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a b s t r a c t

This paper focuses on nonparametric regression estimation for the parameters of a
discrete or continuous distribution, such as the Poisson or Gamma distributions, when
anomalous data are present. The proposal is a natural extension of robust methods
developed in the setting of parametric generalized linear models. Robust estimators
bounding either large values of the deviance or of the Pearson residuals are introduced and
their asymptotic behaviour is derived. Through a Monte Carlo study, for the Poisson and
Gamma distributions, the finite properties of the proposed procedures are investigated and
their performance is compared with that of the classical ones. A resistant cross-validation
method to choose the smoothing parameter is also considered.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Generalized linear models, introduced by Nelder andWedderburn (1972), are extensively used in statistical applications
due to their flexibility to fit a large variety of regression problems, whenever the response is continuous or discrete. They
have been proposed as a natural extension of the classical linearmodel.Many aspects of thesemodels, such as the estimation
of the parameters using iterative procedures and resistant methods, have been studied to a great extent. A trend in the last
few years has been to determine the underlying model or to check a parametric model, via nonparametric techniques.
However, most of the work has been developed for the case of homoscedastic additive noise and so these techniques are
not applicable to the setting of nonparametric generalized regression.

Outlying observations are of particular concern in the classical problem of estimating location and scale of a family
of distribution and in linear regression. In the nonparametric approach outliers are certainly still an important problem.
Indeed, classical estimators of the regression function are based on local means and so, they are very sensitive to outliers.
An advantage of robust methods over traditional ones is that they still work well under very general assumptions. The effect
of a single outlier depends on how far it lies from the point of interest, that is, only the observations in a neighbourhood of
this point need to be considered when studying the sensitivity of the procedure. Thus, robust concepts should be thought in
terms of local resistance properties. In this paper, our concern is to estimate robustly and nonparametrically the regression
function in the presence of anomalous data.

More precisely, from now on we assume that the response variables {Yi : 1 ≤ i ≤ n} are independent random variables,
related to fixed covariatesxi ∈ A ⊂ Rd, 1 ≤ i ≤ nwhereA is a compact set. In this case,we assume that there exists a smooth
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function g : Rd
→ τ ⊂ R such that Yi has distribution F(y, g(xi)). Under a generalized linear model, the regression function

g depends on a vector of parameters, i.e., g(x) = H(xtβ), where H is known and β must be estimated. In our setting, besides
smoothness assumptions on the function g we do not assume any parametric structure on it. In most situations, when first
moments exist, g satisfies g(xi) = E(Yi).

Many authors have considered the problem of the estimation of the regression function g , see for instance Härdle
(1990) and Härdle et al. (2004) for a review. In logistic models, the first paper which applied kernel methods is due to
Copas (1983). Later on, Fowlkes (1987) used this smoothing technique for diagnostics in logistic regression. More recently,
Brown et al. (2010) have considered nonparametric regression in exponential families using a mean-matching variance
stabilizing transformation so as to turn the estimating issue in a standard homoscedastic Gaussian regression problem. All
these methods have been designed in order to include the regression model Y = g(x) + ε s(x) where ε has a continuous
and symmetric distribution function and s is a scale function. A first resistant proposal for regression models was given by
Cleveland (1979) who considered a robust locally weighted regression scatterplot (see also Cleveland and Devlin, 1988) and
asymptotic results for the univariate case were obtained by Härdle and Gasser (1984). Robust methods for estimating g(x)
under a nonparametric regression model have been proposed by Härdle (1984), Härdle and Tsybakov (1988) and Boente
and Fraiman (1989).

As mentioned above, our main goal is to estimate nonparametrically the regression function g in a robust fashion, for
discrete or continuous distributions, such as the Poisson or Gamma distributions, when anomalous data are present. Our
resistant proposals are localM-estimators, which can be thought as nonparametric versions of robust estimators that have
been proposed in the parametric setting, such as those considered by Bianco and Yohai (1996) for logistic regression, Bianco
et al. (2005) for the Gamma distribution and Künsch et al. (1989) and Cantoni and Ronchetti (2001a) for generalized linear
models. We investigate both theoretical and numerical properties of the proposed estimators. As in other nonparametric
settings, the estimators are asymptotically normally distributed with a non-zero mean parameter, which is usually called
the asymptotic bias. In the situation under study, even when the asymptotic bias seems to depend on the chosen score
function, it can be seen that, under regularity conditions, it performs as in the usual nonparametric regression model. The
numerical results show that the proposal is very stable under different degrees of contamination and so suggest that the
methods are resistant. We also introduce a resistant cross-validation method to choose the smoothing parameter.

