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a b s t r a c t

We introduce and compare several robust procedures for bandwidth selection when
estimating the variance function. These bandwidth selectors are to be used in combination
with the robust scale estimates introduced by Boente et al. (2010a). We consider two
different robust cross-validation strategies combined with two ways for measuring the
cross-validation prediction error. The different proposals are compared with non robust
alternatives using Monte Carlo simulation. We also derive some asymptotic results to
investigate the large sample performance of the corresponding robust data-driven scale
estimators.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

We consider the heteroscedastic regression model

Yi = g(xi)+ Uiσ(xi), 1 ≤ i ≤ n, (1)

where 0 ≤ x1 ≤ · · · ≤ xn ≤ 1 are fixed design points and the errors {Ui}i≥1 are i.i.d. random variables with a common
distribution F0. In this non-parametric setting the functions g (x) and σ (x) > 0 are assumed to be unspecified and unknown.

Most research in nonparametric regression focuses on the estimation of the regression function g and the scale function
σ is often assumed to be constant (homoscedasticity) and treated as a nuisance parameter. This simplistic approach has
several limitations, including that: (i) homoscedasticity may not be a realistic assumption in some applications; (ii) robust
and efficient estimates of σ are needed to construct confidence and prediction intervals; (iii) the performance of the robust
estimate of the regression function relies on the performance of its companion scale estimator (iv) the scale functionmay be
the parameter of main interest for the phenomena under study. A nice discussion of applications of scale function estimates
can be found in Carroll and Ruppert (1988), Hall et al. (1990), Dette et al. (1998) and Levine (2003) among others.

Hall et al. (1990) proposed preliminary estimates for the scale based on differences for homoscedatic nonparametric
regression models, generalizing initial proposals by Rice (1984) and Gasser et al. (1986). Müller and Stadtmüller (1987) and
Brownand Levine (2007), among others, extended this class of estimates to heteroscedasticmodelswhile Fan andYao (1998)
considered a local linear variance estimator based on squared residuals obtained from a preliminary regression estimator.
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Recently, Dette and Marchlewski (2008) used scale estimates based on differences to derive tests for checking whether the
variance function belongs to a parametric family in a partly linear regression model. In particular, tests for homocedasticity
are considered therein.

It iswell known that for both types ofmodels – homoscedastic andheterocedastic – the classical scale estimators based on
minimizing square residuals are sensitive to departures from the model error distribution F0. The need for robust estimates
of the scale function is well established in the statistical literature, (see for example Härdle and Gasser (1984), Härdle and
Tsybakov (1988) and Boente and Fraiman (1989), Leung et al. (1993), Boente et al. (1997), Cantoni and Ronchetti (2001), and
Leung (2005), among others). Also, Dette and Marchlewski (2008) pointed out the need for robust methods when analyzing
the refinery data set studied by Daniel and Wood (1980).

When σ(x) is constant (homoscedastic nonparametric regressionmodel), Boente et al. (1997) proposed themedian of the
absolute differences |Yi+1−Yi|, 1 ≤ i ≤ n−1, based on ideas in Rice (1984). Subsequently, Ghement et al. (2008) introduced
the general class of global M-estimators based on differences. Finally, Boente et al. (2010a) considered the heteroscedastic
model and defined localM-estimates of scale based on differences (LMD). Besides, Dette andMarchlewski (2010) considered
a robust test for homoscedasticity based on the empirical process of the residuals from a robust regression fit obtained using
a local M-estimator of g .

As in nonparametric regression, LMD-estimators critically hinge on a smoothing parameter that must be estimated
from the available data. Large bandwidths produce smooth curves with high bias, while small bandwidths produce more
wiggly curves. This well known trade-off between bias and variance led, in the case of estimation of the regression function
g , to several proposals for selecting the smoothing parameter, such as cross-validation and plug-in methods. Much less
development has been reported so far for the case of estimation of the scale function σ . Levine (2003) derived an expression
for the optimal bandwidth that led to the plug-in approach in Levine (2006). Later on, K -fold cross-validation procedures
were recommended and studied for classical (non-robust) estimates based on square differences. Not surprisingly these
procedures are very sensitive to outliers.

As far as we know, there are no previous proposals for robust bandwidth estimators to be used when estimating the
scale function. The aim of this paper is to introduce bandwidth selectors resistant to outliers, which, combined with LMD
estimates, yield robust data-driven scale estimators based on differences.

The rest of the paper is organized as follows. In Section 2, we briefly review the definition of the robust localM-estimates
of the scale function used in subsequent sections. In Section 3, we discuss several robust procedures in order to select the
smoothing parameter when using kernel weights. A real data example is analyzed in Section 4. The asymptotic properties
of the robust local M-estimates based on random bandwidths are investigated in Section 5. The results of some numerical
experiments conducted to evaluate the performance of the different procedures are described in Section 6. Finally, Section 7
provides some concluding remarks. Proofs can be found in the Appendix.

2. The estimators

We now review the definition of local M-estimates of scale based on differences introduced by Boente et al. (2010a) and
implemented in this paper.

For any x ∈ (0, 1), let σM,n(x) = inf

s > 0 :

n−1
i=1 wn,i(x)χ((Yi+1 − Yi)/(as)) ≤ b


, where χ is a score function and

wn,i(x) = wn,i(x, hn), i = 1, . . . , n − 1, are kernel weights, such as the Nadaraya–Watson or the Rosenblatt weights,
respectively defined as wn,i(x, h) = L ((x − xi)/h)

n
j=1 L


(x − xj)/h

−1 and wn,i(x, h) = (nh)−1L ((x − xi)/h). The
bandwidth parameter hn > 0 regulates the trade-off between bias and variance, a ∈ (0,∞) is chosen to attain Fisher-
consistency at the central model and b ∈ (0, 1) regulates the degree of robustness for the estimator. More precisely, the
tuning constants a and b satisfy the equations E [χ ((Z2 − Z1)/a)] = b and E[χ(Z1)] = b, respectively, where {Zi}i=1,2 are
i.i.d. random variables with Z1 ∼ F0.

