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a b s t r a c t

In this paper, we introduce a family of robust statistics which allow to decide between
a parametric model and a semiparametric one. More precisely, under a generalized
partially linear model, i.e., when the observations satisfy yi| (xi, ti) ∼ F (·, µi) with µi =

H

η(ti)+ xti β


and H a known link function, we want to test H0 : η(t) = α + γ t against

H1 : η is a nonlinear smooth function. A general approachwhich includes robust estimators
based on a robustified deviance or a robustified quasi-likelihood is considered. The
asymptotic behavior of the test statistic under the null hypothesis is obtained.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Semiparametricmodels contain both a parametric and a nonparametric component. Sometimes the nonparametric com-
ponent plays the role of a nuisance parameter. A lot of research has been done on estimators of the parametric component
in a general framework, aiming to obtain asymptotically efficient estimators. The aim of this paper is to consider semipara-
metric versions of the generalized linear models where the response y is to be predicted by covariates (x, t), where x ∈ Rp

and t ∈ T ⊂ R with T a compact set. Without loss of generality we will assume that T = [0, 1]. It will also be assumed
that the conditional distribution of y|(x, t) belongs to the canonical exponential family exp [yθ(x, t)− B (θ(x, t))+ C(y)],
for known functions B and C . Then, µ (x, t) = E (y|(x, t)) = B′ (θ(x, t)), with B′ as the derivative of B. In generalized linear
models (Mc Cullagh and Nelder, 1989), which is a popular technique for modeling a wide variety of data, it is often assumed
that the mean is modeled linearly through a known link function, g , i.e., g(µ (x, t)) = γ + xtβ + αt . For instance, an
ordinary logistic regression model assumes that the observations (yi, xi, ti) are such that the responses are independent bi-
nomial variables yi|(xi, ti) ∼ Bi(1, pi)whose success probabilities depend on the explanatory variables through the relation
g(pi) = γ + xitβ + αti, with g(u) = log (u/(1 − u)).

In many situations, the linear model is insufficient to explain the relationship between the response variable and
its associated covariates. A natural generalization, which suffers from the curse of dimensionality, is to model the mean
nonparametrically in the covariates. An alternative strategy is to allow most predictors to be modeled linearly while one
or a small number of predictors enter in the model nonparametrically. This is the approach we will follow, so that the
relationship will be given by the semiparametric generalized partially linear model

µ (x, t) = H

η(t)+ xtβ


(1)

where H = g−1 is a known link function, β ∈ Rp is an unknown parameter and η is an unknown smooth function.
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In the context of hypothesis testing for regression models, that is, when H(t) = t , Gao (1997) established a large sample
theory for testingH0 : β = 0 and, in addition to this, Härdle et al. (2000) testedH0,η : η = η0 too, while Härdle andMammen
(1993) considered the lack of fit problem H0 : η ∈ {ηθ : θ ∈ Θ}. Besides, González-Manteiga and Aneiros-Pérez (2003)
studied the case of dependent errors and Koul and Ni (2004) considered the case of random design and heteroscedastic
errors. These methods are based on a L2 distance comparison between a nonparametric estimator of the regression function
and a smoothed parametric estimator, so they face the problem of selecting the smoothing parameter. An alternative
approach is based on the empirical estimator of the integrated regression function. Goodness of fit tests based on empirical
process for regressionmodelswith non-randomdesign have been studied, for instance, by Koul and Stute (1998) andDiebolt
(1995). On the other hand, under a purely nonparametric regressionmodelwith Berksonmeasurement errors, Koul and Song
(2008) considered amarked empirical process of the calibrated residuals. Recently, Koul and Song (2010) proposed a test for
the partial linear regression model based on the supremum of a martingale transform of a process of calibrated residuals,
when both the covariates in the parametric and nonparametric components are subject to Berkson measurement errors.

On the other hand, for generalized partially linearmodels, hypothesis testingmainly focusses on comparing kernel based
estimators with smoothed parametric estimators. For instance, Härdle et al. (1998) considered a test statistic to decide
between a linear and a semiparametric model. Their proposal is based on the estimation procedure considered by Severini
and Staniswalis (1994) modified to deal with the smoothed and unsmoothed likelihoods. A comparative study of different
procedures was performed by Müller (2001) while a different approach was considered in Rodríguez Campos et al. (1998).

As it is well known, such estimates fail to deal with outlying observations and so does the test statistic. In a semipara-
metric setting, outliers can have a devastating effect, since the extreme points can easily affect the scale and the shape of the
function estimate of η, leading to possibly wrong conclusions. In particular, as mentioned in Hampel’s comment on Stone
(1977). ‘‘If we believe in a smooth model without spikes, . . . , some robustification is possible. In this situation, a clear outlier will
not be attributed to some sudden change in the true model, but to a gross error, and hence it may be deleted or otherwise made
harmless’’. Therefore, in this context robust procedures need to be developed to avoid wrong conclusions on the hypothesis
to be tested (see Bianco et al., 2006 for a discussion).