The paper is organized as follows. In Section 2, robust proposals bounding either large values of the deviance or of the
Pearson residuals are considered, as well as, the particular case of Poisson and Gamma models. In Section 3, we present
the results of a Monte Carlo Study which allow to analyse the finite sample properties of the proposed methods and also
to compare them with the classical ones based on local means. We also describe a resistant cross-validation method to
choose the smoothing parameter. The asymptotic behaviour of the introduced estimators is derived in Section 4. Proofs are
relegated to the Appendix.

Most of the robust techniques are developed for fixed carriers. However, they may be directly extended to the case of
random covariates, that is when the response variables {Yi : 1 ≤ i ≤ n} are related to random covariates {Xi : 1 ≤ i ≤ n},
in such a way that Yi|Xi = xi has distribution F(y, g(xi))with g : Rd

→ τ ⊂ R.

2. The estimators

2.1. General definitions

As mentioned in the Introduction, our aim is to extend to general nonparametric models robust estimators that have
been developed in the parametric setting. We propose two families of localM-estimators that can be defined through a loss
function ρ or through a score function ψ .

Assume that we observe independent random variables {Yi : 1 ≤ i ≤ n} related to fixed carriers xi ∈ A ⊂ Rd, 1 ≤ i ≤ n
and such that Yi ∼ F(y, g(xi)) with g : Rd

→ τ ⊂ R and A a compact set. Consider a generic random variable Y
with distribution F(y, g(x)), for a given continuity point x ∈ A of g . In regression, the classical smoothers are of the
formg(x) =

n
i=1wni(x)Yi, where wni(x) = wni(x, x1, . . . , xn) is a probability weight function, i.e., wni(x) ≥ 0 andn

i=1wni(x) = 1, as for kernel, k-nearest neighbour and nearest neighbour with kernel weights. These local weights give
more emphasis to those observationswhich are closer to x. The classical smoothers can be seen as the solution of aminimum
least squares problem given by argmint∈R

n
i=1wni(x)(Yi − t)2. As local sample means, these estimators can be severely

affected by a single outlier placed in the surroundings of the target point x and for that reason, more robust estimators, such
as localM-smoothers, have been introduced.

In order to introduce a local M-estimator, we replace the quadratic loss function by a more general loss function
ρ : R2

→ R>0, so as to downweight the effect of an occasional outlier. In order to have a proper definition of the target
functionals, we need E(ρ(Y , t)) to exist. For that reason, we eventually need to include a term a(Y ) when defining the
loss function ρ to ensure that the function γ (t) = E[ρ(Y , t)] is well defined. For instance, when estimating the median,
a(Y ) = |Y | and so, the loss function is defined as ρ(Y , t) = |Y − t| − |Y |. We assume Fisher-consistency, i.e., that
γ (g(x)) = mint∈τ γ (t). Now, to estimate γ (t), we consider the sample version of γ given by

γn(t) =

n
i=1

wni(x)ρ(Yi, t), (1)
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and so, the estimator of g(x) can be obtained minimizing (1) over t ∈ τ . Then, we define gn(x) = argmint∈τγn(t). More
generally, as in Huber (1967), one can define estimates of g(x) as any sequence gn(x) satisfying

γn(gn(x))− inf
t∈τ
γn(t)

a.s.
−→ 0 . (2)

Instead of defining gn(x) as the solution of an optimization problem, one can define it through the related differentiating
equation by considering Ψ (y, t) = ∂ρ(y, t)/∂t and so gn(x) satisfies

λn(gn(x)) = 0, (3)

where for t ∈ τλn(t) =
n

i=1wni(x)Ψ (Yi, t) and wni(x) are as in (1). These two approaches are equivalent if (3) has a
unique solution. Besides, for generalized linear models in the parametric setting, M-estimators have been defined through
several choices of Ψ which are not necessarily obtained by differentiating a loss function. Thus, we will consider a general
function Ψ : R2

→ R and the solution gn(x) of (3), where we suspect that this solution will converge to the solution g(x)
of λ(t) = E[Ψ (Y , t)] = 0.

