩Rd+)(y)γµ(y) dy

=

∫
Rd∗
χσA(Eθ∩Rd+)(σA(x))γµ(σA(x)) dx

=

∫
Rd∗
χEθ∩Rd+(x)γµ(x) dx

= γµ(Eθ ∩ Rd+).

Therefore, taking into account (2.8), we have

γµ(Eθ) = 2dγµ(Eθ ∩ Rd+) = λα(φ(Eθ ∩ Rd+)). (2.9)

On the other hand, φ(Eθ ∩ Rd+) = {v ∈ Rd+ : Tα∗ (fd ◦ φ−1)(v) > θ} and from [12]
and [3] we obtain

λα(φ(Eθ ∩ Rd+)) ≤ C

θ
‖fd ◦ φ−1‖1,λα

=
C2d

θ
‖fd‖1,γµ ≤

Cd
θ
‖f‖1,γµ .

(2.10)

And from (2.9) together with (2.10) we get

γµ(Eθ) ≤
Cd
θ
‖f‖1,γµ .

The case p =∞ follows immediately. And the strong-type (p, p), for p > 1, follows
from interpolation. �

In the previous proof we have just individuated the tools to prove Theorem 1.5
and its Corollary 1.6.

Proof of Theorem 1.5. Since the Laguerre semigroup is hypercontractive (see, for
example, [7]), from (2.7) we can easily conclude that for all t > 0 and p ∈ (1,∞),
there exists a q = q(p, t) such that

‖Tµt f‖Lq(γµ) . ‖Tα2t(fd ◦ φ−1) ◦ φ‖Lq(γµ)

= 2d/q‖(Tα2t(fd ◦ φ−1) ◦ φ)χRd+‖Lq(γµ)

= ‖Tα2t(fd ◦ φ−1)‖Lq(λα) . ‖fd ◦ φ−1‖Lp(λα)

= 2d/p‖fdχRd+‖Lp(γµ) . ‖f‖Lp(γµ),

and this concludes the proof. �
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Proof of Corollary 1.6. The strong-type (p, p), for p ∈ (1,∞), follows from the
hypercontractivity of Tµt and from P. A. Meyer’s multiplier theorem extended to
any hypercontractive and L2(dν) symmetric diffusion semigroup {Tt} related to an
orthonornal basis {Pβ}β∈Ndo of L2(dν) by the relation TtPβ = e−|β|tPβ . �

3. Proof of Theorems 1.9 and 1.11

Proof of Theorem 1.9. a) For t > 0, the associated heat–diffusion semigroup Tµ,ψt

is defined on L2(Rd, ρψµ ) by

Tµ,ψt f(x) =
∑
n∈Nd0

e−(|n|+|µ|+d/2)t〈f, ψµn〉ψµn(x), x ∈ Rd, f ∈ L2(Rd, ρψµ ).

Though this series is convergent on L1(Rd, ρψµ ), we are going to consider the integral

representation of this semigroup on L1. Namely,

Tµ,ψt f(x) = e−(|µ|+d/2)t

∫
Rd
e−
|x|2+|y|2

2 Mµ,d
GH(x, y, t) f(y) ρψµ (dy).

From (2.4) together with (2.5) we obtain that

|Mµ,d
GH(x, y, t)| .Mα,d

L (x2, y2, 2t), (3.1)

with α = µ− 1
2 (1, . . . , 1), and therefore

|Tµ,ψt f(x)| . e−(|µ|+d/2)t

∫
Rd∗
e−
|x|2+|y|2

2 Mα,d
L (x2, y2, 2t) |f(y)| ρψµ (dy)

= e−(|µ|+d/2)t

∫
Rd+
e−
|x|2+|y|2

2 Mα,d
L (x2, y2, 2t) |f |d(y) ρψµ (dy)

= e−(|µ|+d/2)t

∫
Rd+
Gα(x2, y2, 2t) |f |d(y) ρψµ (dy),

(3.2)

where Gα(v, u, t) =
∏d
k=1G

αk(vk, uk, t), and

Ga(ξ, η, t) =
1

1− e−t
e
− 1

2
1+e−t

1−e−t
(ξ+η)

(e−t/2
√
ξη)−aIa

(
2e−t/2

√
ξη

1− e−t

)
,

for ξ, η ∈ (0,∞), a > −1, and Ia stands for the modified Bessel function of the first
kind and order a, see [14].

Using again the change of variables u = φ(y) = y2 in (3.2) we get that

|Tµ,ψt f(x)| . e−(|µ|+d/2)t

∫
Rd+
Gα(x2, u, 2t) (|f |d ◦ φ−1)(u)

d∏
k=1

uαkk du.