Robust procedures for generalized linear models have been considered among others by Stefanski et al. (1986), Künsch
et al. (1989), Bianco and Yohai (1995), Cantoni and Ronchetti (2001), Croux and Haesbroeck (2002) and Bianco et al. (2005).
The basic ideas from robust smoothing and from robust regression estimation have been adapted to deal with the case of
independent observations following a partially linear regression model with H(t) = t; we refer to Gao and Shi (1997), He
et al. (2002) and Bianco and Boente (2004). Moreover, robust tests for a given alternative, under a partially linear regression
modelwere studied in Bianco et al. (2006). Besides, a robust approach for testing the parametric formof a regression function
versus an omnibus alternative, based on the centered asymptotic rank transformation, was considered by Wang and Qu
(2007) when H(t) = t and β = 0, i.e., under the nonparametric model yi = η(ti)+ ϵi.

Under a generalized partially linear model (1), Boente et al. (2006) introduced a general profile-based two-step robust
procedure to estimate the parameter β and the function η while Boente and Rodriguez (2010) (see also, Rodriguez,
2008) developed a three-step method to improve the computational time of the previous one. Beyond the importance of
developing robust estimators in more general settings, the work on testing also deserves attention. An up-to-date review
of robust hypothesis testing results can be found in He (2002). The aim of this paper is to propose a class of tests for the
nonparametric component based on the three-step robust procedure proposed by Boente and Rodriguez (2010).

The paper is organized as follows. In Section 2, we recall the definition of the general profile-based two-step estimators
as well as the three-step robust estimates and their asymptotic properties. In Section 3, we present a robust alternative to
the test hypothesis concerning the nonparametric component η. Their asymptotic behavior is studied in Section 4 while
a bootstrap procedure is discussed in Section 5. Section 6 reports the result of a Monte Carlo study conducted to evaluate
the performance of the tests under the null hypothesis and under a set of alternatives. Finally, proofs are relegated to the
Appendix.

2. Preliminaries: the estimation procedure

As mentioned in the Introduction, Boente et al. (2006) introduced a highly robust procedure under model (1) while
Boente and Rodriguez (2010) introduced a local approach to improve the computational time. Let (yi, xi, ti) be independent
observations such that yi| (xi, ti) ∼ F (·, µi)withµi = H (η(ti)+ xitβ) andVar (yi|(xi, ti)) = V (µi). Letη0(t) andβ0 denote
the true parameter values, and E0 the expected value under the true model, so that E0(y1|(x1, t1)) = H


η0(t1)+ x1tβ0


.

As in Robinson (1988), we will assume that the vector 1n is not in the space spanned by the column vectors of
(x1, . . . , xn) t, that is, we do not allow β0 to include an intercept so that the model is identifiable, i.e., if xitβ1 + η1(ti) =

xitβ2+η2(ti) for 1 ≤ i ≤ n, then,β1 = β2 and η1 = η2. Due to the generality of the semiparametricmodel (1), identifiability
implies that only ‘‘slope’’coefficients can be estimated.

Let w1 : Rp
→ R be a weight function to control leverage points on the carriers x, ρ : R2

→ R a loss function and
K : R → R a kernel function. Define S(β, a, τ ) = E0 [ρ (y, xtβ + a) w1(x)|t = τ ] and Sn(β, a, t) =

n
i=1 Wi(t)ρ(yi,

xitβ + a)w1(xi)whereWi(t) are the kernel weights on ti, i.e.

Wi(t) =


n

j=1

K((t − tj)/hn)

−1

K((t − ti)/hn).
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Following the ideas of Severini and Staniswalis (1994), Boente et al. (2006) defined, for each fixedβ, the function ηβ(t) as the
minimizer of S(β, a, t). Since Sn(β, a, t) provides a consistent estimate of S(β, a, t), the minimizer in a,ηβ(t), of Sn(β, a, t)
estimates ηβ(t). These functions allow the abovementioned authors to define a two-step robust quasi-likelihood estimators
of β0 and η0 asβ = argminβSn(β, ηβ, t) andη(t) = ηβ(t), respectively. Boente and Rodriguez (2010) introduced a new
family of estimators of β0 and η0 that improve the computational results. Both proposals provide robust root-n consistent
estimators of the regression parameter β.

If the function ρ(y, u) is continuously differentiable and we denote Ψ (y, u) = ∂ρ(y, u)/∂u, the functional ηβ(t) and
the estimatesηβ(t) will be a solution of the differentiated equations, i.e., they will be a solution of S(1)(β, a, t) = 0 and
S(1)n (β, a, t) = 0 respectively, where S(1)(β, a, τ ) = E0 (Ψ (y, xtβ + a) w1(x)|t = τ) and S(1)n (β, a, t) =

n
i=1 Wi(t)Ψ (yi,

xitβ + a)w1(xi). We refer to Boente et al. (2006) and Boente and Rodriguez (2010) for a discussion on the choice of the
loss functions, where also conditions to ensure Fisher-consistency of the resulting estimators are stated. We only point out
that, under a generalized linear model, two families of loss functions ρ have been considered in the literature, the first one
bounds the deviances, as in our simulation study, while the second one introduced by Cantoni and Ronchetti (2001) is based
on robustifying the quasi-likelihood by bounding the Pearson residuals.

3. Test statistics

A robust test statistic to test H0 : η0 ∈ {α+γ t, α ∈ R, γ ∈ R} can be defined by comparing the robust semiparametric
estimators with the robust estimators obtained under a parametric model. We will give an approach which robustifies the
test statistic defined in Härdle et al. (1998).

