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Abstract
Purpose—Patients with mixed lineage leukemia (MLL)–rearranged B-lymphoblastic leukemias
(B-ALL) have an unfavorable prognosis and require intensified treatment. Multiple MLL fusion
partners have been identified, complicating the diagnostic evaluation of MLL rearrangements. We
analyzed molecular markers of MLL rearrangement for use in rapid diagnostic assays and found the
immunomodulatory protein, Galectin-1 (Gal-1), to be selectively expressed in MLL-rearranged B-
ALL.

Experimental Design—Transcriptional profiling of ALL subtypes revealed selective
overexpression of Gal-1 in MLL-rearranged ALLs. For this reason, we analyzed Gal-1 protein
expression in MLL-germline and MLL-rearranged adult and infant pediatric B-ALLs and cell lines
by immunoblotting, immunohistochemistry, and intracellular flow cytometry of viable tumor cell
suspensions. Because deregulated gene expression in MLL-rearranged leukemias may be related to
the altered histone methyltransferase activity of the MLL fusion protein complex, we also analyzed
histone H3 lysine 79 (H3K79) dimethylation in the LGALS1 promoter region using chromatin
immunoprecipitation.

Results—Gal-1 transcripts were significantly more abundant in MLL-rearranged B-ALLs. All 32
primary MLL-rearranged B-ALLs exhibited abundant Gal-1 immunostaining, regardless of the
translocation partner, whereas only 2 of 81 germline-MLL B-ALLs expressed Gal-1. In addition,
Gal-1 was selectively detected in newly diagnosed MLL-rearranged B-ALLs by intracellular flow

Corresponding Authors: Jeffery L. Kutok, Brigham & Women’s Hospital, 75 Francis Street, Boston, MA, 02115. Phone: 617-732-5714;
Fax: 617-264-5169; jkutok@partners.org and Margaret A. Shipp, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115.
Phone: 617-632-3874; Fax: 617-632-4734; margaret_shipp@dfci.harvard.edu.
P. Juszczynski and S.J. Rodig contributed equally to this work.
Note: Supplementary data for this article are available at Clinical Cancer Research Online (http://clincancerres.aacrjournals.org/).
Disclosure of Potential Conflicts of Interest
No potential conflicts of interest were disclosed.

NIH Public Access
Author Manuscript
Clin Cancer Res. Author manuscript; available in PMC 2011 April 1.

Published in final edited form as:
Clin Cancer Res. 2010 April 1; 16(7): 2122–2130. doi:10.1158/1078-0432.CCR-09-2765.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://clincancerres.aacrjournals.org/


cytometry. The LGALS1 promoter H3K79 was significantly hypermethylated in MLL-rearranged B-
ALLs compared with MLL-germline B-ALLs and normal pre-B cells.

Conclusion—In B-ALL, Gal-1 is a highly sensitive and specific biomarker of MLL rearrangement
that is likely induced by a MLL-dependent epigenetic modification.

B-lymphoblastic leukemia (B-ALL) is the most common malignancy of childhood and a
disease with a poor prognosis among adults (1). There are several cytogenetic abnormalities
characteristic of B-ALL that largely determine the biology of the disease, affect prognosis, and
guide therapy (2,3). Leukemias with rearrangements of the mixed lineage leukemia (MLL) gene
on chromosome 11q23 exhibit unique clinical and biological features (4–7). MLL
rearrangements occur in over 70% of infant B-ALLs and are less frequent in older patients
(4–7). MLL aberrations are largely restricted to immature CD10-negative blasts that often
coexpress myeloid markers (5–7). In both adults and children, MLL rearrangements are
frequently associated with a particularly poor outcome (1,8–11).