Thus,

Tµ,ψ∗ f(x) . Gα∗ (|f |d ◦ φ−1)(φ(x)),

with

Gα∗ g(v) = sup
t>0

∣∣∣∣∣
∫
Rd+
Gα(v, u, t) g(u)

d∏
k=1

uαkk du

∣∣∣∣∣ , v ∈ Rd+,
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which, according to [14], happens to be weak-type (1, 1) with respect to the measure∏d
k=1 v

αk
k dv. Therefore, with a reasoning similar to the one done for getting the

weak-type (1, 1) of the operator Tµ∗ , we obtain also the weak-type (1, 1) for Tµ,ψ∗
with respect to the measure

∏d
k=1 x

2µk
k dx.On the other hand, Gα∗ g can be estimated

by a constant timesMSg, whereMS is the strong maximal operator with respect

to the measure
∏d
k=1 v

αk
k dv, see [13]; this implies the Lp-boundedness of Gα∗ for

p > 1. In particular, we get boundedness on L∞ of Tµ,ψ∗ . For the other p’s the

result follows either from interpolation or by calculating out the Lp-norm of Tµ,ψ∗
and relating it with the Lp-norm of Gα∗ with respect to the measure

∏d
k=1 v

αk
k dv.

b) For µ ∈ [0,∞)d and t > 0, the associated semigroup Tµ,ϕt is defined on
L2(Rd, dx) by

Tµ,ϕt f(x) =
∑
n∈Nd0

e−(|n|+|µ|+d/2)t〈f, ϕµn〉ϕµn(x), x ∈ Rd, f ∈ L2(Rd, dx),

whose integral representation, valid also for f ∈ L1(Rd, dx), is given by

Tµ,ϕt f(x) = e−(|µ|+d/2)t

∫
Rd
e−
|x|2+|y|2

2 Mµ,d
GH(x, y, t)

d∏
k=1

|xk|µk |yk|µkf(y) dy

=

∫
Rd
Kµϕ(x, y, t)f(y) dy.

(3.3)

From the boundedness results (3.1) and (3.2) we get for α = µ− 1
2 (1, . . . , 1)

|Tµ,ϕt f(x)| . e−(|µ|+d/2)t

∫
Rd+
Gα(x2, y2, 2t)

d∏
k=1

|xk|αk+1/2|yk|αk+1/2 |f |d(y) dy

=

∫
Rd+

Hα(x2, y2, t) |f |d(y) dy,
(3.4)

with Hα(v, u, t) =
∏d
k=1 H

αk(vk, uk, t) =
∏d
k=1 H

µk−1/2(vk, uk, t), and

Hν−1/2(ξ, η, t) =
e−(ν+1/2)t

1− e−2t
e
− 1

2
1+e−2t

1−e−2t (ξ+η)
(e−t

√
ξη)−(ν−1/2) (3.5)

× Iν−1/2

(
2e−t
√
ξη

1− e−2t

)
(
√
ξη)ν

=
e−t

1− e−2t
e
− 1

2
1+e−2t

1−e−2t (ξ+η)
Iν−1/2

(
2e−t
√
ξη

1− e−2t

)
(
√
ξη)1/2

=
e−

1
2 coth t(ξ+η)

2 sinh t
Iν−1/2

( √
ξη

sinh t

)
(
√
ξη)1/2, (3.6)

for ξ, η ∈ (0,∞) and ν > −1/2.
By using the estimates of Iν−1/2 (cf. [12]), i.e.,

Iν−1/2(x) '
{
xν−1/2 0 < x < 1
ex

x1/2 x ≥ 1
,
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we get that

Iν−1/2(x) .
xν−1/2

(1 + x)ν
ex

for x > 0. Thus, taking into account (3.5), we obtain

Hν−1/2(ξ, η, t) . e−t/2
(

e−t

1− e−2t

)ν
e
− 1

2
1+e−2t

1−e−2t (ξ+η)+ 2e−t
1−e−2t

√
ξη

(1− e−2t)1/2

( √
ξη

1 + 2e−t
√
ξη

1−e−2t

)ν
.

(3.7)
Then, it is easily seen that for ν ≥ 0,

Hν−1/2(ξ, η, t) . g(ξ, η, t) (3.8)

with

g(ξ, η, t) =
e
− 1

2
1+e−2t

1−e−2t (ξ+η)+ 2e−t
1−e−2t

√
ξη

(1− e−2t)1/2
.