Denoteβ a robust root-n estimator ofβ0 andη(t) =ηβ(t) the estimates ofη0(t) solution ofηβ(t) = argmina∈RSn(β, a, t).
As in Section 2, let w2 : Rp

→ R be a weight function that controls high leverage points on the covariates x. Denote
L(β, α, γ ) = E0 [ρ (y, xtβ + α + γ t) w2(x)] and

Ln(β, α, γ ) =
1
n

n
i=1

ρ

yi, xitβ + α + γ ti


w2(xi),

which correspond to the robustified objective functions under a generalized linear regression model. Then, the robust
estimates of the regression parameter under the generalized linear model can be defined as the minimizer of Ln

(βh0 ,αh0 ,γh0) = argmin
β∈Rp,α∈R,γ∈R

Ln(β, α, γ ). (2)

To test H0, a natural approach is to compare the predicted values xitβ+η(ti)with those obtained under the null hypothesis,
xitβh0 +αh0 + γh0 ti. However, as it is well known, in nonparametric and semiparametric models, due to the bias of the
kernel estimator of S(β, a, t), the smoothing bias ofη(t) is non-negligible, even under the linear hypothesis H0, see, for
instance, Härdle and Mammen (1993) and Härdle et al. (1998) for a discussion, when considering the classical estimators.
For that reason, a simple comparison between both estimators may be misleading and conduct wrong conclusions. To solve
this problem, Härdle et al. (1998) introduced a smoothing bias toαh0 +γh0 t to compensate that ofη(t). It is worth noting
that the smoothed estimators obtained under the null hypothesis may not belong to family of linear functions. However,
they provide consistent estimators under the parametric model.

To define smoothed estimators under the null hypothesis, consider the pseudo-observationsyi corresponding to the
parametric fit of the conditional expectation under the null hypothesis, that is,yi = H


xitβh0 +αh0 + γh0 ti


and denoteΨ (µ, xtβ + a) = E (Ψ (y, xtβ + a) |(x, t))where the conditional expectation is taken when y|(x, t) ∼ F(·, µ).

The functionηh0 is defined as follows. Since the pseudo-observations will not have outliers, in the sense of large Pearson
residuals, but only leverage points could appear, it is quite natural to defineηh0(t) as the value solving

n
i=1 Wi(t)Ψ (yi,

xitβh0 + a)w1(xi) = 0, or equivalently as the valueηh0(t) = argmina∈R
Sn(βh0 , a, t), whereSn(β, a, t) =

n
i=1 Wi(t)ρ(yi,

xitβ + a)w1(xi), with (∂ρ(µ, a)) /∂a = Ψ (µ, a). Note that under mild conditionsρ(µ, a) = E (ρ (y, a) |(x, t)) where the
conditional expectation is taken when y|(x, t) ∼ F(·, µ).

Then, the test statistic is defined using a goodness-of-fit measure, based on the quasi-likelihood function

T1 = −2
n

i=1

Q

H

xitβ +η(ti) ,H xitβh0 +ηh0(ti)


w2(xi)w(ti)

where Q (y, µ) =
 y
µ
(s − y)V−1(s) ds is the quasi-likelihood. Since the quasi-likelihood is computed comparing predicted

values for the responses based on robust estimators, large deviations of the predicted responses from its mean will not
have large influence in the test statistics. However, outlying points in the explanatory variables may have large influence
on the quasi-likelihood expression. Hence, in order to bound their effect, we introduce a weight function w2(xi) in the test
definition. We have also included a weight function w(t) to avoid boundary effects. The function w has a compact support
T0 ⊂ T = [0, 1], in particular we have that for n large enough I[hn,1−hn](t) ≥ w(t). This robust version of quasi-likelihood
test is different from the robust likelihood ratio-type or score type tests as defined in Heritier and Ronchetti (1994) which
still uses the responses yi and compares the responses and the fits obtained under the restricted and unrestricted models.
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4. Asymptotic behavior

For the sake of simplicity, we denote ρn = h2
n + (n hn)

−
1
2 , χ(y, a) = ∂Ψ (y, a) /∂a, χ1(y, a) = ∂2Ψ (y, a) /∂a2,υ(β, t) =ηβ(t)− ηβ(t), υ0(t) =υ(β0, t), υj(β, t) = ∂υ(β, t)/∂βj andυj,0(t) =υj(β0, t).

We will need the following set of assumptions
A1. The density f of t1 is bounded on T , twice continuously differentiable in the interior of T with bounded derivatives.
A2. inft∈[0,1] f (t) > 0.
A3. η0 is twice continuously differentiable in the interior of T with bounded derivatives on T .
A4. r(t, τ ) = E0(χ(y1, x1tβ0 + η0(t))w1(x1)|t1 = τ) is uniformly continuous in the interior of T and bounded in T .
A5. The functions v0(τ ) = E0(χ(y1, x1tβ0 + η0(τ ))w1(x1)|t1 = τ) and v1(τ ) = E0(χ(y1, x1tβ0 + η0(τ ))x1w1(x1)|t1 = τ)

are uniformly continuous in the interior of T and Iv0 = inft∈[0,1] |v0(τ )| > 0.
A6. Ψ , χ, χ1, w, wj and ψj(x) = xwj(x) are bounded functions for j = 1, 2.
A7. K is a function of bounded variation with compact support [0, 1] and it satisfies


K(u)du = 1 and


u K(u)du = 0.