MLL translocations generate a new chimeric gene, in which the NH2-terminal portion of
MLL is fused to the COOH-terminal sequence from multiple different partners (4–7). The
common result of many of these rearrangements is the expression of a DNA-binding protein
that recruits additional histone methyltransferases such as DOT1L and leads to ectopic histone
H3 lysine 79 dimethylation (H3K79diMe; refs. 5,12,13). This epigenetic modification is
associated with the deregulated transcription of multiple genes including HOXA cluster (12).
The H3K79diMe histone modification mark and associated gene expression signature are
distinguishing features of human and murine MLL-rearranged leukemias (12).

Current time-consuming diagnostic techniques such as fluorescence in situ hybridization or
Southern blotting are not always available at initial diagnosis and are not able to detect all
genetic abnormalities involving MLL (6,7). Because the early identification of MLL
rearrangements may guide therapy or clinical trial enrollment (8,9,14), it would be useful to
have a more efficient method of identifying MLL-rearranged B-ALLs at diagnosis.

Galectins are a conserved family of carbohydrate-binding proteins that regulate innate and
adaptive immune responses and promote tumor immune escape (15–17). Galectin-1 (Gal-1),
a prototype member of this family, is a potent anti-inflammatory factor and a suppressive agent
for T-cell responses (15–18). Through the selective recognition of multiple Gal β1,4 GlcNAc
(N-acetyllactosamine) units on the branches of N- or O-linked glycans, Gal-1 controls T-cell
homeostasis by inducing the selective apoptosis of TH1 and TH-17 and cytotoxic T effector
cells, promoting the tolerogenic function of dendritic cells, and controlling T regulatory cell
function (16–20). In solid tumor models, Gal-1 also promotes escape from T-cell–dependent
immunity and confers immune privilege to tumor cells (16,17,21).

Recently, we showed that the malignant Hodgkin Reed-Sternberg cells and variants of classical
Hodgkin lymphoma express and secrete high levels of Gal-1 in an activator protein (AP-1)–
dependent manner, and that the expression of Gal-1 promotes the skewed, ineffective TH2-
type T-cell infiltrate that is characteristic of this disease (22). Among other large cell
lymphomas, only anaplastic large cell lymphoma exhibits constitutive AP-1 signaling and
Gal-1 expression—a finding that suggests a common mechanism of Gal-1 transcriptional
regulation by these tumors (23). The expression and regulation of Gal-1 in other hematopoietic
neoplasms remains unknown.

Herein, we report that Gal-1 is a highly sensitive and specific marker of MLL-rearranged B-
ALL. In addition, we show that the specific overexpression of Gal-1 in MLL-rearranged B-
ALLs is associated with MLL-mediated modifications of the LGALS1 locus.
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Materials and Methods
Case selection

One series of adult primary B-ALLs was derived from the files of Brigham & Women’s
Hospital with Institutional Review Board approval (series 1). All diagnoses were established
at the time of the original biopsy evaluation and based on the criteria established by the current
WHO classification system (24). A second independent series of 60 infant/pediatric B-ALLs
was derived from the Department of Pediatrics, Hematology, Oncology & Diabetology,
Medical University of Lodz, Lodz, Poland and the centers of the Polish Pediatric Leukemia/
Lymphoma Study Group with appropriate Institutional Review Board approvals (series 2).
Rearrangements of the MLL locus (chromosome 11q23) in series 1 were identified in diagnostic
bone marrow aspirates by either routine karyotypic analysis (G-banding) or fluorescent in
situ hybridization analysis with a break-apart probe targeting the MLL locus (Vysis probes/
Abbott Molecular). Rearrangements of the MLL locus in series 2 were identified using
MLL11q23 split probe DC (Qbiogene), in accordance with the manufacturer’s instructions. In
series 2, the partner genes for MLL rearrangements were identified using a long-distance
inverse PCR approach as previously described (25).