Now let us observe that for µ ∈ [0,∞)d, taking into account estimate (3.8), we
get that

Tµ,ϕ∗ f(x) . sup
t>0

∫
Rd+
Gt(x̃, y) |f |d(y) dy

. sup
s>0

∫
Rd+

e−
|x̃−y|2

4s

(4πs)d/2
|f |d(y) dy

.M(χRd+ |f |d)(x̃),

(3.9)

with x̃ = (|x1|, . . . , |xd|), and

Gt(x, y) =

d∏
k=1

g(x2
k, y

2
k, t) =

e
− 1

2
1+e−2t

1−e−2t (|x|2+|y|2)+ 2e−t
1−e−2t x·y

(1− e−2t)d/2
, for x, y ∈ Rd+,

is the kernel defined in [20] which, as pointed out in that paper, is bounded by
the usual Gauss-Weierstrass kernel on Rd. M represents the Hardy-Littlewood
maximal function which happens to be weak-type (1, 1) and strong type (p, p),
p > 1, with respect to the Lebesgue measure. Let us see that M(χRd+ |f |d)(x̃)

satisfies also the weak-type (1, 1) and the strong-type (p, p), p > 1, inequalities.
Indeed,

|{x ∈ Rd :M(χRd+ |f |d)(x̃) > λ}| = 2d|{x ∈ Rd+ :M(χRd+ |f |d)(x) > λ}|

≤ 2d|{x ∈ Rd :M(χRd+ |f |d)(x) > λ}|

≤ C

λ
‖χRd+ |f |d‖1 =

C

λ
‖f‖1.

The boundedness on L∞(dx) is immediate, and for the other p’s follows from
interpolation. �
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Proof of Theorem 1.11. The proof of this theorem follows the ideas given in [15] to
prove the boundedness of the heat–diffusion semigroup associated with a special
class of Laguerre functions: Lαk (x) = ck,αL

α
k (x)xα/2e−x/2, x > 0, α > −1, k ∈ N0,

Lαk (x) being the Laguerre polynomial of degree k and type α, and extended to Rd+
by tensor product.

We write here all the modified lemmas, propositions and theorems used in that
paper in order to obtain the results stated in Theorem 1.11.

To agree with the notation of that paper for ν > −1/2 we set

H2ν
t (ξ, η) := Hν−1/2(ξ, η, t)

and Hαt (v, u) =
∏d
k=1H

αk
t (vk, uk), where now we redefine αk = 2µk, for all k =

1, . . . , d. Then, for x ∈ Rd∗ and f ≥ 0,

Tµ,ϕ∗ f(x) . sup
t>0

∫
Rd+
Hαt (x2, y2) fd(y) dy =: Hα∗ fd(x2). (3.10)

By using (3.6) and the estimates of Iν−1/2 we get for a = 2ν

Hat (ξ, η) '
{
Da
t (ξ, η) if

√
ξη < sinh t

Eat (ξ, η) if
√
ξη ≥ sinh t

(3.11)

with

Da
t (ξ, η) =

(
√
ξη)a/2

2(sinh t)(a+1)/2
e−

1
2 coth t(ξ+η),

Eat (ξ, η) =
e−

1
2

(
√
ξ−√η)2
sinh t

(sinh t)1/2
e−

cosh t−1
2 sinh t (ξ+η).

For the positive results we need the following lemma which is the substitute of
Lemma 2.1 from [15], and its proof follows similarly.

Lemma 3.12. For a > −1,

Hat (ξ, η) .

 e−c
(
√
ξ−√η)2
t

t1/2
e−c(ξ+η)t + (

√
ξη)a/2

(
√
t)a+1 e

−c ξ+ηt if 0 < t ≤ 1

(
√
ξη)a/2e−c(ξ+η) if t > 1.

(3.13)

For the negative results we need the following lemma which is the substitute of
Lemma 2.2 from [15, p. 221].

Lemma 3.14. The following lower estimates hold:

a) For 0 < t < 1/16, (4t)−1 < ξ2 < 4t−1 and |ξ − η| < 1
ξ ,

Hat (ξ2, η2) & ξ.

b) For 0 < t ≤ 1, 0 < ξ2 < 2t and 0 < η2 < 2t,

Hat (ξ2, η2) &
(ξη)a/2

(
√
t)a+1

.
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Proof. From the assumptions of (a), we also have ξ > 2, ξ/2 < η < 2ξ and√
ξη > ξ/

√
2 >
√

2 > t ' sinh t, therefore

Hat (ξ2, η2) ' Eat (ξ2, η2) ' e−
1
2

(ξ−η)2
sinh t

t1/2
e−

cosh t−1
2 sinh t (ξ2+η2) & t−1/2 & ξ.