A8. The bandwidth sequence satisfies nh3
n/ log(n) → ∞ and n

1
2 h4

n log(n) → 0.

Theorem 4.1. Assume that A1–A8 hold. Moreover, assume that
(a) G = {g(y, x, u) = χ


y, xtβ0 + a


w1(x)− E0


χ

y1, x1tβ0 + a


w1(x1)|t1 = u


, a ∈ R} , has covering number N(ϵ,G,

L1(Q)) ≤ Aϵ−W , for any probability Q and 0 < ϵ < 1.
(b) ψ1,2(x) = w1(x)∥x∥2 is bounded or supt∈T E0


ψ1,2(x)|t


< ∞.

Then, under H0 : η ∈ {α + γ t, α ∈ R, γ ∈ R}, we have that v−1
n (T1 − mn)

w
−→ N(0, 1), with mn = c1,Ψ h−1

n


K 2(u)du

and v2n = 2c2,Ψ h−1
n


(K ∗ K(u))2 du, where

c1,Ψ = E


w(t1)E


w2(xi)

H ′

x1tβ0 + α0 + γ0t1

2
V

H

x1tβ0 + α0 + γ0t1

  t1


E

w2

1(x1)σ
2(x1, t1)|t1


v0(t1)−2f (t1)−1



c2,Ψ = E

E


w2(xi)

H ′

x1tβ0 + α0 + γ0t1

2
V

H

x1tβ0 + α0 + γ0t1

  t1
2 

E

w2

1(x1)σ
2(x1, t1)|t1

2 w2(t1)
v0(t1)4f (t1)


σ 2(x0, t0) = E


Ψ

y1, x1tβ0 + η0(t1)


− E0


Ψ

y1, x1tβ0 + η0(t1)


|(x1, t1)

2
|(x1, t1) = (x0, t0)


.

Remark 4.1. When considering the canonical exponential family described in the Introduction V

H

x1tβ0 + η0(t1)


=

H ′

x1tβ0 + η0(t1)


and so

c1,Ψ = E

w(t1)E


w2(x1)H ′


x1tβ0 + α0 + γ0t1


|t1


E

w2

1(x1)σ
2(x1, t1)|t1


v0(t1)−2f (t1)−1

c2,Ψ = E

w2(t1)


E

w2(x1)H ′


x1tβ0 + α0 + γ0t1


|t1
2 E w2

1(x1)σ
2(x1, t1)|t1

2 1
v0(t1)4f (t1)


.

5. A Monte Carlo test

In this section, we develop a boostrap procedure to implement the goodness-of-fit test for linearity. The need for
bootstrapping has been studied by several authors such as Härdle and Mammen (1993), Härdle et al. (1998). These authors
applied awild bootstrap procedure to construct the bootstrap samples. However, in the present setting due to the expensive
computing time needed to compute the robust estimators, a linearized Monte Carlo as defined in Zhu (2005) provides a
better approach. This approach was also considered in Zhu and Zhang (2004) who propose a resampling procedure for
approximating the p-value when considering a log-likelihood ratio test statistics for testing homogeneity. Rémillard and
Scaillet (2009) and Kojadinovic and Yan (2011) applied this method to provide fast goodness-of-fit tests for copulas.

As it will be shown in the Appendix, T1 = Rn + Op((n/h)
1
2 ρn log n), under H0 : η0 ∈ {α + γ t, α ∈ R, γ ∈ R}, with

Rn =

n
i=1

w(ti)w2(xi)
H ′

xitβ0 + α0 + γ0ti

2
V

H

xitβ0 + α0 + γ0ti

v0(ti)−2f (ti)−2

×


n

j=1

W0,j(ti)w1(xj)

Ψ

yj, xjtβ0 + η0(ti)


− E0


Ψ

yj, xjtβ0 + η0(ti)


|(xj, tj, xi, ti)

2

= n

w(t)w2(x)

H ′

xtβ0 + α0 + γ0t

2
V

H

xtβ0 + α0 + γ0t

v0(t)−2f (t)−2W2
n (t)dFn(x, t),
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where Wn(t) =
n

j=1 W0,j(t)w1(xj)

Ψ

yj, xjtβ0 + η0(t)


− E0


Ψ

yj, xjtβ0 + η0(ti)


|(xj, tj, ti = t)


. This suggests the

following Monte Carlo procedure

Step B1 Given a sample {(yi, xi, ti)}1≤i≤n compute the estimators (βh0 ,αh0 ,γh0) as in (2).
Define
• v0(t) =

n
i=1 Wi(t)χ


yi, xitβh0 +ηH0(t)


w1(xi)withηH0(t) =αh0 +γh0 t .

• ϵj(t) = Ψ


yj, xjtβh0 +ηH0(t)


− E0


Ψ


yj, xjtβh0 +ηH0(t)


|(xj, tj)


.

Step B2 Generate n random variables ϵ⋆1 · · · ϵ⋆n , independent of the sample {(yi, xi, ti)}1≤i≤n and such that E(ϵ⋆i ) = 0,
Var(ϵ⋆i ) = 1 and ϵ⋆i are bounded. For instance, we generate n observations from the two point distribution P⋆(ϵ⋆ = a) =

p and P⋆(ϵ⋆ = b) = 1 − p, with a = (1 −
√
5)/2, b = (1 +

√
5)/2 and p = (5 +

√
5)/10.