Immunohistochemistry
Immunohistochemistry of series 1 primary B-ALLs was performed using 5-μm-thick Zenker’s-
fixed, paraffin-embedded tissue sections on individual slides as previously described (23).
Briefly, slides were soaked in xylene, passed through graded alcohols, and then pretreated with
10-mmol/L citrate (pH 6.0; Zymed) in a steam pressure cooker (Decloaking Chamber, BioCare
Medical) as per the manufacturer’s instructions. All further steps were performed at room
temperature in a hydrated chamber. Slides were then treated with Peroxidase Block (DAKO
USA) for 5 min to quench endogenous peroxidase activity. A primary rabbit polyclonal anti–
Gal-1 antiserum (1:10,000 dilution; generated in the laboratory of M.A.S.) was applied in the
DAKO diluent (DAKO) for 1 h at room temperature. Slides were washed in 50 mmol/L Tris-
Cl (pH 7.4) and anti-rabbit horseradish peroxidase–conjugated antibody solution (Envision+
detection kit, DAKO) was applied for 30 min. After further washing, immunoperoxidase
staining was developed using a diaminobenzidine chromogen kit (DAKO) per the
manufacturer’s instruction and counterstained with Harris hematoxylin (Polyscientific).

Immunocytochemistry of series 2 primary B-ALLs was performed using formalin-fixed bone
marrow aspirate smears. First, endogenous peroxidase activity was quenched by treatment of
the slides with a 3% perhydrol solution in methanol for 5 min. Subsequently, slides were treated
with Target Retrieval Solution (pH 9.0; DAKO) in a water bath at 95°C for 45 min. Staining
with antibodies was performed as described above. After further washing, immunoperoxidase
staining was developed using a diaminobenzidine chromogen kit (DAKO) and was
counterstained with Mayer hematoxylin. Following a brief wash in water, slides were
dehydratated with a series of alcohol and xylene solutions, mounted in Histokit medium, and
coverslipped.

Immunohistochemical evaluation
Reactivity for Gal-1 in series 1 B-ALLs was scored independently by two hematopathologists
(S.J.R and J.L.K). Gal-1 staining intensity was scored as follows: 0, no staining detected; 1+,
weak staining; 2+, moderate staining; and 3+, strong staining of the tumor cells. Positive
staining for a case was defined as 2+ or 3+ cytoplasmic staining in >25% of the tumor cells.
Zero or 1+ staining in >25% of tumor cells or only focal reactivity of 2+ or 3+ in <25% of the
tumor cells was considered negative. Positive staining of endothelial cells and macrophages
served as positive internal controls. All cases were photographed at ×1,000 original
magnification with an Olympus BX41 microscope with the objective lens of ×100/0.75

Juszczynski et al. Page 3

Clin Cancer Res. Author manuscript; available in PMC 2011 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Olympus UPlanFL (Olympus). The pictures were taken using Olympus QColor3 and analyzed
with the acquisition software QCapture v2.60 (QImaging) and Adobe Photoshop 6.0 (Adobe).

Gal-1 reactivity in series 2 B-ALLs was assessed independently by two hematopathologists
(K.M. and W.M.). Gal-1 staining intensity was scored using the above-mentioned criteria. The
cases were photographed in ×400 magnification with the Nikon Microphot FXA (Nikon). The
pictures were analyzed using the MultiScanBase v 8.08 Image Analysis System (Computer
Scanning Systems).

Immunoblotting
MLL-rearranged (SEM-K2, RS4;11) and MLL-germline (REH and NALM6) B-ALL cell lines
were maintained in RPMI 1640 supplemented with 10% fetal bovine serum (Cellgro
Mediatech), 10 mmol/L HEPES buffer, 4 mmol/L L-glutamine, 50 U/mL penicillin, and 50 U/
mL streptomycin. For immunoblotting, cells were washed with ice-cold PBS and lysed with
1% NP40 buffer. Lysates were size fractionated on NuPAGE Novex 4% to 12% Bis-Tris Gels
(Invitrogen) and transferred to polyvinylidene difluoride membranes (Millipore). Blots were
incubated with primary antibodies (αGal-1 or α-β-actin) and appropriate horseradish
peroxidase–labeled secondary antibodies and developed by enhanced chemiluminescence as
previously described (22).