As for (b), we have ξ2 + η2 . t ' tanh t = 1
coth t , and hence

Hat (ξ2, η2) ' Da
t (ξ2, η2) ' (ξη)a/2

(
√
t)a+1

e−
1
2 coth t(ξ2+η2) &

(ξη)a/2

(
√
t)a+1

. �

3.1. Boundedness of Tµ,ϕ∗ on Lp(dx) for p0 < p < p1. We denote by Mk the
standard centered one-dimensional maximal operator in Rd+ taken with respect to
the k-th variable.

Let us see the one-dimensional case first. Let α = a = 2ν = 2µ ∈ (−1, 0); we set
p1 = −2/a = −1/µ and p0 = p′1 = 2/(a+ 2) = 1/(µ+ 1).

The following proposition is the substitute of Proposition 3.1 from [15, p. 223]
and its proof follows similarly using Lemma 3.12 instead of their Lemma 2.1.

Proposition 3.15. Let d = 1 and −1 < a < 0. Then there is a constant c such
that for any suitable non-negative function g defined on (0,∞) and x ∈ R+ we have
for 0 < t ≤ 1,∫

R+

Hat (x2, y2) g(y) dy .

{
e−ctx

2

M1g(x) + e−c
x2

t x−1/p1‖g‖p1
e−ctx

2

M1g(x) + e−c
x2

t x−1/p0‖g‖p0,1
(3.16)

For t > 1, the same inequalities hold with t replaced by 1 in the right-hand sides.

Remark 3.17. Let us observe that throwing away the exponentials we obtain
immediately the weak-type (p1, p1) and restricted weak-type (p0, p0) for the one-
dimensional operator Hα∗ . By interpolation Hα∗ turns out to be bounded on Lp(R+)
for p0 < p < p1. Now taking into account inequality (3.10) we obtain the same
result for Tµ,ϕ∗ .

For −1 < a <∞ let us define the functions

p1(a) =

{
−a2 if −1 < a < 0
∞ if a ≥ 0

and

p0(a) = p′1(a) =

{
2
a+2 if −1 < a < 0

1 if a ≥ 0

For µ ∈ (−1/2,∞)d we set α = 2µ ∈ (−1,∞)d, and if −1/2 < µ̃ < 0 then
α̃ = 2µ̃ ∈ (−1, 0). We also set p1 = p1(α̃) and p0 = p′1.

Theorem 3.18. Let d ≥ 1, µ ∈ (−1/2,∞)d and assume that −1/2 < µ̃ < 0. Then
Tµ,ϕ∗ is bounded on Lp(dx) for p0 < p < p1.

Proof. Let us recall that Tµ,ϕ∗ f(x) . Hα∗ fd(x2) with α = 2µ. So the result will
follow once we prove the Lp-boundedness of Hα∗ .
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For αk ≥ 0 it is sufficient to justify the boundedness on L∞ and from L1 into
L1,∞, since then the strong-type (p, p) is obtained by interpolation. The proof of
those boundedness results follows from the proof of Theorem 1.9 (b) for d = 1.

For the other case, the proof is similar to the proof of Theorem 3.2 from [15]
using

Tµ,ϕ∗ f(x) . Hα∗ fd(x2)

. Hα1
∗ ◦ · · · ◦ Hαd∗ f(x2),

and the Lp-boundedness of the one-dimensional operator. �

3.2. The endpoint p1. Let f be a non-negative measurable function defined on
Rd∗, then as it was done in the proof of Theorem 1.3 we get for 1 < p <∞,

2−d/p‖f‖p,dx ≤ ‖fdχRd+‖p,dx ≤ 2d‖f‖p,dx. (3.19)

Let us suppose first that d̃(µ) = 1, then d̃(α) = 1 and −1 < α̃ < 0. Without
loss of generality we may assume that α̃ = α1 is the only minimal αk. Due to the
product structure of Hαt (x2, y2) it is enough to use the strong-type (p1, p1) estimate
in the variables x2, . . . , xd and then the weak-type (p1, p1) boundedness in the x1

variable. This takes care of item (a ii) of Theorem 1.11.
For proving the remaining cases we proceed as it was done in [15]. We are going

to write all the theorems involved and give a sketch of the proofs following what
was done in [15].

3.2.1. All αk are minimal. To prove this case we need the following theorem whose
proof is analogous to the proof of Theorem 4.1 from [15].

Theorem 3.20. Assume αk = a ∈ (−1, 0) for all k. Then for d = 2, 3 the operator

Hα∗ maps Lp1(Rd+, dx) boundedly into the space weak Lp1 log(d−1)/p1 L, i.e., there
exists C > 0, such that∣∣{x ∈ Rd+ : Hα∗ g(x2) > λ}

∣∣ ≤ C ‖g‖p1p1
λp1

[
log

(
2 +

λ

‖g‖p1

)]d−1

,

for every λ > 0 and g ∈ Lp1(Rd+).