Step B3 Define R⋆n = R⋆n(βh0 ,v0,ηH0)with

R⋆n =

n
i=1

w(ti)w2(xi)
H ′


xitβh0 +ηH0(ti)

2
V

H

xitβh0 +ηH0(ti)

v0(ti)−2


n

j=1

Wj(ti)w1(xj)ϵj(ti)ϵ⋆j
2

.

Step B4 Repeat Step B2 and Step B3 Nboot times, to get Nboot values of R⋆n, say R⋆n,i, 1 ≤ i ≤ Nboot.

The (1 − α)-quantiles of the distribution of R (an so of T1) can be approximated by the (1 − α)-quantiles of the conditional
distribution of R⋆. The p-value can be estimated byp = k/(Nboot + 1)where k is the number of R⋆n,i which are larger or equal
than T1.

6. Monte Carlo study

This section contains the results of a simulation study conducted with the aim of comparing the performance of the
proposed testing procedure with the classical one. We consider a logistic partially linear model. The classical procedure
corresponds to use the maximum likelihood estimators under the parametric model and the estimators defined in Carroll
et al. (1997), which are an alternative to those, based on profile likelihood, considered in Severini and Staniswalis (1994),
under the nonparametric one. To be more precise, we select the deviance as loss function and w1 = w2 ≡ 1 in Sections 2
and 3. The robust estimators correspond to those controlling large values of the deviance and they are computed using the
score function defined in Croux and Haesbroeck (2002) with tuning constant c = 0.5. The weight functionsw1 andw2 used
to control high leverage points are taken as the Tukey’s biweight function with tuning constant c = 4.685. To be more
precise, since xi ∈ R, we define w2

1(xi) = w2
2(xi) =


1 − [(xi − Mn)/4.685]2

2
when |xi − Mn| ≤ 4.685 and 0 otherwise,

withMn the median of xi. The central model denoted C0 in the figures corresponds to a logistic model where xi ∼ U(−1, 1)
and ti ∼ U(0, 1), independent of each other. On the other hand, the responses are such that yi|(xi, ti) ∼ Bi(1, p(xi, ti))
with log (p(x, t)/ (1 − p(x, t))) = β0x + η0(t,∆), with β0 = 2, η0(t,∆) = (t − 0.5) + 1 cos(6π(t − 0.5)), that is,
H(u) = exp(u)/(1 + exp(u)). The value ∆ = 0 corresponds to the null hypothesis, H0 : η0 ∈ {α + γ t, α ∈ R, γ ∈ R},
while as alternatives we choose a grid of 10 equally spaced values of∆ ∈ [0.2, 2.0]. We performed NR = 1000 replications
of samples of size n = 200 and Nboot = 5000 bootstrap samples. The Epanechnikov kernel K(t) = (3/4)(1 − t2)I[−1,1](t)
was selected for the smoothing procedure with bandwidth h = 0.1.

Clearly, the test statistics considered depend on the choice of h. For the classical procedure, Härdle et al. (1998) pointed
the sensitivity of the test level to the selection of the bandwidth parameter. In particular, they suggested to apply the test
for different choices of h to have an impression on how the function η0 differs significantly from linearity. The selected
value h = 0.1 was chosen so that, under H0, the observed frequencies of rejection for the bootstrap robust and classical test
reached values close to the nominal level α = 0.1.

Fig. 1 gives the frequency of rejection both for the classical and robust procedure for the uncontaminated samples. The
nominal level was 0.10. The frequency of rejection of the asymptotic test is plotted in lines combined with filled diamonds
while that of the Monte Carlo test corresponds to the solid line. As expected theMonte Carlo test improves the performance
of the asymptotic ones, for the sample size considered.

For each generated sample, we also consider the following contaminations labeled C1 and C2. We first generate a sample
ui ∼ U(0, 1) for 1 ≤ i ≤ n and then, the contaminated sample, denoted (yi,c, xi,c, ti), is defined as follows for each
contamination scheme

• ContaminationC1 introduces badhigh leveragepoints in the carriers x, without changing the responses already generated,
i.e., (yi,c, xi,c) = (yi, xi) if ui ≤ 0.90 and (yi,c, xi,c) = (yi, xi,new) if ui > 0.90, where xi,new is a new observation from a
N(10, 1).

• Contamination C2 includes outlying observations in the responses generated according to an incorrect model. Letη(t,∆) = 1 cos(6π(t − 0.5)) and pi,new = H(η(ti, 20(1 − ∆))), define yi,new ∼ Bi(1, pi,new). Then, (yi,c, xi,c) = (yi, xi)
if ui ≤ 0.90 and (yi,c, xi,c) = (yi,new, xi) if ui > 0.90.
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a b

Fig. 1. Frequency of rejection π of the asymptotic test, plotted with filled diamonds, and the Monte Carlo test plotted with a solid line. (a) Classical test
(b) Robust test.

a b

Fig. 2. Frequency of rejection π of the asymptotic and Monte Carlo test, under C0 in solid lines and under C1 in lines with diamonds. (a) Classical test (b)
Robust test.

a b

Fig. 3. Frequency of rejection π of the Monte Carlo test, under C0 in solid lines and under C2 in lines with diamonds. (a) Classical test (b) Robust test.