Intracellular flow cytometry
Intracellular flow cytometry was performed on NALM6 (MLL germline) and SEM-K2 (MLL
rearranged) cell lines and viable primary tumor specimens from four B-ALL patients with
known MLL translocation status (2 with MLL rearrangements and 2 with MLL-germline). After
thawing the previously cryopre-served primary B-ALL specimens, viable tumor cells were
isolated by Ficoll-Hypaque (GE Healthcare) gradient centrifugation and washed. Thereafter,
1 × 106 cells were fixed and permeabilized with the Cytofix/Cytoperm Fixation/
Permeabilization kit (BD Biosciences) according to the manufacturer’s instructions. Cells were
then stained sequentially with the affinity-purified anti-human Gal-1 (diluted 1:5,000; ref.
22) at 4°C for 30 min and anti-rabbit FITC– or Cy5-conjugated AffiniPure Fab Fragment
(Jackson ImmunoResearch Laboratories, Inc.). For background fluorescence control, cells
were stained with normal rabbit IgG and anti-rabbit FITC– or Cy5-conjugated Fab fragment
alone. Intracellular Gal-1 expression was analyzed with the BD FACS Canto II flow cytometer
(BD Biosciences) and FlowJo software (Tree Star, Inc.).

Chromatin immunoprecipitation
RS4;11, SEM-K2, and NALM6 cells (50 × 106) were fixed in 1% formaldehyde for 10 min at
room temperature. Reactions were subsequently quenched in 0.125 mol/L glycine for 5 min.
Cells were then washed with 1×PBS and lysed in 1% SDS lysis buffer [1% SDS, 50 mmol/L
Tris (pH 8.0), and 10 mmol/L EDTA] containing protease inhibitors (Complete protease
inhibitor cocktail; Roche Applied Science) and were sonicated. Lysates were diluted 10× with
the dilution buffer [0.01% SDS, 1.1% Triton-X100, 1.2 mmol/L EDTA, 16.7 mmol/L Tris (pH
8.0), and 167 mmol/L NaCl, supplemented with protease inhibitor cocktail], precleared and
subsequently incubated with rabbit polyclonal anti-H3K79diMe antibody (Abcam) or with
normal rabbit IgG antibody (Santa Cruz Biotechnology) for 4 h. Immunocomplexes were
captured with protein A/G plus agarose preblocked with salmon sperm DNA (Abcam) and
washed twice with radioimmunoprecipitation assay buffer, twice with high salt wash buffer
[0.1% SDS, 1% Triton-X100, 2 mmol/L EDTA, 20 mmol/L Tris (pH 8.0), and 500 mmol/L
NaCl], twice with LiCl wash buffer [0.25 mol/L LiCl, 1% NP40, 1% sodium deoxycholate, 1
mmol/L EDTA, and 10 mmol/L Tris (pH 8.0)], and once with TE buffer. Thereafter, immune
complexes were eluted with 1% SDS in 100 mmol/L NaHCO3 and cross-links were reversed
by incubating samples for 8 h at 65°C. DNA fragments enriched by chromatin
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immunoprecipitation were recovered by standard phenol-chloroform extraction followed by
ethanol precipitation and quantified by real-time PCR using LGALS1 promoter and control
region primers (LGALS1 promoter amplicon 1, F: GGGTGGAGTCTTCTGACAGCTG, R:
CCTGCCCTATCCCCTGGAC; LGALS1 promoter amplicon 2, F:
TGGACTCAATCATGGCTTGTG, R: GGGCTAGAATCT-GCTCCCGAT; control region 1,
F: ATGAGCCACAGTGCT-TGGC, R: GCCGCAGTGCTCTGTGGTAT; Control region 2,
F: CTGATTGCTGGGCAGAGAGAA, R: TTTGCCTCCATCT-CAAAGCC), the
PowerSYBR green kit (Applied Biosystems), and an ABI 7700 thermal cycler (Applied
Biosystems). Relative enrichment in H3K79 dimethylation in Gal-1 locus and control regions
versus input in H3K79diMe- and IgG-immunoprecipitated samples was calculated by using
the 2−(ΔCT H3K79diMe − ΔCT IgG) method. SDs were calculated from triplicate ΔΔCT values.