If we assume that all µk are minimal, using this theorem with α = 2µ, we get

|{x ∈ Rd∗ : Tµ,ϕ∗ f(x) > λ}| . |{x ∈ Rd∗ : Hα∗ fd(x2) & λ}|

= 2d|{x ∈ Rd+ : Hα∗ fd(x2) & λ}|

.
‖fdχRd+‖

p1
p1

λp1

[
log

(
2 +

λ

‖fdχRd+‖p1

)]d−1

'
‖f‖p1p1
λp1

[
log

(
2 +

λ

‖f‖p1

)]d−1

,

where we use (3.19) in the last equality. This proves item (b ii) of Theorem 1.11
for 2 ≤ d ≤ 3 and all µk minimal.
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3.2.2. Two minimal αk in dimension 3. Theorem 3.20 takes care of all cases with
respect to the end point p1 but one, when d = 3 and α has two minimal components.
Without loss of generality we may assume α = (a, a, b) with −1 < a < 0 and a < b.
In this case we have analogously to Theorem 4.4 of [15] the following theorem.

Theorem 3.21. Let d = 3 and α = (a, a, b) with −1 < a < 0 and a < b. Then for
every g ∈ Lp1 the distribution function of Hα∗ g satisfies∣∣{x ∈ Rd+ : Hα∗ g(x2) > λ}

∣∣ ≤ C ‖g‖p1p1
λp1

log

(
2 +

λ

‖g‖p1

)
, λ > 0.

Taking into account this theorem and that µ has two minimal components which
we may consider to be µ = (ν, ν, β) with −1/2 < ν < 0 and ν < β, then by setting
a = 2ν and b = 2β we obtain

|{x ∈ R3
∗ : Tµ,ϕ∗ f(x) > λ}| . |{x ∈ R3

∗ : Hα∗ f3(x2) & λ}|
= 23|{x ∈ R3

+ : Hα∗ f3(x2) & λ}|

.
‖f3χR3

+
‖p1

λp1
log

(
2 +

λ

‖f3χR3
+
‖p1

)

'
‖f‖p1p1
λp1

log

(
2 +

λ

‖f‖p1

)
.

And with this we finish the proof of item (b ii) of Theorem 1.11 for 2 ≤ d ≤ 3.

3.2.3. Counterexamples. To analyze the negative result at the end point p1 for
d ≥ 4 we cannot apply directly the results given in [15], though we take some ideas
from there. Assume now that d ≥ 4 and µ ∈ (−1/2,∞)d is such that µ̃ < 0 and

d̃(µ) ≥ 2.
For x, y ∈ Rd+ we have

Mµ,d
GH(x, y, t) &Mβ,d

L (x2, y2, 2t)

with β = µ − 1
2 (1, 1, . . . , 1). Thus for x ∈ Rd+, f a suitable non-negative function

with supp(f) ⊂ Rd+ we obtain the following inequality

Tµ,ϕt f(x) &
∫
Rd+
Hαt (x2, y2) f(y) dy, (3.22)

with Hαt (x2, y2) =
∏d
k=1H

αk
t (x2

k, y
2
k), α = 2µ, and we recall that for ξ, η ∈ (0,∞),

Hat (ξ, η) = Hν−1/2(ξ, η, t) with a = 2ν.
Now we state the negative result for p1 with d ≥ 4.

Theorem 3.23. For d ≥ 4, µ ∈ (−1/2,∞)d such that µ̃ < 0 and d(µ̃) ≥ 2, there
exists a function f ∈ Lp1,1 such that

|{Tµ∗ f > λ}| =∞,

for all λ > 0.
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We will prove the theorem in the case when all µk are minimal. The same
reasoning works in the general case by including the variables corresponding to
non-minimal µk among the double-primed variables below.

Proof. We are assuming that all µk are minimal. The proof of this theorem fol-
lows the same steps of Theorem 4.6’s proof from [15, p. 232]. There are some
modifications to be made. For d ≥ 5, we can choose d′ so that d = d′ + d′′ and
2 ≤ d′ < d′′. Now for small t the set Et in our context is Et := {y ∈ Rd+ : t < y2

k <

2t for k ≤ d′; t−1 < y2
k < 2t−1 for d′ < k ≤ d}. Let ft = (

√
t)(d′′−d′)/p1χEt , which

has Lp1,1 norm essentially one. For x ∈ Rd+ such that x2
k < t for 1 ≤ k ≤ d′ and

(4t)−1 < x2
k < 4t−1 for d′ < k ≤ d, and taking into account inequality (3.22), we

have

Tµ,ϕ∗ ft(x) & Hα∗ ft(x2) ≥ (
√
t)(d′′−d′)/p1

∫
Et

Hαt (x2, y2) dy,

with α = 2µ and all αk’s are minimal. Now we call with a all αk’s and recall that
p1 = −2/a.