Figs. 2 and 3 give the frequency of rejection both for the classical and robust procedure for the contaminated samples. Fig. 2
reports the frequencies of rejection for both the asymptotic and Monte Carlo procedure, on the other hand, only the results
for the Monte Carlo test are reported for C2 since the asymptotic ones behave similarly. The results show that the classical
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test seem to be quite insensitive to high leverage points if the model is adequate as in C1, while its power is sensitive to
a misleading model. It is worth noting that under C1, the Monte Carlo classical test outperforms the robust one, since it
leads to a lower loss of power. Quite surprisingly, under the present setting, the classical test adapts for the effect of high
leverage points, if the model is correct, since the same disturbance is produced both in the parametric and nonparametric
estimators. However, the classical procedure suffers from the inclusion of outliers under a misleading model, while the
robust procedure is more stable. In this sense, the robust tests should be preferred. In particular, the robust asymptotic test
avoids extra computing time at the expense of some level loss, leading to a conservative test.
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Appendix. Proofs

In this sectionwewill give theproof of Theorem4.1. Fromnowon, let S(0,1)n (β, a, t) =
n

i=1 W0,i(t)Ψ (yi, xitβ + a) w1(xi)
where W0,i(t) = 1/(nh)K ((ti − t)/hn). Besides, define the family of functions G = {g(y, x, u) = χ


y, xtβ0 + a


w1(x) −

E0

χ

y1, x1tβ0 + a


w1(x1)|t1 = u


, a ∈ R} and let N(ϵ,G, L1(Q)) stand for its L1-covering number. Denote also by

Kn = {(t,β) : t ∈ [2hn, 1 − 2hn], ∥β − β0∥ ≤ ρn}. We will need the following lemmas available in Boente et al. (2012).

Lemma A.1. Assume that A1–A4,A6 and A7 hold and that nh3
n/ log(n) → ∞. Then, we have that sup(t,β)∈Kn |S(0,1)n (β, η0(t),

t)| = Op

ρn

√
log n


.

Lemma A.2. Assume that A1–A7 hold and that nh3
n/ log(n) → ∞. If N(ϵ,G, L1(Q)) ≤ Aϵ−W , for any probability Q and

0 < ϵ < 1, we have that sup(t,β)∈Kn

ηβ(t)− η0(t)
 = Op


ρn

√
log n


.

Lemma A.3. Assume that A1–A7 hold and that nh3
n/ log(n) → ∞. If, in addition, ψ1,2(x) = w1(x)∥x∥2 is bounded

or supt∈T E0

ψ1,2(x)|t


< ∞ and N(ϵ,G, L1(Q)) ≤ Aϵ−W , for any probability Q and 0 < ϵ < 1, we have that

sup(t,β)∈Kn

ηβ(t)−η(t)−R(β, t) = Op(ρ
2
n log n), with

η(t) = η0(t)− {v0(t)f (t)}−1
n

i=1

W0,i(t)w1(xi)Ψ

yi, xitβ0 + η0(t)


(A.1)

R(β, t) = v0(t)−1v1(t)t

β − β0


. (A.2)

Lemma A.4. Assume that H0 holds, i.e., η0(t) = α0 + γ0t. Denoteyi,0 = H

xitβ0 + α0 + γ0ti


and ν(τ) = E


w1(x1)ζ y1,0,

x1tβ0 + η0(τ )

H ′

H−1

y1,0 |t1 = τ

whereζ (y, a) = ∂Ψ (y, a) /∂y. Under A1–A7 if in addition nh3

n/ log(n) → ∞, we
have that

sup
t∈[2hn,1−2hn]

ηh0(t)−
αh0 +γh0 t − α0 − γ0t


v0(t)−1ν(t)− η0(t)

+ v0(t)−1f (t)−1
n

i=1

W0,i(t)w1(xi)Ψ yi,0, xitβ0 + η0(t)
 = Op(ρ

2
n log n).

Proof of Theorem 4.1. In order to derive an expansion for the test statistic note that, uniformly on t ∈ [2hn, 1 − 2hn] we
have η(t)−ηh0(t) = η(t)+R(β, t)−

αh0 +γh0 t − α0 − γ0t

v0(t)−1ν(t)− η0(t)

+ v0(t)−1f (t)−1
n

i=1

W0,i(t)w1(xi)Ψ yi,0, xitβ0 + η0(t)

+ Op(ρ

2
n log n)
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withη(t) andR(β, t) defined in (A.1) and (A.2), respectively. Hence,

η(t)−ηh0(t) = −v0(t)−1f (t)−1
n

i=1

W0,i(t)w1(xi)

Ψ

yi, xitβ0 + η0(t)


− Ψ yi,0, xitβ0 + η0(t)


+R(β, t)−

αh0 +γh0 t − α0 − γ0t

v0(t)−1ν(t)+ Op(ρ

2
n log n)

= −v0(t)−1f (t)−1
n

i=1

W0,i(t)w1(xi)

Ψ

yi, xitβ0 + η0(t)


− E0


Ψ

yi, xitβ0 + η0(t)


|(xi, ti)


+Op(

√
n)+ Op(ρ

2
n log n).