H3K79 dimethylation in primary tumors
Normal bone marrow samples and diagnostic primary leukemia samples (peripheral blood or
bone marrow) were obtained with informed consent from individuals treated according to
protocols approved by the Institutional Review Board at the Dana-Farber Cancer Institute
between 2000 and 2007. Samples were immunoprecipitated with anti–dimethyl H3K79
antibody (Abcam 3594) and hybridized to an Affymetrix-GeneChip Human Promoter 1.0R
Array as described (12). The raw CEL files were processed with MAT (26) to obtain the signal
strength at each probe. To analyze LGALS1 gene promoter methylation in normal pre-B cells,
MLL-germline, and MLL-rearranged tumors, the signal strength of all of the probes in the
promoter region (7.5 kb upstream to 2.5 kb downstream of TSS) was added and compared
using the Kruskal-Wallis test. The MAT library, mapping files, and TSS definitions are based
on the National Center for Biotechnology Information Build 36.1 human reference sequence.

Results
Gal-1 is overexpressed in MLL-rearranged B-ALLs

To identify molecular markers of MLL translocation that might be used in rapid diagnostic
assays, we first compared the transcriptional profiles of primary B-ALLs with and without
MLL translocations. Gal-1 transcripts were significantly more abundant in MLL-rearranged B-
ALLs from two large independent data sets (Supplementary Data; refs. 27, 28). Consistent with
these findings, Gal-1 protein was also more abundant in MLL-rearranged B-ALL cell lines and
primary tumors than in MLL-germline B-ALL lines and tumors by Western blotting (Fig. 1A).

To assess the diagnostic utility of Gal-1 expression in identifying the MLL-rearranged B-ALL
subtype, we performed Gal-1 immunostaining on an initial series of adult primary B-ALLs
with known MLL status (series 1; Table 1). All 11 MLL-rearranged B-ALLs exhibited Gal-1
expression (11 of 11, 100%); in 10 of 11 cases, strong Gal-1 staining was present in >50% of
the tumor cells. Gal-1+ tumors included seven MLL-rearranged B-ALLs with t(4;11) and four
MLL-rearranged B-ALLs with t(11;19; Table 1; Fig. 1B). In marked contrast, only 1 of 40 B-
ALLs without a cytogenetically detectable MLL translocation expressed Gal-1 (2.5%; P <
0.001, Fisher exact test; Table 1; Fig. 1B).

To further evaluate the utility of Gal-1 expression in the early diagnosis of primary MLL-
rearranged B-ALL, we performed Gal-1 immunostaining of routine bone marrow smears from
an independent infant/pediatric series of 21 MLL-rearranged B-ALLs and 39 B-ALLs without
detectable MLL rearrangement (series 2). This series of MLL-rearranged B-ALLs included
primary tumors with t(4;11), t(11;19), or additional MLL translocations that were not included
in series 1, t(9;11) or t(10;11). All 21 MLL-rearranged B-ALLs exhibited strong Gal-1
expression (21 of 21, 100%), regardless of the specific MLL translocation and associated fusion
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partner (Table 1; Fig. 1C). In marked contrast, only 1 of 39 cases without a cytogenetically
detectable MLL translocation expressed Gal-1 (2.6%; P < 0.001, Fisher exact test; Table 1).

Because intracellular flow cytometry is routinely used in the diagnostic evaluation of B-ALL,
we next evaluated the utility of this approach for Gal-1 detection in B-ALL cell lines and
primary B-ALLs with known MLL status. In fixed permeabilized cells, Gal-1 protein
expression was high in MLL-rearranged B-ALL lines and primary tumors (Fig. 2A and B, left)
and low/undetectable in MLL-germline B-ALL lines and primary tumors (Fig. 2A and B, right).