For the x taken above we restrict the integration to the set F xt := {y ∈ Et :
|yk − xk| < 1/xk for d′ < k ≤ d} and apply Lemma 3.14, item (b) for the first d′

variables and item (a) for the remaining ones so that by setting
∏′

=
∏d′

k=1 and∏′′
=
∏d
k=d′+1 we have

Hαt (x2, y2) &

∏′
(xkyk)a/2

(
√
t)d′(a+1)

∏′′
xk =

∏′
(xkyk)−1/p1

(
√
t)d′(−2/p1+1)

∏′′
xk

'
(
√
t)−d

′/p1
∏′
x
−1/p1
k

(
√
t)d′(−2/p1+1)

∏′′
xk = (

√
t)d
′/p1−d′

∏′
x
−1/p1
k

∏′′
xk.

Thus

Tµ,ϕ∗ ft(x) & Hα∗ ft(x2) & (
√
t)(d′′−d′)/p1(

√
t)d
′/p1−d′

∏′
x
−1/p1
k

∏′′
xk |F xt |

' (
√
t)d
′′/p1

∏′
x
−1/p1
k .

From now on we can follow what was done in the proof of Theorem 4.6 in [15,
p. 233] with t replaced by

√
t.

To cover also the case d = 4, we now consider d′ with 2 ≤ d′ = d′′ = d/2.
For R > 6 we take the same set ER = {y ∈ Rd+ : 1 < yd < R, y−1

d <

yk < 2y−1
d for k ≤ d′ and yd/8 < yk < 8yd for d′ < k < d}. Then |ER| '∫ R

1
y−d

′+d′′−1
d dyd = logR, and we define fR = |ER|−1/p1χER , whose Lp1,1-norm is

essentially 1. For x ∈ Rd+, such that 4 < xd < R− 1, 0 < xk < x−1
d for 1 ≤ k ≤ d′,

and xd/2 < xk < 2xd for d′ < k < d, we have

Tµ,ϕ∗ fR(x) & Hα∗ fR(x2) & (logR)−1/p1

∫
ER

Hαt (x2, y2) dy,

with α = 2µ and for all 0 < t ≤ 1.
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We choose t = x−2
d and take Fx := {y ∈ Rd+ : x−1

d /2 < yk < x−1
d for 1 ≤ k ≤

d′ and |xk − yk| < 1/xk for d′ < k ≤ d}; it is easily proved that for x prescribed in
the set above Fx ⊂ ER. Thus,

Hα∗ fR(x2) & (logR)−1/p1

∫
Fx

Hα
x−2
d

(x2, y2) dy.

Now for y ∈ Fx, yd ' xd and by applying items (a) and (b) from Lemma 3.14 we
get

Hα
x−2
d

(x2, y2) & xd
′(a+1)
d

∏′
(xkyk)a/2

∏′′
xk

' xd
′(a+1)
d x

−d′a/2
d

∏′
x
a/2
k

∏′′
xk = x

−d′/p1+d′

d

∏′
x
−1/p1
k

∏′′
xk.

From this,∫
Fx

Hα
x−2
d

(x2, y2) dy & x−d
′/p1+d′

d

∏′
x
−1/p1
k

∏′′
xk |Fx| = x

−d′/p1
d

∏′
x
−1/p1
k .

Thus

Tµ,ϕ∗ fR(x) & Hα∗ fR(x2) & (logR)−1/p1x
−d′/p1
d

∏′
x
−1/p1
k ,

which is inequality (13) from [15, p. 234] and from that point the proof follows
likewise. �

3.2.4. Sharpness of the results. In Theorem 1.11 (a ii) and (b ii) the weak-type

inequality Lp1,∞ log−(d̃(µ)−1) L is sharp in the following sense. There is a function
f ∈ Lp1 (as a matter of fact we can take f bounded and with compact support)
such that for large λ,

|{x ∈ Rd+ : Tµ,ϕ∗ f(x) > λ}| ' λ−p1 [log(2 + λ)]d̃(µ)−1.

Let us take f = χ(1/2,1)d . And since Tµ,ϕ∗ f(x) & Hα∗ f(x2), the conclusion follows
from the subsection 4.4 Comment on sharpness in [15, p. 234]; the only thing to
change is Lemma 2.2 (b) by Lemma 3.14 (b).