Note that, when χ is a smooth function,σM,n(x) satisfies
n−1
i=1

wn,i(x)χ

Yi+1 − Yi

a σM,n(x)


= b. (2)

Remark 2.1. The family of estimators defined through (2) includes, among others, the classical local Rice estimator by taking
χ(x) = x2, a =

√
2 and b = 1. Two other particular cases considered in our simulations are the local mad estimator

and the local M-estimator with Beaton–Tukey (BT) score function. The local mad estimator, denotedσMAD,n(x), corresponds to
χ(y) = I{u: |u|>Φ−1(3/4)}(y), a =

√
2 and b = 1/2. The local M-estimator with BT function, denotedσBT,n(x), uses the score

function

χc(y) =


3 (y/c)2 − 3 (y/c)4 + (y/c)6 if |y| ≤ c
1 if |y| > c

introduced by Beaton and Tukey (1974), with tuning constant c = 0.70417, a =
√
2 and b = 3/4. Ghement et al. (2008)

showed that for homoscedastic models, under some regularity and design conditions, M-estimators of scale attain their
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maximum breakdown point of 1/2 when b = 3/4. In heteroscedastic models, it might occur that the local breakdown point
is lower (as in the case of local M-estimators of the regression function, see Maronna et al., 2006, Chapter 4). The empirical
breakdown point of the local M-estimator with Beaton–Tukey (BT) score function is discussed in Boente et al. (2010a). The
value c = 0.70417 is numerically determined there to guarantee Fisher-consistency of the scale functional at the central
Gaussian model when b = 3/4. More precisely, c is the solution of E[χc(Z1)] = 3/4 where Z1 ∼ N(0, 1). On the other hand,
the value a =

√
2 provides immediately the solution to E [χc ((Z2 − Z1)/a)] = 3/4 for Z1, Z2 i.i.d. such that Z1 ∼ N(0, 1).

3. Robust bandwidth selectors

An important issue regarding kernel weights is the selection of the smoothing parameter hn which regulates the trade-off
between bias and variance. This led to the development of different automatic (data-driven) methods for selecting hn, such
as cross-validation and plug-in procedures. A good discussion of these methods can be found in Härdle (1990) and Härdle
et al. (2004). Unfortunately, these procedures are not robust and their sensitivity to outliers data was discussed by several
authors, including Leung et al. (1993), Wang and Scott (1994), Boente et al. (1997), Cantoni and Ronchetti (2001) and Leung
(2005). Wang and Scott (1994) note that, when estimating the regression function, in the presence of outliers, the least
squares cross-validation function is nearly constant on its whole domain and thus, essentially worthless for the purpose of
choosing a bandwidth (smoothing parameter).

The study of automatic bandwidth selectors for the scale function is much less developed. Levine (2003) derived the
optimal bandwidth for scale function estimators based on squared differences. This led to the plug-in approach discussed
in Levine (2006). However, Levine (2006) also points out the limitations of the plug-in method and recommended the use
of K -fold cross-validation to obtain scale estimators which are not too sensitive to the actual shape of the mean function in
the case of clean data.

For completeness, we review the K -fold cross-validation method considered in Levine (2006). Partition the data set
{(xi, yi)} at random into K approximately equal and disjoint subsets, the j-th subset having size nj ≥ 2,

K
j=1 nj = n.

Let {(x(j)i ,y(j)i )}1≤i≤nj be the pairs of the j-th subset with the values of x(j)i arranged in ascending order. Similarly, let
{(x(j)i , y

(j)
i )}1≤i≤n−nj denote the pairs in the complement of the j-th subset, again with the x(j)i arranged in ascending order.

The set {(x(j)i , y
(j)
i )}1≤i≤n−nj will be the training set and {(x(j)i ,y(j)i )}1≤i≤nj the validation set. Moreover, denote ∆(j)i =

(y(j)i+1 − y(j)i )/
√
2 and Di,(j) = |y(j)i+1 −y(j)i |/

√
2 the successive differences and the absolute value of the successive differences

within each subset, respectively. Letσ (j)Rice,n(x, h) andσ (j)M,n(x, h) be the classical and robust scale estimators computed using
a bandwidth h and the j-th training subset {(x(j)i , y

(j)
i )}1≤i≤n−nj , i.e., using the successive differences ∆(j)i , respectively. The

classical K -fold cross-validation criterion as described in Levine (2006) is defined as

CVLS,KCV(h) =
1
n

K
j=1

nj−1
i=1


D2
i,(j) −

σ (j)Rice,n(xi, h)22 . (3)

The K -fold cross-validation bandwidth is defined ashLS,KCV = argminh∈HCVLS,KCV(h), where H is the grid of possible values
in [0, 1] over which we perform the search.

An alternative K -fold cross-validation procedure can be considered by measuring the deviances in the log scale,

CV log
LS,KCV(h) =

1
n

K
j=1

nj−1
i=1


log


Di,(j)


− log

σ (j)Rice,n(xi, h)2 (4)

and defininghlog
LS,KCV = argminh∈HLCVLS,KCV(h).

Even if a robust scale estimator is used, i.e., σ (j)M,n(x, h) instead of σ (j)Rice,n(x, h), the K -fold cross-validation bandwidth
selector remains sensitive to outliers, because large residuals are not downweighted. For that reason, to achieve robustness
it is necessary to define a robust scale-based procedure such as

CVROB,KCV(h) =
1
n

K
j=1

s2j (h)
nj−1
i=1

ψ2


ei,(j)
sj(h)


, (5)

where ei,(j) = D2
i,(j) −

σ (j)M,n(xi, h)2, sj(h) = median|ei,(j)| and ψ is a bounded score function such as the Huber

function ψc1 (y) = min {max {−c1, y} , c1}. The robust K -fold cross-validation bandwidth is then defined ashROB,KCV =

argminh∈HCVROB,KCV(h).
Similarly, a robust K -fold log-scale cross-validation procedure can be defined minimizing the cross-validation error

CV log
ROB,KCV(h) =

1
n

K
j=1

s2j,log(h)
nj−1
i=1

ψ2


elogi,(j)

sj,log(h)


, (6)
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a b

Fig. 1. (a) Plot of the Canadian log(income) data set (b) Scatter plot of the absolute differences |Di|.

where now elogi,(j) = log

Di,(j)


− log

σ (j)M,n(xi, h), sj,log(h) = median|elogi,(j)|. The corresponding robust selector is defined ashlog
ROB,KCV = argminh∈HCVROB,KCV(h).
Leave-one-out cross-validation is an important particular case of K -fold cross-validation obtained when K = n and

nj = 1. We will denote byhLS,CV andhlog
LS,CV the classical cross-validation bandwidths obtained by minimizing the leave-

one-out errors CVLS,CV and CV log
LS,CV defined using (3) and (4) with K = n and nj = 1. Similarly, the robust cross-validation

bandwidth related to (5) and (6) with K = n and nj = 1 will be denoted byhROB,CV andhlog
ROB,CV while the corresponding

cross-validation errors are CVROB,CV and CV log
ROB,CV, respectively.