2.2. Some applications

In regression models, robust estimates can be obtained by taking ρ(y, t) = φ(y − t) where φ is, for instance, the
Huber or the bisquare ρ-function. In generalized regression models, typically in order to attain robustness, ρ will be
a bounded function performing like the log-likelihood for central values. In this last case, instead of bringing in large
observations in the derivative of the log-likelihood function, one option is to smoothly truncate the log-likelihood function
and then correct it by an additive term only depending on the parameter in order to obtain both robustness and Fisher-
consistency. Thus, in order to estimate g(x) in generalized exponential families, we propose to minimize (1) using ρ(y, t) =

φ[− ln f (y, t)+H(y)]+G(t), where φ is an odd and bounded non-decreasing function. Typically, φ is a function performing
like the identity function in a neighbourhood of 0, the function H(y) is used to remove a term from the log-likelihood that
is independent of the parameter, while G is a correction term introduced to achieve Fisher-consistency.

When dealing with a one parameter exponential family, ln f (y, t) = y t − b(t)+ c(y) and H(y) can be taken as ln f (y, y).
Thus, we can choose

ρ(y, t) = φ(ln f (y, y)− ln f (y, t))+ G(t), (4)

with G′(t) =

ϕ(ln f (y, y) − ln f (y, t))f ′(y, t)dµ(y) to obtain Fisher-consistency, where ϕ stands for the derivative of

φ, f ′(y, t) = ∂/∂t f (y, t) and f (·, t) is the density with respect to the measure µ of the distribution function F(·, t). The
function φ can be chosen as the bisquare function or as in Croux and Haesbroeck (2003). This family of estimators will be
called robust deviance estimators. This approach is in the spirit of Bianco and Yohai (1996) where a robustified version of the
deviance with a correction term is introduced to achieve Fisher-consistency.

To illustrate with some examples, let us consider first the Poisson regression problem. Assume that Y follows a Poisson
distribution, Y ∼ P(t). Then, we have that f (y, t) = (exp(−t)ty/y!)IN∪{0}(y) and thus, E(Y ) = t,V(Y ) = t . In this case,
if φ is a loss function, from (4) we get that ρ(y, t) = φ(−y + y ln y + t − y ln t) + G(t). Moreover, if, as above, φ has first
derivative ϕ, we have that

Ψ (y, t) =


ϕ(−y + y ln y + t − y ln t)

(t − y)
t

+ G′(t) if y > 0

ϕ(t)+ G′(t) if y = 0,

where G′(t) = −ϕ(t) exp(−t)−


∞

j=1 ϕ(j ln j − j + t − j ln t)(1 − y/t) exp(−t)t j/j!.
Another interesting example is the case of the Gamma regressionmodel. Let us assume that Y follows a Gamma distribu-

tion, Y ∼ Γ (α, t), with parameters α and t . Hence, we have that f (y, α, t) = (Γ (α))−1ααyα−1t−α exp(−αy/t)I[0,+∞)(y).
This parametrization implies that E(Y ) = t and V(Y ) = t2/α, where α is assumed to be known. In the case of a
continuous response, we have that G(t) = 0, see Bianco et al. (2005). Thus, ρ(y, t) = φ(ln(f (y, y)) − ln(f (y, t))) =

φ(α(y/t − ln(y/t)− 1))which implies that

ρ(y, t) =


φ(α(y/t − ln(y/t)− 1)) if y > 0
lim
y→0

φ(α(− ln(y/t)− 1)) if y = 0,

where φ is a loss function as above.
On the other hand, if we define the estimator by solving an implicit equation, one can follow the approach introduced by

Cantoni and Ronchetti (2001a)where a robustified quasi-likelihood estimator is developed. LetEt stands for the expectation
when Y ∼ F(·, t). If we chooseΨ (y, t) = ψ((y− t)/

√
V (t))(t/

√
V (t))−ν(t), with ν(t) = Et [ψ((Y − t)/

√
V (t))1/

√
V (t)]

for t = Et(Y ) and V (t) = Vt(Y ), the estimator gn(x) satisfies (3). The function ν(t) is a correction term introduced to obtain
Fisher-consistent estimators, while ψ , that may be the Huber’s ψ function, controls the Pearson residuals. This family of
estimators will be called robust quasi-likelihood estimators. For instance, in the particular case of the Gamma distribution,
we have that the Pearson residuals are of the form

√
α(y − t)/t , so Ψ (y, t) = ψ(

√
α((y − t)/t))

√
α/t − ν(t), where

ν(t) = Et [ψ(
√
α((Y − t)/t))

√
α/t].
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Table 1
Poisson regression. Values of EF(g,gcl) for contaminated and non-contaminated samples of
size n = 100.

m y∗
= 0 y∗

= 12 y∗
= 20grd grql grd grql grd grql

0 0.954 0.954 0.954 0.954 0.954 0.954
1 1.123 1.032 1.232 1.216 1.831 1.794
3 1.447 0.944 1.426 2.115 8.229 5.198

In Section 3, we will apply these families of estimators to Poisson and Gamma regression models.