Mechanism of Gal-1 overexpression in MLL B-ALLs
We have previously shown that Gal-1 overexpression in classical Hodgkin lymphoma is
mediated, in large part, by an AP-1–dependent enhancer (22). The AP-1–dependent Gal-1
enhancer did not increase the expression of a luciferase reporter in representative MLL-
rearranged cell lines, suggesting an alternative mechanism of Gal-1 overexpression (data not
shown). Because the Gal-1 promoter contains putative HOXA9 binding sites (data not shown),
we next evaluated the consequences of HOXA9 overexpression on Gal-1 in MLL-rearranged
B-ALLs. In two MLL-rearranged cell lines, shRNA-mediated depletion of HOXA9 did not
decrease Gal-1 abundance, indicating that HOXA9 is not a major transcriptional activator of
Gal-1 in MLL-rearranged ALL (data not shown).

Ectopic histone H3 lysine 79 (H3K79) dimethylation, a distinguishing feature of murine and
human MLL B-ALLs, is related to the altered histone methyltransferase activity of MLL fusion
protein complex (12). For this reason, we next analyzed H3K79 dimethylation in the
LGALS1 promoter region using chromatin immunoprecipitation. LGALS1 promoter H3K79
dimethylation was ~5-fold higher in MLL-rearranged B-ALL cell lines (RS4;11 and SEM-K2)
than in a MLL-germline B-ALL line (NALM-6; Fig. 3A). To determine whether similar
abnormalities were found in primary MLL-rearranged B-ALLs, we next analyzed the H3K79
dimethylation of the LGALS1 locus in primary MLL-rearranged and germline B-ALLs and
normal Lin− CD34+ CD19+ cells. Cumulative LGALS1 promoter region (−7.5 to + 2.5 kb)
H3K79 dimethylation was significantly higher in primary MLL-rearranged B-ALLs than in
MLL-germline BALLs and normal Lin− CD34+ CD19+ cell samples (Fig. 3B and C),
suggesting that this epigenetic modification plays a role in the selective overexpression of Gal-1
in MLL-rearranged B-ALLs.

Discussion
Herein, we show that Gal-1 expression is a highly sensitive and specific marker of MLL-
rearranged B-ALL in infant/pediatric and adult patients. Furthermore, Gal-1 expression can be
evaluated in diagnostic clinical samples by immunohistochemistry of fixed, paraffin-embedded
bone marrow biopsies or smears or by flow cytometry of permeabilized tumor cell suspensions.
Gal-1 expression in MLL-rearranged B-ALL is likely driven by MLL-mediated chromatin
modification.

Patients with MLL-rearranged B-ALLs have a particularly unfavorable prognosis, compared
with patients with other types of B-ALL, and require intensified treatment (1,8,9). Therefore,
it is important to identify MLL-rearranged B-ALLs at the earliest possible time point. To date,
over 20 MLL fusion partners in B-ALL have been identified, making diagnostic evaluation of
MLL rearrangements and follow-up monitoring a challenging and difficult task (6). Although
several markers of MLL rearrangement have been proposed (7,29–31), their specificity remains
poor (7).

Several studies have shown that unique transcriptional profiles are characteristic of B-ALLs
with distinct cytogenetic abnormalities (27,28). The results suggest candidate tumor markers
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that may identify, with high certainty, an underlying genetic defect (27,28). We verify this
hypothesis by showing that the immunomodulatory carbohydrate-binding protein, Gal-1, is
selectively expressed in B-ALLs harboring a MLL translocation.