A robust cross-validation criterion similar to that considered by Bianco and Boente (2007) for partly linear autoregression
models and by Boente and Rodriguez (2008) in partly linear regression models can also be defined. This approach splits the
cross-validation error into two components, one related to the bias and the other to the variance. Hence, the robust split
K -fold cross-validation error can be defined as

CVROB,SKCV(h) =

K
j=1

µ2
nj(e1,(j), . . . , enj,(j))+ τ 2nj(e1,(j), . . . , enj,(j)),

where ei,(j) = D2
i,(j) −

σ (j)M,n(xi, h)2, τn(z1, . . . , zn) and µn(z1, . . . , zn) are robust scale and location estimators of the
sample z1, . . . , zn, such as a tau-scale and the median. The robust split K -fold cross-validation bandwidth is then defined ashROB,SKCV = argminh∈HCVROB,SKCV(h). Similarly, the log-version for robust split K -fold cross-validation error can be defined
as

CV log
ROB,SKCV(h) =

K
j=1

µ2
nj(e

log
1,(j), . . . , e

log
nj,(j)

)+ τ 2nj(e
log
1,(j), . . . , e

log
nj,(j)

),

where now elogi,(j) = log

Di,(j)


− log

σ (j)M,n(xi, h) andhlog
ROB,SKCV = argminh∈HCV log

ROB,SKCV(h). The corresponding robust split

leave-one-out errors are denoted by CVROB,SCV and CV log
ROB,SCV whilehROB,SCV andhlog

ROB,SCV stand for the and the related optimal
bandwidths, respectively.

4. Real data example

We report the results obtained from the robust analysis of 205 observations from the 1971 Canadian Population Census.
These data can be found in the library SemiPar in R. The response variable Yi is the logarithm of the individual annual income
while the covariate xi is the individual age. These datawere first analyzed (in Statistics) by Ullah (1985). Levine (2003) points
out that the increase of income variability with age is a well known fact in Labor Economics. The scatter plot of the absolute
differences |Di| = |Yi+1 − Yi| versus xi displayed on Fig. 1 shows that in fact income variability is larger for people over 45.

We estimated the scale function using Rice classical estimator and the robust procedure based on the biweight
Beaton–Tukey score function with tuning constants c = 0.70417, a =

√
2 and b = 3/4 (see Remark 2.1).

The bandwidthhLS,CV = 6.6 is obtained using leave-one-out cross-validationwith Rice estimator. The smaller bandwidthhlog
ROB,SCV = 4.1 is obtained using the robust approach described in Section 3. The numerical results in Section 6 show that

this is the best performing method among the considered robust procedures. It is worth noticing that, as it will be pointed
out in Section 6,hlog

LS,CV leads to undersmoothing (in this casehlog
LS,CV = 1) and so, it is not a recommendable procedure.
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a b

Fig. 2. (a) Boxplot of the residuals ri = (Yi+1 − Yi)/σBT,n(xi) (b) Scatter plot of the absolute differences |Di| with the outliers as filled squares.

a b

Fig. 3. Estimated variance functions, the solid and broken (- -) lines correspond to the classical and robust estimators, respectively. (a) Original data set
(b) Data set without outliers.

Fig. 2 shows the boxplot of the residuals ri = (Yi+1 − Yi)/σBT,n(xi). There is a large outlier (about 8) and ten moderate
outliers. We repeated the classical and robust analysis after removing the Yi responsible for these outliers. The resulting
bandwidths are nowhLS,CV = 5.15 andhlog

ROB,SCV = 4.2. However, after studying the residuals we detect four additional
large differences that were masked in the previous analysis. After further removing these observations, the cross-validation
bandwidths arehLS,CV = 4.85 andhlog

ROB,SCV = 4.0. The plot of the scale function estimators with the full data and after
removing the outliers are given in Fig. 3. The plot of the classical estimator without outliers is pretty similar to that of the
robust scale function estimator, except for ages over 62. This difference may be due to the boundary bias effect of kernel
estimators that has beenwidely noticed in the literature.We conclude that the outliers in the sample lead to over-smoothing,
hiding some interesting features which can be uncovered using our resistant procedures.

5. Asymptotic behavior of data-driven local scaleM-estimates

Boente et al. (2010a) derived the asymptotic behavior of the local scale M-estimators based on differences assuming
a deterministic sequence of bandwidths (smoothing parameters). Under mild assumptions, the estimators are strongly
consistent and asymptotically normal. However, in practice the bandwidth parameter is not deterministic but data-driven
and, therefore, random. The aim of this section is to extend the asymptotic results of Boente et al. (2010a) to the case where
the smoothing parameter depends on the data.

To be more precise, if we denote byσM,n(x, hn) the robust local M-estimate computed using a sequence of bandwidths
hn, wewish to derive the asymptotic properties of the robust localM-estimateσM,n(x,hn)wherehn =hn(Y1, . . . , Yn) stands
for a random, data-driven bandwidth.

Our results show that to a first-order approximation the data-driven scale estimators behave as well as the related
estimators obtainedwith the fixed bandwidth hn providedhn/hn

p
−→ c > 0 and so, no knowledge of the order of convergence

ofhn to the ‘‘optimal’’ bandwidth hn is needed.
This type of research results exists in the literature only for the robust regression function estimation (see, for

instance Boente and Fraiman, 1995). We are not aware of similar results for local robust difference-based estimators.
Without loss of generality, throughout this section, we will assume that c = 1, i.e., that the deterministic sequence of

bandwidths has been corrected so thathn/hn
p
−→ 1 > 0. Note that, in particular, if moment conditions are required instead
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of assumption N2, the asymptotic behavior of the plug-in data-driven estimators studied in Levine (2006) can be derived
from our results.

Throughout this section, we will assume that the score function χ is continuous, even, bounded, strictly increasing on
the set Cχ = {x : χ(x) < 1}, with χ(0) = 0 and (without loss of generality) χ(∞) = 1.

For simplicity, we will only consider the Rosenblatt’s weights function defined aswn,i(x, h) = (nh)−1L ((x − xi)/h).
We prove the consistency of our estimators under the following conditions.

C1. (i) L : R −→ R is even, bounded and


|L(u)|du < ∞,

L2(u)du < ∞ and limu→∞ u2L(u) = 0.

(ii)

L(u)du = 1.

(iii) L is continuously differentiable and L1(u) = uL ′(u) is such that L1 and L21 satisfy (i).
C2. χ is Lipschitz continuous.
C3. The design points satisfyMn = max1≤i≤n−1 |xi+1 − xi| = O(n−1).
C4. There exists a sequence {hn}n≥1 of real numbers such that

(i) hn/hn
p
−→ 1

(ii) limn→∞ nhn = +∞ and limn→∞ hn = 0.

It is worth noticing that C1 are standard conditions when dealing with kernel weights. Assumptions C3 and C4were also
considered in Boente and Fraiman (1995). The following result establishes the consistency of the data-driven estimators.