Therefore, we have the following expression for the test statistic T1 = R + Op((n/h)
1
2 ρn log n)with

R =

n
i=1

H ′

xitβ0 + α0 + γ0ti

2
V

H

xitβ0 + α0 + γ0ti

 η(ti)− E
η(ti)|x1, t1, . . . , xn, tn2 w(ti)

=

n
i=1

w(ti)w2(xi)
H ′

xitβ0 + α0 + γ0ti

2
V

H

xitβ0 + α0 + γ0ti

v0(ti)−2f (ti)−2W2
n (ti)

Wn(ti) =

n
j=1

W0,j(ti)w1(xj)

Ψ

yj, xjtβ0 + η0(ti)


− E0


Ψ

yj, xjtβ0 + η0(ti)


|(xj, tj, xi, ti)


which is a U-statistic. Therefore, using standard arguments as in Härdle and Mammen (1993) it follows that
v−1
n (T1 − mn)

w
−→ N(0, 1), with v2n = 2c2,Ψ h−1

n


(K ∗ K(u))2 du and mn = c1,Ψ h−1

n


K 2(u)du where c1(Ψ ), c2(Ψ )

and σ 2(x0, t0) are given in Theorem 4.1.
Let us verify the expressions formn and vn. Denote Vj,i = w1(xj)[Ψ (yj, xjtβ0 + η0(ti))− E0(Ψ (yj, xjtβ0 + η0(ti))|(xj, tj,

xi, ti))], then

R =
1
n2

n
i=1

w(ti)v−2
0 (ti)f −2(ti)w2(xi)

H ′(xitβ0 + η0(ti))2

V (H(xitβ0 + η0(ti)))

n
j=1

n
ℓ=1

Khn(tj − ti)Khn(tℓ − ti)Vj,iVℓ,i

R =
K 2(0)
n2h2

n

n
i=1

w(ti)v−2
0 (ti)f −2(ti)w2(xi)

H ′(xitβ0 + η0(ti))2

V (H(xitβ0 + η0(ti)))
V 2
i,i

+
2K(0)
n2hn

n
i=1

w(ti)v−2
0 (ti)f −2(ti)w2(xi)

H ′(xitβ0 + η0(ti))2

V (H(xitβ0 + η0(ti)))
Vi,i


ℓ≠i

Khn(tℓ − ti)Vℓ,i

+
1
n2

n
i=1


j≠ij≠ℓ


ℓ≠i

w(ti)v−2
0 (ti)f −2(ti)w2(xi)

H ′(xitβ0 + η0(ti))2

V (H(xitβ0 + η0(ti)))
Khn(tj − ti)Khn(tℓ − ti)Vj,iVℓ,i

+
1
n2

n
i=1

w(ti)v−2
0 (ti)f −2(ti)w2(xi)

H ′(xitβ0 + η0(ti))2

V (H(xitβ0 + η0(ti)))


j≠i

K 2
hn(tj − ti)V 2

j,i

= R1 + R2 + R3 + R4.

Using that nh2
n → ∞ and that

1
n

n
i=1

w(ti)w2(xi)v−2
0 (ti)f −2(ti)

H ′(xitβ0 + η0(ti))2

V (H(xitβ0 + η0(ti)))
V 2
i,i

p
−→ E0


w(t1)w2(x1)
v20(t1)f 2(t1)

H ′(x1tβ0 + η0(t1))2

V (H(x1tβ0 + η0(t1)))
V 2
1,1


we get that R1

p
−→ 0 and so, h1/2

n R1
p

−→ 0.
On the other hand, using that E(Vℓ,i|(xℓ, tℓ, xi, ti)) = 0 and E(Vi,i|(xi, ti)) = 0 and that Vℓ,i and Vi,i are conditionally

independent, for ℓ ≠ i, we get that E(R2) = 0. On the other hand, let Zi = w(ti)v−2
0 (ti)f −2(ti)w2(xi)Vi,i(H ′(xitβ0 +

η0(ti))2)/V (H(xitβ0 + η0(ti))), then, we have that R2 = (2K(0))/(n2h)


i≠ℓ ZiKhn(tℓ − ti)Vℓ,i, and so,

Var(R2) =
2K 2(0)n(n − 1)

n4h2
n

(C1,h + C2,h)

with C1,h = E(Z2
1K

2
hn(t2 − t1)V 2

2,1) and C2,h = Cov(Z1Khn(t2 − t1)V2,1, Z2Khn(t1 − t2)V1,2). Note that,

C1,h =
1
h2
n
E

Z2
1K

2

t2 − t1

hn


V 2
2,1


=

1
hn


R(t1, t1 + uhn)K 2(u)f (t1)f (t1 + uh)du dt1.
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Hence, C1,h = O(1)/hn. In a similar way, we get that C2,h = O(1)/hn, which implies that hnVar(R2) → 0 as n → ∞,
therefore, h1/2

n R2
p

−→ 0.
Write R4 = (1/n2)

n
i=1


j≠i WiK 2
h (tj − ti)Vj,i with

Wi = w(ti)w2(xi)H ′(xitβ0 + η0(ti))2

v20(ti)f

2(ti) V (H(xitβ0 + η0(ti)))
−1

then, E(R4) = (1/n)


j≠1 E(W1Khn(tj − t1)V 2
j,1) = ((n − 1)/n)E(W1K 2

hn(t2 − t1)E(V 2
2,1|(x1, t1, x2, t2))) and it is easy

to see that E(V 2
2,1|(x1, t1, x2, t2)) = w2

1(x2)σ
2(x2, t2, t1). Let R4,1 = ((n − 1)/n)E(W1K 2

hn(t2 − t1)w2
1(x2)σ

2(x2, t2)) and
R4,2 = ((n − 1)/n)E(W1K 2

hn(t2 − t1)w2
1(x2)[σ

2(x2, t2, t1)− σ 2(x2, t2)]), then, E(R4) = R4,1 + R4,2. Using that σ 2(x2, t2, t1)
is Lipschitz, we obtain that

|σ 2(x2, t2, t1)− σ 2(x2, t2)| < |t1 − t2| < hn. (A.3)