Gal-1 expression is a highly sensitive, specific, and reproducible marker of MLL
rearrangement, regardless of the fusion partner gene involved in the translocation. Fixed,
paraffin-embedded biopsy specimens or routine bone marrow smears of B-ALL may be
interrogated by rapid, standard immunohistochemical techniques to assess MLL translocation
status. Furthermore, Gal-1 may be detected in MLL-rearranged B-ALLs by intracellular flow
immunophenotyping at the time of diagnosis. Of note, the same high sensitivity and specificity
of Gal-1 expression was observed in MLL-rearranged B-ALLs from adult and infant/pediatric
patients. Finally, our results raise the possibility of monitoring minimal residual disease in
patients with MLL-rearranged B-ALL (32,33) by the detection of malignant Gal-1–positive B-
lymphoblasts by flow cytometry, although additional studies are needed to verify this
hypothesis.

In contrast to our previous studies in classical Hodgkin lymphoma and anaplastic large-cell
lymphomas (22,23), Gal-1 expression in MLL-rearranged B-ALLs was independent of
constitutive AP-1 signaling. Instead, Gal-1 expression in MLL-rearranged B-ALLs is likely
due to the aberrant H3K79 dimethylation of the LGALS1 promoter. The ectopic histone H3K79
dimethylation is a consequence of the MLL fusion protein complex–mediated activity and
specifically correlates with unique gene expression signature in MLL-rearranged leukemias
(12). The LGALS1 promoter had the same pattern of H3K79 diMe mark distribution as
additional known MLL targets such as HOXA9. This epigenetic modification was significantly
more abundant in MLL-rearranged primary B-ALLs than in MLL-germline B-ALLs or normal
Lin− CD34+ CD19+ cells (12). Given that Gal-1 is not a transcriptional target of HOXA9, these
observations suggest Gal-1 may be a direct target of the MLL fusion protein complex.

Although the mechanisms of Gal-1 overexpression differ in specific hematologic malignancies,
this carbohydrate-binding protein plays a general role in limiting host anti-tumor immune
responses (16,17). In several tumor models, Gal-1 expression is associated with inefficient,
Th2-skewed immune responses (16–18,21,22,34). In one of the most extensively evaluated
models, Gal-1 blockade resulted in tumor rejection that required intact CD4+ and CD8+ T-cell
responses (17). Gal-1 may also promote the generation of tolerogenic dendritic cells that
dampen tumor-specific T-cell–mediated immunity (19). Because spontaneous cytotoxic T-cell
responses against leukemic cells are elicited in ALL and are used in experimental ALL
immunotherapies (35–37), Gal-1 blockade may augment host antileukemia immune responses
in MLL-rearranged B-ALLs.

Recent studies highlight the pathogenetic role of dynamic and bilateral interactions of leukemic
blasts with bone marrow microenvironment (38–40). Specifically, leukemic cells modulate the
architecture of the bone marrow microvasculature and rely upon protective, adhesion-
mediated, and soluble signals from bone marrow stromal and endothelial cells. Given the
additional roles of Gal-1 in the modulation of angiogenesis, adhesion, and cellular motility in
tumor models (41–43), this protein may have additional pleiotropic effects in the pathogenesis
of MLL-rearranged leukemias. More broadly, the identification of Gal-1 expression in MLL-
rearranged B-ALLs represents a knowledge-based approach to biomarker discovery with both
diagnostic and potential therapeutic implications.