Theorem 5.1. Let U1 and U2 be i.i.d. random variables with distribution G and let Gx be the distribution of σ(x)(U2−U1). Assume
that C1 to C4 hold and limn→∞ nhn/ log(n) = ∞ andhn/hn

a.s.
−→ 1. Then, for every x ∈ (0, 1),

σM,n(x,hn)
a.s.
−→ S(Gx),

where S(Gx), the solution of E [χ (σ(x) (U2 − U1) /(aS(Gx)))] = b, is the Huber scale functional.

We derive the asymptotic distribution of our estimators under the following conditions.

N1. g and σ are Lipschitz continuous functions.
N2. The score function χ is twice continuously differentiable with first and second derivatives χ ′ and χ ′′ such that

(i) χ1(u) = uχ ′(u) and χ2(u) = u2χ ′′(u) are bounded.
(ii) for any u ≠ 0, v ≠ 0, ν(u, v) = E

χ ′(uU2 + vU1)U2
 < ∞, where {Ui}i=1,2 are i.i.d, U1 ∼ G.

N3. For any x ∈ (0, 1), the following limits exist

(i) limn→∞(nhn)
−1/2n−1

i=1 L


x−xi
hn


(σ (x)− σ(xi)) = β1

(ii) limn→∞(nhn)
−1/2n−1

i=1 L


x−xi
hn


(σ (xi)− σ(x))2 = 0.

Remark 5.1. AssumptionN1 is usual in non-parametric settings. Note also thatN2does not necessarily impose the existence
of moments on the distribution of the errors; for instance this hypothesis is fulfilled if the errors {Ui}i≥1 have Cauchy
distribution and χ belongs to the Beaton–Tukey family. N3 is related to the asymptotic bias. Assume that


u2L(u)du < ∞.

If nh3
n → γ 2, where γ is some finite constant, and the scale function is continuously differentiable then β1 = 0 (since the

kernel is an even function). Therefore, there is no asymptotic bias when the order of the bandwidth is n−1/3. On the other
hand, if nh5

n → γ 2 and σ(x) is twice continuously differentiable, then β1 = γ σ ′′(x)

u2L(u)du


L2(u)du

1/2.
Theorem 5.2. Assume C3, C4 and N1 to N3 hold. Then

(nhn)
1/2 σM,n(x,hn)− S(Gx)

 D
−→ N


S(Gx)

σ (x)
β1, v


L2(u)du


,

where v = v(Gx) = v1/v
2
2 , with

v1 = v1(Gx) = var

χ


σ(x)(U2 − U1)

aS(Gx)


+ 2β cov


χ


σ(x)(U2 − U1)

aS(Gx)


, χ


σ(x)(U4 − U3)

aS(Gx)


v2 = v2(Gx) = E


χ ′


σ(x)(U2 − U1)

aS(Gx)


σ(x)(U2 − U1)

a(S(Gx))2


,

β =

L2(u)du and {Ui}i≥1 are i.i.d. random variables with distribution G.
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6. Numerical experiments

In this section, we numerically explore the finite sample behavior of different data-driven scale function estimators and
bandwidth selectors. In Section 6.1, we report the results of a Monte Carlo study comparing the performance of classical
and robust estimators (using data-driven smoothing parameters) under different models (regression functions and scale
functions), sample sizes and types of contaminations. In Section 6.2, we study the sensitivity to outliers of the optimal
bandwidth selectors. In Section 6.3, we numerically show that data-driven bandwidths actually converge to 0 at a rate
ensuring consistency and asymptotic normality of the estimators.

6.1. Monte Carlo study

In this subsection, we compare the finite sample performance of the classical scale function estimatorσRice,n(x,hn) and
of the two robust local M-estimators,σMAD,n(x,hn) andσBT,n(x,hn), which were introduced in Section 2. The bandwidthhn
is selected using the procedures described in Section 3.

To reduce the heavy computational burden due to cross-validation we generate N = 500 independent samples of size
n = 100. Two different models for the regression and variance components are considered. These models were introduced
by Dette and Hetzler (2008) to test homoscedasticity. We report here the results corresponding to one of these twomodels,
the one in which the regression function is g(x) = 2 sin(4πx) and the scale function is σ(x) = exp(x). The results when
the regression function is linear g(x) = 1 + x and the scale is σ(x) = 1 + [1 + sin(10 x)]2 are similar and available
in the technical report Boente et al. (2010b). The design points are xi = i/(n + 1), 1 ≤ i ≤ n. The error’s distribution is
G(y) = (1−ϵ)Φ(y)+ϵ H(y), withΦ equal to the standard normal distribution andH producing two types of contamination,

(a) symmetric outlier contamination where H = C(0, σ 2) is the Cauchy distribution centered at 0 with scale σ = 4 and
(b) asymmetric contamination where H = N(10, 0.1) is the normal distribution with mean 10 and variance 0.1.

In the first case, we have a heavy-tailed distribution while in the second case there is a sub-population in the data
(see Maronna et al., 2006). The amounts of contamination are ϵ = 0, 0.1, 0.2 and 0.3. We only report here the results
for the central model and the asymmetric contamination model which corresponds to the worst scenario. Results for the
symmetric contaminations are available in Boente et al. (2010b).

The bandwidths are selected using the cross-validation methods introduced in Section 3. More precisely, we compare
the following procedures.

(C.1) The classical K -fold cross-validation criterion CVLS,KCV for the Rice estimator and the robust K -fold CVROB,KCV and split
robust K -fold CVROB,SKCV for the M-estimates, taking K = 2. These procedures are globally called ‘‘KCV -procedures’’.
The choice K = 2 is made to reduce the computational burden. Naturally, larger values of K would be desirable for
sample sizes larger than the one considered in our study, (see Levine (2006) for a comparison of the behavior of the
classical procedure for different choices of K ).

(C.2) The procedures related to those considered in (C.1) but on a log scale CV log
LS,KCV (for Rice), CV log

ROB,KCV, CV
log
ROB,SKCV (for the

M-estimates) are globally called ‘‘KCV log-procedures’’.
(C.3) The classical leave-one-out criterion CVLS,CV for Rice, and the robust CVROB,CV and split leave-one-out CVROB,SCV for the

M-estimates. These procedures are globally called ‘‘CV -procedures’’.
(C.4) The leave-one-out procedures on log scale, that is, the classical CV log

LS,CV for the local Rice estimate and the robust
CV log

ROB,CV and robust split leave-one-out CV log
ROB,SCV for the local M-estimates. These are globally called ‘‘CV log-

procedures’’.