The analysis done in that paper also shows that Tµ,ϕ∗ is not bounded on Lp1

even if there is only one minimal µk.

3.3. The endpoint p0. Let E be a measurable subset of Rd∗ of finite measure.
According to the notation within the proof of Theorem 1.3 we have

(χE)d(y)χRd+(y) =
∑
A⊂D

χE(σA(y))χRd+(y) =
∑
A⊂D

χσA(E)∩Rd+(y).

Let us observe that for every y ∈ Rd+, (χE)d(y) = #{A ⊂ D : σA(y) ∈ E} ≤ 2d.

Hence, (χE)dχRd+ ≤ 2dχF with F =
⋃
A⊂D(σA(E)∩Rd+). On the other hand, there

exists A ⊂ D such that |E| ≤ 2d|σA(E) ∩ Rd+|. Thus, 2−d|E| ≤ |σA(E) ∩ Rd+| ≤
|F | ≤

∑
A⊂D |σA(E) ∩ Rd+| =

∑
A⊂D |E ∩OA| = |E|.

Let us recall that for µ ∈ (−1/2,∞)d, α = 2µ, and x ∈ Rd∗,

Tµ,ϕ∗ f(x) . Hα∗ f(x2).
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So if for every measurable subset E of Rd+ with finite measure we prove that

|{x ∈ Rd+ : Hαf(x2) > λ}| ≤ C |E|
λp0

(
log

(
2 +

1

|E|

)) p0
p1

(d̃(α)−1)

, λ > 0,

then the same estimates hold for Tµ,ϕ∗ .
Indeed, let E ⊂ Rd∗ with |E| < ∞; taking into account the above remarks and

the fact that d̃(α) = d̃(µ), we have

|{x ∈ Rd∗ : Tµ,ϕ∗ χE(x) > λ}| . |{x ∈ Rd∗ : Hα∗ ((χE)dχRd+)(x2) & λ}|

= 2d|{x ∈ Rd+ : Hα∗ ((χE)dχRd+)(x2) & λ}|

. |{x ∈ Rd+ : Hα∗ (χF )(x2) & λ}|

.
|F |
λp0

log

(
2 +

1

|F |

) p0
p1

(d̃(α)−1)

' |E|
λp0

log

(
2 +

1

|E|

) p0
p1

(d̃(µ)−1)

.

We start with the case when there is only one minimal value αk, which without
loss of generality we may assume to be α1. Then the maximal operator

K(α2,...,αd)
∗ f(x) = sup

t>0

∫
Rd+
H(α2,...,αd)
t ((x2

2, . . . , x
2
d), (y

2
2 , . . . , y

2
d))

× f(x1, y2, . . . , yd) dy2 · · · dyd

is bounded on Lp(Rd+) for p in an interval strictly containing the point p0 = p0(α̃) =
p0(α1). By interpolation it is also bounded on the Lorentz space Lp0,1(Rp+). More-
over, the one-dimensional maximal operator Hα1

∗ is of restricted weak-type (p0, p0)
(see Remark 3.17), and the same is true for the d-dimensional operator

Kα1
∗ f(x) =

∫
Rd+
Hα1
t (x2

1, y
2
1) f(y1, x2, . . . , xd) dy1.

Since restricted weak-type (p0, p0) means boundedness from Lp0,1 into weak Lp0

and

Hα∗ f(x2) ≤ Kα1
∗ ◦ K

(α2,...,αd)
∗ f(x), x ∈ Rd+,

item (a iii) in Theorem 1.11 follows.
Now the results for the end-point p0 follow using

(1) For all αk minimal: In this case d ≥ 2, αk = a for all k and −1 < a < 0.
The critical exponents are p1 = − 2

a and p0 = 2
a+2 . Similarly to Theorem 5.1

from [15] we have

Theorem 3.24. For 2 ≤ d ≤ 3 and α as described above, the operator Hα∗
maps Lp−1 log

d−1
p1 L into Lp1,∞, i.e., for every measurable set E ⊂ Rd+ of
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finite measure

|{x ∈ Rd+ : Hα∗χE(x2) > λ}| ≤ C |E|
λp0

(
log

(
2 +

1

|E|

)) p0
p1

(d−1)

,

for every λ > 0.

(2) For two minimal αk in dimension 3: For this case we may assume without
loss of generality that α = (a, a, b) with −1 < a < 0 and a < b. Then we
have similarly to Theorem 5.7 from [15]

Theorem 3.25. For d = 3 and α as described above, the operator Hα∗
maps Lp0,1 log1/p1 L into Lp0,∞, i.e., there exists a constant C > 0 such
that

|
{
x ∈ R3

+ : Hα∗χE(x2) > λ
}
| ≤ C |E|

λp0

[
log

(
2 +

1

|E|

)]p0/p1
,

for every measurable E ⊂ R3
+ of finite measure and every λ > 0.