3. Finite sample performance

In a first step,weperformanumerical study tohave an insight into the local robustness and the efficiency of our proposals.
Secondly, we face the problem of choosing in a robust fashion the bandwidth parameter.

3.1. Simulation conditions

A Monte Carlo study is carried out in order to assess the performance of the proposed robust estimators for finite
contaminated and non-contaminated samples. Robust procedures are expected to be less sensitive to outliers than their
classical counterparts. In order to measure the local resistance of the proposed procedures we regard different amounts
of outliers varying their level of atipicity. We consider a Poisson and a Gamma regression model with one-dimensional
covariate x. In both situations, we perform N = 5000 replications by generating, at each replication, n = 100 observations,
Y1, . . . , Yn, such that Yi ∼ F(·, g(xi))with xi = (i−0.5)/100. To avoid boundary effects, we consider theweights introduced
in Gasser and Müller (1984) using the Epanechnikov kernel with bandwidth h. As is well known, boundary kernels improve
the performance of the regression estimators. We study three regression estimators of the regression function g: gcl,
the classical local mean estimator;grd, the robust deviance estimator with φ the loss function considered in Croux and
Haesbroeck (2003) with tuning constant d = 2 andgrql, the robust quasi-likelihood estimator with ψ = ψc the Huber’s
score function with c = 1.6.

For each generic estimatorg , we compute the following two summary measures

MSEj(g, g) =
1
n

n
i=1

(g(xi)− g(xi))2 AMSE(g, g) =
1
N

N
j=1

MSEj(g, g), (5)

which measure the square error in the j-th replication and the mean square error over replications, respectively. For each
robust estimatorg , we compare its behaviourwith that of the classical one by computing as summarymeasure the efficiency
given by EF(g,gcl) = AMSE(gcl, g)/AMSE(g, g).
3.1.1. Poisson regression

Asmentioned above,we generate observations Yi following a Poisson distributionP (g(xi))with g(x) = exp(2 sin 4πx)+
1. We contaminate the original samples by replacing m = 1 and m = 3 responses by arbitrary values y∗

= 0, 12 or 20.
These contaminating data are located at fixed positions of the covariate x and when m = 3, the outliers lie at successive
values of x, so as to obtain a more severe contamination pattern. We choose h = 0.05 as smoothing parameter after looking
at several choices. An automatic data-driven choice is discussed in Section 3.2.

To illustrate the fit of the considered regression estimators, Fig. 1 presents the different estimators applied to one
simulated sample without outliers and when m = 3 responses are replaced by y∗

= 20. The black line corresponds to
the true function g , the red one to the classical estimatorgcl, while the blue and the green lines to the robust estimatorsgrd andgrql, respectively. The plot on the left side shows that the robust and the classical estimators overlap in the non-
contaminated sample. However, under contamination, the proposed estimators are very close to the classical estimator
throughout the range of the covariate, except for the region where the outlying responses were located. In this crucial
interval, the classical estimatorgcl suffers the effect of the outliers leading to a fit far from the expected curve g . Indeed, in
presence of the three outliers,gcl is pulled up by the anomalous observations deviating from the true curve g . Instead, the
proposed estimators remain more stable, especiallygrd which looks much more insensitive thangrql to the severe outlying
points. These conclusions can be extended to the whole simulation study whose results are summarized in Table 1. In fact,
when there are no outliers (m = 0) the proposed estimators achieve a 95% efficiency with respect to the classical estimator.
On the contrary, for the contaminated samples the AMSE ofgcl increases according to the size of the outlier y∗ and also to
the number of outliersm. The proposed estimators, in particulargrd, are much more stable in presence of anomalous data.

3.1.2. Gamma regression
In this section, we report the results obtained under a Gamma regression model. We generate n = 100 observations

Yi ∼ Γ (16, 8(sin 4πxi + 3)−1), and so E(Yi) = g(xi) = 2(sin 4πxi + 3), 1 ≤ i ≤ n. We contaminate the original samples
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Original Data Contamintated Data

Fig. 1. Simulated data from Poisson regression. The plot on the left corresponds to original samples, while the plot on the right to contaminated ones with
m = 3 outlying observations with y∗

= 20. The solid line corresponds to the true function g(x), the dotted one to the classical estimatorgcl , while the
solid line with filled triangles and the dashed line (— · —) to the robust estimatorsgrd andgrql , respectively. Filled circles represent the outliers.

m = 1m = 0 m = 3

Fig. 2. Simulated data from Gamma regression. Samples with m outlying observations with y∗
= 0. The solid line corresponds to the true function g(x),

the dotted one to the classical estimatorgcl , while the solid line with filled triangles and the dashed line (— · —) to the robust estimatorsgrd andgrql ,
respectively. Filled circles represent the outliers.