Translational Relevance

Patients with mixed lineage leukemia (MLL)–rearranged B-lymphoblastic leukemias (B-
ALL) have an unfavorable prognosis and require intensified treatment. Multiple MLL fusion
partners have been identified, complicating the diagnostic evaluation of MLL
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rearrangements and highlighting the need for a robust and rapidly detectable biomarker of
MLL B-ALL. Herein, we show that MLL-rearranged B-ALLs selectively express the
immunoregulatory protein, Galectin-1 (Gal-1), regardless of the specific MLL translocation
and associated fusion partner. Gal-1 can be evaluated in diagnostic ALL samples using
established techniques including intracellular flow cytometry or immunohistochemistry.
The analysis of Gal-1 expression may accelerate the diagnosis, and guide therapy and
clinical trial enrollment of patients with MLL-rearranged B-ALL. Furthermore, it may be
possible to monitor minimal residual disease in patients with MLL-rearranged B-ALL by
assessing malignant Gal-1–positive B-lymphoblasts by flow cytometry. Finally, because
Gal-1 inhibits host anti-tumor immune responses and modulates tumor angiogenesis and
adhesion, Gal-1 may also represent a rational therapeutic target.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Gal-1 is overexpressed in MLL-rearranged B-ALL cell lines and primary tumors. A, Gal-1
protein expression in B-ALL cell lines (left) and primary tumors (right) with or without
MLL-rearrangements [MLL-r, MLL-g (MLL-germline), respectively]. B and C,
immunohistochemical analyses of Gal-1 in representative primary B-ALLs with known
MLL status from two independent series. B, series 1 bone marrow biopsies were analyzed; C,
series 2 bone marrow aspirates were assessed. B and C, representative primary B-ALLs with
specific MLL translocations t(4;11), t(11;19), t(9;11), or t(10;11) or germline MLL are shown.
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Fig. 2.
Gal-1 is detected by intracellular flow cytometry in MLL-rearranged B-ALL cell lines and
primary tumors. Intracellular flow cytometry was performed on B-ALL cell lines (A) and viable
primary tumor specimens from four B-ALL patients with known MLL translocation status (B).
B, mean fluorescence intensity for control and anti–Gal-1 immunostaining was as follows: P1,
21.5 versus 108; P2, 24.2 versus 117; P3, 20.3 versus 35.5; and P4, 26.6 versus 63.3.
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Fig. 3.
LGALS1 promoter exhibits enrichment of H3K79 dimethylation in MLL-rearranged B-ALL.
A, LGALS1 H3K79diMe in B-ALL cell lines with known MLL status. B, H3K79diMe ChiP-
chip analysis of primary MLL-rearranged and MLL-germline B-ALLs and normal CD34/
CD19+ cells. C, quantitative analysis of Gal-1 promoter H3K79 dimethylation in normal pre-
B cells, MLL-germline (MLL-g), and MLL-rearranged (MLL-r) ALLs.
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Table 1

Gal-1 expression and MLL status in primary B-ALLs

Karyotypic abnormality No. of Gal-1-positive cases No. of total cases % positive for Gal-1

Series 1*

MLL-rearranged

 t(4;11)(q21;q23) 7 7 100

 t(11;19)(q23;p13) 4 4 100

 Total 11 11 100

MLL-germline

 46 XX or XY 1 8 13

 t(9;22)/Ph+ 0 16 0

 Hyperdiploid 0 2 0

 Hypodiploid 0 2 0

 Simple abnormal 0 4 0

 Complex abnormal 0 8 0

 Total 1 40 3

Series 2†‡

MLL-rearranged

 t(4;11)(q21;q23) 14 14 100

 t(11;19)(q23;p13) 2 2 100

 t(9;11) 3 3 100

 t(10;11) 1 1 100

 t(11;?) 1 1 100

 Total 21 21 100

MLL-germline

 46 XX or XY 1 24 4

 t(9;22)/Ph+ 0 4 0

 t(1;19) 0 1 0

 Hyperdiploid 0 6 0

 Hypodiploid 0 2 0

 Complex abnormal 0 2 0

 Total 1 39 3

*
In series 1, the median age at onset was 52 y (range, 18–73) for MLL-rearranged cases and 52.5 y (range, 24–84) for MLL-germline cases.

†
In series 2, the median age at onset was 0.4 y (range, 0–12.1) for MLL-rearranged cases and 5.75 y (range, 0.8–17.2) for MLL-germline cases.

‡
In series 2, MLL fusion partner genes were confirmed by sequencing. Partner genes for the respective translocations included: t(4;11), MLL-AFF1;

t(11;19), MLL-MLLT1; t(9;11), MLL-MLLT3; and t(10;11), MLL-MLLT10.
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