3.3.1. Counterexamples. As in the case of the endpoint p1 we will find counterex-
amples in this case too by taking into account what was done in [15].

We know that for E ⊂ Rd+ with |E| <∞ and µ ∈ (−1/2,∞)d we have

Tµ,ϕ∗ χE & Hα∗χE(x2),

with α = 2µ.
We will prove the following

Theorem 3.26. Let d ≥ 4 and α with at least two minimal αk. Then there are
neither C > 0 nor γ ∈ R such that the inequality

|
{
x ∈ R3

+ : Hα∗χE(x2) > λ
}
| ≤ C |E|

λp0

[
log

(
2 +

1

|E|

)]γ
, λ > 0,

holds for all E ⊂ Rd+ of finite measure.

Once this theorem is proved then item (b iii) for d ≥ 4 follows due to the estimate
given at the beginning of this part.

Proof of Theorem 3.26. As before it is enough to prove this theorem when all αk are
minimal. Let αk = a ∈ (−1, 0) for all k = 1, . . . , d. For d ≥ 5 we take 2 ≤ d′ < d′′

and define

Ẽt = {y ∈ Rd+ :
∏′

y
−1/p1
k > β, yk <

√
t for k ≤ d′, and

(
√
t)−1 < yk <

√
2(
√
t)−1 for d′ < k ≤ d}.

Let us remark that Ẽt is essentially the set E√t defined in [15, p. 245] where 2 is

replaced by
√

2 in the double-primed coordinates. According to (18) from [15] we
have

|Ẽt| ' |E√t| ' β
−p1

[
log
(

2 + (
√
t)d
′
βp1
)]d′−1

(
√
t)−d

′′
,
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with β chosen in such a way that (
√
t)d
′
βp1 > 1 (see Lemma 2.3 (a) and (b) from

[15]).
We consider x ∈ Rd+ such that x2

k < t for k ≤ d′ and (4t)−1 < x2
k < 4t−1 for

d′ < k ≤ d, and estimate Hα∗χẼt . In the integral defining this operator we further
restrict the integration to the set

F xt = {y ∈ Ẽt : |xk − yk| < 1/xk for d′ < k ≤ d}.

By Lemma 2.3 (a) and (b) from [15] we have

|F xt | ' β−p1
[
log
(

2 + (
√
t)d
′
βp1
)]d′−1∏′′ 1

xk

' |Ẽt|
∏′′
√
t

xk
' |Ẽt|.

According to items (a) and (b) from Lemma 3.14 for t ≤ 1
16 we obtain that∏′Hat (x2

k, y
2
k) &

∏′
(xkyk)−1/p1(

√
t)(2/p1−1)d′ and

∏′′Hat (x2
k, y

2
k) &

∏′′
xk.

Thus

Hα∗χẼt(x
2) &

∏′
x
−1/p1
k (

√
t)(2/p1−1)d′

∏′′
xk

∫
Fxt

∏′
y
−1/p1
k dy

&
∏′

x
−1/p1
k (

√
t)(2/p1−1)d′

∏′′
xk β |Ẽt|

> (
√
t)−d

′/p1(
√
t)(2/p1−1)d′(

√
t)d
′′
β |Ẽt|

' (
√
t)d
′′−d′/p0 β |E√t|,

which is inequality (19) with t replaced by
√
t in [15, p. 245]. And from now on we

follow the steps of that proof.

Now for d′ = d′′ ≥ 2 we take d = 4 and define FN =
⋃N
j=2 Ẽ2−j and β =

N1/p1(
√
t)−d

′/p1 with t = 2−j . As before we follow the steps of Theorem 5.9’s
proof in [15, p. 246] to get the conclusion of this theorem for the case d = 4. �

Taking into account that for x ∈ Rd+

Tµ,ϕ∗ f(x) & Hα∗ f(x2)

for any non-negative function f with supp(f) ⊂ Rd+, and the comments on sharp-
ness on page 247 from [15], we can conclude also in this case that in Theorem 1.11
(a iii) and (b iii) the space

Lp0,1 logd̃(µ)−1/p1 L =

{
f :

∫ ∞
0

f∗(s)s1/p0
[
log(2 + 1/s)(d̃(µ)−1)/p1

]
ds/s <∞

}
,

being f∗ the decreasing rearrangement of f on R+, is the best possible in the sense
of convergence at 0 of the above integral.

We obtain also from those comments that Tµ,ϕ∗ is not weak-type (p0, p0) even if
there is only one minimal µk. �
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