Table 2
Gamma regression. Values of EF(g,gcl) for contaminated and
non-contaminated samples of size n = 100.

y∗ 0
m grd grql
0 0.976 0.976
1 1.272 1.147
3 2.666 1.652

by replacing m = 1 and m = 3 responses by arbitrary values y∗
= 0. As before, these outliers are located at fixed positions

of covariate x and whenm = 3 they correspond to successive values of x. As in Section 3.1.1, after a preliminary inspection,
we choose h = 0.1 as the smoothing parameter.

As an example, Fig. 2 pictures the fitted curves obtained from the classical estimatorgcl and the robust estimatorsgrd andgrql when they are applied to one simulated sample without outliers and withm = 1 andm = 3 outlying observations with
y∗

= 0. As above, we plot in black the true regression function g(x), in red the classical estimator, while in blue and green the
estimatorsgrd andgrql, respectively. The robust and the classical estimators again overlap in the non-contaminated case,
but the classical estimator seems to be affected even by just one outlier since it deviates from the true regression function
g in presence of just one outlying observation. Instead, the fit obtained fromgrd looks very stable throughout the range in
the three cases considered.

Table 2 summarizes the results over the N = 5000 samples. In fact, when there are no outliers (m = 0) the proposed
estimators are very efficient with respect to the classical estimator. Under contamination the AMSE ofgcl increases withm,
while the proposed estimators resist the presence of outliers. Besides, we conclude that when three values of the response
variable are replaced by outliers,grd is more stable thangrql, since AMSE(grql, g) is around 1.61 times the AMSE(grd, g).
Remark 3.1. In the situations considered for the Poisson and Gamma regression models, both robust estimators were
calibrated so as to achieve the same asymptotic efficiency. Under this condition, the robust deviance estimators outperform
the robust quasi-likelihood ones. This behaviour was also observed in the literature, when considering generalized linear
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modelswhere the influence of some outliers is better controlled bounding the deviance than bounding the Pearson residuals.
Note that, in our simulation there are no leverage points and hence, one can guess that the redescending nature of the score
function used in the numerical study is enough to handle the outlying points in all the cases considered.

3.2. Resistant choice of the smoothing parameter

As in any smoothing procedure the selection of the bandwidth parameter is an important task. Classical procedures for
the choice of the smoothing parameter, such as cross-validation or plug-in methods, may be very sensitive to the presence
of outliers. This sensitivity has been discussed in the literature of nonparametric regression; among others, we can mention
Leung et al. (1993), Leung (2005), Wang and Scott (1994), Boente et al. (1997) and Cantoni and Ronchetti (2001b). Least
squares cross-validation method may be severely affected by outliers, even when the nonparametric regression estimators
are based on localM-estimators and this is due to the fact that it is based on an L2-norm.One outliermay cause the bandwidth
to break down, in the sense that it may result in oversmoothing or undersmoothing. When a small bandwidth is considered,
few outlying responses with similar covariates xi could damage the estimate seriously. Boente and Fraiman (1991) pointed
out that robust cross-validation methods should be an alternative. In the following, we describe a resistant cross-validation
procedure (rcv) based on robustified deviances

1. For each given bandwidth h computey−i
h = argmint

n
j≠iwnj(xi, h)ρ(yj, t), where ρ is taken as in (1) and the weights

are given bywnj(x, h) =


ℓ≠i K(x − xℓ/h)

−1
K(x − xj/h).

2. Choose the robust bandwidth ashn,r = argminh
n

i=1 ρ(yi,y−i
h ).

To study the performance of the rcv procedure, we carry out a Monte Carlo study for the case of the Gamma regression
model.Wealso intend to compare itwith the classical cross-validationmethod (cv) basedon thedeviance. As in Section3.1.2,
we generate n = 100 observations Yi ∼ Γ (16, 8(sin 4πxi + 3)−1) and so the regression function is g(xi) = 2(sin 4πxi + 3)
in the non-contaminated samples. We follow the contamination scheme withm = 3 outliers described in Section 3.1.2. For
each non-contaminated sample, we compute the classical bandwidthhn and the resistant onehn,r. For the contaminated
samples, we perform the same computations obtaining classical and resistant bandwidths denotedhc

n andhc
n,r, respectively.