For both the classical and robust procedures, we use Nadaraya–Watson weights with a standard Gaussian kernel. The score
function ψ used for the robust procedures is the Huber function, ψc1 , with tuning constant c1 = 1.345. The minimization
of the cross-validation functions is carried out over the grid i/(n/2), 3 ≤ i ≤ n/2, where n is the sample size. To assess
the behavior of the selected bandwidth and the performance of each estimator, Tables 1–3 report, as summary measures,
the mean and the standard deviation, between brackets, of the resulting bandwidthshn and the mean of the estimated
integrated square error in logarithmic scale of the estimators,isel, defined as

iselj(σn(·,hn)) =
1
n

n
i=1


log

σ (j)n (xi,hn)

σ (xi)

2

,

whereσ (j)n (xi, h) denotes the scale estimator, classical or robust, obtained at the j-th replicationwith bandwidth h. Note that
for the classical Rice estimators and the quadratic loss function, the split procedures equal the cross-validation losses given
in (3) and (4), so in the tables we use dot lines instead of repeating the obtained values. Fig. 4 show the density estimators
of the ratio between theisel of the robust estimators and that of the non-robust estimators, under the different procedures.
The density estimates were evaluated using the normal kernel with bandwidth 0.1 in all cases.

It is well known that robust procedures are nonlinear and difficult to compute. This is compounded in our case by the
use of the also computationally intensive cross-validation. Our current software is fully implemented in R. For example,
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a

b

c

d

Fig. 4. Density estimator of the ratio between the isel of the robust estimators and that of the non-robust estimatorσRice,n(x). The solid and dashed (−·−)

lines correspond toσMAD,n(x) andσBT,n(x), respectively. Model g(x) = 2 sin(4πx), σ(x) = exp(x) with asymmetric contamination. (a) CV (left) and SCV
(right). (b) KCV (left) and SKCV (right). (c) CV log (left) and SCV log (right). (d) KCV log (left) and SKCV log (right).

Table 1
Mean and standard deviation (between brackets) of the selected bandwidths and mean of theisel for the local scale-estimates. Model g(x) = 2 sin(4πx),
σ(x) = exp(x). Errors with asymmetric contamination. CV -procedure.

Estimator Selected bandwidth iselhCV hSCV σn(·,hCV) σn(·,hSCV)

ϵ = 0 σRice,n 0.190 (0.096) – 0.032 –σMAD,n 0.181 (0.130) 0.435 (0.078) 0.066 0.055σBT,n 0.235 (0.131) 0.431 (0.088) 0.065 0.067

ϵ = 0.10 σRice,n 0.267 (0.169) – 1.313 –σMAD,n 0.292 (0.146) 0.446 (0.074) 0.121 0.115σBT,n 0.338 (0.131) 0.443 (0.079) 0.099 0.101

ϵ = 0.20 σRice,n 0.206 (0.131) – 2.029 –σMAD,n 0.407 (0.118) 0.459 (0.063) 0.359 0.354σBT,n 0.441 (0.091) 0.458 (0.070) 0.194 0.196

ϵ = 0.30 σRice,n 0.164 (0.099) – 2.407 –σMAD,n 0.401 (0.135) 0.459 (0.064) 0.996 0.353σBT,n 0.472 (0.069) 0.458 (0.070) 0.310 0.196

computing 500 replications for the leave-one-out classical CVLS,CV and robust CVROB,CV took 102 min using an Intel 2 Quad
Q9650 computer with 8 Gb of RAM.
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Table 2
Mean and standard deviation (between brackets) of the selected bandwidths and mean of theisel for the local scale-estimates. Model g(x) = 2 sin(4πx),
σ(x) = exp(x). Errors with asymmetric contamination CV log-procedure.

Estimator Selected bandwidth iselhlog
CV

hlog
SCV σn(·,hlog

CV ) σn(·,hlog
SCV)

ϵ = 0 σRice,n 0.077 (0.071) – 0.056 –σMAD,n 0.225 (0.137) 0.216 (0.131) 0.056 0.061σBT,n 0.243 (0.138) 0.256 (0.130) 0.067 0.062

ϵ = 0.10 σRice,n 0.058 (0.079) – 1.152 –σMAD,n 0.213 (0.148) 0.246 (0.138) 0.183 0.148σBT,n 0.248 (0.151) 0.266 (0.141) 0.136 0.123

ϵ = 0.20 σRice,n 0.059 (0.059) – 1.892 –σMAD,n 0.219 (0.184) 0.270 (0.151) 0.657 0.490σBT,n 0.171 (0.179) 0.273 (0.161) 0.400 0.262

ϵ = 0.30 σRice,n 0.058 (0.062) – 2.309 –σMAD,n 0.274 (0.177) 0.316 (0.162) 1.270 1.130σBT,n 0.150 (0.163) 0.271 (0.161) 0.611 0.340

Table 3
Mean and standard deviation (between brackets) of the selected bandwidths and mean of theisel for the local scale-estimates. Model g(x) = 2 sin(4πx),
σ(x) = exp(x). Errors with asymmetric contamination. KCV -procedure.

Estimator Selected bandwidth iselhlog
CV

hlog
SCV σn(·,hlog

CV ) σn(·,hlog
SCV)

ϵ = 0 σRice,n 0.283 (0.132) – 0.036 –σMAD,n 0.087 (0.124) 0.384 (0.124) 0.133 0.052σBT,n 0.144 (0.169) 0.411 (0.112) 0.164 0.063

ϵ = 0.10 σRice,n 0.343 (0.157) – 1.375 –σMAD,n 0.118 (0.148) 0.403 (0.113) 0.320 0.116σBT,n 0.161 (0.175) 0.424 (0.108) 0.242 0.102

ϵ = 0.20 σRice,n 0.301 (0.141) – 2.105 –σMAD,n 0.131 (0.158) 0.396 (0.130) 0.811 0.387σBT,n 0.179 (0.184) 0.432 (0.109) 0.417 0.201

ϵ = 0.30 σRice,n 0.279 (0.121) – 2.494 –σMAD,n 0.134 (0.191) 0.344 (0.172) 1.342 1.103σBT,n 0.238 (0.224) 0.398 (0.150) 0.631 0.344

Table 4
Mean and standard deviation (between brackets) of the selected bandwidths and mean of theisel for the local scale-estimates. Model g(x) = 2 sin(4πx),
σ(x) = exp(x). Errors with asymmetric contamination. KCV log-procedure.

Estimator Selected bandwidth iselhlog
CV

hlog
SCV σn(·,hlog

CV ) σn(·,hlog
SCV)

ϵ = 0 σRice,n 0.081 (0.083) – 0.054 –σMAD,n 0.140 (0.159) 0.269 (0.150) 0.118 0.055σBT,n 0.160 (0.173) 0.303 (0.148) 0.158 0.062

ϵ = 0.10 σRice,n 0.043 (0.059) – 1.140 –σMAD,n 0.142 (0.162) 0.269 (0.143) 0.308 0.129σBT,n 0.164 (0.179) 0.296 (0.144) 0.244 0.110

ϵ = 0.20 σRice,n 0.051 (0.056) – 1.887 –σMAD,n 0.138 (0.162) 0.305 (0.149) 0.790 0.419σBT,n 0.152 (0.174) 0.303 (0.151) 0.436 0.217

ϵ = 0.30 σRice,n 0.054 (0.061) – 2.308 –σMAD,n 0.154 (0.176) 0.293 (0.164) 1.370 1.152σBT,n 0.130 (0.158) 0.322 (0.154) 0.680 0.341

Tables 1–4 show that when the data are not contaminated the robust estimators exhibit a minor loss of efficiency,
compared with the classical local Rice.