Now, using that K has compact support in [−1, 1], we get that

|R4,2| ≤
n − 1
nhn

E


|W1|K 2

t2 − t1

hn


=

n − 1
n

O(1),

and so, h1/2
n A2 → 0.

Let a(t1) = w(t1)v−2
0 (t1)f −2(t1) and b(t1) = E


w2(xi)H ′(xitβ0 + η0(ti))2


V (H(xitβ0 + η0(ti)))

−1
|t1

, then

h1/2
n R4,1 =

n − 1
nh2

n
h1/2
n E


K 2

t2 − t1

hn


w2

1(x2)σ
2(x2, t2)a(t1)b(t1)


.

Denote by c(t2) = E(w2
1(x2)σ

2(x2, t2)|t2). Thus,

h1/2
n R4,1 =

n − 1
nhn

h1/2
n


K 2(u)du


a(t2)b(t2)c(t2)f 2(t2)dt2 + o(1).

Using analogous arguments to those considered previously when studying the convergence of R2, one can easily obtain that
hnVar(R4) → 0. Then,

h1/2
n


R4 −

1
hn


K 2(u)du E(a(t2)b(t2)c(t2)f (t2))


p

−→ 0,

where

E(a(t2)b(t2)c(t2)f (t2)) = E


E(w2
1(x)σ

2(x, t)|t)w(t)v−2
0 (t)f −1(t)E


w2(x)

H ′(xtβ0 + η0(t))2

V (H(xtβ0 + η0(t)))

 t .
Finally, we will study the asymptotic behavior of R3. The expected value of R3 is equal 0, and so it is enough to study its

variance. Straightforward calculations lead to writing Var(R3) = A1 + A2 + A3 where

A1 =
(n − 1)(n − 2)

n3
E


a2(t1)w2

2(x1)
H ′(x1tβ0 + η0(t1))4

V 2(H(xtβ0 + η0(t1)))

× K 2
hn(t2 − t1)K 2

hn(t3 − t1)w2
1(x3)w

2
1(x2)σ

2(x2, t2)σ 2(x3, t3)



A2 =
(n − 1)(n − 2)

n3
E


a2(t1)w2

2(x1)
H ′(x1tβ0 + η0(t1))4

V 2(H(xtβ0 + η0(t1)))

× K 2
hn(t2 − t1)K 2

hn(t3 − t1)w2
1(x3)w

2
1(x2)[σ

2(x2, t2, t1)σ 2(x3, t3, t1)− σ 2(x2, t2)σ 2(x3, t3)]



A3 = 2
(n − 1)2(n − 2)

n3
E


a(t1)a(t2)w2(x1)w2(x2)

H ′(x1tβ0 + η0(t1))2

V (H(xtβ0 + η0(t1)))
H ′(x2tβ0 + η0(t2))2

V (H(xtβ0 + η0(t2)))

× Khn(t3 − t1)Khn(t4 − t1)Khn(t3 − t2)Khn(t4 − t2)E(V3,1V3,2|(x3, t3, t2, t1))E(V4,1V4,2|(x4, t4, t2, t1))


.
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Let bH(t1) = E

w2

2(x1)
H ′4(x1tβ0+η0(t1))

V2(H(x1tβ0+η0(t1)))
|t1

and σ 2(t1) = E(w2

1(x1)σ
2(x1, t1)|t1) thus

hnA1 =
hn

nh2
n


a2(t1)bH(t1)σ 2(t1 + uhn)σ

2(vhn + t1)K 2(u)K 2(v)du dv dt1 =
1

nhn
O(1)

then, we have that hnA1 → 0. On the other hand, using (A.3), we get the following bound

|A2| ≤
2

nhn


a2(t1)b(t1)K 2(u)K 2(v)f (t1)f (uhn + t1)f (vhn + t1)dt1 du dv =

1
nhn

O(1)

which implies that hnA2 → 0. Finally, straightforward calculations lead to hnA3 converges to 2E(a2(t)b2(t)c2(t, t, t)
f 3(t))


[K ∗ K(u)]2du.

Using that c2(t2, t2, t2) = E(E(V 2
2,2|(x2, t2))|t2) = E(w2

1(x2)σ
2(x2, t2)|t2), we get that

E(a2(t2)b2(t2)c2(t2, t2, t2)f 3(t2))
= E(a2(t2)b2(t2)E(w2

1(x2)σ
2(x2, t2)|t2)f 3(t2))

= E


w2(t1)

v40(t1)f (t1)


E

w2(x1)

H ′(x1tβ0 + η0(t1))
V (H(x1tβ0 + η0(t1)))

 t12 E(w2
1(x1)σ

2(x1, t1)|t1)


= c2,Ψ ,

concluding the proof. �
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