We replicate N = 500 times. Fig. 3(a) displays the histograms for the differenceshn −hc
n andhn,r −hc

n,r. These histograms
show that in most cases the windows achieved by the resistant method in contaminated samples are very similar to those
obtained by the same method in the corresponding non-contaminated samples. On the contrary, the classical selection
procedure seems to be much more unstable.

In order to assess the performance of the regression estimates, we compute themean square error defined in (5) for each
estimator. Fig. 3(b) shows, with a solid line, the density estimator of the mean squared errors for the original samples using
the cross validation bandwidths and with a dashed line those obtained for the contaminated samples. As we can see, the
mean squared errors achieved using the resistant bandwidth parameters for contaminated and non-contaminated samples
are comparable, while those obtained using the classical cross-validationmethod are larger when the samples have outliers.

4. Asymptotic behaviour

In this section we derive the asymptotic behaviour of the proposed estimators. In Bianco et al. (2011) these results are
stated under weaker conditions on the loss function ρ.

4.1. Consistency

We will assume the following set of assumptions. The conditions on the weight function stated below are the usual
assumptions required to the weights in nonparametric regression (see, for instance Georgiev, 1988).

W1. limn→∞

n
i=1wni(x) = 1, limn→∞

n
i=1 |wni(x)|I{∥xi−x∥>a} = 0 for all a > 0 and there exists M > 0 such thatn

i=1 |wni(x)| ≤ M for all n ≥ 1. Moreover, limn→∞ max1≤i≤n |wni(x)| = 0.
W2. limn→∞{max1≤i≤n |wni(x)|} log n = 0.
W3. wni(x) ≥ 0 for all 1 ≤ i ≤ n, n ≥ 1.

In order to obtain consistency results for the estimators defined through the minimization procedure (2), we need the
following conditions for the loss function which are similar to those given by Huber (1967). However, some of them have
been customized to our setting since the observations are not identically distributed. Wewill fix some extra notation. Given
a compact set C ⊂ τ , let β(C) = E[inft∉C ρ(Y , t)] and βn(C) =

n
i=1wni(x) inft∉C ρ(Yi, t). Moreover, for any set U ⊂ τ ,

let γn(U) =
n

i=1wni(x) inft∈U ρ(Yi, t) and γ (U) = E(inft∈U ρ(Y , t)). Note that, β(C) = γ (τ − C). In the Appendix, it is

shown that W1, A1 and A4 below imply that βn(C)
p

−→β(C).
A1. For each t ∈ τ , ρ(y, t) is a bounded measurable function and ρ(y, t) is separable in the sense of Doob.
A2. The function ρ is almost surely continuous in t .
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a

b

Fig. 3. (a) Histograms of the differenceshn −hc
n on the left andhn,r −hc

n,r on the right. (b) Density estimator of the mean squared errors for the original
samples using the cross validation bandwidths. The solid line correspond to those computed with the original samples, while the dashed line to those
obtained for the contaminated samples. The sample size was n = 100.

A3. For all t ≠ g(x), γ (t) > γ (g(x)).
A4. For any set U ⊂ τ the function r(u) =


inft∈U[ρ(y, t)− a(y)] dF(y, g(u)) is continuous at x.

A5. For any sequence of compact sets Cn converging to τ , lim infn→∞ β(Cn) > γ (g(x)).

We have that assumptions A1–A3 imply that γ (U) → γ (g(x)) as the neighbourhood U of t shrinks to {g(x)}.
When ρ is not bounded, weaker conditions can be required by assuming that E|ρ(Y , t)|p < ∞ for all t ∈ τ , for some

p ≥ 2 (see Bianco et al., 2011).
The following result states that the estimators defined through (2) are consistent.

Lemma 4.1.1. Let gn(x) be any value satisfying (2). Assume that W1–W3, A1,A4 and A5 hold. Then, there exists a compact set
K ⊂ τ such that limm→∞ P


n≥m gn(x) ∈ K


= 1.

Note that even if assumption A5 seems very restrictive, the conclusion of Lemma 4.1.1 can be directly verified for many
families of estimates including, for instance, local medians.

Theorem 4.1.1. Under A1–A4,W1–W3 and if the conclusion of Lemma 4.1.1 holds, we have that gn(x)
a.s.