The behavior of isel (σRice,n) shows the lack of robustness of σRice,n in the presence of outliers. As the percentage of
contamination increases, Fig. 4 confirms and explains the results observed in Tables 1–4 regarding the better performance
of the robust estimators as the density functions move toward the left of 1. Notice that, in most cases, the values of isel are
much smaller than 1 for ϵ > 0.
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Table 5
Optimal bandwidths when n = 100 for each criteria. Model g(x) = 2 sin(4πx), σ(x) = exp(x).

ϵ MLS M log
LS MROB M log

ROB MROB,S M log
ROB,S

0 0.21 0.17 0.30 0.21 0.28 0.23
0.05 0.50 0.03 0.38 0.27 0.35 0.25

With respect to the performance of the two robust estimators, under asymmetric contaminationsσBT,n is clearly more
robust thanσMAD,n. This fact is also observed for high contamination proportions under the symmetric contaminationmodel,
as described in Boente et al. (2010b).

For the studied model, the scale curve is a monotone function and so, the mean values of the selected bandwidths tend
to be larger. This implies that more smoothing is needed and the mean values of isel are smaller, compared with those
obtained under the model in which σ(x) = 1 + [1 + sin(10x)]2 which are reported in Boente et al. (2010b).

It is also important to remark that all the robust bandwidth selection methods give similar conclusions regarding the
performance of the estimators in both models. But in general, the smaller values of the integrated square errors correspond
to SCV and SCV log.

Finally, we recommend the localM-estimator based on the Beaton–Tukey score function,σBT,n(x), since it is more stable
thanσMAD,n(x) even for asymmetric outliers.

6.2. Performance of the asymptotic bandwidths

In this subsection, we compute the ‘‘optimal’’ bandwidths according to the criteria defined in Section 3 (compare
with Bianco and Boente, 2007). This study shows that the classical asymptotically optimal bandwidths are very sensitive
to outliers while the robust ones are much more stable. These results explain, in part, those in Section 6.1. We define the
expected mean estimation errors as follows:

MLS(h) = E
1
n

n
i=1


σ 2(xi)−σ 2

LS,n(xi, h)
2

(7)

M log
LS (h) = E

1
n

n
i=1


log (σ (xi))− log

σLS,n(xi, h)2 (8)

MROB(h) = Es2(h)
1
n

n
i=1

ψ2

ui(h)
s(h)


(9)

M log
ROB(h) = Es2log(h)

1
n

n
i=1

ψ2


ulog
i (h)
slog(h)


(10)

MROB,S(h) = E

µ2

n


{ui(h)}1≤i≤n


+ τ 2n


{ui(h)}1≤i≤n


(11)

M log
ROB,S(h) = E


µ2

n


{ulog

i (h)}1≤i≤n


+ τ 2n


{ulog

i (h)}1≤i≤n


, (12)

where ui(h) = σ 2(xi) − σ 2
BT,n(xi, h), u

log
i (h) = log (σ (xi)) − log

σBT,n(xi, h), s(h) and slog(h) stand for the median of
the absolute values |σ 2(xi) −σ 2

BT,n(xi, h)| and
log (σ (xi))− log

σBT,n(xi, h), respectively, and µn and τn are the median
and a tau-scale. These are approximations to the corresponding ‘‘integrated mean estimation error’’ which in practice are
estimated using cross-validation.

The expected values are approximated by simulating independent samples of size n = 100 (as in Section 6.1, i.e., with
g(x) = 2 sin(4πx), σ(x) = exp(x), xi = i/(n + 1)) and averaging over 100 replications. The ‘‘optimal’’ bandwidths hn,opt
are then obtained by minimizing the above mean estimation errors over a grid of points.

We consider two types of errors: standard normal and asymmetrically contaminated standard normal (G(y) =

0.95Φ(y) + 0.05H(y) with H = N(10, 0.1)). The optimal bandwidth is obtained by inspection over the grid i/(n/2),
3 ≤ i ≤ n/2. The obtained bandwidths are given in Table 5. Fig. 5 gives plots of the estimated errors MLS(h), M

log
LS (h),

MROB(h),M
log
ROB(h),MROB,S(h) andM log

ROB,S(h). The plots corresponding to contaminated samples usingMLS(h) andM log
LS (h) are

given in separate plots due to the scale difference. As expected the non-robust measures MLS(h) and M log
LS (h) are strongly

influenced by contamination, while the robust measures combined with robust estimators are much more stable. The best
performance is achieved when measuring deviances on the log scale and using the split bias-variance procedure. Note that
these findings are consistent with the conclusions of the Monte Carlo study described in Section 6.1.



Author's personal copy

1604 G. Boente et al. / Computational Statistics and Data Analysis 56 (2012) 1594–1608

Fig. 5. In solid and dashed lines, (− · −) are plotted with the results over non-contaminated and contaminated samples, respectively. The vertical lines
show the point where the minimum value is attained.

Table 6
Mean of the ratio R between the data-driven and n−α . Model g(x) = 2 sin(4πx), σ(x) = exp(x).

n α = −1/3
RLS RROB RROB,S Rlog

LS Rlog
ROB Rlog

ROB,S

100 0.882 1.091 2.001 0.357 1.128 1.188
200 0.904 1.314 2.694 0.252 1.376 1.327
500 1.028 1.530 3.865 0.180 1.641 1.639

1000 1.032 2.095 4.923 0.119 1.734 1.857
2000 1.034 2.490 6.253 0.100 1.672 2.159

n α = −1/5
RLS RROB RROB,S Rlog

LS Rlog
ROB Rlog

ROB,S

100 0.477 0.590 1.083 0.193 0.610 0.643
200 0.446 0.648 1.329 0.124 0.679 0.655
500 0.449 0.668 1.688 0.079 0.716 0.716

1000 0.411 0.834 1.960 0.047 0.690 0.739
2000 0.375 0.904 2.270 0.036 0.607 0.784

6.3. Asymptotic performance of the data-driven bandwidths

In this subsection,we compute the cross-validation data-driven bandwidths for samples of sizesn = 100, 200, 500, 1000
and 2000 to numerically investigate their convergence rates under the central Gaussian model. That is, we consider the
model described in Section 6.1 with ϵ = 0.