−→ g(x) as n → ∞.

Remark 4.1.1. If ρ is not bounded we can replace, in Theorem 4.1.1, W2 by limn→∞{max1≤i≤nw
2
ni(x)} n log log n = 0 by

requiring that supi E|ρ(Yi, t)− a(Yi)|
2+s

≤ M2(t) < ∞ for some s > 0 and for all t ∈ τ (see Bianco et al., 2011).

Strong consistency of the estimators defined through the differentiated equations, i.e., those defined through (3) can be
derived under mild conditions. When τ ⊂ R, two different situations may be distinguished:

(a) λ(t) is strictly monotone in a neighbourhood of g(x)which includes the case when Ψ (y, ·) is monotone
(b) λ(t) has a unique solution g(x).

Both cases are considered in Bianco et al. (2011).

4.2. Asymptotic normality

In order to study the asymptotic behaviour, wewill need some additional assumptions. First, we introduce some notation
assuming differentiability of the function Ψ . Denote by Ψ ′(y, t) = ∂Ψ (y, t)/∂t,Ψ ′′(y, t) = ∂2Ψ (y, t)/∂t2, λ1(t) =

E(Ψ ′(Y , t)) and cn =
n

i=1w
2
ni(x). In most situations, λ1(t) = ∂λ(t)/∂t . Theorem 4.2.2 states the asymptotic distribution

under weaker conditions than differentiability of Ψ .
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N1. Ψ is twice continuously differentiable in t and for any neighbourhood U of g(x), there exists c > 0 such that one of the
following conditions holds
(i) supt∈U |Ψ ′′(y, t)| ≤ c for all y
(ii) sup1≤i≤n E supt∈U |Ψ ′′(Yi, t)| ≤ c for all n ≥ 1

N2. λ1(g(x)) ≠ 0.
N3. For some positive constant c, sup1≤i≤n E|Ψ ′(Yi, g(x))|2 ≤ c for all n ≥ 1.
N4. Ψ ′ satisfies one of the following conditions

(i) r(u) =

Ψ ′(y, t)dF(y, g(u)) is continuous at x for each fixed t ∈ τ .

(ii) For each t ∈ τ ,Ψ ′(·, t) is of bounded variation.

Theorem 4.2.1. Let r⋆(u, t) =

Ψ (y, t)dF(y, g(u)). Assume that gn(x)

p
−→ g(x) andW1,N1–N4 hold. If in addition, limn→∞

c−1/2
n max |wni(x)| = 0 and limn→∞ c−1/2

n
n

i=1wni(x)r⋆(xi, g(xi)) = β , we have that c−1/2
n (gn(x)−g(x)) w

−→N(β1, σ
2
1 (x)),

where β1 = β/λ1(g(x)) and σ 2
1 (x) = σ 2(x)/[λ1(g(x))]2 with σ 2(u) =


Ψ 2(y, g(x))dF(y, g(u)).

Remark 4.2.1. Even though the asymptotic bias seems to depend on theΨ function, it can be seen that, under N1 and N4(i),
it performs as in the usual nonparametric regression model, if limn→∞ c−1/2

n
n

i=1wni(x)I{∥xi−x∥>a} = 0. That is, the
asymptotic bias equals limn→∞ c−1/2

n
n

i=1wni(x)[g(xi)− g(x)]. Assumption N1 requires differentiability of theΨ function
which in many situations is not satisfied (for instance, if we take Ψ as the Huber or the sign function). This assumption can
be relaxed, as is usual forM-estimators, by requiring that the finite discontinuities of the derivative are continuity points of
F(·, g(x)). The proof is essentially the same with some technical modifications.

Wewill nowgive an additional result of asymptotic normalitywhichholds only if τ ⊂ R, but does not require smoothness
conditions on Ψ . We will obtain it under the following assumptions

W4.
n

i=1wni(x) = 1.
W5. There exists a constantM > 0 such that c−1/2

n
n

i=1 |wni(x)| |g(xi)− g(x)| ≤ M for all n ≥ 1.
N5. Ψ (y, t) is a bounded continuous function such that for each fixed t ∈ τ ,Ψ (·, t) is of bounded variation.
N6. λ′(g(x)) = ∂λ(t)/∂t|t=g(x) ≠ 0.
N7. F(y, t) is Lipschitz as a function of t uniformly in y, i.e., there exists L > 0 such that |F(y, t1) − F(y, t2)| ≤ L|t1 −

t2| for all y ∈ R, t1, t2 ∈ τ .