To simplify the notations, the ratio between the cross-validation bandwidthshLS,CV,hlog
LS,CV,hBT,CV,hlog

BT,CV,hBT,SCV andhlog
BT,SCV

and n−α for α = 1/3 and 1/5 are denoted RLS, RROB, RROB,S, R
log
LS , R

log
ROB and Rlog

ROB,S, respectively. Table 6 reports the averages
over 100 replications.

The results in Table 6 suggest that the assumptions in Section 5 are valid for the classical bandwidthhLS,CV and for all
the considered robust data-driven bandwidths. In fact, for the classical cross-validation bandwidthhLS,CV, the order seems
to be n−1/3. But note the bad performance ofhlog

LS,CV which leads to very small bandwidth values and so, to undersmoothing
as mentioned in Section 4. The convergence order of the robust cross-validation bandwidths appears to be n−1/5.

In summary, the numerical results obtained in this subsection suggest that the assumptions of Theorem 5.2 are satisfied
by the robust scale estimators computed with the robust data-driven bandwidths introduced in this paper. Therefore, these
data driven estimators are consistent and asymptotically normally distributed.

7. Concluding remarks

Robust estimation of the scale function is an important research problem. There are classical (non-robust) and robust
proposals for the estimation of the scale function based on differences of the response variable. But the critical problem of
estimation of the bandwidth parameter has been less studied.
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Wehave shown that the asymptotic behavior of the local robust data-drivenM-estimators for the scale function based on
successive differences is the same as that of the related estimators obtainedwith a fixed bandwidth hn providedhn/hn

p
−→ 1.

Therefore, under mild regularity conditions, the corresponding robust kernel-based scale estimators based on differences
are strongly consistent and asymptotically normal.

We proposed several robust cross-validation procedures to estimate the bandwidth parameter. The performance of the
classical and robust bandwidth selection methods as well as the behavior of the corresponding estimators based on these
bandwidths was compared using Monte Carlo simulation under the central model and different contamination models. We
also illustrated their performances in a real data example.

We have shown that the robust approaches perform better than their non-robust counterparts. We have also found
that using the log scale and splitting the cross-validation error into its bias and variance components lead to the best
performances in our numerical numerical studies and simulations.
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Appendix

Proof of Theorem 5.1. For the sake of simplicity, we will begin by fixing some notation. For any i = 1, . . . , n − 1, let
Y ∗

i = Yi+1 − Yi,U∗

i = Ui+1 − Ui, Sx = S(Gx) and

λn,b(x, s, h) = (nh)−1
n

i=1

L

x − xi

h


χ


Y ∗

i

as


− b

λ(x, s) = E

χ


σ(x)U∗

1

as


− b.

Theorem 4.1 in Boente et al. (2010a) implies that λn(x, s, hn)
a.s.
−→ λ(x, s). Hence, if we assume that

λn(x, s,hn)− λn(x, s, hn)
a.s.
−→ 0 (A.1)

holds, we have that λn(x, s,hn)
a.s.
−→ λ(x, s). Using that λ(x, Sx) = 0 and that χ is strictly increasing on [0, ∥χ∥∞), we have

that, for any ϵ > 0, λ(x, Sx − ϵ) < 0 < λ(x, Sx + ϵ). Therefore, for n large enough, we have that λn(x, Sx − ϵ,hn) < 0 <
λn(x, Sx + ϵ,hn), a.s., which implies thatσM,n(x,hn)

a.s.
−→ S(Gx).

It remains to show that (A.1) holds. Define Zi = χ

σ(x)Y ∗

i /(as)

and write λn(x, s,hn)− λn(x, s, hn) = S1,n + S2,n with

S1,n = (nhn)
−1

n
i=1

L

x − xi
hn


Zi

hn/hn − 1


S2,n = (nhn)

−1
n

i=1


L

x − xihn


− L


x − xi
hn


Zi.

In order to derive (A.1) it is enough to show that

S1,n
a.s.
−→ 0 (A.2)

S2,n
a.s.
−→ 0. (A.3)

Using thathn/h
a.s.
−→ 1, |Zi| ≤ ∥χ∥∞ and that (nhn)

−1n
i=1 |L ((x − xi)/hn)| →


|L(u)| du, (A.2) follows easily. To obtain

(A.3), write

S2,n = (nhn)
−1

n
i=1

L1


x − xi
ξn


hn

ξn

 
hnhn

− 1

Zi,

where L1(u) = uL ′(u) and ξn is an intermediate point betweenmin(hn,hn) andmax(hn,hn). Sincehn/hn
a.s.
−→ 1, there exists

a set N such that P(N ) = 0 and for all ω ∉ N , (1/2) < hn/hn < 2 holds, which implies that ξn ∈ [h(m), h(M)] with
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h(m) = hn/2 and h(M) = 2hn. From now on, we restrict our attention to those points ω ∉ N . Noting thatS2,n ≤ 2
hnhn

− 1
 ∥χ∥∞ (nhn)

−1
n

i=1

L1 x − xi
ξn

 ,
it is enough to show that lim sup |An| < ∞ where An = (ξn/hn) Cn and Cn = (nξn)−1n

i=1 |L1 ((x − xi)/ξn)|. Using that
ξn ∈ [h(m), h(M)], we get (ξn/hn) ∈ [1/2, 2] and so, ξn → 0 and nξn → ∞ implying that Cn →


|L(u)| du which concludes

the proof. �

Proof of Theorem 5.2. Let {Y ∗

i }i≥1, {U∗

i }i≥1 and Sx = S(Gx) be as in the proof of Theorem 5.1. Also, let Sn(h) =

(nhn)
1/2λn,b(x, Sx, h)with

λn,b(x, s, h) = (nh)−1
n

i=1

L

x − xi

h


χ


Y ∗

i

as


− b

and

λ1n(x, s, h) = (nh)−1S−1
x

n
i=1

L

x − xi

h


χ1


Y ∗

i

as


.

Using a second order Taylor’s expansion, we obtain

0 = (nhn)
1/2λn,b(x,σM,n(x,hn),hn) = Sn(hn)− (nhn)

1/2 σM,n(x,hn)− Sx

An(hn),

where

An(hn) =λ1n(x, Sx,hn)−
σM,n(x,hn)− Sx


Bn(hn)

Bn(hn) = ξ−2
n (nhn)

−1
n

i=1

L

x − xihn


χ3


Y ∗

i

aξn


,

with χ3(u) = χ1(u)+ χ2(u) and ξn = ξn(x,hn) an intermediate point betweenσM,n(x,hn) and Sx. Hence, we have that

(nhn)
1/2 σM,n(x,hn)− Sx


= Sn(hn)/An(hn).