Remark 4.2.2. The Lipschitz condition required in N7 is easily verified for most of the standard distribution families.

Theorem 4.2.2. Under W4,W5,N5–N7, we have that c−1/2
n (gn(x) − g(x)) has the same asymptotic distribution as

c−1/2
n

n
i=1wni(x)Ψ (Yi, g(x))/λ′(g(x)), provided that limt→g(x) ∥Ψ (·, t) − Ψ (·, g(x))∥V = 0, where ∥.∥V stands for the

variation norm.
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Appendix

In order to prove Lemma 4.1.1, we need the following auxiliary result whose proof follows using standard arguments
and can be found in Bianco et al. (2011).

Lemma A. Under W1,A1 and A4 we have that for any t ∈ τ and any set U ⊂ τ

(i) γn(t)
p

−→ γ (t) and γn(U)
p

−→ γ (U)

(ii) γn(t)
a.s.

−→ γ (t) and γn(U)
a.s.

−→ γ (U) if W2 holds.

Proof of Lemma 4.1.1. The boundedness of ρ implies that given ε > 0 there exists a compact set C such that β(C) >
γ (g(x))+ ε.

Denote by An =
n

i=1wni(x) inft∉C ρ(Yi, t) > β(C)− ε/2 > γ (g(x))+ ε/2

. Then, from Lemma A

limm→∞ P


n≥m An


= 1. Thus, we can find n0 ∈ N such that P


n≥n0
An


> 1 − ε/2, which implies, that

P


n≥n0

inf
t∉C
γn(t) > γ (g(x))+

ε

2


> 1 −

ε

2
.

The proof follows now using Lemma A. �
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Proof of Theorem 4.1.1. The proof is similar to that of Theorem 1 in Huber (1967) using again Lemma A. �

Proposition A.1. (i) Assume that gn(x) converges to g(x) in probability as n → ∞. Then, under W1,N1–N4 we have that
c−1/2
n (gn(x)− g(x)) has the same asymptotic distribution as c−1/2

n
n

i=1wni(x)Ψ (Yi, g(x))/λ1(g(x)).
(ii) Let r⋆(u, t) =


Ψ (y, t)dF(y, g(u)), if limn→∞ c−1/2

n
n

i=1wni(x)r⋆(xi, g(xi)) = β and limn→∞ c−1/2
n max |wni(x)| =

0, we have that c−1/2
n

n
i=1wni(x)Ψ (Yi, g(x))

w
−→N(β, σ 2(x)), where σ 2(u) =


Ψ 2(y, g(x))dF(y, g(u)).

Proof. (i) Since λn(gn(x)) = 0, a second order Taylor’s expansion leads to

0 = c−1/2
n λn(g(x))+ c−1/2

n (gn(x)− g(x))[λ1n(g(x))+ (gn(x)− g(x))λ2n(ξn)],

where λ1n(t) =
n

i=1wni(x)Ψ ′(Yi, t), λ2n(t) =
n

i=1wni(x)Ψ ′′(Yi, t) and ξn = θngn(x) + (1 − θn)g(x) is an intermediate
point. W1, N3 and N4 imply that λ1n(g(x)) converges to λ1(g(x)) in probability while N1 and W1 ensure that λ2n(ξn) is
bounded in probability since ξn converges to g(x) in probability. Thus, the conclusion is easily derived.

(ii) follows by applying Lindberg’s central limit theorem. �

Proof of Theorem 4.2.1. It is an immediate consequence of Proposition A.1. �

Proposition A.2. Under W4,W5 and N7 we have that c−1/2
n supy |Fn(y) − F(y, g(x))| = Op(1), where Fn(y) =

n
i=1wni(x)

I(−∞,y](Yi).

Proof. From N7, we have that

c−1/2
n ∥Fn − F∥∞ ≤ c−1/2

n sup
y

 n
i=1

wni(x)[I(−∞,y](Yi)− F(y, g(xi))]

+ c−1/2
n L

n
i=1

|wni(x)| |g(xi)− g(x)|.

Thus, using W5, it is enough to show that c−1/2
n supy |

n
i=1wni(x)[I(−∞,y](Yi)− F(y, g(xi))]| = Op(1), which follows easily

using the transformation given in Shorack andWellner (1986, pp. 102–103) and theMarcus and Zinn inequality (see Shorack
and Wellner, 1986, pp. 820). �

Proof of Theorem 4.2.2. Follows as in Boos and Serfling (1980) using Proposition A.2 �
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