In the proof of Theorem 4.2 in Boente et al. (2010a), it is shown that

Sn(hn)
D
−→ N


S(Gx)

σ (x)
β1


L2(u)du

 1
2

, v


L2(u)du


,

hence, to conclude the proof, it will be enough to prove that

An(hn)
p
−→ v2 (A.4)

Sn(hn)− Sn(hn)
p
−→ 0. (A.5)

SinceσM,n(x,hn)−Sx
p
−→ 0 and considering that (A.12) in Boente et al. (2010a) implies thatλ1n(x, Sx, hn)

p
−→ v2, (A.4) follows

if we show that

λ1n (x, Sx, hn)−λ1n x, Sx,hn
 p

−→ 0 (A.6)

Bn(hn) = Op(1). (A.7)

The same arguments considered to derive (A.1) can be used to obtain (A.6). Using that ξn = ξn(xhn)
p
−→ Sx, the bound(nhn)

−1
n

i=1

L

x − xihn


χ3


Y ∗

i

aξn

 ≤ ∥χ3∥∞ (nhn)
−1

n
i=1

Lx − xihn

 ,
and that analogous arguments to those considered above lead to

(nhn)
−1

n
i=1

Lx − xihn

− (nhn)
−1

n
i=1

Lx − xi
hn

 p
−→ 0,

(A.7) follows from the fact that (nhn)
−1n

i=1

L  x−xi
hn

 →


|L(u)| du.
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We now prove (A.5). The fact thatτn = hn/hn
p
−→ 1, implies that P (τn ∈ [r, s]) → 1, with r and s constants satisfying

0 < r < 1 < s. We now define the stochastic process Vn(τ ) = (nhn)
1/2λn,b(x, Sx, τhn) with τ ∈ [r, s], and note that

Vn(τn) = Sn(hn) and Vn(1) = Sn(hn).
Assume that there exists an stochastic process V which belongs to C[r, s], the space of continuous functions on [r, s],

such that

Vn
D
−→ V . (A.8)

Using thatτn p
−→ 1, we have that for any η > 0, there exists δ > 0 and n0 ∈ N such that

P (|τn − 1| > δ) < η/2, ∀n ≥ n0.

On the other hand, (A.8) implies that there exists n1 ∈ N such that

P


sup
|τ−1|<δ

|Vn(τ )− Vn(1)| > ϵ


≤ η/2, ∀n ≥ n1.

These inequalities imply that for any n ≥ max(n0, n1)

P (|Vn(τn)− Vn(1)| > ϵ) ≤ P (|τn − 1| > δ)+ P


sup
|τ−1|<δ

|Vn(τ )− Vn(1)| > ϵ


≤ η,

and (A.5) follows. To prove (A.8), define Un(τ ) = (nhn)
1/2

λn,b(x, Sx, τhn)− E


λn,b(x, Sx, τhn)


. Then, Vn(τ ) = Un(τ ) +

(nhn)
1/2E


λn,b(x, Sx, τhn)


= Un(τ )+γn(τ ).Using analogous arguments to those considered to prove Lemma A.2 in Boente

et al. (2010a), it is easy to show that

sup
τ∈[r,s]

(nhn)
1/2E


λn,b(x, Sx, τhn)


− β1

Sx
σ(x)

v2

τ 1/2

 → 0,

i.e., γn(τ ) → γ (τ) = β1Sxv2(σ (x)τ 1/2)−1 uniformly on [r, s]. Hence (A.8) follows if we show that Un
D
−→ U , where U is a

Gaussian stochastic process on C[r, s]. Therefore, it remains to show that

(i) For any τ1, . . . τk ∈ [r, s],

Uτ1 , . . . ,Uτk


converge to a multivariate normal distribution N(0,Σ).

(ii) The sequence {Un(r)}n≥1 is tight.
(iii) There exists a constant c such that E [Un(τ2)− Un(τ1)]2 ≤ c (τ2 − τ1)

2, for 0 < r < τ1 < τ2 < s < 1.

As it is well known, to derive (i) it is enough to show that, for any vector a = (a1, . . . , ak)t ∈ Rk, Wn =
k

j=1 ajUn(τj)
converge to a normal distribution. Note that

Un(τ ) = (nhn)
1/2 1

nτhn

n
i=1

L

x − xi
τhn


Zi

Wn = (nhn)
−1/2

n
i=1

L∗


x − xi
hn


Zi

with Zi = χ

Y ∗

i /(aSx)


− Eχ

Y ∗

i /(aSx)

and L∗(u) =

k
j=1(aj/τj)L


u/τj


. The convergence of {Wn}n≥1 to the normal

distribution is now an immediate consequence of Theorem 4.2 in Boente et al. (2010a).
The proof of (ii) follows immediately from the fact that Un(r) converges in distribution.
We now prove (iii). Since χ is bounded, there exists a constant k1 such that var (Zi) ≤ k1 and cov (Zi, Zi+1) ≤ k1 for any

i ≥ 1. Hence E [Un(τ2)− Un(τ1)]2 ≤ H1,n + H2,n, where

H1,n = k1
1

nhn

n
i=1


1
τ2

L

x − xi
τ2hn


−

1
τ1

L

x − xi
τ1hn

2

H2,n = 2k1
1

nhn

n−1
i=1


1
τ2

L

x − xi
τ2hn


−

1
τ1

L

x − xi
τ1hn


×


1
τ2

L

x − xi+1

τ2hn


−

1
τ1

L

x − xi+1

τ1hn


.

The Lipschitz continuity of L implies that H1,n ≤ T1,n + T2,n, where

T1,n = 2k1
1
τ 22


1
τ2

−
1
τ1

2 1
nhn

n
i=1


L′


x − xi
ξihn

2 x − xi
hn

2

= 2k1
1
τ 22


1
τ2

−
1
τ1

2

R1,n

T2,n = 2k1τ1


1
τ2

−
1
τ1

2 1
nτ1hn

n
i=1

L2

x − xi
τ1hn


= 2k1τ1


1
τ2

−
1
τ1

2

R2,n
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and ξi ∈ (τ1, τ2). Using that τ1, τ2 ∈ [r, s] and the assumptions on the design points and proceeding as in Theorem 3.1 of
Boente et al. (1997), it is easy to show that, for all n ≥ 1, R1,n ≤ B, with B a fixed constant. If we note that for any n ≥ 1,
R2,n ≤ C with C a fixed constant, we get easily that, T1,n ≤ 2k1(s2/(r4B)) (τ2 − τ1)

2 and T2,n ≤ 2k1(s/(r2C)) (τ2 − τ1)
2.

So, H1,n ≤ c1 (τ2 − τ1)
2 with c1 = 2k1


s2 B/r4 + s C/r2


. Using analogous arguments, it can be shown that there exists a

constant c2 such that H2,n ≤ c2 (τ2 − τ1)
2. Hence (iii) follows with c = c1 + c2. �
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